diff --git a/CHANGELOG.md b/CHANGELOG.md index a9e153dc..81cbe6c9 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,8 +9,9 @@ Repository: **** ## Changelog -### **HEAD -> main** 2021/06/18 mandic00@live.com +### **HEAD -> main** 2021/07/19 marcogodoy@untitled.cl +- add note on manually disping tensor - modularize model loading ### **2.0.3** 2021/06/18 mandic00@live.com diff --git a/dist/human.esm-nobundle.js b/dist/human.esm-nobundle.js index 0742dc44..1935a23f 100644 --- a/dist/human.esm-nobundle.js +++ b/dist/human.esm-nobundle.js @@ -4,14 +4,14 @@ homepage: author: ' */ -var a5=Object.defineProperty;var fe=Object.getOwnPropertyDescriptor;var me=Object.getOwnPropertyNames;var he=Object.prototype.hasOwnProperty;var ue=A=>a5(A,"__esModule",{value:!0});var iA=(A,e)=>{ue(A);for(var t in e)a5(A,t,{get:e[t],enumerable:!0})},b=(A,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let n of me(e))!he.call(A,n)&&n!=="default"&&a5(A,n,{get:()=>e[n],enumerable:!(t=fe(e,n))||t.enumerable});return A};var xA=(A,e,t)=>{if(!e.has(A))throw TypeError("Cannot "+t)};var C=(A,e,t)=>(xA(A,e,"read from private field"),t?t.call(A):e.get(A)),K=(A,e,t)=>{if(e.has(A))throw TypeError("Cannot add the same private member more than once");e instanceof WeakSet?e.add(A):e.set(A,t)},_=(A,e,t,n)=>(xA(A,e,"write to private field"),n?n.call(A,t):e.set(A,t),t);function H(A,e){let t=A.endsWith("/")?"":"/",o=e.startsWith(".")||e.startsWith("/")||e.startsWith("http:")||e.startsWith("https:")||e.startsWith("file:")?`${e}`:`${A}${t}${e}`;if(!o.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${o} Expecting JSON file`);return o}function g(...A){let e=new Date,t=`${e.getHours().toString().padStart(2,"0")}:${e.getMinutes().toString().padStart(2,"0")}:${e.getSeconds().toString().padStart(2,"0")}.${e.getMilliseconds().toString().padStart(3,"0")}`;A&&console.log(t,"Human:",...A)}var N=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function U(...A){let e=t=>t&&typeof t=="object";return A.reduce((t,n)=>(Object.keys(n||{}).forEach(o=>{let x=t[o],s=n[o];Array.isArray(x)&&Array.isArray(s)?t[o]=x.concat(...s):e(x)&&e(s)?t[o]=U(x,s):t[o]=s}),t),{})}var yA={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function lA(){let A,e;if(typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);A=n?n[0].replace(/\(|\)/g,""):"",e=navigator.userAgent.replace(t[0],""),A[1]&&(e=e.replace(t[1],"")),e=e.replace(/ /g," ")}}else typeof process!="undefined"&&(A=`${process.platform} ${process.arch}`,e=`NodeJS ${process.version}`);return{platform:A,agent:e}}var r={};iA(r,{data:()=>Ee,version:()=>Re});b(r,g2);b(r,M2);b(r,T2);b(r,P2);b(r,z2);b(r,v2);import{version as pe}from"@tensorflow/tfjs/package.json";import{version as be}from"@tensorflow/tfjs-core/package.json";import{version as ge}from"@tensorflow/tfjs-data/package.json";import{version as Me}from"@tensorflow/tfjs-layers/package.json";import{version as Te}from"@tensorflow/tfjs-converter/package.json";import{version as Pe}from"@tensorflow/tfjs-backend-cpu/package.json";import{version as ze}from"@tensorflow/tfjs-backend-webgl/package.json";import{version as ve}from"@tensorflow/tfjs-backend-wasm/package.json";import*as g2 from"@tensorflow/tfjs-core/src/index";import*as M2 from"@tensorflow/tfjs-layers/src/index";import*as T2 from"@tensorflow/tfjs-converter/src/index";import*as Ee from"@tensorflow/tfjs-data/src/index";import*as P2 from"@tensorflow/tfjs-backend-cpu/src/index";import*as z2 from"@tensorflow/tfjs-backend-webgl/src/index";import*as v2 from"@tensorflow/tfjs-backend-wasm/src/index";var Re={tfjs:pe,"tfjs-core":be,"tfjs-data":ge,"tfjs-layers":Me,"tfjs-converter":Te,"tfjs-backend-cpu":Pe,"tfjs-backend-webgl":ze,"tfjs-backend-wasm":ve};var q={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function je(){let A=q.gl;!A||(q.extensions=A.getSupportedExtensions())}function cA(){if(!r.findBackend(q.name)){try{q.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(q.width,q.height):document.createElement("canvas")}catch(A){g("error: cannot create canvas:",A);return}try{q.gl=q.canvas.getContext("webgl2",q.webGLattr)}catch(A){g("error: cannot get WebGL2 context:",A);return}try{r.setWebGLContext(2,q.gl)}catch(A){g("error: cannot set WebGL2 context:",A);return}try{let A=new r.GPGPUContext(q.gl);r.registerBackend(q.name,()=>new r.MathBackendWebGL(A),q.priority)}catch(A){g("error: cannot register WebGL backend:",A);return}try{r.getKernelsForBackend("webgl").forEach(e=>{let t={...e,backendName:q.name};r.registerKernel(t)})}catch(A){g("error: cannot update WebGL backend registration:",A);return}try{r.ENV.set("WEBGL_VERSION",2)}catch(A){g("error: cannot set WebGL backend flags:",A);return}je(),g("backend registered:",q.name)}}function dA(A,e){let t=[A.startPoint[0]*e[0],A.startPoint[1]*e[1]],n=[A.endPoint[0]*e[0],A.endPoint[1]*e[1]];return{startPoint:t,endPoint:n}}function v0(A){return[Math.abs(A.endPoint[0]-A.startPoint[0]),Math.abs(A.endPoint[1]-A.startPoint[1])]}function m0(A){return[A.startPoint[0]+(A.endPoint[0]-A.startPoint[0])/2,A.startPoint[1]+(A.endPoint[1]-A.startPoint[1])/2]}function h0(A,e,t){let n=e.shape[1],o=e.shape[2],x=[[A.startPoint[1]/n,A.startPoint[0]/o,A.endPoint[1]/n,A.endPoint[0]/o]];return r.image.cropAndResize(e,x,[0],t)}function O0(A,e=1.5){let t=m0(A),n=v0(A),o=[e*n[0]/2,e*n[1]/2],x=[t[0]-o[0],t[1]-o[1]],s=[t[0]+o[0],t[1]+o[1]];return{startPoint:x,endPoint:s,landmarks:A.landmarks}}function L0(A){let e=m0(A),t=v0(A),o=Math.max(...t)/2,x=[Math.round(e[0]-o),Math.round(e[1]-o)],s=[Math.round(e[0]+o),Math.round(e[1]+o)];return{startPoint:x,endPoint:s,landmarks:A.landmarks}}function i5(A){let e=A.map(x=>x[0]),t=A.map(x=>x[1]),n=[Math.min(...e),Math.min(...t)],o=[Math.max(...e),Math.max(...t)];return{startPoint:n,endPoint:o,landmarks:A}}var fA=A=>({startPoint:r.slice(A,[0,0],[-1,2]),endPoint:r.slice(A,[0,2],[-1,2])});var H0=[[1,0,0],[0,1,0],[0,0,1]];function Se(A){return A-2*Math.PI*Math.floor((A+Math.PI)/(2*Math.PI))}function x5(A,e){let t=Math.PI/2-Math.atan2(-(e[1]-A[1]),e[0]-A[0]);return Se(t)}function mA(A,e){return[[1,0,A],[0,1,e],[0,0,1]]}function r0(A,e){let t=0;for(let n=0;n{let a=r.image.resizeBilinear(e,[this.inputSize,this.inputSize]).div(127.5).sub(.5),c=this.model.execute(a),l;if(Array.isArray(c)){let d=c.sort((R,k)=>R.size-k.size),h=r.concat([d[0],d[2]],2),P=r.concat([d[1],d[3]],2);l=r.concat([P,h],1).squeeze(0)}else l=r.squeeze(c);let f=We(l,this.anchors,[this.inputSize,this.inputSize]),u=r.slice(l,[0,0],[-1,1]),v=r.sigmoid(u).squeeze().dataSync();return[l,f,v]}),x=await r.image.nonMaxSuppressionAsync(n,o,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),s=x.arraySync();x.dispose();let i=[];for(let y=0;ythis.config.face.detector.minConfidence){let c=r.slice(n,[s[y],0],[1,-1]),l=fA(c);c.dispose();let f=this.anchorsData[s[y]],u=r.tidy(()=>r.slice(t,[s[y],gA-1],[1,-1]).squeeze().reshape([gA,-1]));i.push({box:l,landmarks:u,anchor:f,confidence:a})}}return t.dispose(),n.dispose(),{boxes:i,scaleFactor:[e.shape[2]/this.inputSize,e.shape[1]/this.inputSize]}}};async function TA(A){let e=await r.loadGraphModel(H(A.modelBasePath,A.face.detector.modelPath),{fromTFHub:A.face.detector.modelPath.includes("tfhub.dev")}),t=new MA(e,A);return!e||!e.modelUrl?g("load model failed:",A.face.detector.modelPath):A.debug&&g("load model:",e.modelUrl),t}var t0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},y5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],E0=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],y0=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var ke=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Ie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Ne=[33,133,362,263,1,78,308],H2=ke.map(A=>E0[A]),Z2=Ie.map(A=>E0[A]),V2=Ne.map(A=>E0[A]);var l5=t0.leftEyeLower0,c5=t0.rightEyeLower0,u0={leftBounds:[l5[0],l5[l5.length-1]],rightBounds:[c5[0],c5[c5.length-1]]},V0={count:468,mouth:13,symmetryLine:[13,t0.midwayBetweenEyes[0]]},PA={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},p0={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function X0(A,e,t,n){for(let o=0;o[x[0]/this.meshSize*(l[0]-this.meshSize/2),x[1]/this.meshSize*(l[1]-this.meshSize/2),l[2]]),i=n!==0?Z0(n,[0,0]):H0,y=n!==0?s.map(l=>[...pA(l,i),l[2]]):s,a=n!==0?uA(o):H0,c=[...m0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return y.map(l=>[Math.round(l[0]+r0(c,a[0])),Math.round(l[1]+r0(c,a[1])),Math.round(l[2])])}getLeftToRightEyeDepthDifference(e){let t=e[u0.leftBounds[0]][2],n=e[u0.rightBounds[0]][2];return t-n}getEyeBox(e,t,n,o,x=!1){let s=L0(O0(i5([e[n],e[o]]),this.irisEnlarge)),i=v0(s),y=r.image.cropAndResize(t,[[s.startPoint[1]/this.meshSize,s.startPoint[0]/this.meshSize,s.endPoint[1]/this.meshSize,s.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return x&&r.ENV.flags.IS_BROWSER&&(y=r.image.flipLeftRight(y)),{box:s,boxSize:i,crop:y}}getEyeCoords(e,t,n,o=!1){let x=[];for(let s=0;s{let a=s;return y===2?a=o:y===4&&(a=x),[i[0],i[1],a]})}async predict(e,t){let n=!1,o;if((this.skipped===0||this.skipped>t.face.detector.skipFrames||!t.face.mesh.enabled||!t.skipFrame)&&(o=await this.boundingBoxDetector.getBoundingBoxes(e),this.skipped=0),t.skipFrame&&this.skipped++,!t.skipFrame||o&&o.boxes&&(!t.face.mesh.enabled||o.boxes.length!==this.detectedFaces&&this.detectedFaces!==t.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let s of o.boxes)this.storedBoxes.push({startPoint:s.box.startPoint.dataSync(),endPoint:s.box.endPoint.dataSync(),landmarks:s.landmarks.arraySync(),confidence:s.confidence});this.storedBoxes.length>0&&(n=!0)}if(n){if(!o||!o.boxes||o.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let s=0;s{s.box.startPoint.dispose(),s.box.endPoint.dispose(),s.landmarks.dispose()});let x=r.tidy(()=>this.storedBoxes.map((s,i)=>{let y,a=0,c;if(t.face.detector.rotation&&t.face.mesh.enabled&&r.ENV.flags.IS_BROWSER){let[R,k]=s.landmarks.length>=V0.count?V0.symmetryLine:PA.symmetryLine;a=x5(s.landmarks[R],s.landmarks[k]);let M=m0({startPoint:s.startPoint,endPoint:s.endPoint}),p=[M[0]/e.shape[2],M[1]/e.shape[1]],T=r.image.rotateWithOffset(e,a,0,p);c=Z0(-a,M),t.face.mesh.enabled?y=h0({startPoint:s.startPoint,endPoint:s.endPoint},T,[this.meshSize,this.meshSize]).div(255):y=h0({startPoint:s.startPoint,endPoint:s.endPoint},T,[this.boxSize,this.boxSize]).div(255)}else{c=H0;let R=e.clone();t.face.mesh.enabled?y=h0({startPoint:s.startPoint,endPoint:s.endPoint},R,[this.meshSize,this.meshSize]).div(255):y=h0({startPoint:s.startPoint,endPoint:s.endPoint},R,[this.boxSize,this.boxSize]).div(255)}if(!t.face.mesh.enabled)return{mesh:[],box:s,faceConfidence:null,boxConfidence:s.confidence,confidence:s.confidence,image:y};let[,l,f]=this.meshDetector.execute(y),u=l.dataSync()[0];if(u=V0.count?V0.symmetryLine:PA.symmetryLine;a=x5(s.landmarks[R],s.landmarks[k]);let M=m0({startPoint:s.startPoint,endPoint:s.endPoint}),p=[M[0]/e.shape[2],M[1]/e.shape[1]],T=r.image.rotateWithOffset(e.toFloat(),a,0,p);c=Z0(-a,M),y=h0({startPoint:s.startPoint,endPoint:s.endPoint},T,[this.meshSize,this.meshSize]).div(255)}let j={mesh:h,box:s,faceConfidence:u,boxConfidence:s.confidence,image:y};return this.storedBoxes[i]={...L0(s),confidence:s.confidence,faceConfidence:u},j}));return t.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(s=>s.confidence>t.face.detector.minConfidence)),this.detectedFaces=x.length,x}};var V=[null,null,null],f5;async function zA(A,e){let t=await f5.predict(A,e),n=[],o=0;for(let x of t||[]){if(!x||x.isDisposedInternal)continue;let s=x.mesh.map(c=>[c[0]/(A.shape[2]||0),c[1]/(A.shape[1]||0),c[2]/f5.meshSize]),i={};if(x.mesh&&x.mesh.length>0)for(let c of Object.keys(t0))i[c]=t0[c].map(l=>x.mesh[l]);let y=x.box?[Math.trunc(Math.max(0,x.box.startPoint[0])),Math.trunc(Math.max(0,x.box.startPoint[1])),Math.trunc(Math.min(A.shape[2]||0,x.box.endPoint[0])-Math.max(0,x.box.startPoint[0])),Math.trunc(Math.min(A.shape[1]||0,x.box.endPoint[1])-Math.max(0,x.box.startPoint[1]))]:[0,0,0,0],a=x.box?[x.box.startPoint[0]/(A.shape[2]||0),x.box.startPoint[1]/(A.shape[1]||0),(x.box.endPoint[0]-x.box.startPoint[0])/(A.shape[2]||0),(x.box.endPoint[1]-x.box.startPoint[1])/(A.shape[1]||0)]:[0,0,0,0];n.push({id:o++,score:Math.round(100*x.faceConfidence||100*x.boxConfidence||0)/100,boxScore:Math.round(100*x.boxConfidence)/100,faceScore:Math.round(100*x.faceConfidence)/100,box:y,boxRaw:a,mesh:x.mesh,meshRaw:s,annotations:i,image:x.image,tensor:x.image}),x.coords&&x.coords.dispose()}return n}async function m5(A){return!V[0]&&A.face.enabled||!V[1]&&A.face.mesh.enabled||!V[2]&&A.face.iris.enabled?(V=await Promise.all([!V[0]&&A.face.enabled?TA(A):null,!V[1]&&A.face.mesh.enabled?r.loadGraphModel(H(A.modelBasePath,A.face.mesh.modelPath),{fromTFHub:A.face.mesh.modelPath.includes("tfhub.dev")}):null,!V[2]&&A.face.iris.enabled?r.loadGraphModel(H(A.modelBasePath,A.face.iris.modelPath),{fromTFHub:A.face.iris.modelPath.includes("tfhub.dev")}):null]),A.face.mesh.enabled&&(!V[1]||!V[1].modelUrl?g("load model failed:",A.face.mesh.modelPath):A.debug&&g("load model:",V[1].modelUrl)),A.face.iris.enabled&&(!V[2]||!V[2].modelUrl?g("load model failed:",A.face.iris.modelPath):A.debug&&g("load model:",V[2].modelUrl))):A.debug&&(V[0]&&g("cached model:",V[0].model.modelUrl),V[1]&&g("cached model:",V[1].modelUrl),V[2]&&g("cached model:",V[2].modelUrl)),f5=new d5(V[0],V[1],V[2]),V}var vA=y0,EA=E0;var $,F0=[],RA=0,h5=Number.MAX_SAFE_INTEGER;async function u5(A){let e=H(A.modelBasePath,A.face.description.modelPath);return $?A.debug&&g("cached model:",e):($=await r.loadGraphModel(e),$?A.debug&&g("load model:",e):g("load model failed:",A.face.description.modelPath)),$}function p5(A,e,t=2){if(!A||!e||(A==null?void 0:A.length)===0||(e==null?void 0:e.length)===0||(A==null?void 0:A.length)!==(e==null?void 0:e.length))return 0;let n=5*A.map((x,s)=>Math.abs(A[s]-e[s])**t).reduce((x,s)=>x+s,0)**(1/t);return Math.max(0,100-n)/100}function jA(A,e,t=0){let n={similarity:0,name:"",source:"",embedding:[]};if(!A||!e||!Array.isArray(A)||!Array.isArray(e))return n;for(let o of e)if(o.embedding&&o.name){let x=p5(A,o.embedding);x>t&&x>n.similarity&&(n={...o,similarity:x})}return n}function b5(A){return r.tidy(()=>{let t=A.image||A.tensor||A;if(!(t instanceof r.Tensor))return null;let n=[[.05,.15,.85,.85]];return $.inputs[0].shape?(t.shape.length===3?r.image.cropAndResize(r.expandDims(t,0),n,[0],[$.inputs[0].shape[2],$.inputs[0].shape[1]]):r.image.cropAndResize(t,n,[0],[$.inputs[0].shape[2],$.inputs[0].shape[1]])).mul(255):null})}async function g5(A,e,t,n){var o,x;return $?h50?(h5++,F0[t]):(h5=0,new Promise(async s=>{let i=b5(A),y,a={age:0,gender:"unknown",genderScore:0,descriptor:[]};e.face.description.enabled&&(y=await $.predict(i)),r.dispose(i),y&&(r.tidy(()=>{let c=y.find(d=>d.shape[1]===1).dataSync(),l=Math.trunc(200*Math.abs(c[0]-.5))/100;l>e.face.description.minConfidence&&(a.gender=c[0]<=.5?"female":"male",a.genderScore=Math.min(.99,l));let f=y.find(d=>d.shape[1]===100).argMax(1).dataSync()[0],u=y.find(d=>d.shape[1]===100).dataSync();a.age=Math.round(u[f-1]>u[f+1]?10*f-100*u[f-1]:10*f+100*u[f+1])/10;let v=y.find(d=>d.shape[1]===1024);a.descriptor=[...v.dataSync()]}),y.forEach(c=>r.dispose(c))),F0[t]=a,RA=n,s(a)})):null}var Oe=["angry","disgust","fear","happy","sad","surprise","neutral"],A0,C0=[],SA=0,M5=Number.MAX_SAFE_INTEGER,T5=[.2989,.587,.114];async function P5(A){return A0?A.debug&&g("cached model:",A0.modelUrl):(A0=await r.loadGraphModel(H(A.modelBasePath,A.face.emotion.modelPath)),!A0||!A0.modelUrl?g("load model failed:",A.face.emotion.modelPath):A.debug&&g("load model:",A0.modelUrl)),A0}async function z5(A,e,t,n){return A0?M50?(M5++,C0[t]):(M5=0,new Promise(async o=>{let x=r.image.resizeBilinear(A,[A0.inputs[0].shape[2],A0.inputs[0].shape[1]],!1),[s,i,y]=r.split(x,3,3);x.dispose();let a=r.mul(s,T5[0]),c=r.mul(i,T5[1]),l=r.mul(y,T5[2]);s.dispose(),i.dispose(),y.dispose();let f=r.addN([a,c,l]);a.dispose(),c.dispose(),l.dispose();let u=r.tidy(()=>f.sub(.5).mul(2));f.dispose();let v=[];if(e.face.emotion.enabled){let d=await A0.predict(u),h=d.dataSync();r.dispose(d);for(let P=0;Pe.face.emotion.minConfidence&&v.push({score:Math.min(.99,Math.trunc(100*h[P])/100),emotion:Oe[P]});v.sort((P,j)=>j.score-P.score)}u.dispose(),C0[t]=v,SA=n,o(v)})):null}var R0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],wA=R0.length,j0=R0.reduce((A,e,t)=>(A[e]=t,A),{}),Le=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],He=Le.map(([A,e])=>[j0[A],j0[e]]),WA=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function kA(A){let e=A.reduce(({maxX:t,maxY:n,minX:o,minY:x},{position:{x:s,y:i}})=>({maxX:Math.max(t,s),maxY:Math.max(n,i),minX:Math.min(o,s),minY:Math.min(x,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[e.minX,e.minY,e.maxX-e.minX,e.maxY-e.minY]}function IA(A,[e,t],[n,o]){let x=e/n,s=t/o,i=(a,c)=>({id:c,score:a.score,boxRaw:[a.box[0]/o,a.box[1]/n,a.box[2]/o,a.box[3]/n],box:[Math.trunc(a.box[0]*s),Math.trunc(a.box[1]*x),Math.trunc(a.box[2]*s),Math.trunc(a.box[3]*x)],keypoints:a.keypoints.map(({score:l,part:f,position:u})=>({score:l,part:f,position:[Math.trunc(u.x*s),Math.trunc(u.y*x)],positionRaw:[u.x/n,u.y/n]}))});return A.map((a,c)=>i(a,c))}var v5=class{constructor(e,t){this.priorityQueue=new Array(e),this.numberOfElements=-1,this.getElementValue=t}enqueue(e){this.priorityQueue[++this.numberOfElements]=e,this.swim(this.numberOfElements)}dequeue(){let e=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,e}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(e){for(;e>0&&this.less(Math.floor(e/2),e);)this.exchange(e,Math.floor(e/2)),e=Math.floor(e/2)}sink(e){for(;2*e<=this.numberOfElements;){let t=2*e;if(tt?t:A}function NA(A,e,t,n){let o=t-A,x=n-e;return o*o+x*x}function S5(A,e){return{x:A.x+e.x,y:A.y+e.y}}var q0=1,b0=16,Ze=50**2;function OA(A,e,t,n,o,x,s=2){let i=P=>({y:x.get(P.y,P.x,A),x:x.get(P.y,P.x,x.shape[2]/2+A)}),y=(P,j,R)=>({y:j5(Math.round(P.y/b0),0,j-1),x:j5(Math.round(P.x/b0),0,R-1)}),[a,c]=n.shape,l=y(e.position,a,c),f=i(l),v=S5(e.position,f);for(let P=0;P[j0[f],j0[u]]),s=x.map(([,f])=>f),i=x.map(([f])=>f),y=e.shape[2],a=s.length,c=new Array(y),l=R5(A.part,b0,t);c[A.part.id]={score:A.score,part:R0[A.part.id],position:l};for(let f=a-1;f>=0;--f){let u=s[f],v=i[f];c[u]&&!c[v]&&(c[v]=OA(f,c[u],v,e,t,o))}for(let f=0;fe){i=!1;break}if(!i)break}return i}function Fe(A,e){let[t,n,o]=e.shape,x=new v5(t*n*o,({score:s})=>s);for(let s=0;s{var s;let x=(s=o[n])==null?void 0:s.position;return x?NA(t,e,x.y,x.x)<=Ze:!1})}function Ce(A,e){return e.reduce((n,{position:o,score:x},s)=>(LA(A,o,s)||(n+=x),n),0)/e.length}function HA(A,e,t,n,o,x){let s=[],i=Fe(x,e);for(;s.lengthu.score>x);let l=Ce(s,c),f=kA(c);l>x&&s.push({keypoints:c,box:f,score:Math.round(100*l)/100})}return s}var J,qe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function w5(A,e){let t=r.tidy(()=>{if(!J.inputs[0].shape)return[];let i=r.image.resizeBilinear(A,[J.inputs[0].shape[2],J.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),a=J.execute(i,qe).map(c=>r.squeeze(c,[0]));return a[1]=a[1].sigmoid(),a}),n=await Promise.all(t.map(s=>s.buffer()));for(let s of t)s.dispose();let o=await HA(n[0],n[1],n[2],n[3],e.body.maxDetected,e.body.minConfidence);return J.inputs[0].shape?IA(o,[A.shape[1],A.shape[2]],[J.inputs[0].shape[2],J.inputs[0].shape[1]]):[]}async function W5(A){return J?A.debug&&g("cached model:",J.modelUrl):(J=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!J||!J.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",J.modelUrl)),J}function B0(A){return[Math.abs(A.endPoint[0]-A.startPoint[0]),Math.abs(A.endPoint[1]-A.startPoint[1])]}function S0(A){return[A.startPoint[0]+(A.endPoint[0]-A.startPoint[0])/2,A.startPoint[1]+(A.endPoint[1]-A.startPoint[1])/2]}function ZA(A,e,t){let n=e.shape[1],o=e.shape[2],x=[[A.startPoint[1]/n,A.startPoint[0]/o,A.endPoint[1]/n,A.endPoint[0]/o]];return r.image.cropAndResize(e,x,[0],t)}function VA(A,e){let t=[A.startPoint[0]*e[0],A.startPoint[1]*e[1]],n=[A.endPoint[0]*e[0],A.endPoint[1]*e[1]],o=A.palmLandmarks.map(x=>[x[0]*e[0],x[1]*e[1]]);return{startPoint:t,endPoint:n,palmLandmarks:o,confidence:A.confidence}}function G0(A,e=1.5){let t=S0(A),n=B0(A),o=[e*n[0]/2,e*n[1]/2],x=[t[0]-o[0],t[1]-o[1]],s=[t[0]+o[0],t[1]+o[1]];return{startPoint:x,endPoint:s,palmLandmarks:A.palmLandmarks}}function U0(A){let e=S0(A),t=B0(A),o=Math.max(...t)/2,x=[e[0]-o,e[1]-o],s=[e[0]+o,e[1]+o];return{startPoint:x,endPoint:s,palmLandmarks:A.palmLandmarks}}var XA=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var k5=class{constructor(e){var t;this.model=e,this.anchors=XA.map(n=>[n.x,n.y]),this.anchorsTensor=r.tensor2d(this.anchors),this.inputSize=(t=this.model)==null?void 0:t.inputs[0].shape[2],this.inputSizeTensor=r.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=r.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(e){return r.tidy(()=>{let t=r.slice(e,[0,0],[-1,2]),n=r.slice(e,[0,2],[-1,2]),o=r.add(r.div(t,this.inputSizeTensor),this.anchorsTensor),x=r.div(n,this.doubleInputSizeTensor),s=r.mul(r.sub(o,x),this.inputSizeTensor),i=r.mul(r.add(o,x),this.inputSizeTensor);return r.concat2d([s,i],1)})}normalizeLandmarks(e,t){return r.tidy(()=>{let n=r.add(r.div(e.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[t]);return r.mul(n,this.inputSizeTensor)})}async getBoxes(e,t){let n=this.model.predict(e),o=r.squeeze(n);n.dispose();let x=r.tidy(()=>r.sigmoid(r.slice(o,[0,0],[-1,1])).squeeze()),s=x.dataSync(),i=r.slice(o,[0,1],[-1,4]),y=this.normalizeBoxes(i);i.dispose();let a=await r.image.nonMaxSuppressionAsync(y,s,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence),c=a.arraySync();x.dispose(),a.dispose();let l=[];for(let f of c)if(s[f]>=t.hand.minConfidence){let u=r.slice(y,[f,0],[1,-1]),v=r.slice(o,[f,5],[1,14]),d=r.tidy(()=>this.normalizeLandmarks(v,f).reshape([-1,2]));v.dispose(),l.push({box:u,palmLandmarks:d,confidence:s[f]})}return o.dispose(),y.dispose(),l}async estimateHandBounds(e,t){let n=e.shape[1],o=e.shape[2],x=r.tidy(()=>e.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),s=await this.getBoxes(x,t);x.dispose();let i=[];if(!s||s.length===0)return i;for(let y of s){let a=y.box.dataSync(),c=a.slice(0,2),l=a.slice(2,4),f=y.palmLandmarks.arraySync();y.box.dispose(),y.palmLandmarks.dispose(),i.push(VA({startPoint:c,endPoint:l,palmLandmarks:f,confidence:y.confidence},[o/this.inputSize,n/this.inputSize]))}return i}};function Be(A){return A-2*Math.PI*Math.floor((A+Math.PI)/(2*Math.PI))}function FA(A,e){let t=Math.PI/2-Math.atan2(-(e[1]-A[1]),e[0]-A[0]);return Be(t)}var CA=(A,e)=>[[1,0,A],[0,1,e],[0,0,1]];function s0(A,e){let t=0;for(let n=0;ns[0]),n=e.map(s=>s[1]),o=[Math.min(...t),Math.min(...n)],x=[Math.max(...t),Math.max(...n)];return{startPoint:o,endPoint:x}}getBoxForPalmLandmarks(e,t){let n=e.map(x=>N5([...x,1],t)),o=this.calculateLandmarksBoundingBox(n);return G0(U0(o),Ue)}getBoxForHandLandmarks(e){let t=this.calculateLandmarksBoundingBox(e),n=G0(U0(t),GA);n.palmLandmarks=[];for(let o=0;o[s[0]*(u[0]-this.inputSize/2),s[1]*(u[1]-this.inputSize/2),s[2]*u[2]]),y=I5(n,[0,0]),a=i.map(u=>[...N5(u,y),u[2]]),c=BA(o),l=[...S0(t),1],f=[s0(l,c[0]),s0(l,c[1])];return a.map(u=>[Math.trunc(u[0]+f[0]),Math.trunc(u[1]+f[1]),Math.trunc(u[2])])}async estimateHands(e,t){let n=!1,o;(this.skipped===0||this.skipped>t.hand.skipFrames||!t.hand.landmarks||!t.skipFrame)&&(o=await this.handDetector.estimateHandBounds(e,t),this.skipped=0),t.skipFrame&&this.skipped++,o&&o.length>0&&(o.length!==this.detectedHands&&this.detectedHands!==t.hand.maxDetected||!t.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...o],this.storedBoxes.length>0&&(n=!0));let x=[];for(let s=0;s=t.hand.minConfidence){let R=r.reshape(P,[-1,3]),k=R.arraySync();P.dispose(),R.dispose();let M=this.transformRawCoords(k,u,y,f),p=this.getBoxForHandLandmarks(M);this.storedBoxes[s]={...p,confidence:j};let T={landmarks:M,confidence:j,box:{topLeft:p.startPoint,bottomRight:p.endPoint}};x.push(T)}else this.storedBoxes[s]=null;P.dispose()}else{let y=G0(U0(i),GA),a={confidence:i.confidence,box:{topLeft:y.startPoint,bottomRight:y.endPoint}};x.push(a)}}return this.storedBoxes=this.storedBoxes.filter(s=>s!==null),this.detectedHands=x.length,x}};var JA={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},a0,i0,YA;async function L5(A,e){let t=await YA.estimateHands(A,e);if(!t)return[];let n=[];for(let o=0;ot[o].landmarks[c]);let s=t[o].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],y=[0,0,0,0];if(s&&s.length>0){for(let a of s)a[0]i[2]&&(i[2]=a[0]),a[1]>i[3]&&(i[3]=a[1]);i[2]-=i[0],i[3]-=i[1],y=[i[0]/(A.shape[2]||0),i[1]/(A.shape[1]||0),i[2]/(A.shape[2]||0),i[3]/(A.shape[1]||0)]}else i=t[o].box?[Math.trunc(Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.max(0,t[o].box.topLeft[1])),Math.trunc(Math.min(A.shape[2]||0,t[o].box.bottomRight[0])-Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.min(A.shape[1]||0,t[o].box.bottomRight[1])-Math.max(0,t[o].box.topLeft[1]))]:[0,0,0,0],y=[t[o].box.topLeft[0]/(A.shape[2]||0),t[o].box.topLeft[1]/(A.shape[1]||0),(t[o].box.bottomRight[0]-t[o].box.topLeft[0])/(A.shape[2]||0),(t[o].box.bottomRight[1]-t[o].box.topLeft[1])/(A.shape[1]||0)];n.push({id:o,score:Math.round(100*t[o].confidence)/100,box:i,boxRaw:y,keypoints:s,annotations:x})}return n}async function H5(A){!a0||!i0?([a0,i0]=await Promise.all([A.hand.enabled?r.loadGraphModel(H(A.modelBasePath,A.hand.detector.modelPath),{fromTFHub:A.hand.detector.modelPath.includes("tfhub.dev")}):null,A.hand.landmarks?r.loadGraphModel(H(A.modelBasePath,A.hand.skeleton.modelPath),{fromTFHub:A.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),A.hand.enabled&&(!a0||!a0.modelUrl?g("load model failed:",A.hand.detector.modelPath):A.debug&&g("load model:",a0.modelUrl),!i0||!i0.modelUrl?g("load model failed:",A.hand.skeleton.modelPath):A.debug&&g("load model:",i0.modelUrl))):(A.debug&&g("cached model:",a0.modelUrl),A.debug&&g("cached model:",i0.modelUrl));let e=new k5(a0);return YA=new O5(e,i0),[a0,i0]}var DA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],KA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var B;async function J0(A){return B?A.debug&&g("cached model:",B.modelUrl):(B=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),B.width=parseInt(B.signature.inputs["input_1:0"].tensorShape.dim[2].size),B.height=parseInt(B.signature.inputs["input_1:0"].tensorShape.dim[1].size),!B||!B.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",B.modelUrl)),B}async function Z5(A,e){var d;if(!B)return[];if(!e.body.enabled)return[];let t={width:A.shape[2]||0,height:A.shape[1]||0},n=r.image.resizeBilinear(A,[B.width,B.height],!1),o=r.div(n,[255]);n.dispose();let x=await B.predict(o),s=((d=x.find(h=>h.size===195||h.size===155))==null?void 0:d.dataSync())||[];x.forEach(h=>h.dispose()),o.dispose();let i=[],y=(s==null?void 0:s.length)===195?DA:KA,a=5;for(let h=0;hh.position[0]),l=i.map(h=>h.position[1]),f=[Math.min(...c),Math.min(...l),Math.max(...c)-Math.min(...c),Math.max(...l)-Math.min(...c)],u=[0,0,0,0],v=i.reduce((h,P)=>P.score>h?P.score:h,0);return[{id:0,score:v,box:f,boxRaw:u,keypoints:i}]}var G,o0=[],V5=[0,0,0,0],X5=[0,0,0,0],Y0=0,F5=Number.MAX_SAFE_INTEGER,De=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function QA(A){return G?A.debug&&g("cached model:",G.modelUrl):(G=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!G||!G.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",G.modelUrl)),G}function Ke(A,e){let[t,n]=A.shape;return r.tidy(()=>{let o=(i,y)=>r.sub(i,r.mul(r.div(i,r.scalar(y,"int32")),r.scalar(y,"int32"))),x=r.reshape(A,[n*t]),s=r.max(x,0).dataSync()[0];if(s>e){let i=r.argMax(x,0),y=o(i,t).dataSync()[0],a=r.div(i,r.scalar(t,"int32")).dataSync()[0];return[y,a,s]}return[0,0,s]})}async function C5(A,e){return F50?(F5++,[{id:0,score:Y0,box:V5,boxRaw:X5,keypoints:o0}]):(F5=0,new Promise(async t=>{let n=r.tidy(()=>{if(!G.inputs[0].shape)return null;let a=r.image.resizeBilinear(A,[G.inputs[0].shape[2],G.inputs[0].shape[1]],!1);return r.mul(a,2).sub(1)}),o;if(e.body.enabled&&(o=await G.predict(n)),n.dispose(),o){o0.length=0;let a=o.squeeze();r.dispose(o);let c=a.unstack(2);r.dispose(a);for(let l=0;le.body.minConfidence&&o0.push({score:Math.round(100*v)/100,part:De[l],positionRaw:[f/G.inputs[0].shape[2],u/G.inputs[0].shape[1]],position:[Math.round(A.shape[2]*f/G.inputs[0].shape[2]),Math.round(A.shape[1]*u/G.inputs[0].shape[1])]})}c.forEach(l=>r.dispose(l))}Y0=o0.reduce((a,c)=>c.score>a?c.score:a,0);let x=o0.map(a=>a.position[0]),s=o0.map(a=>a.position[1]);V5=[Math.min(...x),Math.min(...s),Math.max(...x)-Math.min(...x),Math.max(...s)-Math.min(...s)];let i=o0.map(a=>a.positionRaw[0]),y=o0.map(a=>a.positionRaw[1]);X5=[Math.min(...i),Math.min(...y),Math.max(...i)-Math.min(...i),Math.max(...y)-Math.min(...y)],t([{id:0,score:Y0,box:V5,boxRaw:X5,keypoints:o0}])}))}var e0,n0=[],q5=[0,0,0,0],B5=[0,0,0,0],g0=0,G5=Number.MAX_SAFE_INTEGER,Qe=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function U5(A){return e0?A.debug&&g("cached model:",e0.modelUrl):(e0=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!e0||!e0.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",e0.modelUrl)),e0}async function J5(A,e){return G50?(G5++,[{id:0,score:g0,box:q5,boxRaw:B5,keypoints:n0}]):(G5=0,new Promise(async t=>{let n=r.tidy(()=>{if(!e0.inputs[0].shape)return null;let a=r.image.resizeBilinear(A,[e0.inputs[0].shape[2],e0.inputs[0].shape[1]],!1);return r.cast(a,"int32")}),o;if(e.body.enabled&&(o=await e0.predict(n)),n.dispose(),o){n0.length=0;let a=o.arraySync();r.dispose(o);let c=a[0][0];for(let l=0;le.body.minConfidence&&n0.push({score:Math.round(100*g0)/100,part:Qe[l],positionRaw:[c[l][1],c[l][0]],position:[Math.round((A.shape[2]||0)*c[l][1]),Math.round((A.shape[1]||0)*c[l][0])]})}g0=n0.reduce((a,c)=>c.score>a?c.score:a,0);let x=n0.map(a=>a.position[0]),s=n0.map(a=>a.position[1]);q5=[Math.min(...x),Math.min(...s),Math.max(...x)-Math.min(...x),Math.max(...s)-Math.min(...s)];let i=n0.map(a=>a.positionRaw[0]),y=n0.map(a=>a.positionRaw[1]);B5=[Math.min(...i),Math.min(...y),Math.max(...i)-Math.min(...i),Math.max(...y)-Math.min(...y)],t([{id:0,score:g0,box:q5,boxRaw:B5,keypoints:n0}])}))}var M0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Y,Y5=[],D5=Number.MAX_SAFE_INTEGER,D0=2.5;async function K5(A){if(Y)A.debug&&g("cached model:",Y.modelUrl);else{Y=await r.loadGraphModel(H(A.modelBasePath,A.object.modelPath));let e=Object.values(Y.modelSignature.inputs);if(Y.inputSize=Array.isArray(e)?parseInt(e[0].tensorShape.dim[2].size):null,!Y.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${A.object.modelPath}`);!Y||!Y.modelUrl?g("load model failed:",A.object.modelPath):A.debug&&g("load model:",Y.modelUrl)}return Y}async function _e(A,e,t,n){let o=0,x=[];for(let a of[1,2,4])r.tidy(()=>{var h,P;let c=a*13,l=(h=A.find(j=>j.shape[1]===c**2&&j.shape[2]===M0.length))==null?void 0:h.squeeze(),f=(P=A.find(j=>j.shape[1]===c**2&&j.shape[2]n.object.minConfidence&&R!==61){let M=(.5+Math.trunc(j%c))/c,p=(.5+Math.trunc(j/c))/c,T=v[j].map(F=>F*(c/a/e)),[m,w]=[M-D0/a*T[0],p-D0/a*T[1]],[I,O]=[M+D0/a*T[2]-m,p+D0/a*T[3]-w],W=[m,w,I,O];W=W.map(F=>Math.max(0,Math.min(F,1)));let L=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],z={id:o++,score:Math.round(100*k)/100,class:R+1,label:M0[R].label,box:L.map(F=>Math.trunc(F)),boxRaw:W};x.push(z)}}});A.forEach(a=>r.dispose(a));let s=x.map(a=>[a.boxRaw[1],a.boxRaw[0],a.boxRaw[3],a.boxRaw[2]]),i=x.map(a=>a.score),y=[];if(s&&s.length>0){let a=await r.image.nonMaxSuppressionAsync(s,i,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);y=a.dataSync(),r.dispose(a)}return x=x.filter((a,c)=>y.includes(c)).sort((a,c)=>c.score-a.score),x}async function Q5(A,e){return D50?(D5++,Y5):(D5=0,new Promise(async t=>{let n=[A.shape[2],A.shape[1]],o=r.image.resizeBilinear(A,[Y.inputSize,Y.inputSize],!1),x=o.div(255),s=x.transpose([0,3,1,2]);x.dispose(),o.dispose();let i;e.object.enabled&&(i=await Y.predict(s)),s.dispose();let y=await _e(i,Y.inputSize,n,e);Y5=y,t(y)}))}var D,_5=[],$5=Number.MAX_SAFE_INTEGER;async function AA(A){if(D)A.debug&&g("cached model:",D.modelUrl);else{D=await r.loadGraphModel(H(A.modelBasePath,A.object.modelPath));let e=Object.values(D.modelSignature.inputs);if(D.inputSize=Array.isArray(e)?parseInt(e[0].tensorShape.dim[2].size):null,!D.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${A.object.modelPath}`);!D||!D.modelUrl?g("load model failed:",A.object.modelPath):A.debug&&g("load model:",D.modelUrl)}return D}async function $e(A,e,t,n){if(!A)return[];let o=[],x=A.arraySync(),s=r.squeeze(A);A.dispose();let i=r.split(s,6,1);s.dispose();let a=r.stack([i[1],i[0],i[3],i[2]],1).squeeze(),c=i[4].squeeze(),l=i[5].squeeze();i.forEach(d=>d.dispose());let f=await r.image.nonMaxSuppressionAsync(a,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);a.dispose(),c.dispose(),l.dispose();let u=f.dataSync();f.dispose();let v=0;for(let d of u){let h=Math.trunc(100*x[0][d][4])/100,P=x[0][d][5],j=M0[P].label,[R,k]=[x[0][d][0]/e,x[0][d][1]/e],M=[R,k,x[0][d][2]/e-R,x[0][d][3]/e-k],p=[Math.trunc(M[0]*t[0]),Math.trunc(M[1]*t[1]),Math.trunc(M[2]*t[0]),Math.trunc(M[3]*t[1])];o.push({id:v++,score:h,class:P,label:j,box:p,boxRaw:M})}return o}async function eA(A,e){return $50?($5++,_5):($5=0,new Promise(async t=>{let n=[A.shape[2],A.shape[1]],o=r.image.resizeBilinear(A,[D.inputSize,D.inputSize]),x=e.object.enabled?D.execute(o,["tower_0/detections"]):null;o.dispose();let s=await $e(x,D.inputSize,n,e);_5=s,t(s)}))}function A2(A,e,t){let n=function(i,y,a){let c=new RegExp("\\b"+y+" \\w+ (\\w+)","ig");i.replace(c,(l,f)=>(a[f]=0,l))},o=function(i,y){let a=A.createShader(y);if(A.shaderSource(a,i),A.compileShader(a),!A.getShaderParameter(a,A.COMPILE_STATUS))throw new Error("Filter: GL compile failed",A.getShaderInfoLog(a));return a};this.uniform={},this.attribute={};let x=o(e,A.VERTEX_SHADER),s=o(t,A.FRAGMENT_SHADER);if(this.id=A.createProgram(),A.attachShader(this.id,x),A.attachShader(this.id,s),A.linkProgram(this.id),!A.getProgramParameter(this.id,A.LINK_STATUS))throw new Error("Filter: GL link failed",A.getProgramInfoLog(this.id));A.useProgram(this.id),n(e,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=A.getAttribLocation(this.id,i);n(e,"uniform",this.uniform),n(t,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=A.getUniformLocation(this.id,i)}function _A(A){A||(A={});let e=0,t=null,n=!1,o=-1,x=[null,null],s=[],i=-1,y=-1,a=null,c=null,l={},f=A.canvas||document.createElement("canvas"),u={},v={INTERMEDIATE:1},d=f.getContext("webgl");if(!d)throw new Error("Filter: getContext() failed");this.addFilter=function(M){let p=Array.prototype.slice.call(arguments,1),T=l[M];s.push({func:T,args:p})},this.reset=function(){s=[]};let h=function(M,p){if(!(M===i&&p===y)){if(f.width=M,i=M,f.height=p,y=p,!a){let T=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);a=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,a),d.bufferData(d.ARRAY_BUFFER,T,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,i,y),x=[null,null]}},P=function(M,p){let T=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,T);let m=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,m);let w=d.createTexture();return d.bindTexture(d.TEXTURE_2D,w),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,M,p,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,w,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:T,texture:w}},j=function(M){return x[M]=x[M]||P(i,y),x[M]},R=function(M=null){var w,I;let p=null,T=null,m=!1;e===0?p=t:p=(w=j(o))==null?void 0:w.texture,e++,n&&!(M&v.INTERMEDIATE)?(T=null,m=e%2==0):(o=(o+1)%2,T=(I=j(o))==null?void 0:I.fbo),d.bindTexture(d.TEXTURE_2D,p),d.bindFramebuffer(d.FRAMEBUFFER,T),d.uniform1f(c.uniform.flipY,m?-1:1),d.drawArrays(d.TRIANGLES,0,6)};this.apply=function(M){if(h(M.width,M.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,M),s.length===0)return R(),f;for(let p=0;pa5(A,"__esModule",{value:!0});var iA=(A,e)=>{ue(A);for(var t in e)a5(A,t,{get:e[t],enumerable:!0})},b=(A,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let n of me(e))!he.call(A,n)&&n!=="default"&&a5(A,n,{get:()=>e[n],enumerable:!(t=fe(e,n))||t.enumerable});return A};var xA=(A,e,t)=>{if(!e.has(A))throw TypeError("Cannot "+t)};var C=(A,e,t)=>(xA(A,e,"read from private field"),t?t.call(A):e.get(A)),K=(A,e,t)=>{if(e.has(A))throw TypeError("Cannot add the same private member more than once");e instanceof WeakSet?e.add(A):e.set(A,t)},_=(A,e,t,n)=>(xA(A,e,"write to private field"),n?n.call(A,t):e.set(A,t),t);function H(A,e){let t=A.endsWith("/")?"":"/",o=e.startsWith(".")||e.startsWith("/")||e.startsWith("http:")||e.startsWith("https:")||e.startsWith("file:")?`${e}`:`${A}${t}${e}`;if(!o.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${o} Expecting JSON file`);return o}function g(...A){let e=new Date,t=`${e.getHours().toString().padStart(2,"0")}:${e.getMinutes().toString().padStart(2,"0")}:${e.getSeconds().toString().padStart(2,"0")}.${e.getMilliseconds().toString().padStart(3,"0")}`;A&&console.log(t,"Human:",...A)}var N=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function q(...A){let e=t=>t&&typeof t=="object";return A.reduce((t,n)=>(Object.keys(n||{}).forEach(o=>{let x=t[o],a=n[o];Array.isArray(x)&&Array.isArray(a)?t[o]=x.concat(...a):e(x)&&e(a)?t[o]=q(x,a):t[o]=a}),t),{})}var yA={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function lA(){let A,e;if(typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);A=n?n[0].replace(/\(|\)/g,""):"",e=navigator.userAgent.replace(t[0],""),A[1]&&(e=e.replace(t[1],"")),e=e.replace(/ /g," ")}}else typeof process!="undefined"&&(A=`${process.platform} ${process.arch}`,e=`NodeJS ${process.version}`);return{platform:A,agent:e}}var r={};iA(r,{data:()=>Ee,version:()=>Re});b(r,g2);b(r,M2);b(r,T2);b(r,P2);b(r,z2);b(r,v2);import{version as pe}from"@tensorflow/tfjs/package.json";import{version as be}from"@tensorflow/tfjs-core/package.json";import{version as ge}from"@tensorflow/tfjs-data/package.json";import{version as Me}from"@tensorflow/tfjs-layers/package.json";import{version as Te}from"@tensorflow/tfjs-converter/package.json";import{version as Pe}from"@tensorflow/tfjs-backend-cpu/package.json";import{version as ze}from"@tensorflow/tfjs-backend-webgl/package.json";import{version as ve}from"@tensorflow/tfjs-backend-wasm/package.json";import*as g2 from"@tensorflow/tfjs-core/src/index";import*as M2 from"@tensorflow/tfjs-layers/src/index";import*as T2 from"@tensorflow/tfjs-converter/src/index";import*as Ee from"@tensorflow/tfjs-data/src/index";import*as P2 from"@tensorflow/tfjs-backend-cpu/src/index";import*as z2 from"@tensorflow/tfjs-backend-webgl/src/index";import*as v2 from"@tensorflow/tfjs-backend-wasm/src/index";var Re={tfjs:pe,"tfjs-core":be,"tfjs-data":ge,"tfjs-layers":Me,"tfjs-converter":Te,"tfjs-backend-cpu":Pe,"tfjs-backend-webgl":ze,"tfjs-backend-wasm":ve};var B={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function je(){let A=B.gl;!A||(B.extensions=A.getSupportedExtensions())}function cA(){if(!r.findBackend(B.name)){try{B.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(B.width,B.height):document.createElement("canvas")}catch(A){g("error: cannot create canvas:",A);return}try{B.gl=B.canvas.getContext("webgl2",B.webGLattr)}catch(A){g("error: cannot get WebGL2 context:",A);return}try{r.setWebGLContext(2,B.gl)}catch(A){g("error: cannot set WebGL2 context:",A);return}try{let A=new r.GPGPUContext(B.gl);r.registerBackend(B.name,()=>new r.MathBackendWebGL(A),B.priority)}catch(A){g("error: cannot register WebGL backend:",A);return}try{r.getKernelsForBackend("webgl").forEach(e=>{let t={...e,backendName:B.name};r.registerKernel(t)})}catch(A){g("error: cannot update WebGL backend registration:",A);return}try{r.ENV.set("WEBGL_VERSION",2)}catch(A){g("error: cannot set WebGL backend flags:",A);return}je(),g("backend registered:",B.name)}}function dA(A,e){let t=[A.startPoint[0]*e[0],A.startPoint[1]*e[1]],n=[A.endPoint[0]*e[0],A.endPoint[1]*e[1]];return{startPoint:t,endPoint:n}}function v0(A){return[Math.abs(A.endPoint[0]-A.startPoint[0]),Math.abs(A.endPoint[1]-A.startPoint[1])]}function m0(A){return[A.startPoint[0]+(A.endPoint[0]-A.startPoint[0])/2,A.startPoint[1]+(A.endPoint[1]-A.startPoint[1])/2]}function h0(A,e,t){let n=e.shape[1],o=e.shape[2],x=[[A.startPoint[1]/n,A.startPoint[0]/o,A.endPoint[1]/n,A.endPoint[0]/o]];return r.image.cropAndResize(e,x,[0],t)}function O0(A,e=1.5){let t=m0(A),n=v0(A),o=[e*n[0]/2,e*n[1]/2],x=[t[0]-o[0],t[1]-o[1]],a=[t[0]+o[0],t[1]+o[1]];return{startPoint:x,endPoint:a,landmarks:A.landmarks}}function L0(A){let e=m0(A),t=v0(A),o=Math.max(...t)/2,x=[Math.round(e[0]-o),Math.round(e[1]-o)],a=[Math.round(e[0]+o),Math.round(e[1]+o)];return{startPoint:x,endPoint:a,landmarks:A.landmarks}}function i5(A){let e=A.map(x=>x[0]),t=A.map(x=>x[1]),n=[Math.min(...e),Math.min(...t)],o=[Math.max(...e),Math.max(...t)];return{startPoint:n,endPoint:o,landmarks:A}}var fA=A=>({startPoint:r.slice(A,[0,0],[-1,2]),endPoint:r.slice(A,[0,2],[-1,2])});var H0=[[1,0,0],[0,1,0],[0,0,1]];function Se(A){return A-2*Math.PI*Math.floor((A+Math.PI)/(2*Math.PI))}function x5(A,e){let t=Math.PI/2-Math.atan2(-(e[1]-A[1]),e[0]-A[0]);return Se(t)}function mA(A,e){return[[1,0,A],[0,1,e],[0,0,1]]}function r0(A,e){let t=0;for(let n=0;n{let c=r.image.resizeBilinear(e,[this.inputSize,this.inputSize]).div(127.5).sub(.5),l=this.model.execute(c),f;if(Array.isArray(l)){let h=l.sort((k,M)=>k.size-M.size),P=r.concat([h[0],h[2]],2),R=r.concat([h[1],h[3]],2);f=r.concat([R,P],1).squeeze(0)}else f=r.squeeze(l);let u=We(f,this.anchors,[this.inputSize,this.inputSize]),z=r.slice(f,[0,0],[-1,1]),d=r.sigmoid(z).squeeze().dataSync();return[f,u,d]});this.config=q(this.config,t);let a=await r.image.nonMaxSuppressionAsync(o,x,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=a.arraySync();a.dispose();let y=[];for(let s=0;sthis.config.face.detector.minConfidence){let l=r.slice(o,[i[s],0],[1,-1]),f=fA(l);l.dispose();let u=this.anchorsData[i[s]],z=r.tidy(()=>r.slice(n,[i[s],gA-1],[1,-1]).squeeze().reshape([gA,-1]));y.push({box:f,landmarks:z,anchor:u,confidence:c})}}return n.dispose(),o.dispose(),{boxes:y,scaleFactor:[e.shape[2]/this.inputSize,e.shape[1]/this.inputSize]}}};async function TA(A){let e=await r.loadGraphModel(H(A.modelBasePath,A.face.detector.modelPath),{fromTFHub:A.face.detector.modelPath.includes("tfhub.dev")}),t=new MA(e,A);return!e||!e.modelUrl?g("load model failed:",A.face.detector.modelPath):A.debug&&g("load model:",e.modelUrl),t}var t0={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},y5=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],E0=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],y0=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var ke=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Ie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Ne=[33,133,362,263,1,78,308],H2=ke.map(A=>E0[A]),Z2=Ie.map(A=>E0[A]),V2=Ne.map(A=>E0[A]);var l5=t0.leftEyeLower0,c5=t0.rightEyeLower0,u0={leftBounds:[l5[0],l5[l5.length-1]],rightBounds:[c5[0],c5[c5.length-1]]},V0={count:468,mouth:13,symmetryLine:[13,t0.midwayBetweenEyes[0]]},PA={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},p0={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function X0(A,e,t,n){for(let o=0;o[x[0]/this.meshSize*(l[0]-this.meshSize/2),x[1]/this.meshSize*(l[1]-this.meshSize/2),l[2]]),i=n!==0?Z0(n,[0,0]):H0,y=n!==0?a.map(l=>[...pA(l,i),l[2]]):a,s=n!==0?uA(o):H0,c=[...m0({startPoint:t.startPoint,endPoint:t.endPoint}),1];return y.map(l=>[Math.round(l[0]+r0(c,s[0])),Math.round(l[1]+r0(c,s[1])),Math.round(l[2])])}getLeftToRightEyeDepthDifference(e){let t=e[u0.leftBounds[0]][2],n=e[u0.rightBounds[0]][2];return t-n}getEyeBox(e,t,n,o,x=!1){let a=L0(O0(i5([e[n],e[o]]),this.irisEnlarge)),i=v0(a),y=r.image.cropAndResize(t,[[a.startPoint[1]/this.meshSize,a.startPoint[0]/this.meshSize,a.endPoint[1]/this.meshSize,a.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return x&&r.ENV.flags.IS_BROWSER&&(y=r.image.flipLeftRight(y)),{box:a,boxSize:i,crop:y}}getEyeCoords(e,t,n,o=!1){let x=[];for(let a=0;a{let s=a;return y===2?s=o:y===4&&(s=x),[i[0],i[1],s]})}async predict(e,t){let n=!1,o;if((this.skipped===0||this.skipped>t.face.detector.skipFrames||!t.face.mesh.enabled||!t.skipFrame)&&(o=await this.boundingBoxDetector.getBoundingBoxes(e,t),this.skipped=0),t.skipFrame&&this.skipped++,!t.skipFrame||o&&o.boxes&&(!t.face.mesh.enabled||o.boxes.length!==this.detectedFaces&&this.detectedFaces!==t.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let a of o.boxes)this.storedBoxes.push({startPoint:a.box.startPoint.dataSync(),endPoint:a.box.endPoint.dataSync(),landmarks:a.landmarks.arraySync(),confidence:a.confidence});this.storedBoxes.length>0&&(n=!0)}if(n){if(!o||!o.boxes||o.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let a=0;a{a.box.startPoint.dispose(),a.box.endPoint.dispose(),a.landmarks.dispose()});let x=r.tidy(()=>this.storedBoxes.map((a,i)=>{let y,s=0,c;if(t.face.detector.rotation&&t.face.mesh.enabled&&r.ENV.flags.IS_BROWSER){let[j,k]=a.landmarks.length>=V0.count?V0.symmetryLine:PA.symmetryLine;s=x5(a.landmarks[j],a.landmarks[k]);let M=m0({startPoint:a.startPoint,endPoint:a.endPoint}),p=[M[0]/e.shape[2],M[1]/e.shape[1]],T=r.image.rotateWithOffset(e,s,0,p);c=Z0(-s,M),t.face.mesh.enabled?y=h0({startPoint:a.startPoint,endPoint:a.endPoint},T,[this.meshSize,this.meshSize]).div(255):y=h0({startPoint:a.startPoint,endPoint:a.endPoint},T,[this.boxSize,this.boxSize]).div(255)}else{c=H0;let j=e.clone();t.face.mesh.enabled?y=h0({startPoint:a.startPoint,endPoint:a.endPoint},j,[this.meshSize,this.meshSize]).div(255):y=h0({startPoint:a.startPoint,endPoint:a.endPoint},j,[this.boxSize,this.boxSize]).div(255)}if(!t.face.mesh.enabled)return{mesh:[],box:a,faceConfidence:null,boxConfidence:a.confidence,confidence:a.confidence,image:y};let[,l,f]=this.meshDetector.execute(y),u=l.dataSync()[0];if(u=V0.count?V0.symmetryLine:PA.symmetryLine;s=x5(a.landmarks[j],a.landmarks[k]);let M=m0({startPoint:a.startPoint,endPoint:a.endPoint}),p=[M[0]/e.shape[2],M[1]/e.shape[1]],T=r.image.rotateWithOffset(e.toFloat(),s,0,p);c=Z0(-s,M),y=h0({startPoint:a.startPoint,endPoint:a.endPoint},T,[this.meshSize,this.meshSize]).div(255)}let R={mesh:h,box:a,faceConfidence:u,boxConfidence:a.confidence,image:y};return this.storedBoxes[i]={...L0(a),confidence:a.confidence,faceConfidence:u},R}));return t.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(a=>a.confidence>t.face.detector.minConfidence)),this.detectedFaces=x.length,x}};var V=[null,null,null],f5;async function zA(A,e){let t=await f5.predict(A,e),n=[],o=0;for(let x of t||[]){if(!x||x.isDisposedInternal)continue;let a=x.mesh.map(c=>[c[0]/(A.shape[2]||0),c[1]/(A.shape[1]||0),c[2]/f5.meshSize]),i={};if(x.mesh&&x.mesh.length>0)for(let c of Object.keys(t0))i[c]=t0[c].map(l=>x.mesh[l]);let y=x.box?[Math.trunc(Math.max(0,x.box.startPoint[0])),Math.trunc(Math.max(0,x.box.startPoint[1])),Math.trunc(Math.min(A.shape[2]||0,x.box.endPoint[0])-Math.max(0,x.box.startPoint[0])),Math.trunc(Math.min(A.shape[1]||0,x.box.endPoint[1])-Math.max(0,x.box.startPoint[1]))]:[0,0,0,0],s=x.box?[x.box.startPoint[0]/(A.shape[2]||0),x.box.startPoint[1]/(A.shape[1]||0),(x.box.endPoint[0]-x.box.startPoint[0])/(A.shape[2]||0),(x.box.endPoint[1]-x.box.startPoint[1])/(A.shape[1]||0)]:[0,0,0,0];n.push({id:o++,score:Math.round(100*x.faceConfidence||100*x.boxConfidence||0)/100,boxScore:Math.round(100*x.boxConfidence)/100,faceScore:Math.round(100*x.faceConfidence)/100,box:y,boxRaw:s,mesh:x.mesh,meshRaw:a,annotations:i,image:x.image,tensor:x.image}),x.coords&&x.coords.dispose()}return n}async function m5(A){return!V[0]&&A.face.enabled||!V[1]&&A.face.mesh.enabled||!V[2]&&A.face.iris.enabled?(V=await Promise.all([!V[0]&&A.face.enabled?TA(A):null,!V[1]&&A.face.mesh.enabled?r.loadGraphModel(H(A.modelBasePath,A.face.mesh.modelPath),{fromTFHub:A.face.mesh.modelPath.includes("tfhub.dev")}):null,!V[2]&&A.face.iris.enabled?r.loadGraphModel(H(A.modelBasePath,A.face.iris.modelPath),{fromTFHub:A.face.iris.modelPath.includes("tfhub.dev")}):null]),A.face.mesh.enabled&&(!V[1]||!V[1].modelUrl?g("load model failed:",A.face.mesh.modelPath):A.debug&&g("load model:",V[1].modelUrl)),A.face.iris.enabled&&(!V[2]||!V[2].modelUrl?g("load model failed:",A.face.iris.modelPath):A.debug&&g("load model:",V[2].modelUrl))):A.debug&&(V[0]&&g("cached model:",V[0].model.modelUrl),V[1]&&g("cached model:",V[1].modelUrl),V[2]&&g("cached model:",V[2].modelUrl)),f5=new d5(V[0],V[1],V[2]),V}var vA=y0,EA=E0;var $,F0=[],RA=0,h5=Number.MAX_SAFE_INTEGER;async function u5(A){let e=H(A.modelBasePath,A.face.description.modelPath);return $?A.debug&&g("cached model:",e):($=await r.loadGraphModel(e),$?A.debug&&g("load model:",e):g("load model failed:",A.face.description.modelPath)),$}function p5(A,e,t=2){if(!A||!e||(A==null?void 0:A.length)===0||(e==null?void 0:e.length)===0||(A==null?void 0:A.length)!==(e==null?void 0:e.length))return 0;let n=5*A.map((x,a)=>Math.abs(A[a]-e[a])**t).reduce((x,a)=>x+a,0)**(1/t);return Math.max(0,100-n)/100}function jA(A,e,t=0){let n={similarity:0,name:"",source:"",embedding:[]};if(!A||!e||!Array.isArray(A)||!Array.isArray(e))return n;for(let o of e)if(o.embedding&&o.name){let x=p5(A,o.embedding);x>t&&x>n.similarity&&(n={...o,similarity:x})}return n}function b5(A){return r.tidy(()=>{let t=A.image||A.tensor||A;if(!(t instanceof r.Tensor))return null;let n=[[.05,.15,.85,.85]];return $.inputs[0].shape?(t.shape.length===3?r.image.cropAndResize(r.expandDims(t,0),n,[0],[$.inputs[0].shape[2],$.inputs[0].shape[1]]):r.image.cropAndResize(t,n,[0],[$.inputs[0].shape[2],$.inputs[0].shape[1]])).mul(255):null})}async function g5(A,e,t,n){var o,x;return $?h50?(h5++,F0[t]):(h5=0,new Promise(async a=>{let i=b5(A),y,s={age:0,gender:"unknown",genderScore:0,descriptor:[]};e.face.description.enabled&&(y=await $.predict(i)),r.dispose(i),y&&(r.tidy(()=>{let c=y.find(d=>d.shape[1]===1).dataSync(),l=Math.trunc(200*Math.abs(c[0]-.5))/100;l>e.face.description.minConfidence&&(s.gender=c[0]<=.5?"female":"male",s.genderScore=Math.min(.99,l));let f=y.find(d=>d.shape[1]===100).argMax(1).dataSync()[0],u=y.find(d=>d.shape[1]===100).dataSync();s.age=Math.round(u[f-1]>u[f+1]?10*f-100*u[f-1]:10*f+100*u[f+1])/10;let z=y.find(d=>d.shape[1]===1024);s.descriptor=[...z.dataSync()]}),y.forEach(c=>r.dispose(c))),F0[t]=s,RA=n,a(s)})):null}var Oe=["angry","disgust","fear","happy","sad","surprise","neutral"],A0,C0=[],SA=0,M5=Number.MAX_SAFE_INTEGER,T5=[.2989,.587,.114];async function P5(A){return A0?A.debug&&g("cached model:",A0.modelUrl):(A0=await r.loadGraphModel(H(A.modelBasePath,A.face.emotion.modelPath)),!A0||!A0.modelUrl?g("load model failed:",A.face.emotion.modelPath):A.debug&&g("load model:",A0.modelUrl)),A0}async function z5(A,e,t,n){return A0?M50?(M5++,C0[t]):(M5=0,new Promise(async o=>{let x=r.image.resizeBilinear(A,[A0.inputs[0].shape[2],A0.inputs[0].shape[1]],!1),[a,i,y]=r.split(x,3,3);x.dispose();let s=r.mul(a,T5[0]),c=r.mul(i,T5[1]),l=r.mul(y,T5[2]);a.dispose(),i.dispose(),y.dispose();let f=r.addN([s,c,l]);s.dispose(),c.dispose(),l.dispose();let u=r.tidy(()=>f.sub(.5).mul(2));f.dispose();let z=[];if(e.face.emotion.enabled){let d=await A0.predict(u),h=d.dataSync();r.dispose(d);for(let P=0;Pe.face.emotion.minConfidence&&z.push({score:Math.min(.99,Math.trunc(100*h[P])/100),emotion:Oe[P]});z.sort((P,R)=>R.score-P.score)}u.dispose(),C0[t]=z,SA=n,o(z)})):null}var R0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],wA=R0.length,j0=R0.reduce((A,e,t)=>(A[e]=t,A),{}),Le=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],He=Le.map(([A,e])=>[j0[A],j0[e]]),WA=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function kA(A){let e=A.reduce(({maxX:t,maxY:n,minX:o,minY:x},{position:{x:a,y:i}})=>({maxX:Math.max(t,a),maxY:Math.max(n,i),minX:Math.min(o,a),minY:Math.min(x,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[e.minX,e.minY,e.maxX-e.minX,e.maxY-e.minY]}function IA(A,[e,t],[n,o]){let x=e/n,a=t/o,i=(s,c)=>({id:c,score:s.score,boxRaw:[s.box[0]/o,s.box[1]/n,s.box[2]/o,s.box[3]/n],box:[Math.trunc(s.box[0]*a),Math.trunc(s.box[1]*x),Math.trunc(s.box[2]*a),Math.trunc(s.box[3]*x)],keypoints:s.keypoints.map(({score:l,part:f,position:u})=>({score:l,part:f,position:[Math.trunc(u.x*a),Math.trunc(u.y*x)],positionRaw:[u.x/n,u.y/n]}))});return A.map((s,c)=>i(s,c))}var v5=class{constructor(e,t){this.priorityQueue=new Array(e),this.numberOfElements=-1,this.getElementValue=t}enqueue(e){this.priorityQueue[++this.numberOfElements]=e,this.swim(this.numberOfElements)}dequeue(){let e=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,e}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(e){for(;e>0&&this.less(Math.floor(e/2),e);)this.exchange(e,Math.floor(e/2)),e=Math.floor(e/2)}sink(e){for(;2*e<=this.numberOfElements;){let t=2*e;if(tt?t:A}function NA(A,e,t,n){let o=t-A,x=n-e;return o*o+x*x}function S5(A,e){return{x:A.x+e.x,y:A.y+e.y}}var q0=1,b0=16,Ze=50**2;function OA(A,e,t,n,o,x,a=2){let i=P=>({y:x.get(P.y,P.x,A),x:x.get(P.y,P.x,x.shape[2]/2+A)}),y=(P,R,j)=>({y:j5(Math.round(P.y/b0),0,R-1),x:j5(Math.round(P.x/b0),0,j-1)}),[s,c]=n.shape,l=y(e.position,s,c),f=i(l),z=S5(e.position,f);for(let P=0;P[j0[f],j0[u]]),a=x.map(([,f])=>f),i=x.map(([f])=>f),y=e.shape[2],s=a.length,c=new Array(y),l=R5(A.part,b0,t);c[A.part.id]={score:A.score,part:R0[A.part.id],position:l};for(let f=s-1;f>=0;--f){let u=a[f],z=i[f];c[u]&&!c[z]&&(c[z]=OA(f,c[u],z,e,t,o))}for(let f=0;fe){i=!1;break}if(!i)break}return i}function Fe(A,e){let[t,n,o]=e.shape,x=new v5(t*n*o,({score:a})=>a);for(let a=0;a{var a;let x=(a=o[n])==null?void 0:a.position;return x?NA(t,e,x.y,x.x)<=Ze:!1})}function Ce(A,e){return e.reduce((n,{position:o,score:x},a)=>(LA(A,o,a)||(n+=x),n),0)/e.length}function HA(A,e,t,n,o,x){let a=[],i=Fe(x,e);for(;a.lengthu.score>x);let l=Ce(a,c),f=kA(c);l>x&&a.push({keypoints:c,box:f,score:Math.round(100*l)/100})}return a}var J,qe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function w5(A,e){let t=r.tidy(()=>{if(!J.inputs[0].shape)return[];let i=r.image.resizeBilinear(A,[J.inputs[0].shape[2],J.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),s=J.execute(i,qe).map(c=>r.squeeze(c,[0]));return s[1]=s[1].sigmoid(),s}),n=await Promise.all(t.map(a=>a.buffer()));for(let a of t)a.dispose();let o=await HA(n[0],n[1],n[2],n[3],e.body.maxDetected,e.body.minConfidence);return J.inputs[0].shape?IA(o,[A.shape[1],A.shape[2]],[J.inputs[0].shape[2],J.inputs[0].shape[1]]):[]}async function W5(A){return J?A.debug&&g("cached model:",J.modelUrl):(J=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!J||!J.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",J.modelUrl)),J}function B0(A){return[Math.abs(A.endPoint[0]-A.startPoint[0]),Math.abs(A.endPoint[1]-A.startPoint[1])]}function S0(A){return[A.startPoint[0]+(A.endPoint[0]-A.startPoint[0])/2,A.startPoint[1]+(A.endPoint[1]-A.startPoint[1])/2]}function ZA(A,e,t){let n=e.shape[1],o=e.shape[2],x=[[A.startPoint[1]/n,A.startPoint[0]/o,A.endPoint[1]/n,A.endPoint[0]/o]];return r.image.cropAndResize(e,x,[0],t)}function VA(A,e){let t=[A.startPoint[0]*e[0],A.startPoint[1]*e[1]],n=[A.endPoint[0]*e[0],A.endPoint[1]*e[1]],o=A.palmLandmarks.map(x=>[x[0]*e[0],x[1]*e[1]]);return{startPoint:t,endPoint:n,palmLandmarks:o,confidence:A.confidence}}function G0(A,e=1.5){let t=S0(A),n=B0(A),o=[e*n[0]/2,e*n[1]/2],x=[t[0]-o[0],t[1]-o[1]],a=[t[0]+o[0],t[1]+o[1]];return{startPoint:x,endPoint:a,palmLandmarks:A.palmLandmarks}}function U0(A){let e=S0(A),t=B0(A),o=Math.max(...t)/2,x=[e[0]-o,e[1]-o],a=[e[0]+o,e[1]+o];return{startPoint:x,endPoint:a,palmLandmarks:A.palmLandmarks}}var XA=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var k5=class{constructor(e){var t;this.model=e,this.anchors=XA.map(n=>[n.x,n.y]),this.anchorsTensor=r.tensor2d(this.anchors),this.inputSize=(t=this.model)==null?void 0:t.inputs[0].shape[2],this.inputSizeTensor=r.tensor1d([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=r.tensor1d([this.inputSize*2,this.inputSize*2])}normalizeBoxes(e){return r.tidy(()=>{let t=r.slice(e,[0,0],[-1,2]),n=r.slice(e,[0,2],[-1,2]),o=r.add(r.div(t,this.inputSizeTensor),this.anchorsTensor),x=r.div(n,this.doubleInputSizeTensor),a=r.mul(r.sub(o,x),this.inputSizeTensor),i=r.mul(r.add(o,x),this.inputSizeTensor);return r.concat2d([a,i],1)})}normalizeLandmarks(e,t){return r.tidy(()=>{let n=r.add(r.div(e.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[t]);return r.mul(n,this.inputSizeTensor)})}async getBoxes(e,t){let n=this.model.predict(e),o=r.squeeze(n);n.dispose();let x=r.tidy(()=>r.sigmoid(r.slice(o,[0,0],[-1,1])).squeeze()),a=x.dataSync(),i=r.slice(o,[0,1],[-1,4]),y=this.normalizeBoxes(i);i.dispose();let s=await r.image.nonMaxSuppressionAsync(y,a,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence),c=s.arraySync();x.dispose(),s.dispose();let l=[];for(let f of c)if(a[f]>=t.hand.minConfidence){let u=r.slice(y,[f,0],[1,-1]),z=r.slice(o,[f,5],[1,14]),d=r.tidy(()=>this.normalizeLandmarks(z,f).reshape([-1,2]));z.dispose(),l.push({box:u,palmLandmarks:d,confidence:a[f]})}return o.dispose(),y.dispose(),l}async estimateHandBounds(e,t){let n=e.shape[1],o=e.shape[2],x=r.tidy(()=>e.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),a=await this.getBoxes(x,t);x.dispose();let i=[];if(!a||a.length===0)return i;for(let y of a){let s=y.box.dataSync(),c=s.slice(0,2),l=s.slice(2,4),f=y.palmLandmarks.arraySync();y.box.dispose(),y.palmLandmarks.dispose(),i.push(VA({startPoint:c,endPoint:l,palmLandmarks:f,confidence:y.confidence},[o/this.inputSize,n/this.inputSize]))}return i}};function Be(A){return A-2*Math.PI*Math.floor((A+Math.PI)/(2*Math.PI))}function FA(A,e){let t=Math.PI/2-Math.atan2(-(e[1]-A[1]),e[0]-A[0]);return Be(t)}var CA=(A,e)=>[[1,0,A],[0,1,e],[0,0,1]];function s0(A,e){let t=0;for(let n=0;na[0]),n=e.map(a=>a[1]),o=[Math.min(...t),Math.min(...n)],x=[Math.max(...t),Math.max(...n)];return{startPoint:o,endPoint:x}}getBoxForPalmLandmarks(e,t){let n=e.map(x=>N5([...x,1],t)),o=this.calculateLandmarksBoundingBox(n);return G0(U0(o),Ue)}getBoxForHandLandmarks(e){let t=this.calculateLandmarksBoundingBox(e),n=G0(U0(t),GA);n.palmLandmarks=[];for(let o=0;o[a[0]*(u[0]-this.inputSize/2),a[1]*(u[1]-this.inputSize/2),a[2]*u[2]]),y=I5(n,[0,0]),s=i.map(u=>[...N5(u,y),u[2]]),c=BA(o),l=[...S0(t),1],f=[s0(l,c[0]),s0(l,c[1])];return s.map(u=>[Math.trunc(u[0]+f[0]),Math.trunc(u[1]+f[1]),Math.trunc(u[2])])}async estimateHands(e,t){let n=!1,o;(this.skipped===0||this.skipped>t.hand.skipFrames||!t.hand.landmarks||!t.skipFrame)&&(o=await this.handDetector.estimateHandBounds(e,t),this.skipped=0),t.skipFrame&&this.skipped++,o&&o.length>0&&(o.length!==this.detectedHands&&this.detectedHands!==t.hand.maxDetected||!t.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...o],this.storedBoxes.length>0&&(n=!0));let x=[];for(let a=0;a=t.hand.minConfidence){let j=r.reshape(P,[-1,3]),k=j.arraySync();P.dispose(),j.dispose();let M=this.transformRawCoords(k,u,y,f),p=this.getBoxForHandLandmarks(M);this.storedBoxes[a]={...p,confidence:R};let T={landmarks:M,confidence:R,box:{topLeft:p.startPoint,bottomRight:p.endPoint}};x.push(T)}else this.storedBoxes[a]=null;P.dispose()}else{let y=G0(U0(i),GA),s={confidence:i.confidence,box:{topLeft:y.startPoint,bottomRight:y.endPoint}};x.push(s)}}return this.storedBoxes=this.storedBoxes.filter(a=>a!==null),this.detectedHands=x.length,x}};var JA={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},a0,i0,YA;async function L5(A,e){let t=await YA.estimateHands(A,e);if(!t)return[];let n=[];for(let o=0;ot[o].landmarks[c]);let a=t[o].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],y=[0,0,0,0];if(a&&a.length>0){for(let s of a)s[0]i[2]&&(i[2]=s[0]),s[1]>i[3]&&(i[3]=s[1]);i[2]-=i[0],i[3]-=i[1],y=[i[0]/(A.shape[2]||0),i[1]/(A.shape[1]||0),i[2]/(A.shape[2]||0),i[3]/(A.shape[1]||0)]}else i=t[o].box?[Math.trunc(Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.max(0,t[o].box.topLeft[1])),Math.trunc(Math.min(A.shape[2]||0,t[o].box.bottomRight[0])-Math.max(0,t[o].box.topLeft[0])),Math.trunc(Math.min(A.shape[1]||0,t[o].box.bottomRight[1])-Math.max(0,t[o].box.topLeft[1]))]:[0,0,0,0],y=[t[o].box.topLeft[0]/(A.shape[2]||0),t[o].box.topLeft[1]/(A.shape[1]||0),(t[o].box.bottomRight[0]-t[o].box.topLeft[0])/(A.shape[2]||0),(t[o].box.bottomRight[1]-t[o].box.topLeft[1])/(A.shape[1]||0)];n.push({id:o,score:Math.round(100*t[o].confidence)/100,box:i,boxRaw:y,keypoints:a,annotations:x})}return n}async function H5(A){!a0||!i0?([a0,i0]=await Promise.all([A.hand.enabled?r.loadGraphModel(H(A.modelBasePath,A.hand.detector.modelPath),{fromTFHub:A.hand.detector.modelPath.includes("tfhub.dev")}):null,A.hand.landmarks?r.loadGraphModel(H(A.modelBasePath,A.hand.skeleton.modelPath),{fromTFHub:A.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),A.hand.enabled&&(!a0||!a0.modelUrl?g("load model failed:",A.hand.detector.modelPath):A.debug&&g("load model:",a0.modelUrl),!i0||!i0.modelUrl?g("load model failed:",A.hand.skeleton.modelPath):A.debug&&g("load model:",i0.modelUrl))):(A.debug&&g("cached model:",a0.modelUrl),A.debug&&g("cached model:",i0.modelUrl));let e=new k5(a0);return YA=new O5(e,i0),[a0,i0]}var DA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],KA=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var G;async function J0(A){return G?A.debug&&g("cached model:",G.modelUrl):(G=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),G.width=parseInt(G.signature.inputs["input_1:0"].tensorShape.dim[2].size),G.height=parseInt(G.signature.inputs["input_1:0"].tensorShape.dim[1].size),!G||!G.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",G.modelUrl)),G}async function Z5(A,e){var d;if(!G)return[];if(!e.body.enabled)return[];let t={width:A.shape[2]||0,height:A.shape[1]||0},n=r.image.resizeBilinear(A,[G.width,G.height],!1),o=r.div(n,[255]);n.dispose();let x=await G.predict(o),a=((d=x.find(h=>h.size===195||h.size===155))==null?void 0:d.dataSync())||[];x.forEach(h=>h.dispose()),o.dispose();let i=[],y=(a==null?void 0:a.length)===195?DA:KA,s=5;for(let h=0;hh.position[0]),l=i.map(h=>h.position[1]),f=[Math.min(...c),Math.min(...l),Math.max(...c)-Math.min(...c),Math.max(...l)-Math.min(...c)],u=[0,0,0,0],z=i.reduce((h,P)=>P.score>h?P.score:h,0);return[{id:0,score:z,box:f,boxRaw:u,keypoints:i}]}var U,o0=[],V5=[0,0,0,0],X5=[0,0,0,0],Y0=0,F5=Number.MAX_SAFE_INTEGER,De=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function QA(A){return U?A.debug&&g("cached model:",U.modelUrl):(U=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!U||!U.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",U.modelUrl)),U}function Ke(A,e){let[t,n]=A.shape;return r.tidy(()=>{let o=(i,y)=>r.sub(i,r.mul(r.div(i,r.scalar(y,"int32")),r.scalar(y,"int32"))),x=r.reshape(A,[n*t]),a=r.max(x,0).dataSync()[0];if(a>e){let i=r.argMax(x,0),y=o(i,t).dataSync()[0],s=r.div(i,r.scalar(t,"int32")).dataSync()[0];return[y,s,a]}return[0,0,a]})}async function C5(A,e){return F50?(F5++,[{id:0,score:Y0,box:V5,boxRaw:X5,keypoints:o0}]):(F5=0,new Promise(async t=>{let n=r.tidy(()=>{if(!U.inputs[0].shape)return null;let s=r.image.resizeBilinear(A,[U.inputs[0].shape[2],U.inputs[0].shape[1]],!1);return r.mul(s,2).sub(1)}),o;if(e.body.enabled&&(o=await U.predict(n)),n.dispose(),o){o0.length=0;let s=o.squeeze();r.dispose(o);let c=s.unstack(2);r.dispose(s);for(let l=0;le.body.minConfidence&&o0.push({score:Math.round(100*z)/100,part:De[l],positionRaw:[f/U.inputs[0].shape[2],u/U.inputs[0].shape[1]],position:[Math.round(A.shape[2]*f/U.inputs[0].shape[2]),Math.round(A.shape[1]*u/U.inputs[0].shape[1])]})}c.forEach(l=>r.dispose(l))}Y0=o0.reduce((s,c)=>c.score>s?c.score:s,0);let x=o0.map(s=>s.position[0]),a=o0.map(s=>s.position[1]);V5=[Math.min(...x),Math.min(...a),Math.max(...x)-Math.min(...x),Math.max(...a)-Math.min(...a)];let i=o0.map(s=>s.positionRaw[0]),y=o0.map(s=>s.positionRaw[1]);X5=[Math.min(...i),Math.min(...y),Math.max(...i)-Math.min(...i),Math.max(...y)-Math.min(...y)],t([{id:0,score:Y0,box:V5,boxRaw:X5,keypoints:o0}])}))}var e0,n0=[],q5=[0,0,0,0],B5=[0,0,0,0],g0=0,G5=Number.MAX_SAFE_INTEGER,Qe=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function U5(A){return e0?A.debug&&g("cached model:",e0.modelUrl):(e0=await r.loadGraphModel(H(A.modelBasePath,A.body.modelPath)),!e0||!e0.modelUrl?g("load model failed:",A.body.modelPath):A.debug&&g("load model:",e0.modelUrl)),e0}async function J5(A,e){return G50?(G5++,[{id:0,score:g0,box:q5,boxRaw:B5,keypoints:n0}]):(G5=0,new Promise(async t=>{let n=r.tidy(()=>{if(!e0.inputs[0].shape)return null;let s=r.image.resizeBilinear(A,[e0.inputs[0].shape[2],e0.inputs[0].shape[1]],!1);return r.cast(s,"int32")}),o;if(e.body.enabled&&(o=await e0.predict(n)),n.dispose(),o){n0.length=0;let s=o.arraySync();r.dispose(o);let c=s[0][0];for(let l=0;le.body.minConfidence&&n0.push({score:Math.round(100*g0)/100,part:Qe[l],positionRaw:[c[l][1],c[l][0]],position:[Math.round((A.shape[2]||0)*c[l][1]),Math.round((A.shape[1]||0)*c[l][0])]})}g0=n0.reduce((s,c)=>c.score>s?c.score:s,0);let x=n0.map(s=>s.position[0]),a=n0.map(s=>s.position[1]);q5=[Math.min(...x),Math.min(...a),Math.max(...x)-Math.min(...x),Math.max(...a)-Math.min(...a)];let i=n0.map(s=>s.positionRaw[0]),y=n0.map(s=>s.positionRaw[1]);B5=[Math.min(...i),Math.min(...y),Math.max(...i)-Math.min(...i),Math.max(...y)-Math.min(...y)],t([{id:0,score:g0,box:q5,boxRaw:B5,keypoints:n0}])}))}var M0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Y,Y5=[],D5=Number.MAX_SAFE_INTEGER,D0=2.5;async function K5(A){if(Y)A.debug&&g("cached model:",Y.modelUrl);else{Y=await r.loadGraphModel(H(A.modelBasePath,A.object.modelPath));let e=Object.values(Y.modelSignature.inputs);if(Y.inputSize=Array.isArray(e)?parseInt(e[0].tensorShape.dim[2].size):null,!Y.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${A.object.modelPath}`);!Y||!Y.modelUrl?g("load model failed:",A.object.modelPath):A.debug&&g("load model:",Y.modelUrl)}return Y}async function _e(A,e,t,n){let o=0,x=[];for(let s of[1,2,4])r.tidy(()=>{var h,P;let c=s*13,l=(h=A.find(R=>R.shape[1]===c**2&&R.shape[2]===M0.length))==null?void 0:h.squeeze(),f=(P=A.find(R=>R.shape[1]===c**2&&R.shape[2]n.object.minConfidence&&j!==61){let M=(.5+Math.trunc(R%c))/c,p=(.5+Math.trunc(R/c))/c,T=z[R].map(F=>F*(c/s/e)),[m,w]=[M-D0/s*T[0],p-D0/s*T[1]],[I,O]=[M+D0/s*T[2]-m,p+D0/s*T[3]-w],W=[m,w,I,O];W=W.map(F=>Math.max(0,Math.min(F,1)));let L=[W[0]*t[0],W[1]*t[1],W[2]*t[0],W[3]*t[1]],v={id:o++,score:Math.round(100*k)/100,class:j+1,label:M0[j].label,box:L.map(F=>Math.trunc(F)),boxRaw:W};x.push(v)}}});A.forEach(s=>r.dispose(s));let a=x.map(s=>[s.boxRaw[1],s.boxRaw[0],s.boxRaw[3],s.boxRaw[2]]),i=x.map(s=>s.score),y=[];if(a&&a.length>0){let s=await r.image.nonMaxSuppressionAsync(a,i,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);y=s.dataSync(),r.dispose(s)}return x=x.filter((s,c)=>y.includes(c)).sort((s,c)=>c.score-s.score),x}async function Q5(A,e){return D50?(D5++,Y5):(D5=0,new Promise(async t=>{let n=[A.shape[2],A.shape[1]],o=r.image.resizeBilinear(A,[Y.inputSize,Y.inputSize],!1),x=o.div(255),a=x.transpose([0,3,1,2]);x.dispose(),o.dispose();let i;e.object.enabled&&(i=await Y.predict(a)),a.dispose();let y=await _e(i,Y.inputSize,n,e);Y5=y,t(y)}))}var D,_5=[],$5=Number.MAX_SAFE_INTEGER;async function AA(A){if(D)A.debug&&g("cached model:",D.modelUrl);else{D=await r.loadGraphModel(H(A.modelBasePath,A.object.modelPath));let e=Object.values(D.modelSignature.inputs);if(D.inputSize=Array.isArray(e)?parseInt(e[0].tensorShape.dim[2].size):null,!D.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${A.object.modelPath}`);!D||!D.modelUrl?g("load model failed:",A.object.modelPath):A.debug&&g("load model:",D.modelUrl)}return D}async function $e(A,e,t,n){if(!A)return[];let o=[],x=A.arraySync(),a=r.squeeze(A);A.dispose();let i=r.split(a,6,1);a.dispose();let s=r.stack([i[1],i[0],i[3],i[2]],1).squeeze(),c=i[4].squeeze(),l=i[5].squeeze();i.forEach(d=>d.dispose());let f=await r.image.nonMaxSuppressionAsync(s,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);s.dispose(),c.dispose(),l.dispose();let u=f.dataSync();f.dispose();let z=0;for(let d of u){let h=Math.trunc(100*x[0][d][4])/100,P=x[0][d][5],R=M0[P].label,[j,k]=[x[0][d][0]/e,x[0][d][1]/e],M=[j,k,x[0][d][2]/e-j,x[0][d][3]/e-k],p=[Math.trunc(M[0]*t[0]),Math.trunc(M[1]*t[1]),Math.trunc(M[2]*t[0]),Math.trunc(M[3]*t[1])];o.push({id:z++,score:h,class:P,label:R,box:p,boxRaw:M})}return o}async function eA(A,e){return $50?($5++,_5):($5=0,new Promise(async t=>{let n=[A.shape[2],A.shape[1]],o=r.image.resizeBilinear(A,[D.inputSize,D.inputSize]),x=e.object.enabled?D.execute(o,["tower_0/detections"]):null;o.dispose();let a=await $e(x,D.inputSize,n,e);_5=a,t(a)}))}function A2(A,e,t){let n=function(i,y,s){let c=new RegExp("\\b"+y+" \\w+ (\\w+)","ig");i.replace(c,(l,f)=>(s[f]=0,l))},o=function(i,y){let s=A.createShader(y);if(A.shaderSource(s,i),A.compileShader(s),!A.getShaderParameter(s,A.COMPILE_STATUS))throw new Error("Filter: GL compile failed",A.getShaderInfoLog(s));return s};this.uniform={},this.attribute={};let x=o(e,A.VERTEX_SHADER),a=o(t,A.FRAGMENT_SHADER);if(this.id=A.createProgram(),A.attachShader(this.id,x),A.attachShader(this.id,a),A.linkProgram(this.id),!A.getProgramParameter(this.id,A.LINK_STATUS))throw new Error("Filter: GL link failed",A.getProgramInfoLog(this.id));A.useProgram(this.id),n(e,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=A.getAttribLocation(this.id,i);n(e,"uniform",this.uniform),n(t,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=A.getUniformLocation(this.id,i)}function _A(A){A||(A={});let e=0,t=null,n=!1,o=-1,x=[null,null],a=[],i=-1,y=-1,s=null,c=null,l={},f=A.canvas||document.createElement("canvas"),u={},z={INTERMEDIATE:1},d=f.getContext("webgl");if(!d)throw new Error("Filter: getContext() failed");this.addFilter=function(M){let p=Array.prototype.slice.call(arguments,1),T=l[M];a.push({func:T,args:p})},this.reset=function(){a=[]};let h=function(M,p){if(!(M===i&&p===y)){if(f.width=M,i=M,f.height=p,y=p,!s){let T=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);s=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,s),d.bufferData(d.ARRAY_BUFFER,T,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,i,y),x=[null,null]}},P=function(M,p){let T=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,T);let m=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,m);let w=d.createTexture();return d.bindTexture(d.TEXTURE_2D,w),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,M,p,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,w,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:T,texture:w}},R=function(M){return x[M]=x[M]||P(i,y),x[M]},j=function(M=null){var w,I;let p=null,T=null,m=!1;e===0?p=t:p=(w=R(o))==null?void 0:w.texture,e++,n&&!(M&z.INTERMEDIATE)?(T=null,m=e%2==0):(o=(o+1)%2,T=(I=R(o))==null?void 0:I.fbo),d.bindTexture(d.TEXTURE_2D,p),d.bindFramebuffer(d.FRAMEBUFFER,T),d.uniform1f(c.uniform.flipY,m?-1:1),d.drawArrays(d.TRIANGLES,0,6)};this.apply=function(M){if(h(M.width,M.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,M),a.length===0)return j(),f;for(let p=0;p0,x=A.naturalHeight||A.videoHeight||A.height||A.shape&&A.shape[2]>0;if(!o||!x)return{tensor:null,canvas:E};let s=o,i=x;if(s>K0&&(s=K0,i=s*x/o),i>K0&&(i=K0,s=i*o/x),e.filter.width>0?s=e.filter.width:e.filter.height>0&&(s=o*(e.filter.height/x)),e.filter.height>0?i=e.filter.height:e.filter.width>0&&(i=x*(e.filter.width/o)),!s||!i)throw new Error("Human: Input cannot determine dimension");(!E||(E==null?void 0:E.width)!==s||(E==null?void 0:E.height)!==i)&&(E=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),(E==null?void 0:E.width)!==s&&(E.width=s),(E==null?void 0:E.height)!==i&&(E.height=i));let y=E.getContext("2d");if(A instanceof ImageData?y.putImageData(A,0,0):e.filter.flip&&typeof y.translate!="undefined"?(y.translate(o,0),y.scale(-1,1),y.drawImage(A,0,0,o,x,0,0,E==null?void 0:E.width,E==null?void 0:E.height),y.setTransform(1,0,0,1,0,0)):y.drawImage(A,0,0,o,x,0,0,E==null?void 0:E.width,E==null?void 0:E.height),e.filter.enabled){if((!X||!Z||E.width!==Z.width||(E==null?void 0:E.height)!==(Z==null?void 0:Z.height))&&(Z=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(E==null?void 0:E.width,E==null?void 0:E.height):document.createElement("canvas"),(Z==null?void 0:Z.width)!==(E==null?void 0:E.width)&&(Z.width=E==null?void 0:E.width),(Z==null?void 0:Z.height)!==(E==null?void 0:E.height)&&(Z.height=E==null?void 0:E.height),X=r.ENV.flags.IS_BROWSER?new _A({canvas:Z}):null),!X)return{tensor:null,canvas:E};X.reset(),X.addFilter("brightness",e.filter.brightness),e.filter.contrast!==0&&X.addFilter("contrast",e.filter.contrast),e.filter.sharpness!==0&&X.addFilter("sharpen",e.filter.sharpness),e.filter.blur!==0&&X.addFilter("blur",e.filter.blur),e.filter.saturation!==0&&X.addFilter("saturation",e.filter.saturation),e.filter.hue!==0&&X.addFilter("hue",e.filter.hue),e.filter.negative&&X.addFilter("negative"),e.filter.sepia&&X.addFilter("sepia"),e.filter.vintage&&X.addFilter("brownie"),e.filter.sepia&&X.addFilter("sepia"),e.filter.kodachrome&&X.addFilter("kodachrome"),e.filter.technicolor&&X.addFilter("technicolor"),e.filter.polaroid&&X.addFilter("polaroid"),e.filter.pixelate!==0&&X.addFilter("pixelate",e.filter.pixelate),X.apply(E)}else Z=E,X&&(X=null);let a;if(Z.data){let c=[Z.height,Z.width,3];a=r.tensor3d(Z.data,c,"int32")}else if(Z instanceof ImageData)a=r.browser?r.browser.fromPixels(Z):null;else if(e.backend==="webgl"||e.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let l=c.getContext("2d");l==null||l.drawImage(Z,0,0),a=r.browser?r.browser.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let l=c.getContext("2d");l==null||l.drawImage(Z,0,0);let f=l==null?void 0:l.getImageData(0,0,s,i);a=r.browser?r.browser.fromPixels(f):null}if(a){let c=a.toFloat();t=c.expandDims(0),a.dispose(),c.dispose()}}let n=e.filter.return?Z:null;return{tensor:t,canvas:n}}var Q,tA=!1;async function Q0(A){return Q?A.debug&&g("cached model:",Q.modelUrl):(Q=await r.loadGraphModel(H(A.modelBasePath,A.segmentation.modelPath)),!Q||!Q.modelUrl?g("load model failed:",A.segmentation.modelPath):A.debug&&g("load model:",Q.modelUrl)),Q}async function oA(A){var v,d;let e=((v=A.tensor)==null?void 0:v.shape[1])||0,t=((d=A.tensor)==null?void 0:d.shape[2])||0;if(!A.tensor||!Q||!Q.inputs[0].shape)return null;let n=r.image.resizeBilinear(A.tensor,[Q.inputs[0].shape[1],Q.inputs[0].shape[2]],!1),o=n.div(255),x=Q.predict(o);r.dispose(n),r.dispose(o);let s=r.squeeze(x,0),i;if(s.shape[2]===2){let h=s.softmax(),[P,j]=r.unstack(h,2),R=j.expandDims(2),k=R.expandDims(0);r.dispose(h),r.dispose(P),r.dispose(j);let M=r.image.cropAndResize(k,[[0,0,.5,.5]],[0],[e,t]);i=M.squeeze(0),r.dispose(M),r.dispose(R),r.dispose(k)}else i=r.image.resizeBilinear(s,[e,t]);if(typeof document=="undefined")return i.dataSync();let y=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");y.width=e,y.height=t,r.browser&&await r.browser.toPixels(i,y),r.dispose(i),r.dispose(s),r.dispose(x);let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");a.width=e,a.height=t;let c=a.getContext("2d");c.filter="blur(8px",await c.drawImage(y,0,0);let l=c.getImageData(0,0,e,t).data,f=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");f.width=e,f.height=t;let u=f.getContext("2d");return A.canvas&&await u.drawImage(A.canvas,0,0),u.globalCompositeOperation="darken",u.filter="blur(8px)",await u.drawImage(y,0,0),u.globalCompositeOperation="source-over",u.filter="none",A.canvas=f,l}async function $A(A,e,t){var x;if(tA)return null;tA=!0,Q||await Q0(t);let n=l0(A,t),o=await oA(n);if(r.dispose(n.tensor),e&&o){let s=l0(e,t),i=s.canvas;r.dispose(s.tensor);let y=n.canvas,a=(x=y.getContext("2d"))==null?void 0:x.getImageData(0,0,y.width,y.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(y.width,y.height):document.createElement("canvas");c.width=y.width,c.height=y.height;let l=c.getContext("2d");l.globalCompositeOperation="copy",l.drawImage(i,0,0,c.width,c.height);let f=l.getImageData(0,0,c.width,c.height);for(let u=0;u{let e=(l,f)=>Math.atan2(l[1]-f[1],l[0]-f[0]);if(!A.annotations.rightEyeIris||!A.annotations.leftEyeIris)return{bearing:0,strength:0};let t=[0,-.1],n=1,o=A.mesh[33][2]>A.mesh[263][2],x=o?A.mesh[473]:A.mesh[468],s=o?[(A.mesh[133][0]+A.mesh[33][0])/2,(A.mesh[133][1]+A.mesh[33][1])/2]:[(A.mesh[263][0]+A.mesh[362][0])/2,(A.mesh[263][1]+A.mesh[362][1])/2],i=o?[A.mesh[133][0]-A.mesh[33][0],A.mesh[23][1]-A.mesh[27][1]]:[A.mesh[263][0]-A.mesh[362][0],A.mesh[253][1]-A.mesh[257][1]],y=[(s[0]-x[0])/i[0]-t[0],n*(x[1]-s[1])/i[1]-t[1]],a=Math.sqrt(y[0]**2+y[1]**2);return a=Math.min(a,A.boxRaw[2]/2,A.boxRaw[3]/2),{bearing:(e([0,0],y)+Math.PI/2)%Math.PI,strength:a}},t2=(A,e)=>{let t=h=>{let P=Math.sqrt(h[0]*h[0]+h[1]*h[1]+h[2]*h[2]);return h[0]/=P,h[1]/=P,h[2]/=P,h},n=(h,P)=>{let j=h[0]-P[0],R=h[1]-P[1],k=h[2]-P[2];return[j,R,k]},o=(h,P)=>{let j=h[1]*P[2]-h[2]*P[1],R=h[2]*P[0]-h[0]*P[2],k=h[0]*P[1]-h[1]*P[0];return[j,R,k]},x=h=>{let[P,j,R,k,M,p,T,m,w]=h,I,O,W;return k<1?k>-1?(W=Math.asin(k),O=Math.atan2(-T,P),I=Math.atan2(-p,M)):(W=-Math.PI/2,O=-Math.atan2(m,w),I=0):(W=Math.PI/2,O=Math.atan2(m,w),I=0),{pitch:2*-I,yaw:2*-O,roll:2*-W}},s=h=>{let P=(R,k,M,p)=>Math.atan2(p-k,M-R);return{pitch:P(h[10][1],h[10][2],h[152][1],h[152][2]),yaw:P(h[33][0],h[33][2],h[263][0],h[263][2]),roll:P(h[33][0],h[33][1],h[263][0],h[263][1])}},i=A.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let y=Math.max(A.boxRaw[2]*e[0],A.boxRaw[3]*e[1])/1.5,a=[i[10],i[152],i[234],i[454]].map(h=>[h[0]*e[0]/y,h[1]*e[1]/y,h[2]]),c=t(n(a[1],a[0])),l=t(n(a[3],a[2])),f=t(o(l,c));l=o(c,f);let u=[l[0],l[1],l[2],c[0],c[1],c[2],f[0],f[1],f[2]],v=x(u),d=i.length===478?e2(A):{bearing:0,strength:0};return{angle:v,matrix:u,gaze:d}},nA=async(A,e)=>{var c,l,f,u,v,d;let t,n,o,x,s,i,y=[];A.state="run:face",t=N();let a=await zA(e,A.config);if(A.performance.face=Math.trunc(N()-t),!e.shape||e.shape.length!==4)return[];if(!a)return[];for(let h=0;h{if(!A)return[];let e=[];for(let t=0;ty.part==="leftWrist"),o=A[t].keypoints.find(y=>y.part==="rightWrist"),x=A[t].keypoints.find(y=>y.part==="nose");x&&n&&o&&n.position.yy.part==="leftShoulder"),i=A[t].keypoints.find(y=>y.part==="rightShoulder");s&&i&&e.push({body:t,gesture:`leaning ${s.position.y>i.position.y?"left":"right"}`})}return e},te=A=>{if(!A)return[];let e=[];for(let t=0;t0){let n=A[t].mesh[33][2]-A[t].mesh[263][2];Math.abs(n)<10?e.push({face:t,gesture:"facing center"}):e.push({face:t,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(A[t].mesh[374][1]-A[t].mesh[386][1])/Math.abs(A[t].mesh[443][1]-A[t].mesh[450][1])<.2&&e.push({face:t,gesture:"blink left eye"}),Math.abs(A[t].mesh[145][1]-A[t].mesh[159][1])/Math.abs(A[t].mesh[223][1]-A[t].mesh[230][1])<.2&&e.push({face:t,gesture:"blink right eye"});let s=Math.min(100,500*Math.abs(A[t].mesh[13][1]-A[t].mesh[14][1])/Math.abs(A[t].mesh[10][1]-A[t].mesh[152][1]));s>10&&e.push({face:t,gesture:`mouth ${Math.trunc(s)}% open`});let i=A[t].mesh[152][2];Math.abs(i)>10&&e.push({face:t,gesture:`head ${i<0?"up":"down"}`})}return e},oe=A=>{if(!A)return[];let e=[];for(let t=0;t.06||l>.06)&&(a=!1),f>.06&&e.push({iris:t,gesture:"looking right"}),l>.06&&e.push({iris:t,gesture:"looking left"});let u=Math.abs(A[t].mesh[145][1]-A[t].annotations.rightEyeIris[0][1])/A[t].box[3],v=Math.abs(A[t].mesh[374][1]-A[t].annotations.leftEyeIris[0][1])/A[t].box[3];(v<.01||u<.01||v>.022||u>.022)&&(a=!1),(v<.01||u<.01)&&e.push({iris:t,gesture:"looking down"}),(v>.022||u>.022)&&e.push({iris:t,gesture:"looking up"}),a&&e.push({iris:t,gesture:"looking center"})}return e},ne=A=>{if(!A)return[];let e=[];for(let t=0;t0){let o=n.reduce((s,i)=>s.position[2]s.position[1]r2,body:()=>ae,canvas:()=>n2,face:()=>se,gesture:()=>re,hand:()=>ie,object:()=>xe,options:()=>x0,person:()=>o2});var x0={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},_0=A=>Math.round(A*180/Math.PI);function rA(A,e,t,n=0,o){A.fillStyle=o.useDepth&&n?`rgba(${127.5+2*n}, ${127.5-2*n}, 255, 0.3)`:o.color,A.beginPath(),A.arc(e,t,o.pointSize,0,2*Math.PI),A.fill()}function w0(A,e,t,n,o,x){if(A.beginPath(),x.useCurves){let s=(e+e+n)/2,i=(t+t+o)/2;A.ellipse(s,i,n/2,o/2,0,0,2*Math.PI)}else A.lineWidth=x.lineWidth,A.moveTo(e+x.roundRect,t),A.lineTo(e+n-x.roundRect,t),A.quadraticCurveTo(e+n,t,e+n,t+x.roundRect),A.lineTo(e+n,t+o-x.roundRect),A.quadraticCurveTo(e+n,t+o,e+n-x.roundRect,t+o),A.lineTo(e+x.roundRect,t+o),A.quadraticCurveTo(e,t+o,e,t+o-x.roundRect),A.lineTo(e,t+x.roundRect),A.quadraticCurveTo(e,t,e+x.roundRect,t),A.closePath();A.stroke()}function sA(A,e=[],t){if(!(e===void 0||e.length===0)){A.beginPath(),A.moveTo(e[0][0],e[0][1]);for(let n of e){let o=n[2]||0;A.strokeStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,A.fillStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,A.lineTo(n[0],Math.round(n[1]))}A.stroke(),t.fillPolygons&&(A.closePath(),A.fill())}}function W0(A,e=[],t){if(!(e===void 0||e.length===0)){if(!t.useCurves||e.length<=2){sA(A,e,t);return}A.moveTo(e[0][0],e[0][1]);for(let n=0;n1&&y[1].length>0){let a=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${a}: ${y[1]}`;n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText(c,8,2+x*n.lineHeight)),o.fillStyle=n.labelColor,o.fillText(c,6,0+x*n.lineHeight),x+=1}}}async function se(A,e,t){var x,s,i,y;let n=U(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o)for(let a of e){o.font=n.font,o.strokeStyle=n.color,o.fillStyle=n.color,n.drawBoxes&&w0(o,a.box[0],a.box[1],a.box[2],a.box[3],n);let c=[];if(c.push(`face: ${Math.trunc(100*a.score)}%`),a.genderScore&&c.push(`${a.gender||""} ${Math.trunc(100*a.genderScore)}%`),a.age&&c.push(`age: ${a.age||""}`),a.iris&&c.push(`distance: ${a.iris}`),a.emotion&&a.emotion.length>0){let l=a.emotion.map(f=>`${Math.trunc(100*f.score)}% ${f.emotion}`);l.length>3&&(l.length=3),c.push(l.join(" "))}a.rotation&&a.rotation.angle&&a.rotation.gaze&&(a.rotation.angle.roll&&c.push(`roll: ${_0(a.rotation.angle.roll)}\xB0 yaw:${_0(a.rotation.angle.yaw)}\xB0 pitch:${_0(a.rotation.angle.pitch)}\xB0`),a.rotation.gaze.bearing&&c.push(`gaze: ${_0(a.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),o.fillStyle=n.color;for(let l=c.length-1;l>=0;l--){let f=Math.max(a.box[0],0),u=l*n.lineHeight+a.box[1];n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText(c[l],f+5,u+16)),o.fillStyle=n.labelColor,o.fillText(c[l],f+4,u+15)}if(o.lineWidth=1,a.mesh&&a.mesh.length>0){if(n.drawPoints)for(let l of a.mesh)rA(o,l[0],l[1],l[2],n);if(n.drawPolygons){o.lineWidth=1;for(let l=0;la.mesh[u]);sA(o,f,n)}if(a.annotations&&a.annotations.leftEyeIris){o.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,o.beginPath();let l=Math.abs(a.annotations.leftEyeIris[3][0]-a.annotations.leftEyeIris[1][0])/2,f=Math.abs(a.annotations.leftEyeIris[4][1]-a.annotations.leftEyeIris[2][1])/2;o.ellipse(a.annotations.leftEyeIris[0][0],a.annotations.leftEyeIris[0][1],l,f,0,0,2*Math.PI),o.stroke(),n.fillPolygons&&(o.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,o.fill())}if(a.annotations&&a.annotations.rightEyeIris){o.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,o.beginPath();let l=Math.abs(a.annotations.rightEyeIris[3][0]-a.annotations.rightEyeIris[1][0])/2,f=Math.abs(a.annotations.rightEyeIris[4][1]-a.annotations.rightEyeIris[2][1])/2;o.ellipse(a.annotations.rightEyeIris[0][0],a.annotations.rightEyeIris[0][1],l,f,0,0,2*Math.PI),o.stroke(),n.fillPolygons&&(o.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,o.fill())}if(n.drawGaze&&((s=(x=a.rotation)==null?void 0:x.gaze)==null?void 0:s.strength)&&((y=(i=a.rotation)==null?void 0:i.gaze)==null?void 0:y.bearing)&&a.annotations.leftEyeIris&&a.annotations.rightEyeIris&&a.annotations.leftEyeIris[0]&&a.annotations.rightEyeIris[0]){o.strokeStyle="pink",o.beginPath();let l=[a.annotations.leftEyeIris[0][0]+Math.sin(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[3],a.annotations.leftEyeIris[0][1]+Math.cos(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[2]];o.moveTo(a.annotations.leftEyeIris[0][0],a.annotations.leftEyeIris[0][1]),o.lineTo(l[0],l[1]);let f=[a.annotations.rightEyeIris[0][0]+Math.sin(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[3],a.annotations.rightEyeIris[0][1]+Math.cos(a.rotation.gaze.bearing)*a.rotation.gaze.strength*a.box[2]];o.moveTo(a.annotations.rightEyeIris[0][0],a.annotations.rightEyeIris[0][1]),o.lineTo(f[0],f[1]),o.stroke()}}}}}async function ae(A,e,t){var x;let n=U(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round";for(let s=0;sa.part==="leftShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightShoulder"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[s].keypoints.find(a=>a.part==="rightShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightHip"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftHip"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftShoulder"),i&&y.push([i.position[0],i.position[1]]),y.length===4&&sA(o,y,n),y.length=0,i=e[s].keypoints.find(a=>a.part==="leftHip"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftKnee"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftAnkle"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftHeel"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftFoot"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[s].keypoints.find(a=>a.part==="rightHip"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightKnee"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightAnkle"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightHeel"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightFoot"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[s].keypoints.find(a=>a.part==="leftShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftElbow"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftWrist"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="leftPalm"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[s].keypoints.find(a=>a.part==="rightShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightElbow"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightWrist"),i&&y.push([i.position[0],i.position[1]]),i=e[s].keypoints.find(a=>a.part==="rightPalm"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n)}}}}async function ie(A,e,t){let n=U(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=n.font;for(let x of e){if(n.drawBoxes&&(o.strokeStyle=n.color,o.fillStyle=n.color,w0(o,x.box[0],x.box[1],x.box[2],x.box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText("hand",x.box[0]+3,1+x.box[1]+n.lineHeight,x.box[2])),o.fillStyle=n.labelColor,o.fillText("hand",x.box[0]+2,0+x.box[1]+n.lineHeight,x.box[2])),o.stroke()),n.drawPoints&&x.keypoints&&x.keypoints.length>0)for(let s of x.keypoints)o.fillStyle=n.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:n.color,rA(o,s[0],s[1],0,n);if(n.drawLabels){let s=(i,y)=>{o.fillStyle=n.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:n.color,o.fillText(y,i[i.length-1][0]+4,i[i.length-1][1]+4)};o.font=n.font,s(x.annotations.indexFinger,"index"),s(x.annotations.middleFinger,"middle"),s(x.annotations.ringFinger,"ring"),s(x.annotations.pinky,"pinky"),s(x.annotations.thumb,"thumb"),s(x.annotations.palmBase,"palm")}if(n.drawPolygons){let s=i=>{if(!!i)for(let y=0;y0?y-1:0][0],i[y>0?y-1:0][1]),o.lineTo(i[y][0],i[y][1]),o.stroke()};o.lineWidth=n.lineWidth,s(x.annotations.indexFinger),s(x.annotations.middleFinger),s(x.annotations.ringFinger),s(x.annotations.pinky),s(x.annotations.thumb)}}}}async function xe(A,e,t){let n=U(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=n.font;for(let x of e)if(n.drawBoxes){if(o.strokeStyle=n.color,o.fillStyle=n.color,w0(o,x.box[0],x.box[1],x.box[2],x.box[3],n),n.drawLabels){let s=`${x.label} ${Math.round(100*x.score)}%`;n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText(s,x.box[0]+3,1+x.box[1]+n.lineHeight,x.box[2])),o.fillStyle=n.labelColor,o.fillText(s,x.box[0]+2,0+x.box[1]+n.lineHeight,x.box[2])}o.stroke()}}}async function o2(A,e,t){let n=U(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=n.font;for(let x=0;xz.box[0]&&T.box[0]z.box[1]&&T.box[1]+T.box[3]m.body.box[0]&&z.box[0]+z.box[2]m.body.box[1]&&z.box[1]+z.box[3]m.body.box[0]&&z.box[1]+z.box[3]>m.body.box[1]&&z.box[1]+z.box[3]{z&&z.length===4&&(w.push(z[0],z[0]+z[2]),I.push(z[1],z[1]+z[3]))};O((P=m.face)==null?void 0:P.box),O((j=m.body)==null?void 0:j.box),O((k=(R=m.hands)==null?void 0:R.left)==null?void 0:k.box),O((p=(M=m.hands)==null?void 0:M.right)==null?void 0:p.box);let W=Math.min(...w),L=Math.min(...I);m.box=[W,L,Math.max(...w)-W,Math.max(...I)-L],o&&o.length===4&&(m.boxRaw=[m.box[0]/o[2],m.box[1]/o[1],m.box[2]/o[2],m.box[3]/o[1]]),s.push(m)}return s}var S={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function le(A){var n,o,x,s,i,y,a,c,l,f,u,v,d,h,P,j,R,k,M,p,T;let e=Date.now()-A.timestamp,t=e<1e3?8-Math.log(e):1;if(S.canvas=A.canvas,!S.body||A.body.length!==S.body.length)S.body=JSON.parse(JSON.stringify(A.body));else for(let m=0;m((t-1)*S.body[m].box[L]+W)/t),I=A.body[m].boxRaw.map((W,L)=>((t-1)*S.body[m].boxRaw[L]+W)/t),O=A.body[m].keypoints.map((W,L)=>({score:W.score,part:W.part,position:[S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].position[0]+W.position[0])/t:W.position[0],S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].position[1]+W.position[1])/t:W.position[1]],positionRaw:[S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].positionRaw[0]+W.positionRaw[0])/t:W.position[0],S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].positionRaw[1]+W.positionRaw[1])/t:W.position[1]]}));S.body[m]={...A.body[m],box:w,boxRaw:I,keypoints:O}}if(!S.hand||A.hand.length!==S.hand.length)S.hand=JSON.parse(JSON.stringify(A.hand));else for(let m=0;m((t-1)*S.hand[m].box[F]+z)/t),I=A.hand[m].boxRaw.map((z,F)=>((t-1)*S.hand[m].boxRaw[F]+z)/t),O=A.hand[m].keypoints.map((z,F)=>z.map((z0,f0)=>((t-1)*S.hand[m].keypoints[F][f0]+z0)/t)),W=Object.keys(A.hand[m].annotations),L={};for(let z of W)L[z]=A.hand[m].annotations[z].map((F,z0)=>F.map((f0,s5)=>((t-1)*S.hand[m].annotations[z][z0][s5]+f0)/t));S.hand[m]={...A.hand[m],box:w,boxRaw:I,keypoints:O,annotations:L}}if(!S.face||A.face.length!==S.face.length)S.face=JSON.parse(JSON.stringify(A.face));else for(let m=0;m((t-1)*S.face[m].box[L]+W)/t),I=A.face[m].boxRaw.map((W,L)=>((t-1)*S.face[m].boxRaw[L]+W)/t),O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(n=A.face[m].rotation)==null?void 0:n.matrix,O.angle={roll:((t-1)*(((x=(o=S.face[m].rotation)==null?void 0:o.angle)==null?void 0:x.roll)||0)+(((i=(s=A.face[m].rotation)==null?void 0:s.angle)==null?void 0:i.roll)||0))/t,yaw:((t-1)*(((a=(y=S.face[m].rotation)==null?void 0:y.angle)==null?void 0:a.yaw)||0)+(((l=(c=A.face[m].rotation)==null?void 0:c.angle)==null?void 0:l.yaw)||0))/t,pitch:((t-1)*(((u=(f=S.face[m].rotation)==null?void 0:f.angle)==null?void 0:u.pitch)||0)+(((d=(v=A.face[m].rotation)==null?void 0:v.angle)==null?void 0:d.pitch)||0))/t},O.gaze={bearing:((t-1)*(((P=(h=S.face[m].rotation)==null?void 0:h.gaze)==null?void 0:P.bearing)||0)+(((R=(j=A.face[m].rotation)==null?void 0:j.gaze)==null?void 0:R.bearing)||0))/t,strength:((t-1)*(((M=(k=S.face[m].rotation)==null?void 0:k.gaze)==null?void 0:M.strength)||0)+(((T=(p=A.face[m].rotation)==null?void 0:p.gaze)==null?void 0:T.strength)||0))/t},S.face[m]={...A.face[m],rotation:O,box:w,boxRaw:I}}if(!S.object||A.object.length!==S.object.length)S.object=JSON.parse(JSON.stringify(A.object));else for(let m=0;m((t-1)*S.object[m].box[W]+O)/t),I=A.object[m].boxRaw.map((O,W)=>((t-1)*S.object[m].boxRaw[W]+O)/t);S.object[m]={...A.object[m],box:w,boxRaw:I}}if(A.persons){let m=A.persons;if(!S.persons||m.length!==S.persons.length)S.persons=JSON.parse(JSON.stringify(m));else for(let w=0;w((t-1)*S.persons[w].box[O]+I)/t)}return A.gesture&&(S.gesture=A.gesture),A.performance&&(S.performance=A.performance),S}var $0=` +`),l.brightness=function(M){let p=(M||0)+1;l.colorMatrix([p,0,0,0,0,0,p,0,0,0,0,0,p,0,0,0,0,0,1,0])},l.saturation=function(M){let p=(M||0)*2/3+1,T=(p-1)*-.5;l.colorMatrix([p,T,T,0,0,T,p,T,0,0,T,T,p,0,0,0,0,0,1,0])},l.desaturate=function(){l.saturation(-1)},l.contrast=function(M){let p=(M||0)+1,T=-128*(p-1);l.colorMatrix([p,0,0,0,T,0,p,0,0,T,0,0,p,0,T,0,0,0,1,0])},l.negative=function(){l.contrast(-2)},l.hue=function(M){M=(M||0)/180*Math.PI;let p=Math.cos(M),T=Math.sin(M),m=.213,w=.715,I=.072;l.colorMatrix([m+p*(1-m)+T*-m,w+p*-w+T*-w,I+p*-I+T*(1-I),0,0,m+p*-m+T*.143,w+p*(1-w)+T*.14,I+p*-I+T*-.283,0,0,m+p*-m+T*-(1-m),w+p*-w+T*w,I+p*(1-I)+T*I,0,0,0,0,0,1,0])},l.desaturateLuminance=function(){l.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},l.sepia=function(){l.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},l.brownie=function(){l.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},l.vintagePinhole=function(){l.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},l.kodachrome=function(){l.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},l.technicolor=function(){l.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},l.polaroid=function(){l.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},l.shiftToBGR=function(){l.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},l.convolution=function(M){let p=new Float32Array(M),T=1/i,m=1/y,w=k(l.convolution.SHADER);d.uniform1fv(w.uniform.m,p),d.uniform2f(w.uniform.px,T,m),j()},l.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),l.detectEdges=function(){l.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},l.sobelX=function(){l.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},l.sobelY=function(){l.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},l.sharpen=function(M){let p=M||1;l.convolution.call(this,[0,-1*p,0,-1*p,1+4*p,-1*p,0,-1*p,0])},l.emboss=function(M){let p=M||1;l.convolution.call(this,[-2*p,-1*p,0,-1*p,1,1*p,0,1*p,2*p])},l.blur=function(M){let p=M/7/i,T=M/7/y,m=k(l.blur.SHADER);d.uniform2f(m.uniform.px,0,T),j(z.INTERMEDIATE),d.uniform2f(m.uniform.px,p,0),j()},l.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),l.pixelate=function(M){let p=M/i,T=M/y,m=k(l.pixelate.SHADER);d.uniform2f(m.uniform.size,p,T),j()},l.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var K0=2048,E,Z,X;function l0(A,e){let t;if(!A)throw new Error("Human: Input is missing");if(!(A instanceof r.Tensor)&&!(typeof Image!="undefined"&&A instanceof Image)&&!(typeof ImageData!="undefined"&&A instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&A instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&A instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&A instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&A instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&A instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&A instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(A instanceof r.Tensor)if(A.shape&&A.shape.length===4&&A.shape[0]===1&&A.shape[3]===3)t=r.clone(A);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${A.shape}`);else{let o=A.naturalWidth||A.videoWidth||A.width||A.shape&&A.shape[1]>0,x=A.naturalHeight||A.videoHeight||A.height||A.shape&&A.shape[2]>0;if(!o||!x)return{tensor:null,canvas:E};let a=o,i=x;if(a>K0&&(a=K0,i=a*x/o),i>K0&&(i=K0,a=i*o/x),e.filter.width>0?a=e.filter.width:e.filter.height>0&&(a=o*(e.filter.height/x)),e.filter.height>0?i=e.filter.height:e.filter.width>0&&(i=x*(e.filter.width/o)),!a||!i)throw new Error("Human: Input cannot determine dimension");(!E||(E==null?void 0:E.width)!==a||(E==null?void 0:E.height)!==i)&&(E=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,i):document.createElement("canvas"),(E==null?void 0:E.width)!==a&&(E.width=a),(E==null?void 0:E.height)!==i&&(E.height=i));let y=E.getContext("2d");if(A instanceof ImageData?y.putImageData(A,0,0):e.filter.flip&&typeof y.translate!="undefined"?(y.translate(o,0),y.scale(-1,1),y.drawImage(A,0,0,o,x,0,0,E==null?void 0:E.width,E==null?void 0:E.height),y.setTransform(1,0,0,1,0,0)):y.drawImage(A,0,0,o,x,0,0,E==null?void 0:E.width,E==null?void 0:E.height),e.filter.enabled){if((!X||!Z||E.width!==Z.width||(E==null?void 0:E.height)!==(Z==null?void 0:Z.height))&&(Z=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(E==null?void 0:E.width,E==null?void 0:E.height):document.createElement("canvas"),(Z==null?void 0:Z.width)!==(E==null?void 0:E.width)&&(Z.width=E==null?void 0:E.width),(Z==null?void 0:Z.height)!==(E==null?void 0:E.height)&&(Z.height=E==null?void 0:E.height),X=r.ENV.flags.IS_BROWSER?new _A({canvas:Z}):null),!X)return{tensor:null,canvas:E};X.reset(),X.addFilter("brightness",e.filter.brightness),e.filter.contrast!==0&&X.addFilter("contrast",e.filter.contrast),e.filter.sharpness!==0&&X.addFilter("sharpen",e.filter.sharpness),e.filter.blur!==0&&X.addFilter("blur",e.filter.blur),e.filter.saturation!==0&&X.addFilter("saturation",e.filter.saturation),e.filter.hue!==0&&X.addFilter("hue",e.filter.hue),e.filter.negative&&X.addFilter("negative"),e.filter.sepia&&X.addFilter("sepia"),e.filter.vintage&&X.addFilter("brownie"),e.filter.sepia&&X.addFilter("sepia"),e.filter.kodachrome&&X.addFilter("kodachrome"),e.filter.technicolor&&X.addFilter("technicolor"),e.filter.polaroid&&X.addFilter("polaroid"),e.filter.pixelate!==0&&X.addFilter("pixelate",e.filter.pixelate),X.apply(E)}else Z=E,X&&(X=null);let s;if(Z.data){let c=[Z.height,Z.width,3];s=r.tensor3d(Z.data,c,"int32")}else if(Z instanceof ImageData)s=r.browser?r.browser.fromPixels(Z):null;else if(e.backend==="webgl"||e.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,i):document.createElement("canvas");c.width=a,c.height=i;let l=c.getContext("2d");l==null||l.drawImage(Z,0,0),s=r.browser?r.browser.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,i):document.createElement("canvas");c.width=a,c.height=i;let l=c.getContext("2d");l==null||l.drawImage(Z,0,0);let f=l==null?void 0:l.getImageData(0,0,a,i);s=r.browser?r.browser.fromPixels(f):null}if(s){let c=s.toFloat();t=c.expandDims(0),s.dispose(),c.dispose()}}let n=e.filter.return?Z:null;return{tensor:t,canvas:n}}var Q,tA=!1;async function Q0(A){return Q?A.debug&&g("cached model:",Q.modelUrl):(Q=await r.loadGraphModel(H(A.modelBasePath,A.segmentation.modelPath)),!Q||!Q.modelUrl?g("load model failed:",A.segmentation.modelPath):A.debug&&g("load model:",Q.modelUrl)),Q}async function oA(A){var z,d;let e=((z=A.tensor)==null?void 0:z.shape[1])||0,t=((d=A.tensor)==null?void 0:d.shape[2])||0;if(!A.tensor||!Q||!Q.inputs[0].shape)return null;let n=r.image.resizeBilinear(A.tensor,[Q.inputs[0].shape[1],Q.inputs[0].shape[2]],!1),o=n.div(255),x=Q.predict(o);r.dispose(n),r.dispose(o);let a=r.squeeze(x,0),i;if(a.shape[2]===2){let h=a.softmax(),[P,R]=r.unstack(h,2),j=R.expandDims(2),k=j.expandDims(0);r.dispose(h),r.dispose(P),r.dispose(R);let M=r.image.cropAndResize(k,[[0,0,.5,.5]],[0],[e,t]);i=M.squeeze(0),r.dispose(M),r.dispose(j),r.dispose(k)}else i=r.image.resizeBilinear(a,[e,t]);if(typeof document=="undefined")return i.dataSync();let y=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");y.width=e,y.height=t,r.browser&&await r.browser.toPixels(i,y),r.dispose(i),r.dispose(a),r.dispose(x);let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");s.width=e,s.height=t;let c=s.getContext("2d");c.filter="blur(8px",await c.drawImage(y,0,0);let l=c.getImageData(0,0,e,t).data,f=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(e,t):document.createElement("canvas");f.width=e,f.height=t;let u=f.getContext("2d");return A.canvas&&await u.drawImage(A.canvas,0,0),u.globalCompositeOperation="darken",u.filter="blur(8px)",await u.drawImage(y,0,0),u.globalCompositeOperation="source-over",u.filter="none",A.canvas=f,l}async function $A(A,e,t){var x;if(tA)return null;tA=!0,Q||await Q0(t);let n=l0(A,t),o=await oA(n);if(r.dispose(n.tensor),e&&o){let a=l0(e,t),i=a.canvas;r.dispose(a.tensor);let y=n.canvas,s=(x=y.getContext("2d"))==null?void 0:x.getImageData(0,0,y.width,y.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(y.width,y.height):document.createElement("canvas");c.width=y.width,c.height=y.height;let l=c.getContext("2d");l.globalCompositeOperation="copy",l.drawImage(i,0,0,c.width,c.height);let f=l.getImageData(0,0,c.width,c.height);for(let u=0;u{let e=(l,f)=>Math.atan2(l[1]-f[1],l[0]-f[0]);if(!A.annotations.rightEyeIris||!A.annotations.leftEyeIris)return{bearing:0,strength:0};let t=[0,-.1],n=1,o=A.mesh[33][2]>A.mesh[263][2],x=o?A.mesh[473]:A.mesh[468],a=o?[(A.mesh[133][0]+A.mesh[33][0])/2,(A.mesh[133][1]+A.mesh[33][1])/2]:[(A.mesh[263][0]+A.mesh[362][0])/2,(A.mesh[263][1]+A.mesh[362][1])/2],i=o?[A.mesh[133][0]-A.mesh[33][0],A.mesh[23][1]-A.mesh[27][1]]:[A.mesh[263][0]-A.mesh[362][0],A.mesh[253][1]-A.mesh[257][1]],y=[(a[0]-x[0])/i[0]-t[0],n*(x[1]-a[1])/i[1]-t[1]],s=Math.sqrt(y[0]**2+y[1]**2);return s=Math.min(s,A.boxRaw[2]/2,A.boxRaw[3]/2),{bearing:(e([0,0],y)+Math.PI/2)%Math.PI,strength:s}},t2=(A,e)=>{let t=h=>{let P=Math.sqrt(h[0]*h[0]+h[1]*h[1]+h[2]*h[2]);return h[0]/=P,h[1]/=P,h[2]/=P,h},n=(h,P)=>{let R=h[0]-P[0],j=h[1]-P[1],k=h[2]-P[2];return[R,j,k]},o=(h,P)=>{let R=h[1]*P[2]-h[2]*P[1],j=h[2]*P[0]-h[0]*P[2],k=h[0]*P[1]-h[1]*P[0];return[R,j,k]},x=h=>{let[P,R,j,k,M,p,T,m,w]=h,I,O,W;return k<1?k>-1?(W=Math.asin(k),O=Math.atan2(-T,P),I=Math.atan2(-p,M)):(W=-Math.PI/2,O=-Math.atan2(m,w),I=0):(W=Math.PI/2,O=Math.atan2(m,w),I=0),{pitch:2*-I,yaw:2*-O,roll:2*-W}},a=h=>{let P=(j,k,M,p)=>Math.atan2(p-k,M-j);return{pitch:P(h[10][1],h[10][2],h[152][1],h[152][2]),yaw:P(h[33][0],h[33][2],h[263][0],h[263][2]),roll:P(h[33][0],h[33][1],h[263][0],h[263][1])}},i=A.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let y=Math.max(A.boxRaw[2]*e[0],A.boxRaw[3]*e[1])/1.5,s=[i[10],i[152],i[234],i[454]].map(h=>[h[0]*e[0]/y,h[1]*e[1]/y,h[2]]),c=t(n(s[1],s[0])),l=t(n(s[3],s[2])),f=t(o(l,c));l=o(c,f);let u=[l[0],l[1],l[2],c[0],c[1],c[2],f[0],f[1],f[2]],z=x(u),d=i.length===478?e2(A):{bearing:0,strength:0};return{angle:z,matrix:u,gaze:d}},nA=async(A,e)=>{var c,l,f,u,z,d;let t,n,o,x,a,i,y=[];A.state="run:face",t=N();let s=await zA(e,A.config);if(A.performance.face=Math.trunc(N()-t),!e.shape||e.shape.length!==4)return[];if(!s)return[];for(let h=0;h{if(!A)return[];let e=[];for(let t=0;ty.part==="leftWrist"),o=A[t].keypoints.find(y=>y.part==="rightWrist"),x=A[t].keypoints.find(y=>y.part==="nose");x&&n&&o&&n.position.yy.part==="leftShoulder"),i=A[t].keypoints.find(y=>y.part==="rightShoulder");a&&i&&e.push({body:t,gesture:`leaning ${a.position.y>i.position.y?"left":"right"}`})}return e},te=A=>{if(!A)return[];let e=[];for(let t=0;t0){let n=A[t].mesh[33][2]-A[t].mesh[263][2];Math.abs(n)<10?e.push({face:t,gesture:"facing center"}):e.push({face:t,gesture:`facing ${n<0?"left":"right"}`}),Math.abs(A[t].mesh[374][1]-A[t].mesh[386][1])/Math.abs(A[t].mesh[443][1]-A[t].mesh[450][1])<.2&&e.push({face:t,gesture:"blink left eye"}),Math.abs(A[t].mesh[145][1]-A[t].mesh[159][1])/Math.abs(A[t].mesh[223][1]-A[t].mesh[230][1])<.2&&e.push({face:t,gesture:"blink right eye"});let a=Math.min(100,500*Math.abs(A[t].mesh[13][1]-A[t].mesh[14][1])/Math.abs(A[t].mesh[10][1]-A[t].mesh[152][1]));a>10&&e.push({face:t,gesture:`mouth ${Math.trunc(a)}% open`});let i=A[t].mesh[152][2];Math.abs(i)>10&&e.push({face:t,gesture:`head ${i<0?"up":"down"}`})}return e},oe=A=>{if(!A)return[];let e=[];for(let t=0;t.06||l>.06)&&(s=!1),f>.06&&e.push({iris:t,gesture:"looking right"}),l>.06&&e.push({iris:t,gesture:"looking left"});let u=Math.abs(A[t].mesh[145][1]-A[t].annotations.rightEyeIris[0][1])/A[t].box[3],z=Math.abs(A[t].mesh[374][1]-A[t].annotations.leftEyeIris[0][1])/A[t].box[3];(z<.01||u<.01||z>.022||u>.022)&&(s=!1),(z<.01||u<.01)&&e.push({iris:t,gesture:"looking down"}),(z>.022||u>.022)&&e.push({iris:t,gesture:"looking up"}),s&&e.push({iris:t,gesture:"looking center"})}return e},ne=A=>{if(!A)return[];let e=[];for(let t=0;t0){let o=n.reduce((a,i)=>a.position[2]a.position[1]r2,body:()=>ae,canvas:()=>n2,face:()=>se,gesture:()=>re,hand:()=>ie,object:()=>xe,options:()=>x0,person:()=>o2});var x0={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},_0=A=>Math.round(A*180/Math.PI);function rA(A,e,t,n=0,o){A.fillStyle=o.useDepth&&n?`rgba(${127.5+2*n}, ${127.5-2*n}, 255, 0.3)`:o.color,A.beginPath(),A.arc(e,t,o.pointSize,0,2*Math.PI),A.fill()}function w0(A,e,t,n,o,x){if(A.beginPath(),x.useCurves){let a=(e+e+n)/2,i=(t+t+o)/2;A.ellipse(a,i,n/2,o/2,0,0,2*Math.PI)}else A.lineWidth=x.lineWidth,A.moveTo(e+x.roundRect,t),A.lineTo(e+n-x.roundRect,t),A.quadraticCurveTo(e+n,t,e+n,t+x.roundRect),A.lineTo(e+n,t+o-x.roundRect),A.quadraticCurveTo(e+n,t+o,e+n-x.roundRect,t+o),A.lineTo(e+x.roundRect,t+o),A.quadraticCurveTo(e,t+o,e,t+o-x.roundRect),A.lineTo(e,t+x.roundRect),A.quadraticCurveTo(e,t,e+x.roundRect,t),A.closePath();A.stroke()}function sA(A,e=[],t){if(!(e===void 0||e.length===0)){A.beginPath(),A.moveTo(e[0][0],e[0][1]);for(let n of e){let o=n[2]||0;A.strokeStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,A.fillStyle=t.useDepth&&o?`rgba(${127.5+2*o}, ${127.5-2*o}, 255, 0.3)`:t.color,A.lineTo(n[0],Math.round(n[1]))}A.stroke(),t.fillPolygons&&(A.closePath(),A.fill())}}function W0(A,e=[],t){if(!(e===void 0||e.length===0)){if(!t.useCurves||e.length<=2){sA(A,e,t);return}A.moveTo(e[0][0],e[0][1]);for(let n=0;n1&&y[1].length>0){let s=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${s}: ${y[1]}`;n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText(c,8,2+x*n.lineHeight)),o.fillStyle=n.labelColor,o.fillText(c,6,0+x*n.lineHeight),x+=1}}}async function se(A,e,t){var x,a,i,y;let n=q(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o)for(let s of e){o.font=n.font,o.strokeStyle=n.color,o.fillStyle=n.color,n.drawBoxes&&w0(o,s.box[0],s.box[1],s.box[2],s.box[3],n);let c=[];if(c.push(`face: ${Math.trunc(100*s.score)}%`),s.genderScore&&c.push(`${s.gender||""} ${Math.trunc(100*s.genderScore)}%`),s.age&&c.push(`age: ${s.age||""}`),s.iris&&c.push(`distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let l=s.emotion.map(f=>`${Math.trunc(100*f.score)}% ${f.emotion}`);l.length>3&&(l.length=3),c.push(l.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.gaze&&(s.rotation.angle.roll&&c.push(`roll: ${_0(s.rotation.angle.roll)}\xB0 yaw:${_0(s.rotation.angle.yaw)}\xB0 pitch:${_0(s.rotation.angle.pitch)}\xB0`),s.rotation.gaze.bearing&&c.push(`gaze: ${_0(s.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),o.fillStyle=n.color;for(let l=c.length-1;l>=0;l--){let f=Math.max(s.box[0],0),u=l*n.lineHeight+s.box[1];n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText(c[l],f+5,u+16)),o.fillStyle=n.labelColor,o.fillText(c[l],f+4,u+15)}if(o.lineWidth=1,s.mesh&&s.mesh.length>0){if(n.drawPoints)for(let l of s.mesh)rA(o,l[0],l[1],l[2],n);if(n.drawPolygons){o.lineWidth=1;for(let l=0;ls.mesh[u]);sA(o,f,n)}if(s.annotations&&s.annotations.leftEyeIris){o.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,o.beginPath();let l=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,f=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;o.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],l,f,0,0,2*Math.PI),o.stroke(),n.fillPolygons&&(o.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,o.fill())}if(s.annotations&&s.annotations.rightEyeIris){o.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.color,o.beginPath();let l=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,f=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;o.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],l,f,0,0,2*Math.PI),o.stroke(),n.fillPolygons&&(o.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.color,o.fill())}if(n.drawGaze&&((a=(x=s.rotation)==null?void 0:x.gaze)==null?void 0:a.strength)&&((y=(i=s.rotation)==null?void 0:i.gaze)==null?void 0:y.bearing)&&s.annotations.leftEyeIris&&s.annotations.rightEyeIris&&s.annotations.leftEyeIris[0]&&s.annotations.rightEyeIris[0]){o.strokeStyle="pink",o.beginPath();let l=[s.annotations.leftEyeIris[0][0]+Math.sin(s.rotation.gaze.bearing)*s.rotation.gaze.strength*s.box[3],s.annotations.leftEyeIris[0][1]+Math.cos(s.rotation.gaze.bearing)*s.rotation.gaze.strength*s.box[2]];o.moveTo(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1]),o.lineTo(l[0],l[1]);let f=[s.annotations.rightEyeIris[0][0]+Math.sin(s.rotation.gaze.bearing)*s.rotation.gaze.strength*s.box[3],s.annotations.rightEyeIris[0][1]+Math.cos(s.rotation.gaze.bearing)*s.rotation.gaze.strength*s.box[2]];o.moveTo(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1]),o.lineTo(f[0],f[1]),o.stroke()}}}}}async function ae(A,e,t){var x;let n=q(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round";for(let a=0;as.part==="leftShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightShoulder"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[a].keypoints.find(s=>s.part==="rightShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightHip"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftHip"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftShoulder"),i&&y.push([i.position[0],i.position[1]]),y.length===4&&sA(o,y,n),y.length=0,i=e[a].keypoints.find(s=>s.part==="leftHip"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftKnee"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftAnkle"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftHeel"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftFoot"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[a].keypoints.find(s=>s.part==="rightHip"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightKnee"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightAnkle"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightHeel"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightFoot"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[a].keypoints.find(s=>s.part==="leftShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftElbow"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftWrist"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="leftPalm"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n),y.length=0,i=e[a].keypoints.find(s=>s.part==="rightShoulder"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightElbow"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightWrist"),i&&y.push([i.position[0],i.position[1]]),i=e[a].keypoints.find(s=>s.part==="rightPalm"),i&&y.push([i.position[0],i.position[1]]),W0(o,y,n)}}}}async function ie(A,e,t){let n=q(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=n.font;for(let x of e){if(n.drawBoxes&&(o.strokeStyle=n.color,o.fillStyle=n.color,w0(o,x.box[0],x.box[1],x.box[2],x.box[3],n),n.drawLabels&&(n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText("hand",x.box[0]+3,1+x.box[1]+n.lineHeight,x.box[2])),o.fillStyle=n.labelColor,o.fillText("hand",x.box[0]+2,0+x.box[1]+n.lineHeight,x.box[2])),o.stroke()),n.drawPoints&&x.keypoints&&x.keypoints.length>0)for(let a of x.keypoints)o.fillStyle=n.useDepth?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.5)`:n.color,rA(o,a[0],a[1],0,n);if(n.drawLabels){let a=(i,y)=>{o.fillStyle=n.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:n.color,o.fillText(y,i[i.length-1][0]+4,i[i.length-1][1]+4)};o.font=n.font,a(x.annotations.indexFinger,"index"),a(x.annotations.middleFinger,"middle"),a(x.annotations.ringFinger,"ring"),a(x.annotations.pinky,"pinky"),a(x.annotations.thumb,"thumb"),a(x.annotations.palmBase,"palm")}if(n.drawPolygons){let a=i=>{if(!!i)for(let y=0;y0?y-1:0][0],i[y>0?y-1:0][1]),o.lineTo(i[y][0],i[y][1]),o.stroke()};o.lineWidth=n.lineWidth,a(x.annotations.indexFinger),a(x.annotations.middleFinger),a(x.annotations.ringFinger),a(x.annotations.pinky),a(x.annotations.thumb)}}}}async function xe(A,e,t){let n=q(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=n.font;for(let x of e)if(n.drawBoxes){if(o.strokeStyle=n.color,o.fillStyle=n.color,w0(o,x.box[0],x.box[1],x.box[2],x.box[3],n),n.drawLabels){let a=`${x.label} ${Math.round(100*x.score)}%`;n.shadowColor&&n.shadowColor!==""&&(o.fillStyle=n.shadowColor,o.fillText(a,x.box[0]+3,1+x.box[1]+n.lineHeight,x.box[2])),o.fillStyle=n.labelColor,o.fillText(a,x.box[0]+2,0+x.box[1]+n.lineHeight,x.box[2])}o.stroke()}}}async function o2(A,e,t){let n=q(x0,t);if(!e||!A||!(A instanceof HTMLCanvasElement))return;let o=A.getContext("2d");if(!!o){o.lineJoin="round",o.font=n.font;for(let x=0;xv.box[0]&&T.box[0]v.box[1]&&T.box[1]+T.box[3]m.body.box[0]&&v.box[0]+v.box[2]m.body.box[1]&&v.box[1]+v.box[3]m.body.box[0]&&v.box[1]+v.box[3]>m.body.box[1]&&v.box[1]+v.box[3]{v&&v.length===4&&(w.push(v[0],v[0]+v[2]),I.push(v[1],v[1]+v[3]))};O((P=m.face)==null?void 0:P.box),O((R=m.body)==null?void 0:R.box),O((k=(j=m.hands)==null?void 0:j.left)==null?void 0:k.box),O((p=(M=m.hands)==null?void 0:M.right)==null?void 0:p.box);let W=Math.min(...w),L=Math.min(...I);m.box=[W,L,Math.max(...w)-W,Math.max(...I)-L],o&&o.length===4&&(m.boxRaw=[m.box[0]/o[2],m.box[1]/o[1],m.box[2]/o[2],m.box[3]/o[1]]),a.push(m)}return a}var S={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function le(A){var n,o,x,a,i,y,s,c,l,f,u,z,d,h,P,R,j,k,M,p,T;let e=Date.now()-A.timestamp,t=e<1e3?8-Math.log(e):1;if(S.canvas=A.canvas,!S.body||A.body.length!==S.body.length)S.body=JSON.parse(JSON.stringify(A.body));else for(let m=0;m((t-1)*S.body[m].box[L]+W)/t),I=A.body[m].boxRaw.map((W,L)=>((t-1)*S.body[m].boxRaw[L]+W)/t),O=A.body[m].keypoints.map((W,L)=>({score:W.score,part:W.part,position:[S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].position[0]+W.position[0])/t:W.position[0],S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].position[1]+W.position[1])/t:W.position[1]],positionRaw:[S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].positionRaw[0]+W.positionRaw[0])/t:W.position[0],S.body[m].keypoints[L]?((t-1)*S.body[m].keypoints[L].positionRaw[1]+W.positionRaw[1])/t:W.position[1]]}));S.body[m]={...A.body[m],box:w,boxRaw:I,keypoints:O}}if(!S.hand||A.hand.length!==S.hand.length)S.hand=JSON.parse(JSON.stringify(A.hand));else for(let m=0;m((t-1)*S.hand[m].box[F]+v)/t),I=A.hand[m].boxRaw.map((v,F)=>((t-1)*S.hand[m].boxRaw[F]+v)/t),O=A.hand[m].keypoints.map((v,F)=>v.map((z0,f0)=>((t-1)*S.hand[m].keypoints[F][f0]+z0)/t)),W=Object.keys(A.hand[m].annotations),L={};for(let v of W)L[v]=A.hand[m].annotations[v].map((F,z0)=>F.map((f0,s5)=>((t-1)*S.hand[m].annotations[v][z0][s5]+f0)/t));S.hand[m]={...A.hand[m],box:w,boxRaw:I,keypoints:O,annotations:L}}if(!S.face||A.face.length!==S.face.length)S.face=JSON.parse(JSON.stringify(A.face));else for(let m=0;m((t-1)*S.face[m].box[L]+W)/t),I=A.face[m].boxRaw.map((W,L)=>((t-1)*S.face[m].boxRaw[L]+W)/t),O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(n=A.face[m].rotation)==null?void 0:n.matrix,O.angle={roll:((t-1)*(((x=(o=S.face[m].rotation)==null?void 0:o.angle)==null?void 0:x.roll)||0)+(((i=(a=A.face[m].rotation)==null?void 0:a.angle)==null?void 0:i.roll)||0))/t,yaw:((t-1)*(((s=(y=S.face[m].rotation)==null?void 0:y.angle)==null?void 0:s.yaw)||0)+(((l=(c=A.face[m].rotation)==null?void 0:c.angle)==null?void 0:l.yaw)||0))/t,pitch:((t-1)*(((u=(f=S.face[m].rotation)==null?void 0:f.angle)==null?void 0:u.pitch)||0)+(((d=(z=A.face[m].rotation)==null?void 0:z.angle)==null?void 0:d.pitch)||0))/t},O.gaze={bearing:((t-1)*(((P=(h=S.face[m].rotation)==null?void 0:h.gaze)==null?void 0:P.bearing)||0)+(((j=(R=A.face[m].rotation)==null?void 0:R.gaze)==null?void 0:j.bearing)||0))/t,strength:((t-1)*(((M=(k=S.face[m].rotation)==null?void 0:k.gaze)==null?void 0:M.strength)||0)+(((T=(p=A.face[m].rotation)==null?void 0:p.gaze)==null?void 0:T.strength)||0))/t},S.face[m]={...A.face[m],rotation:O,box:w,boxRaw:I}}if(!S.object||A.object.length!==S.object.length)S.object=JSON.parse(JSON.stringify(A.object));else for(let m=0;m((t-1)*S.object[m].box[W]+O)/t),I=A.object[m].boxRaw.map((O,W)=>((t-1)*S.object[m].boxRaw[W]+O)/t);S.object[m]={...A.object[m],box:w,boxRaw:I}}if(A.persons){let m=A.persons;if(!S.persons||m.length!==S.persons.length)S.persons=JSON.parse(JSON.stringify(m));else for(let w=0;w((t-1)*S.persons[w].box[O]+I)/t)}return A.gesture&&(S.gesture=A.gesture),A.performance&&(S.performance=A.performance),S}var $0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -730,5 +730,5 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var ce="2.0.3";var T0,k0,I0,c0,d0,P0,e5,N0,t5,o5,n5,r5,a2=class{constructor(e){K(this,T0,void 0);K(this,k0,void 0);K(this,I0,void 0);K(this,c0,void 0);K(this,d0,void 0);K(this,P0,void 0);this.analyze=(...e)=>{if(!C(this,k0))return;let t=this.tf.engine().state.numTensors,n=C(this,T0);_(this,T0,t);let o=t-n;o!==0&&g(...e,o)};K(this,e5,e=>{if(!C(this,I0))return null;if(!e)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(e instanceof r.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(t){return"backend not loaded"}return null});K(this,N0,async(e=!1)=>{var t;if(this.config.backend&&this.config.backend.length>0&&e||this.tf.getBackend()!==this.config.backend){let n=N();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&g("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&g("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&g("wasm path:",this.config.wasmPath),typeof((t=this.tf)==null?void 0:t.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let o=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),x=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&g(`wasm execution: ${o?"SIMD":"no SIMD"} ${x?"multithreaded":"singlethreaded"}`),this.config.debug&&!o&&g("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&cA();try{await this.tf.setBackend(this.config.backend)}catch(o){g("error: cannot set backend:",this.config.backend,o)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(g("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let o=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&g(`gl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(N()-n)}});this.next=e=>le(e||this.result);K(this,t5,async e=>{if(this.config.cacheSensitivity===0)return!1;let t=32,n=e.resizeBilinear([Math.trunc(e.shape[1]/t),Math.trunc(e.shape[2]/t)]),o=n.dataSync(),x=0;for(let y=0;y10*this.config.cacheSensitivity?0:s),i});K(this,o5,async()=>{let e=(o,x="application/octet-stream")=>fetch(`data:${x};base64,${o}`).then(s=>s.blob()),t,n;switch(this.config.warmup){case"face":t=await e($0);break;case"full":t=await e(A5);break;default:t=null}if(t){let o=await createImageBitmap(t);n=await this.detect(o,this.config),o.close()}return n});K(this,n5,async()=>new Promise(e=>{let t,n=0;switch(this.config.warmup){case"face":n=256,t="data:image/jpeg;base64,"+$0;break;case"full":case"body":n=1200,t="data:image/jpeg;base64,"+A5;break;default:t=null}let o=new Image;o.onload=async()=>{let x=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,n):document.createElement("canvas");x.width=o.naturalWidth,x.height=o.naturalHeight;let s=x.getContext("2d");s==null||s.drawImage(o,0,0);let i=await this.detect(x,this.config);e(i)},t?o.src=t:e(null)}));K(this,r5,async()=>{let e=o=>Buffer.from(o,"base64"),t;if(this.config.warmup==="face"&&(t=e($0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(t=e(A5)),!t)return null;let n;if(typeof r.node!="undefined"){let o=r.node.decodeJpeg(t),x=o.expandDims(0);this.tf.dispose(o),n=await this.detect(x,this.config),this.tf.dispose(x)}else this.config.debug&&g("Warmup tfjs-node not loaded");return n});this.config=U(yA,e||{}),this.tf=r,this.draw=aA,this.version=ce,this.state="idle",_(this,T0,0),_(this,k0,!1),_(this,I0,!1),_(this,c0,!0),_(this,P0,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.image=t=>l0(t,this.config),this.faceTriangulation=vA,this.faceUVMap=EA,this.sysinfo=lA(),_(this,d0,1)}similarity(e,t){return p5(e,t)}segmentation(e,t){return $A(e,t,this.config)}enhance(e){return b5(e)}match(e,t,n=0){return jA(e,t,n)}async load(e){this.state="load";let t=N();e&&(this.config=U(this.config,e)),C(this,c0)&&(this.config.debug&&g(`version: ${this.version}`),this.config.debug&&g(`tfjs version: ${this.tf.version_core}`),this.config.debug&&g("platform:",this.sysinfo.platform),this.config.debug&&g("agent:",this.sysinfo.agent),await C(this,N0).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&g("configuration:",this.config),this.config.debug&&g("tf flags:",this.tf.ENV.flags))),await Ae(this),C(this,c0)&&(this.config.debug&&g("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),_(this,c0,!1));let n=Math.trunc(N()-t);n>(this.performance.load||0)&&(this.performance.load=n)}async detect(e,t){return new Promise(async n=>{this.state="config";let o,x;this.config=U(this.config,t),this.state="check";let s=C(this,e5).call(this,e);s&&(g(s,e),n({error:s}));let i=N();await C(this,N0).call(this),await this.load(),o=N();let y=l0(e,this.config);if(this.performance.image=Math.trunc(N()-o),this.analyze("Get Image:"),this.config.segmentation.enabled&&y&&y.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",o=N(),await oA(y),x=Math.trunc(N()-o),x>0&&(this.performance.segmentation=x),y.canvas&&(y.tensor.dispose(),y=l0(y.canvas,this.config)),this.analyze("End Segmentation:")),!y||!y.tensor){g("could not convert input to tensor"),n({error:"could not convert input to tensor"});return}o=N(),this.config.skipFrame=await C(this,t5).call(this,y.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(N()-o),this.analyze("Check Changed:");let a,c,l,f;this.config.async?(a=this.config.face.enabled?nA(this,y.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",o=N(),a=this.config.face.enabled?await nA(this,y.tensor):[],x=Math.trunc(N()-o),x>0&&(this.performance.face=x)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?w5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Z5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?C5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?J5(y.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",o=N(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await w5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Z5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await C5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await J5(y.tensor,this.config):[]),x=Math.trunc(N()-o),x>0&&(this.performance.body=x)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(l=this.config.hand.enabled?L5(y.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",o=N(),l=this.config.hand.enabled?await L5(y.tensor,this.config):[],x=Math.trunc(N()-o),x>0&&(this.performance.hand=x)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?f=this.config.object.enabled?Q5(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(f=this.config.object.enabled?eA(y.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",o=N(),this.config.object.modelPath.includes("nanodet")?f=this.config.object.enabled?await Q5(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(f=this.config.object.enabled?await eA(y.tensor,this.config):[]),x=Math.trunc(N()-o),x>0&&(this.performance.object=x)),this.analyze("End Object:"),this.config.async&&([a,c,l,f]=await Promise.all([a,c,l,f]));let u=[];this.config.gesture.enabled&&(o=N(),u=[...te(a),...ee(c),...ne(l),...oe(a)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(N()-o)),this.performance.total=Math.trunc(N()-i),this.state="idle",this.result={face:a,body:c,hand:l,gesture:u,object:f,performance:this.performance,canvas:y.canvas,timestamp:Date.now(),get persons(){var v;return ye(a,c,l,u,(v=y==null?void 0:y.tensor)==null?void 0:v.shape)}},r.dispose(y.tensor),n(this.result)})}async warmup(e){let t=N();if(e&&(this.config=U(this.config,e)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let n;typeof createImageBitmap=="function"?n=await C(this,o5).call(this):typeof Image!="undefined"?n=await C(this,n5).call(this):n=await C(this,r5).call(this);let o=N();return this.config.debug&&g("Warmup",this.config.warmup,Math.round(o-t),"ms",n),n}};T0=new WeakMap,k0=new WeakMap,I0=new WeakMap,c0=new WeakMap,d0=new WeakMap,P0=new WeakMap,e5=new WeakMap,N0=new WeakMap,t5=new WeakMap,o5=new WeakMap,n5=new WeakMap,r5=new WeakMap;export{a2 as Human,a2 as default}; +2Q==`;var ce="2.0.3";var T0,k0,I0,c0,d0,P0,e5,N0,t5,o5,n5,r5,a2=class{constructor(e){K(this,T0,void 0);K(this,k0,void 0);K(this,I0,void 0);K(this,c0,void 0);K(this,d0,void 0);K(this,P0,void 0);this.analyze=(...e)=>{if(!C(this,k0))return;let t=this.tf.engine().state.numTensors,n=C(this,T0);_(this,T0,t);let o=t-n;o!==0&&g(...e,o)};K(this,e5,e=>{if(!C(this,I0))return null;if(!e)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(e instanceof r.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(t){return"backend not loaded"}return null});K(this,N0,async(e=!1)=>{var t;if(this.config.backend&&this.config.backend.length>0&&e||this.tf.getBackend()!==this.config.backend){let n=N();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&g("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&g("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&g("wasm path:",this.config.wasmPath),typeof((t=this.tf)==null?void 0:t.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let o=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),x=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&g(`wasm execution: ${o?"SIMD":"no SIMD"} ${x?"multithreaded":"singlethreaded"}`),this.config.debug&&!o&&g("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&cA();try{await this.tf.setBackend(this.config.backend)}catch(o){g("error: cannot set backend:",this.config.backend,o)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(g("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let o=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&g(`gl version:${o.getParameter(o.VERSION)} renderer:${o.getParameter(o.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(N()-n)}});this.next=e=>le(e||this.result);K(this,t5,async e=>{if(this.config.cacheSensitivity===0)return!1;let t=32,n=e.resizeBilinear([Math.trunc(e.shape[1]/t),Math.trunc(e.shape[2]/t)]),o=n.dataSync(),x=0;for(let y=0;y10*this.config.cacheSensitivity?0:a),i});K(this,o5,async()=>{let e=(o,x="application/octet-stream")=>fetch(`data:${x};base64,${o}`).then(a=>a.blob()),t,n;switch(this.config.warmup){case"face":t=await e($0);break;case"full":t=await e(A5);break;default:t=null}if(t){let o=await createImageBitmap(t);n=await this.detect(o,this.config),o.close()}return n});K(this,n5,async()=>new Promise(e=>{let t,n=0;switch(this.config.warmup){case"face":n=256,t="data:image/jpeg;base64,"+$0;break;case"full":case"body":n=1200,t="data:image/jpeg;base64,"+A5;break;default:t=null}let o=new Image;o.onload=async()=>{let x=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,n):document.createElement("canvas");x.width=o.naturalWidth,x.height=o.naturalHeight;let a=x.getContext("2d");a==null||a.drawImage(o,0,0);let i=await this.detect(x,this.config);e(i)},t?o.src=t:e(null)}));K(this,r5,async()=>{let e=o=>Buffer.from(o,"base64"),t;if(this.config.warmup==="face"&&(t=e($0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(t=e(A5)),!t)return null;let n;if(typeof r.node!="undefined"){let o=r.node.decodeJpeg(t),x=o.expandDims(0);this.tf.dispose(o),n=await this.detect(x,this.config),this.tf.dispose(x)}else this.config.debug&&g("Warmup tfjs-node not loaded");return n});this.config=q(yA,e||{}),this.tf=r,this.draw=aA,this.version=ce,this.state="idle",_(this,T0,0),_(this,k0,!1),_(this,I0,!1),_(this,c0,!0),_(this,P0,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.image=t=>l0(t,this.config),this.faceTriangulation=vA,this.faceUVMap=EA,this.sysinfo=lA(),_(this,d0,1)}similarity(e,t){return p5(e,t)}segmentation(e,t){return $A(e,t,this.config)}enhance(e){return b5(e)}match(e,t,n=0){return jA(e,t,n)}async load(e){this.state="load";let t=N();e&&(this.config=q(this.config,e)),C(this,c0)&&(this.config.debug&&g(`version: ${this.version}`),this.config.debug&&g(`tfjs version: ${this.tf.version_core}`),this.config.debug&&g("platform:",this.sysinfo.platform),this.config.debug&&g("agent:",this.sysinfo.agent),await C(this,N0).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&g("configuration:",this.config),this.config.debug&&g("tf flags:",this.tf.ENV.flags))),await Ae(this),C(this,c0)&&(this.config.debug&&g("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),_(this,c0,!1));let n=Math.trunc(N()-t);n>(this.performance.load||0)&&(this.performance.load=n)}async detect(e,t){return new Promise(async n=>{this.state="config";let o,x;this.config=q(this.config,t),this.state="check";let a=C(this,e5).call(this,e);a&&(g(a,e),n({error:a}));let i=N();await C(this,N0).call(this),await this.load(),o=N();let y=l0(e,this.config);if(this.performance.image=Math.trunc(N()-o),this.analyze("Get Image:"),this.config.segmentation.enabled&&y&&y.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",o=N(),await oA(y),x=Math.trunc(N()-o),x>0&&(this.performance.segmentation=x),y.canvas&&(y.tensor.dispose(),y=l0(y.canvas,this.config)),this.analyze("End Segmentation:")),!y||!y.tensor){g("could not convert input to tensor"),n({error:"could not convert input to tensor"});return}o=N(),this.config.skipFrame=await C(this,t5).call(this,y.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(N()-o),this.analyze("Check Changed:");let s,c,l,f;this.config.async?(s=this.config.face.enabled?nA(this,y.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",o=N(),s=this.config.face.enabled?await nA(this,y.tensor):[],x=Math.trunc(N()-o),x>0&&(this.performance.face=x)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?w5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Z5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?C5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?J5(y.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",o=N(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await w5(y.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Z5(y.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await C5(y.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await J5(y.tensor,this.config):[]),x=Math.trunc(N()-o),x>0&&(this.performance.body=x)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(l=this.config.hand.enabled?L5(y.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",o=N(),l=this.config.hand.enabled?await L5(y.tensor,this.config):[],x=Math.trunc(N()-o),x>0&&(this.performance.hand=x)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?f=this.config.object.enabled?Q5(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(f=this.config.object.enabled?eA(y.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",o=N(),this.config.object.modelPath.includes("nanodet")?f=this.config.object.enabled?await Q5(y.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(f=this.config.object.enabled?await eA(y.tensor,this.config):[]),x=Math.trunc(N()-o),x>0&&(this.performance.object=x)),this.analyze("End Object:"),this.config.async&&([s,c,l,f]=await Promise.all([s,c,l,f]));let u=[];this.config.gesture.enabled&&(o=N(),u=[...te(s),...ee(c),...ne(l),...oe(s)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(N()-o)),this.performance.total=Math.trunc(N()-i),this.state="idle",this.result={face:s,body:c,hand:l,gesture:u,object:f,performance:this.performance,canvas:y.canvas,timestamp:Date.now(),get persons(){var z;return ye(s,c,l,u,(z=y==null?void 0:y.tensor)==null?void 0:z.shape)}},r.dispose(y.tensor),n(this.result)})}async warmup(e){let t=N();if(e&&(this.config=q(this.config,e)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let n;typeof createImageBitmap=="function"?n=await C(this,o5).call(this):typeof Image!="undefined"?n=await C(this,n5).call(this):n=await C(this,r5).call(this);let o=N();return this.config.debug&&g("Warmup",this.config.warmup,Math.round(o-t),"ms",n),n}};T0=new WeakMap,k0=new WeakMap,I0=new WeakMap,c0=new WeakMap,d0=new WeakMap,P0=new WeakMap,e5=new WeakMap,N0=new WeakMap,t5=new WeakMap,o5=new WeakMap,n5=new WeakMap,r5=new WeakMap;export{a2 as Human,a2 as default}; //# sourceMappingURL=human.esm-nobundle.js.map diff --git a/dist/human.esm-nobundle.js.map b/dist/human.esm-nobundle.js.map index 5496d9d9..876ba169 100644 --- a/dist/human.esm-nobundle.js.map +++ b/dist/human.esm-nobundle.js.map @@ -1,7 +1,7 @@ { "version": 3, "sources": ["../src/helpers.ts", "../src/config.ts", "../src/sysinfo.ts", "../tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/blazeface/facemesh.ts", "../src/faceres/faceres.ts", "../src/emotion/emotion.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/posenet/posenet.ts", "../src/handpose/box.ts", "../src/handpose/anchors.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/handpose.ts", "../src/blazepose/annotations.ts", "../src/blazepose/blazepose.ts", "../src/efficientpose/efficientpose.ts", "../src/movenet/movenet.ts", "../src/object/labels.ts", "../src/object/nanodet.ts", "../src/object/centernet.ts", "../src/image/imagefx.js", "../src/image/image.ts", "../src/segmentation/segmentation.ts", "../src/models.ts", "../src/face.ts", "../src/gesture/gesture.ts", "../src/draw/draw.ts", "../src/persons.ts", "../src/interpolate.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data) => data.reduce((acc, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n * @typedef Config\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow',\n\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n\n /** Print debug statements to console */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n */\n modelBasePath: string,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n cacheSensitivity: number;\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n skipFrame: boolean;\n\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for each of face models\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - return: return extracted face as tensor for futher user processing, in which case user is reponsible for manually disposing the tensor\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxDetected: number,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n minConfidence: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n },\n\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: body pose model, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - maxDetected: maximum number of people detected in the input, should be set to the minimum number for performance\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetected: number,\n minConfidence: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - landmarks: detect hand landmarks or just hand boundary box\n * - modelPath: paths for hand detector and hand skeleton models, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n\n /** Controlls and configures all object detection specific options\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of detections to return\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n *\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n */\n segmentation: {\n enabled: boolean,\n modelPath: string,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use, leave empty to use default backend\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../node_modules/@tensorflow/tfjs-backend-wasm/dist/', // path for wasm binaries, only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n cacheSensitivity: 0.75, // cache sensitivity\n // values 0..1 where 0.01 means reset cache if input changed more than 1%\n // set to 0 to disable caching\n skipFrame: false, // internal & dynamic\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable gesture recognition based on model results\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface.json', // detector model, can be absolute path or relative to modelBasePath\n rotation: true, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxDetected: 15, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 15, // how many max frames to go without re-running the face bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n return: false, // return extracted face as tensor\n // in which case user is reponsible for disposing the tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model, can be absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 11, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n minConfidence: 0.1, // threshold for discarding a prediction\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 17, // how max many frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json', // body model, can be absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose', 'efficientpose', 'movenet-lightning', 'movenet-thunder'\n maxDetected: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as other models detects single pose\n minConfidence: 0.2, // threshold for discarding a prediction\n skipFrames: 1, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n},\n\n hand: {\n enabled: true,\n rotation: true, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 18, // how many max frames to go without re-running the hand bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 2, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model, can be absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model, can be absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'mb3-centernet' or 'nanodet'\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.4, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 10, // maximum number of objects detected in the input\n skipFrames: 19, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n },\n\n segmentation: {\n enabled: false, // controlls and configures all body segmentation module\n // removes background from input containing person\n // if segmentation is enabled it will run as preprocessing task before any other model\n // alternatively leave it disabled and use it on-demand using human.segmentation method which can\n // remove background or replace it with user-provided background\n modelPath: 'selfie.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'selfie' or 'meet'\n },\n};\nexport { config as defaults };\n", "/**\n * Helper function that returns basic system info\n */\nexport function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "/**\n * Creates tfjs bundle used by Human browser build target\n * @external\n */\n\n// import from dist\n// get versions of all packages\n/*\nimport * as packageBundle from '@tensorflow/tfjs/package.json';\nimport * as packageCore from '@tensorflow/tfjs-core/package.json';\nimport * as packageData from '@tensorflow/tfjs-data/package.json';\nimport * as packageLayers from '@tensorflow/tfjs-layers/package.json';\nimport * as packageConverter from '@tensorflow/tfjs-converter/package.json';\n// for backends, get version from source to avoid incorrect tree shaking\nimport { version_cpu } from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nimport { version_webgl } from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nimport { version_wasm } from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n*/\n\n// import from src\n// get versions of all packages\nimport { version as tfjsVersion } from '@tensorflow/tfjs/package.json';\nimport { version as tfjsCoreVersion } from '@tensorflow/tfjs-core/package.json';\nimport { version as tfjsDataVersion } from '@tensorflow/tfjs-data/package.json';\nimport { version as tfjsLayersVersion } from '@tensorflow/tfjs-layers/package.json';\nimport { version as tfjsConverterVersion } from '@tensorflow/tfjs-converter/package.json';\nimport { version as tfjsBackendCPUVersion } from '@tensorflow/tfjs-backend-cpu/package.json';\nimport { version as tfjsBackendWebGLVersion } from '@tensorflow/tfjs-backend-webgl/package.json';\nimport { version as tfjsBackendWASMVersion } from '@tensorflow/tfjs-backend-wasm/package.json';\n\n// export all\n// requires treeShaking:ignore-annotations due to tfjs misconfiguration\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n/*\n*/\n\n// export versions\nexport const version = {\n tfjs: tfjsVersion,\n 'tfjs-core': tfjsCoreVersion,\n 'tfjs-data': tfjsDataVersion,\n 'tfjs-layers': tfjsLayersVersion,\n 'tfjs-converter': tfjsConverterVersion,\n 'tfjs-backend-cpu': tfjsBackendCPUVersion,\n 'tfjs-backend-webgl': tfjsBackendWebGLVersion,\n 'tfjs-backend-wasm': tfjsBackendWASMVersion,\n};\n// export const version = {};\n", "/**\n * Custom TFJS backend for Human based on WebGL\n * Not used by default\n */\n\nimport { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n extensions: [],\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions() as string[];\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n // log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr) as WebGL2RenderingContext;\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)];\n const endPoint = [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n}\n\nexport const disposeBox = (t) => {\n t.startPoint.dispose();\n t.endPoint.dispose();\n};\n\nexport const createBox = (startEndTensor) => ({\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n\nexport function generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n", "import { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst keypointsCount = 6;\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: GraphModel;\n anchorsData: [number, number][];\n anchors: Tensor;\n inputSize: number;\n config: Config;\n\n constructor(model, config: Config) {\n this.model = model;\n this.anchorsData = util.generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage: Tensor) {\n // sanity check on input\n // @ts-ignore isDisposed is internal property\n if ((!inputImage) || (inputImage.isDisposedInternal) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = tf.image.resizeBilinear(inputImage, [this.inputSize, this.inputSize]);\n const normalizedImage = resizedImage.div(127.5).sub(0.5);\n const res = this.model.execute(normalizedImage);\n let batchOut;\n if (Array.isArray(res)) { // are we using tfhub or pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = concat.squeeze(0);\n } else {\n batchOut = tf.squeeze(res); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.sigmoid(logits).squeeze().dataSync();\n return [batchOut, boxesOut, scoresOut];\n });\n const nmsTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxDetected, this.config.face.detector.iouThreshold, this.config.face.detector.minConfidence);\n const nms = nmsTensor.arraySync();\n nmsTensor.dispose();\n const annotatedBoxes: Array<{ box: { startPoint: Tensor, endPoint: Tensor }, landmarks: Tensor, anchor: number[], confidence: number }> = [];\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > this.config.face.detector.minConfidence) {\n const boundingBox = tf.slice(boxes, [nms[i], 0], [1, -1]);\n const localBox = box.createBox(boundingBox);\n boundingBox.dispose();\n const anchor = this.anchorsData[nms[i]];\n const landmarks = tf.tidy(() => tf.slice(batch, [nms[i], keypointsCount - 1], [1, -1]).squeeze().reshape([keypointsCount, -1]));\n annotatedBoxes.push({ box: localBox, landmarks, anchor, confidence });\n }\n }\n // boundingBoxes.forEach((t) => t.dispose());\n batch.dispose();\n boxes.dispose();\n // scores.dispose();\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config: Config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { BlazeFaceModel } from './blazeface';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: Array<{ startPoint: number[], endPoint: number[], landmarks: Array, confidence: number, faceConfidence?: number }>;\n boundingBoxDetector: BlazeFaceModel; // tf.GraphModel\n meshDetector: GraphModel; // tf.GraphModel\n irisModel: GraphModel; // tf.GraphModel\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n Math.round(coord[0] + util.dot(boxCenter, inverseRotationMatrix[0])),\n Math.round(coord[1] + util.dot(boxCenter, inverseRotationMatrix[1])),\n Math.round(coord[2]),\n ]));\n }\n\n // eslint-disable-next-line class-methods-use-this\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(bounding.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n crop = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array<[number, number, number]> = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n // eslint-disable-next-line class-methods-use-this\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.skipFrame) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.skipFrame || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxDetected)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n this.storedBoxes.push({ startPoint: possible.box.startPoint.dataSync(), endPoint: possible.box.endPoint.dataSync(), landmarks: possible.landmarks.arraySync(), confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks;\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n prediction.box.startPoint.dispose();\n prediction.box.endPoint.dispose();\n prediction.landmarks.dispose();\n });\n }\n const results = tf.tidy(() => this.storedBoxes.map((box, i) => {\n // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]).div(255);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]).div(255);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n const prediction = {\n mesh: [],\n box,\n faceConfidence: null,\n boxConfidence: box.confidence,\n confidence: box.confidence,\n image: face,\n };\n return prediction;\n }\n\n const [, confidence, contourCoords] = this.meshDetector.execute(face) as Array; // The first returned tensor represents facial contours which are already included in the coordinates.\n const faceConfidence = confidence.dataSync()[0] as number;\n if (faceConfidence < config.face.detector.minConfidence) {\n this.storedBoxes[i].confidence = faceConfidence; // reset confidence of cached box\n return null; // if below confidence just exit\n }\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = coordsReshaped.arraySync();\n\n if (config.face.iris.enabled) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const eyePredictions = this.irisModel.predict(tf.concat([leftEyeCrop, rightEyeCrop])) as Tensor;\n const eyePredictionsData = eyePredictions.dataSync();\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n rawCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n }\n\n // override box from detection with one calculated from mesh\n const mesh = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n const storeConfidence = box.confidence;\n // @ts-ignore enlargeBox does not include confidence so we append it manually\n box = bounding.enlargeBox(bounding.calculateLandmarksBoundingBox(mesh), 1.5); // redefine box with mesh calculated one\n box.confidence = storeConfidence;\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && config.face.description.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input.toFloat(), angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n }\n\n const prediction = {\n mesh,\n box,\n faceConfidence,\n boxConfidence: box.confidence,\n image: face,\n };\n\n // updated stored cache values\n this.storedBoxes[i] = { ...bounding.squarifyBox(box), confidence: box.confidence, faceConfidence };\n\n return prediction;\n }));\n\n // results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = this.storedBoxes.filter((a) => a.confidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n}\n", "/**\n * FaceMesh & BlazeFace Module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Face } from '../result';\nimport { Config } from '../config';\n\nlet faceModels: [blazeface.BlazeFaceModel | null, GraphModel | null, GraphModel | null] = [null, null, null];\nlet facePipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await facePipeline.predict(input, config);\n const results: Array = [];\n let id = 0;\n for (const prediction of (predictions || [])) {\n if (!prediction || prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const meshRaw = prediction.mesh.map((pt) => [\n pt[0] / (input.shape[2] || 0),\n pt[1] / (input.shape[1] || 0),\n pt[2] / facePipeline.meshSize,\n ]);\n const annotations = {};\n if (prediction.mesh && prediction.mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => prediction.mesh[index]);\n }\n const clampedBox: [number, number, number, number] = prediction.box ? [\n Math.trunc(Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.max(0, prediction.box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1])),\n ] : [0, 0, 0, 0];\n const boxRaw: [number, number, number, number] = prediction.box ? [\n prediction.box.startPoint[0] / (input.shape[2] || 0),\n prediction.box.startPoint[1] / (input.shape[1] || 0),\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / (input.shape[2] || 0),\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / (input.shape[1] || 0),\n ] : [0, 0, 0, 0];\n results.push({\n id: id++,\n score: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxScore: Math.round(100 * prediction.boxConfidence) / 100,\n faceScore: Math.round(100 * prediction.faceConfidence) / 100,\n box: clampedBox,\n boxRaw,\n mesh: prediction.mesh,\n meshRaw,\n annotations,\n image: prediction.image,\n tensor: prediction.image,\n });\n if (prediction.coords) prediction.coords.dispose();\n }\n return results;\n}\n\nexport async function load(config): Promise<[unknown, GraphModel | null, GraphModel | null]> {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n // @ts-ignore type mismatch for GraphModel\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1]['modelUrl']) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1]['modelUrl']);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[2]['modelUrl']) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2]['modelUrl']);\n }\n } else if (config.debug) {\n if (faceModels[0]) log('cached model:', faceModels[0].model['modelUrl']);\n if (faceModels[1]) log('cached model:', faceModels[1]['modelUrl']);\n if (faceModels[2]) log('cached model:', faceModels[2]['modelUrl']);\n }\n facePipeline = new facepipeline.Pipeline(faceModels[0], faceModels[1], faceModels[2]);\n return faceModels;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * HSE-FaceRes Module\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst last: Array<{\n age: number,\n gender: string,\n genderScore: number,\n descriptor: number[],\n}> = [];\n\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config: Config): Promise {\n const modelUrl = join(config.modelBasePath, config.face.description.modelPath);\n if (!model) {\n // @ts-ignore type mismatch for GraphModel\n model = await tf.loadGraphModel(modelUrl);\n if (!model) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', modelUrl);\n } else if (config.debug) log('cached model:', modelUrl);\n return model;\n}\n\nexport function similarity(embedding1: Array, embedding2: Array, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((_val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n if (!model.inputs[0].shape) return null; // model has no shape so no point continuing\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n /*\n // just resize to fit the embedding model instead of cropping\n const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n */\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // increase image pseudo-contrast 100%\n // (or do it per-channel so mean is done on each channel)\n // (or calculate histogram and do it based on histogram)\n const mean = merge.mean();\n const factor = 2;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n // silly way of creating pseudo-hdr of image\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = crop.mul(255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.skipFrame && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderScore: 0,\n descriptor: [],\n };\n\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n tf.dispose(enhanced);\n\n if (resT) {\n tf.tidy(() => {\n const gender = resT.find((t) => t.shape[1] === 1).dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.description.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];\n const all = resT.find((t) => t.shape[1] === 100).dataSync();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n\n obj.descriptor = [...desc.dataSync()];\n });\n resT.forEach((t) => tf.dispose(t));\n }\n\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * Emotion Module\n */\n\nimport { log, join } from '../helpers';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\n// let last: Array<{ score: number, emotion: string }> = [];\nconst last: Array> = [];\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n resize.dispose();\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n red.dispose();\n green.dispose();\n blue.dispose();\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n redNorm.dispose();\n greenNorm.dispose();\n blueNorm.dispose();\n const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));\n grayscale.dispose();\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n const data = emotionT.dataSync();\n tf.dispose(emotionT);\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n normalize.dispose();\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as kpt from './keypoints';\nimport { Body } from '../result';\n\nexport function eitherPointDoesntMeetConfidence(a, b, minConfidence) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): Array {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i) => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)],\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight],\n })),\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: Array; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as utils from './utils';\nimport * as kpt from './keypoints';\n\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: kpt.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = kpt.poseChain.map(([parentJoinName, childJoinName]) => ([kpt.partIds[parentJoinName], kpt.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: kpt.partNames[root.part.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: Array<{ keypoints, box: [number, number, number, number], score: number }> = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "/**\n * PoseNet module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as poses from './poses';\nimport * as util from './utils';\nimport { Body } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = resized.toFloat().div(127.5).sub(1.0);\n const results: Array = model.execute(normalized, poseNetOutputs) as Array;\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor) => tensor.buffer()));\n for (const t of res) t.dispose();\n\n const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) as Body[];\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch for GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "export const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as anchors from './anchors';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n // @ts-ignore model is not undefined here\n this.inputSize = this.model?.inputs[0].shape[2];\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input) as Tensor;\n const predictions = tf.squeeze(batched);\n batched.dispose();\n const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());\n const scores = scoresT.dataSync();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n rawBoxes.dispose();\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);\n const filtered = filteredT.arraySync();\n\n scoresT.dispose();\n filteredT.dispose();\n const hands: Array<{ box: Tensor, palmLandmarks: Tensor, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));\n rawPalmLandmarks.dispose();\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n predictions.dispose();\n boxes.dispose();\n return hands;\n }\n\n async estimateHandBounds(input, config): Promise<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }[]> {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => input.resizeBilinear([this.inputSize, this.inputSize]).div(127.5).sub(1));\n const predictions = await this.getBoxes(image, config);\n image.dispose();\n const hands: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = prediction.box.dataSync();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = prediction.palmLandmarks.arraySync();\n prediction.box.dispose();\n prediction.palmLandmarks.dispose();\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport * as detector from './handdetector';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number } | null>;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n // @ts-ignore model is not undefined here\n this.inputSize = this.handPoseModel?.inputs[0].shape[2];\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n\n // console.log(this.skipped, config.hand.skipFrames, !config.hand.landmarks, !config.skipFrame);\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.skipFrame) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{ landmarks?: number[], confidence: number, box: { topLeft: number[], bottomRight: number[] } }> = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && tf.ENV.flags.IS_BROWSER ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = croppedInput.div(255);\n croppedInput.dispose();\n rotatedImage.dispose();\n const [confidenceT, keypoints] = await this.handPoseModel.predict(handImage) as Array;\n handImage.dispose();\n const confidence = confidenceT.dataSync()[0];\n confidenceT.dispose();\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = keypointsReshaped.arraySync();\n keypoints.dispose();\n keypointsReshaped.dispose();\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n keypoints.dispose();\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n}\n", "/**\n * HandPose module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport { Hand } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n indexFinger: [5, 6, 7, 8],\n middleFinger: [9, 10, 11, 12],\n ringFinger: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palmBase: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n // @ts-ignore landmarks are not undefined\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n\n const keypoints = predictions[i].landmarks as unknown as Array<[number, number, number]>;\n\n let box: [number, number, number, number] = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: [number, number, number, number] = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n hands.push({ id: i, score: Math.round(100 * predictions[i].confidence) / 100, box, boxRaw, keypoints, annotations });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!handDetectorModel || !handPoseModel) {\n // @ts-ignore type mismatch on GraphModel\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel['modelUrl']) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel['modelUrl']);\n if (!handPoseModel || !handPoseModel['modelUrl']) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel['modelUrl']);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel);\n handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "/**\n * BlazePose Module\n */\n\n// paper: https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as annotations from './annotations';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Body } from '../result';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch for Graphmodel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n model['width'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[2].size);\n model['height'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model) return [];\n if (!config.body.enabled) return [];\n const imgSize = { width: (image.shape[2] || 0), height: (image.shape[1] || 0) };\n const resize = tf.image.resizeBilinear(image, [model['width'], model['height']], false);\n const normalize = tf.div(resize, [255.0]);\n resize.dispose();\n const resT = await model.predict(normalize) as Array;\n const points = resT.find((t) => (t.size === 195 || t.size === 155))?.dataSync() || []; // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => t.dispose());\n normalize.dispose();\n const keypoints: Array<{ id, part, position: [number, number, number], positionRaw: [number, number, number], score, presence }> = [];\n const labels = points?.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: [\n Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n ],\n positionRaw: [\n points[depth * i + 0] / 255, // return x value normalized to 0..1\n points[depth * i + 1] / 255, // return y value normalized to 0..1\n points[depth * i + 2] + 0, // fix negative zero\n ],\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n const box: [number, number, number, number] = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...x),\n ];\n const boxRaw: [number, number, number, number] = [0, 0, 0, 0]; // not yet implemented\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ id: 0, score, box, boxRaw, keypoints }];\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\n\nconst keypoints: Array = [];\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['head', 'neck', 'rightShoulder', 'rightElbow', 'rightWrist', 'chest', 'leftShoulder', 'leftElbow', 'leftWrist', 'pelvis', 'rightHip', 'rightKnee', 'rightAnkle', 'leftHip', 'leftKnee', 'leftAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch on GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nfunction max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n return tf.tidy(() => {\n // modulus op implemented in tf\n const mod = (a, b) => tf.sub(a, tf.mul(tf.div(a, tf.scalar(b, 'int32')), tf.scalar(b, 'int32')));\n // combine all data\n const reshaped = tf.reshape(inputs, [height * width]);\n // get highest score\n const newScore = tf.max(reshaped, 0).dataSync()[0];\n if (newScore > minScore) {\n // skip coordinate calculation is score is too low\n const coords = tf.argMax(reshaped, 0);\n const x = mod(coords, width).dataSync()[0];\n const y = tf.div(coords, tf.scalar(width, 'int32')).dataSync()[0];\n return [x, y, newScore];\n }\n return [0, 0, newScore];\n });\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, 2);\n const norm = enhance.sub(1);\n return norm;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tensor.dispose();\n\n if (resT) {\n keypoints.length = 0;\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = max2d(stack[id], config.body.minConfidence);\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n resolve([{ id: 0, score, box, boxRaw, keypoints }]);\n });\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\n\nconst keypoints: Array = [];\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder', 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist', 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch on GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const cast = tf.cast(resize, 'int32');\n return cast;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tensor.dispose();\n\n if (resT) {\n keypoints.length = 0;\n const res = resT.arraySync();\n tf.dispose(resT);\n const kpt = res[0][0];\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n kpt[id][1],\n kpt[id][0],\n ],\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * kpt[id][1]),\n Math.round((image.shape[1] || 0) * kpt[id][0]),\n ],\n });\n }\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n resolve([{ id: 0, score, box, boxRaw, keypoints }]);\n });\n}\n", "/**\n * CoCo Labels used by object detection modules\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * NanoDet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(() => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = boxesMax.argMax(2).arraySync(); // what we need is indexes of features with highest scores, not values itself\n const scores = scoresT.arraySync(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: (box.map((a) => Math.trunc(a))) as [number, number, number, number],\n boxRaw: boxRaw as [number, number, number, number],\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: Array = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = nms.dataSync();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = resize.div(255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n norm.dispose();\n resize.dispose();\n\n let objectT;\n if (config.object.enabled) objectT = await model.predict(transpose);\n transpose.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/**\n * CenterNet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Item[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res: Tensor, inputSize, outputShape, config: Config) {\n if (!res) return [];\n const results: Array = [];\n const detections = res.arraySync();\n const squeezeT = tf.squeeze(res);\n res.dispose();\n const arr = tf.split(squeezeT, 6, 1); // x1, y1, x2, y2, score, class\n squeezeT.dispose();\n const stackT = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n const boxesT = stackT.squeeze();\n const scoresT = arr[4].squeeze();\n const classesT = arr[5].squeeze();\n arr.forEach((t) => t.dispose());\n const nmsT = await tf.image.nonMaxSuppressionAsync(boxesT, scoresT, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n boxesT.dispose();\n scoresT.dispose();\n classesT.dispose();\n const nms = nmsT.dataSync();\n nmsT.dispose();\n let i = 0;\n for (const id of nms) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ] as [number, number, number, number];\n const box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ] as [number, number, number, number];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2], input.shape[1]];\n const resize = tf.image.resizeBilinear(input, [model.inputSize, model.inputSize]);\n const objectT = config.object.enabled ? model.execute(resize, ['tower_0/detections']) : null;\n resize.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/*\nWebGLImageFilter by Dominic Szablewski: \n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "/**\n * Image Processing module used by Human\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport { Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input: Input, config: Config): { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser ? tf.browser.fromPixels(outCanvas) : null;\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser ? tf.browser.fromPixels(tempCanvas) : null;\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser ? tf.browser.fromPixels(data) : null;\n }\n if (pixels) {\n const casted = pixels.toFloat();\n tensor = casted.expandDims(0);\n pixels.dispose();\n casted.dispose();\n }\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch on GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.segmentation.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.segmentation.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement }): Promise {\n const width = input.tensor?.shape[1] || 0;\n const height = input.tensor?.shape[2] || 0;\n if (!input.tensor) return null;\n if (!model || !model.inputs[0].shape) return null;\n const resizeInput = tf.image.resizeBilinear(input.tensor, [model.inputs[0].shape[1], model.inputs[0].shape[2]], false);\n const norm = resizeInput.div(255);\n const res = model.predict(norm) as Tensor;\n // meet output: 1,256,256,1\n // selfie output: 1,144,256,2\n tf.dispose(resizeInput);\n tf.dispose(norm);\n\n const squeeze = tf.squeeze(res, 0);\n let resizeOutput;\n if (squeeze.shape[2] === 2) {\n // model meet has two channels for fg and bg\n const softmax = squeeze.softmax();\n const [bg, fg] = tf.unstack(softmax, 2);\n const expand = fg.expandDims(2);\n const pad = expand.expandDims(0);\n tf.dispose(softmax);\n tf.dispose(bg);\n tf.dispose(fg);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n const crop = tf.image.cropAndResize(pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n resizeOutput = crop.squeeze(0);\n tf.dispose(crop);\n tf.dispose(expand);\n tf.dispose(pad);\n } else { // model selfie has a single channel that we can use directly\n resizeOutput = tf.image.resizeBilinear(squeeze, [width, height]);\n }\n\n if (typeof document === 'undefined') return resizeOutput.dataSync(); // we're running in nodejs so return alpha array as-is\n\n const overlay = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas');\n overlay.width = width;\n overlay.height = height;\n if (tf.browser) await tf.browser.toPixels(resizeOutput, overlay);\n tf.dispose(resizeOutput);\n tf.dispose(squeeze);\n tf.dispose(res);\n\n // get alpha channel data\n const alphaCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n alphaCanvas.width = width;\n alphaCanvas.height = height;\n const ctxAlpha = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxAlpha.filter = 'blur(8px';\n await ctxAlpha.drawImage(overlay, 0, 0);\n const alpha = ctxAlpha.getImageData(0, 0, width, height).data;\n\n // get original canvas merged with overlay\n const original = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n original.width = width;\n original.height = height;\n const ctx = original.getContext('2d') as CanvasRenderingContext2D;\n if (input.canvas) await ctx.drawImage(input.canvas, 0, 0);\n // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n ctx.globalCompositeOperation = 'darken';\n ctx.filter = 'blur(8px)'; // use css filter for bluring, can be done with gaussian blur manually instead\n await ctx.drawImage(overlay, 0, 0);\n ctx.globalCompositeOperation = 'source-over'; // reset\n ctx.filter = 'none'; // reset\n\n input.canvas = original;\n\n return alpha;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config): Promise {\n if (busy) return null;\n busy = true;\n if (!model) await load(config);\n const img = image.process(input, config);\n const alpha = await predict(img);\n tf.dispose(img.tensor);\n\n if (background && alpha) {\n const tmp = image.process(background, config);\n const bg = tmp.canvas;\n tf.dispose(tmp.tensor);\n const fg = img.canvas;\n const fgData = fg.getContext('2d')?.getImageData(0, 0, fg.width, fg.height).data as Uint8ClampedArray;\n\n const c = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(fg.width, fg.height) : document.createElement('canvas');\n c.width = fg.width;\n c.height = fg.height;\n const ctx = c.getContext('2d') as CanvasRenderingContext2D;\n\n ctx.globalCompositeOperation = 'copy'; // reset\n ctx.drawImage(bg, 0, 0, c.width, c.height);\n const cData = ctx.getImageData(0, 0, c.width, c.height) as ImageData;\n for (let i = 0; i < c.width * c.height; i++) { // this should be done with globalCompositeOperation instead of looping through image data\n cData.data[4 * i + 0] = ((255 - alpha[4 * i + 0]) / 255.0 * cData.data[4 * i + 0]) + (alpha[4 * i + 0] / 255.0 * fgData[4 * i + 0]);\n cData.data[4 * i + 1] = ((255 - alpha[4 * i + 1]) / 255.0 * cData.data[4 * i + 1]) + (alpha[4 * i + 1] / 255.0 * fgData[4 * i + 1]);\n cData.data[4 * i + 2] = ((255 - alpha[4 * i + 2]) / 255.0 * cData.data[4 * i + 2]) + (alpha[4 * i + 2] / 255.0 * fgData[4 * i + 2]);\n cData.data[4 * i + 3] = ((255 - alpha[4 * i + 3]) / 255.0 * cData.data[4 * i + 3]) + (alpha[4 * i + 3] / 255.0 * fgData[4 * i + 3]);\n }\n ctx.putImageData(cData, 0, 0);\n img.canvas = c;\n }\n busy = false;\n return img.canvas;\n}\n", "import * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\n\n/** Load method preloads all instance.configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userinstance.config?: {@link instance.config}\n*/\nexport async function load(instance) {\n if (instance.config.async) { // load models concurrently\n [\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.face,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.emotion,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.handpose,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.posenet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.blazepose,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.efficientpose,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.movenet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.nanodet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.centernet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.faceres,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.segmentation,\n ] = await Promise.all([\n instance.models.face || (instance.config.face.enabled ? facemesh.load(instance.config) : null),\n instance.models.emotion || ((instance.config.face.enabled && instance.config.face.emotion.enabled) ? emotion.load(instance.config) : null),\n instance.models.handpose || (instance.config.hand.enabled ? handpose.load(instance.config) : null),\n instance.models.posenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('posenet') ? posenet.load(instance.config) : null),\n instance.models.blazepose || (instance.config.body.enabled && instance.config.body.modelPath.includes('blazepose') ? blazepose.load(instance.config) : null),\n instance.models.efficientpose || (instance.config.body.enabled && instance.config.body.modelPath.includes('efficientpose') ? efficientpose.load(instance.config) : null),\n instance.models.movenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('movenet') ? movenet.load(instance.config) : null),\n instance.models.nanodet || (instance.config.object.enabled && instance.config.object.modelPath.includes('nanodet') ? nanodet.load(instance.config) : null),\n instance.models.centernet || (instance.config.object.enabled && instance.config.object.modelPath.includes('centernet') ? centernet.load(instance.config) : null),\n instance.models.faceres || ((instance.config.face.enabled && instance.config.face.description.enabled) ? faceres.load(instance.config) : null),\n instance.models.segmentation || (instance.config.segmentation.enabled ? segmentation.load(instance.config) : null),\n ]);\n } else { // load models sequentially\n if (instance.config.face.enabled && !instance.models.face) instance.models.face = await facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion.enabled && !instance.models.emotion) instance.models.emotion = await emotion.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handpose) instance.models.handpose = await handpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath.includes('posenet')) instance.models.posenet = await posenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath.includes('blazepose')) instance.models.blazepose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath.includes('efficientpose')) instance.models.efficientpose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath.includes('movenet')) instance.models.movenet = await movenet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath.includes('nanodet')) instance.models.nanodet = await nanodet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath.includes('centernet')) instance.models.centernet = await centernet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description.enabled && !instance.models.faceres) instance.models.faceres = await faceres.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = await segmentation.load(instance.config);\n }\n}\n", "/**\n * Module that analyzes person age\n * Obsolete\n */\n\nimport { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as facemesh from './blazeface/facemesh';\nimport * as emotion from './emotion/emotion';\nimport * as faceres from './faceres/faceres';\nimport { Face } from './result';\nimport { Tensor } from './tfjs/types';\n\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nconst calculateGaze = (face): { bearing: number, strength: number } => {\n const radians = (pt1, pt2) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations['rightEyeIris'] || !face.annotations['leftEyeIris']) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = face.mesh[33][2] > face.mesh[263][2]; // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n\n const eyeDiff = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] ** 2) + (eyeDiff[1] ** 2)); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n\n return { bearing, strength };\n};\n\nconst calculateFaceAngle = (face, imageSize): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX; let thetaY; let thetaZ;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * imageSize[0] / size,\n pt[1] * imageSize[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n\nexport const detectFace = async (parent /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await facemesh.predict(input, parent.config);\n parent.performance.face = Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefined\n if (!faces[i].image || faces[i].image['isDisposedInternal']) {\n log('Face object is disposed:', faces[i].image);\n continue;\n }\n\n const rotation = calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]);\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : {};\n parent.performance.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : [];\n parent.performance.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && faces[i]?.annotations?.leftEyeIris && faces[i]?.annotations?.rightEyeIris) {\n delete faces[i].annotations.leftEyeIris;\n delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i].annotations?.leftEyeIris && faces[i].annotations?.rightEyeIris)\n /* note: average human iris size is 11.7mm */\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0;\n\n // combine results\n faceRes.push({\n ...faces[i],\n id: i,\n age: descRes.age,\n gender: descRes.gender,\n genderScore: descRes.genderScore,\n embedding: descRes.descriptor,\n emotion: emotionRes,\n iris: irisSize !== 0 ? Math.trunc(500 / irisSize / 11.7) / 100 : 0,\n rotation,\n tensor: parent.config.face.detector.return ? tf.squeeze(faces[i].image) : null,\n });\n // dispose original face tensor\n tf.dispose(faces[i].image);\n // delete temp face image\n if (faces[i].image) delete faces[i].image;\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.performance.face) delete parent.performance.face;\n if (parent.performance.age) delete parent.performance.age;\n if (parent.performance.gender) delete parent.performance.gender;\n if (parent.performance.emotion) delete parent.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection module\n */\n\nimport { Gesture } from '../result';\n\nexport const body = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward ${highest.name} up` });\n }\n }\n return gestures;\n};\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep, now } from '../helpers';\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from '../result';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: boolean,\n drawLabels: boolean,\n drawBoxes: boolean,\n drawPolygons: boolean,\n drawGaze: boolean,\n fillPolygons: boolean,\n useDepth: boolean,\n useCurves: boolean,\n bufferedOutput: boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 14px \"Segoe UI\"',\n lineHeight: 18,\n lineWidth: 4,\n pointSize: 2,\n roundRect: 8,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: true,\n drawPolygons: true,\n drawGaze: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: true,\n};\n\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n const z = pt[2] || 0;\n ctx.strokeStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], Math.round(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations['leftEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['leftEyeIris'][3][0] - f.annotations['leftEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['leftEyeIris'][4][1] - f.annotations['leftEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations['rightEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['rightEyeIris'][3][0] - f.annotations['rightEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['rightEyeIris'][4][1] - f.annotations['rightEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (localOptions.drawGaze && f.rotation?.gaze?.strength && f.rotation?.gaze?.bearing && f.annotations['leftEyeIris'] && f.annotations['rightEyeIris'] && f.annotations['leftEyeIris'][0] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = 'pink';\n ctx.beginPath();\n\n const leftGaze = [\n f.annotations['leftEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['leftEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1]);\n ctx.lineTo(leftGaze[0], leftGaze[1]);\n\n const rightGaze = [\n f.annotations['rightEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['rightEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1]);\n ctx.lineTo(rightGaze[0], rightGaze[1]);\n\n ctx.stroke();\n }\n }\n }\n }\n}\n\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box?.length === 4) {\n // @ts-ignore box may not exist\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n // @ts-ignore box may not exist\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n // @ts-ignore box may not exist\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position[2] ? `rgba(${127.5 + (2 * (result[i].keypoints[pt].position[2] || 0))}, ${127.5 - (2 * (result[i].keypoints[pt].position[2] || 0))}, 255, 0.5)` : localOptions.color;\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position[2] ? `rgba(${127.5 + (2 * pt.position[2])}, ${127.5 - (2 * pt.position[2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: [number, number, number?][] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n const addHandLabel = (part, title) => {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[part.length - 1][2])}, ${127.5 - (2 * part[part.length - 1][2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations['indexFinger'], 'index');\n addHandLabel(h.annotations['middleFinger'], 'middle');\n addHandLabel(h.annotations['ringFinger'], 'ring');\n addHandLabel(h.annotations['pinky'], 'pinky');\n addHandLabel(h.annotations['thumb'], 'thumb');\n addHandLabel(h.annotations['palmBase'], 'palm');\n }\n if (localOptions.drawPolygons) {\n const addHandLine = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations['indexFinger']);\n addHandLine(h.annotations['middleFinger']);\n addHandLine(h.annotations['ringFinger']);\n addHandLine(h.annotations['pinky']);\n addHandLine(h.annotations['thumb']);\n // addPart(h.annotations.palmBase);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function person(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result: Result, drawOptions?: DrawOptions) {\n const timestamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n\n face(inCanvas, result.face, localOptions);\n body(inCanvas, result.body, localOptions);\n hand(inCanvas, result.hand, localOptions);\n object(inCanvas, result.object, localOptions);\n // person(inCanvas, result.persons, localOptions);\n gesture(inCanvas, result.gesture, localOptions); // gestures do not have buffering\n\n /*\n if (!bufferedResult) bufferedResult = result; // first pass\n else if (localOptions.bufferedOutput) calcBuffered(result); // do results interpolation\n else bufferedResult = result; // or just use results as-is\n const promises: Promise[] = [];\n promises.push(face(inCanvas, bufferedResult.face, localOptions));\n promises.push(body(inCanvas, bufferedResult.body, localOptions));\n promises.push(hand(inCanvas, bufferedResult.hand, localOptions));\n promises.push(object(inCanvas, bufferedResult.object, localOptions));\n // promises.push(person(inCanvas, bufferedResult.persons, localOptions));\n promises.push(gesture(inCanvas, result.gesture, localOptions)); // gestures do not have buffering\n // await Promise.all(promises);\n */\n result.performance.draw = Math.trunc(now() - timestamp);\n}\n", "/**\n * Module that analyzes existing results and recombines them into a unified person object\n */\n\nimport { Face, Body, Hand, Gesture, Person } from './result';\n\nexport function join(faces: Array, bodies: Array, hands: Array, gestures: Array, shape: Array | undefined): Array {\n let id = 0;\n const persons: Array = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: Person = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures?.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures?.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.left?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.right?.id) person.gestures?.push(gesture);\n }\n\n // create new overarching box from all boxes beloning to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face?.box);\n extractXY(person.body?.box);\n extractXY(person.hands?.left?.box);\n extractXY(person.hands?.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape && shape.length === 4) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Module that interpolates results for smoother animations\n */\n\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from './result';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };\n\nexport function calc(newResult: Result): Result {\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed) : 1;\n\n bufferedResult.canvas = newResult.canvas;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body as Body[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + b) / bufferedFactor) as [number, number, number, number];\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + b) / bufferedFactor) as [number, number, number, number];\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((keypoint, j) => ({\n score: keypoint.score,\n part: keypoint.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[0] + keypoint.position[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[1] + keypoint.position[1]) / bufferedFactor : keypoint.position[1],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[0] + keypoint.positionRaw[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[1] + keypoint.positionRaw[1]) / bufferedFactor : keypoint.position[1],\n ],\n }))) as Array<{ score: number, part: string, position: [number, number, number?], positionRaw: [number, number, number?] }>;\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand as Hand[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const keypoints = newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * bufferedResult.hand[i].keypoints[j][k] + coord) / bufferedFactor)) as [number, number, number]);\n const keys = Object.keys(newResult.hand[i].annotations); // update annotations\n const annotations = {};\n for (const key of keys) {\n annotations[key] = newResult.hand[i].annotations[key]\n .map((val, j) => val.map((coord, k) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor));\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face as Face[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.roll || 0) + (newResult.face[i].rotation?.angle?.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.yaw || 0) + (newResult.face[i].rotation?.angle?.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.pitch || 0) + (newResult.face[i].rotation?.angle?.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.bearing || 0) + (newResult.face[i].rotation?.gaze?.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.strength || 0) + (newResult.face[i].rotation?.gaze?.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object as Item[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons as Person[]));\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as [number, number, number, number];\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture as Gesture[];\n if (newResult.performance) bufferedResult.performance = newResult.performance;\n\n return bufferedResult;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Human main module\n */\n\nimport { log, now, mergeDeep } from './helpers';\nimport { Config, defaults } from './config';\nimport { Result, Gesture } from './result';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as models from './models';\nimport * as face from './face';\nimport * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as persons from './persons';\nimport * as interpolate from './interpolate';\nimport * as sample from './sample';\nimport * as app from '../package.json';\nimport { Tensor, GraphModel } from './tfjs/types';\n\n// export types\nexport type { Config } from './config';\nexport type { Result, Face, Hand, Body, Item, Gesture, Person } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection\n * @typedef Input Type\n */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message\n * @typedef Error Type\n */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS\n * @external\n */\nexport type TensorFlow = typeof tf;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig: {@link Config}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n /** @internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** @internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - options: {@link DrawOptions} global settings for all draw operations, can be overriden for each draw method\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** @internal: Currently loaded models */\n models: {\n face: [unknown, GraphModel | null, GraphModel | null] | null,\n posenet: GraphModel | null,\n blazepose: GraphModel | null,\n efficientpose: GraphModel | null,\n movenet: GraphModel | null,\n handpose: [GraphModel | null, GraphModel | null] | null,\n age: GraphModel | null,\n gender: GraphModel | null,\n emotion: GraphModel | null,\n embedding: GraphModel | null,\n nanodet: GraphModel | null,\n centernet: GraphModel | null,\n faceres: GraphModel | null,\n segmentation: GraphModel | null,\n };\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n #lastInputSum: number;\n #lastCacheDiff: number;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * @param userConfig: {@link Config}\n */\n constructor(userConfig?: Config | Record) {\n this.config = mergeDeep(defaults, userConfig || {});\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.#lastCacheDiff = 0;\n this.performance = { backend: 0, load: 0, image: 0, frames: 0, cached: 0, changed: 0, total: 0, draw: 0 };\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n movenet: null,\n handpose: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n centernet: null,\n faceres: null,\n segmentation: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n this.#lastInputSum = 1;\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n *\n * @param embedding1: face descriptor as array of numbers\n * @param embedding2: face descriptor as array of numbers\n * @returns similarity: number\n */\n // eslint-disable-next-line class-methods-use-this\n similarity(embedding1: Array, embedding2: Array): number {\n return faceres.similarity(embedding1, embedding2);\n }\n\n /**\n * Segmentation method takes any input and returns processed canvas with body segmentation\n * Optional parameter background is used to fill the background with specific input\n * Segmentation is not triggered as part of detect process\n *\n * @param input: {@link Input}\n * @param background?: {@link Input}\n * @returns Canvas\n */\n segmentation(input: Input, background?: Input) {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input: Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n // @ts-ignore type mismach for Tensor\n return faceres.enhance(input);\n }\n\n /** Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userConfig?: {@link Config}\n */\n async load(userConfig?: Config | Record) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.#firstRun) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n\n if (this.#firstRun) { // print memory stats on first run\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.load as number || 0)) this.performance.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && this.config.debug) log('running inside web worker');\n\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_CPU_FORWARD', true);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n // if (!this.config.object.enabled) this.tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof this.config['deallocate'] !== 'undefined' && this.config['deallocate']) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.performance.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /**\n * Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result?: {@link Result} optional use specific result set to run interpolation on\n * @returns result: {@link Result}\n */\n next = (result?: Result) => interpolate.calc(result || this.result) as Result;\n\n // check if input changed sufficiently to trigger new detections\n /** @hidden */\n #skipFrame = async (input) => {\n if (this.config.cacheSensitivity === 0) return false;\n const resizeFact = 32;\n const reduced: Tensor = input.resizeBilinear([Math.trunc(input.shape[1] / resizeFact), Math.trunc(input.shape[2] / resizeFact)]);\n // use tensor sum\n /*\n const sumT = this.tf.sum(reduced);\n const sum = sumT.dataSync()[0] as number;\n sumT.dispose();\n */\n // use js loop sum, faster than uploading tensor to gpu calculating and downloading back\n const reducedData = reduced.dataSync(); // raw image rgb array\n let sum = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum += reducedData[3 * i + 2]; // look only at green value of each pixel\n\n reduced.dispose();\n const diff = 100 * (Math.max(sum, this.#lastInputSum) / Math.min(sum, this.#lastInputSum) - 1);\n this.#lastInputSum = sum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n const skipFrame = diff < Math.max(this.config.cacheSensitivity, this.#lastCacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n this.#lastCacheDiff = diff > 10 * this.config.cacheSensitivity ? 0 : diff;\n return skipFrame;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input: Input\n * @param userConfig?: {@link Config}\n * @returns result: {@link Result}\n */\n async detect(input: Input, userConfig?: Config | Record): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n let elapsedTime;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n /*\n // function disabled in favor of inputChanged\n // disable video optimization for inputs of type image, but skip if inside worker thread\n let previousVideoOptimized;\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (input && this.config.videoOptimized && (typeof window !== 'undefined') && (typeof WorkerGlobalScope !== 'undefined') && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n */\n\n timeStamp = now();\n let process = image.process(input, this.config);\n this.performance.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // run segmentation preprocessing\n if (this.config.segmentation.enabled && process && process.tensor) {\n this.analyze('Start Segmentation:');\n this.state = 'run:segmentation';\n timeStamp = now();\n await segmentation.predict(process);\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.segmentation = elapsedTime;\n if (process.canvas) {\n // replace input\n process.tensor.dispose();\n process = image.process(process.canvas, this.config);\n }\n this.analyze('End Segmentation:');\n }\n\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n\n timeStamp = now();\n this.config.skipFrame = await this.#skipFrame(process.tensor);\n if (!this.performance.frames) this.performance.frames = 0;\n if (!this.performance.cached) this.performance.cached = 0;\n (this.performance.frames as number)++;\n if (this.config.skipFrame) this.performance.cached++;\n this.performance.changed = Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes;\n let bodyRes;\n let handRes;\n let objectRes;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, process.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, process.tensor) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.face = elapsedTime;\n }\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(process.tensor, this.config) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.body = elapsedTime;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? handpose.predict(process.tensor, this.config) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await handpose.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.hand = elapsedTime;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(process.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.object = elapsedTime;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n let gestureRes: Gesture[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.performance.gesture = Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n this.result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.performance,\n canvas: process.canvas,\n timestamp: Date.now(),\n get persons() { return persons.join(faceRes, bodyRes, handRes, gestureRes, process?.tensor?.shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(process.tensor);\n\n // log('Result:', result);\n resolve(this.result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig?: Config\n */\n async warmup(userConfig?: Config | Record): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], - "mappings": ";;;;;;owBAKO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAW,CAChC,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,IC+KL,GAAM,IAAiB,CACrB,QAAS,QAET,cAAe,aACf,SAAU,sDACV,MAAO,GACP,MAAO,GACP,OAAQ,OAIR,iBAAkB,IAGlB,UAAW,GACX,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,iBACX,SAAU,GAGV,YAAa,GAEb,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,OAAQ,IAIV,KAAM,CACJ,QAAS,GACT,UAAW,iBAGb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,GAEZ,cAAe,IAGjB,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GAEZ,UAAW,iBAIf,KAAM,CACJ,QAAS,GACT,UAAW,yBAEX,YAAa,EAGb,cAAe,GACf,WAAY,GAId,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,YAAa,EAEb,UAAW,GACX,SAAU,CACR,UAAW,mBAEb,SAAU,CACR,UAAW,sBAIf,OAAQ,CACN,QAAS,GACT,UAAW,qBAEX,cAAe,GACf,aAAc,GACd,YAAa,GACb,WAAY,IAId,aAAc,CACZ,QAAS,GAKT,UAAW,gBCvWR,aAAqD,CAC1D,GAAI,GACA,EACJ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAW,EAAgB,EAAc,GAAG,QAAQ,SAAU,IAAM,GACpE,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,qDCsBrB,QACA,QACA,QAEA,QACA,QACA,QAjBA,yDACA,8DACA,8DACA,gEACA,mEACA,qEACA,uEACA,sEAIA,mDACA,qDACA,wDACA,mDACA,0DACA,4DACA,2DAKO,GAAM,IAAU,CACrB,KAAM,GACN,YAAa,GACb,YAAa,GACb,cAAe,GACf,iBAAkB,GAClB,mBAAoB,GACpB,qBAAsB,GACtB,oBAAqB,ICpDhB,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAmC,KACnC,MAAO,KACP,OAAQ,KACR,WAAuB,GACvB,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIpB,aAA4B,CAK1B,GAAM,GAAK,EAAO,GAClB,AAAI,CAAC,GACL,GAAO,WAAa,EAAG,0BASlB,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAEhC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SACrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,KACA,EAAI,sBAAuB,EAAO,OCvF/B,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IACzE,EAAW,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IAC7E,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAuC,EAAW,CACvD,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,aAQ1B,GAAM,IAAY,AAAC,GAAoB,EAC5C,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MCpE3C,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KAQvC,YAAyB,EAAW,CACzC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GCrGT,GAAM,IAAiB,EAEvB,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAgB,CACjC,KAAK,MAAQ,EACb,KAAK,YAAc,AAAK,GAAgB,EAAM,OAAO,GAAG,MAAM,IAC9D,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAoB,CAGzC,GAAK,CAAC,GAAgB,EAAW,oBAAwB,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC1J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAE3C,GAAM,GAAkB,AADH,AAAG,QAAM,eAAe,EAAY,CAAC,KAAK,UAAW,KAAK,YAC1C,IAAI,OAAO,IAAI,IAC9C,EAAM,KAAK,MAAM,QAAQ,GAC3B,EACJ,GAAI,MAAM,QAAQ,GAAM,CACtB,GAAM,GAAS,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACvC,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAEpD,EAAW,AADI,AAAG,SAAO,CAAC,EAAW,GAAY,GAC/B,QAAQ,OAE1B,GAAW,AAAG,UAAQ,GAExB,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,GAAQ,UAAU,WAC/C,MAAO,CAAC,EAAU,EAAU,KAExB,EAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,YAAa,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,eAC1K,EAAM,EAAU,YACtB,EAAU,UACV,GAAM,GAAoI,GAC1I,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAa,EAAO,EAAI,IAC9B,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAI,CAAC,EAAG,KAC/C,EAAW,AAAI,GAAU,GAC/B,EAAY,UACZ,GAAM,GAAS,KAAK,YAAY,EAAI,IAC9B,EAAY,AAAG,OAAK,IAAM,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAiB,GAAI,CAAC,EAAG,KAAK,UAAU,QAAQ,CAAC,GAAgB,MAC1H,EAAe,KAAK,CAAE,IAAK,EAAU,YAAW,SAAQ,gBAI5D,SAAM,UACN,EAAM,UAEC,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAgB,CACzC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EC7FF,GAAM,IAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,IChoBzC,GAAM,IAAc,AAAO,GAAiB,cACtC,GAAe,AAAO,GAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,GAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,GAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CApE5D,QAsEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,MAKrB,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,AAAS,GAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC9J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,MAAI,IAAQ,AAAG,MAAI,MAAM,YACvB,GAAO,AAAG,QAAM,cAAc,IAEzB,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAAgD,GACtD,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAK3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,UAI1B,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,YACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,GAC3D,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,CAAC,EAAO,WAAc,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,aAAgB,CACnM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAC9B,KAAK,YAAY,KAAK,CAAE,WAAY,EAAS,IAAI,WAAW,WAAY,SAAU,EAAS,IAAI,SAAS,WAAY,UAAW,EAAS,UAAU,YAAa,WAAY,EAAS,aAEtL,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAGjD,GAAI,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAChC,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,EAAW,IAAI,WAAW,UAC1B,EAAW,IAAI,SAAS,UACxB,EAAW,UAAU,YAGzB,GAAM,GAAU,AAAG,OAAK,IAAM,KAAK,YAAY,IAAI,CAAC,EAAK,IAAM,CAE7D,GAAI,GACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAAY,CACxF,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAChE,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC5K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,SACjJ,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QAC1B,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC3K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,KAIvJ,GAAI,CAAC,EAAO,KAAK,KAAK,QASpB,MARmB,CACjB,KAAM,GACN,MACA,eAAgB,KAChB,cAAe,EAAI,WACnB,WAAY,EAAI,WAChB,MAAO,GAKX,GAAM,CAAC,CAAE,EAAY,GAAiB,KAAK,aAAa,QAAQ,GAC1D,EAAiB,EAAW,WAAW,GAC7C,GAAI,EAAiB,EAAO,KAAK,SAAS,cACxC,YAAK,YAAY,GAAG,WAAa,EAC1B,KAGT,GAAI,GAAY,AADO,AAAG,UAAQ,EAAe,CAAC,GAAI,IACvB,YAE/B,GAAI,EAAO,KAAK,KAAK,QAAS,CAC5B,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAE3J,EAAqB,AADJ,KAAK,UAAU,QAAQ,AAAG,SAAO,CAAC,EAAa,KAC5B,WACpC,EAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,EAAkB,KAAM,GAAsB,KAAK,aAAa,EAAa,EAAY,EAAgB,IACtH,EAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,EAAmB,KAAM,IAAuB,KAAK,aAAa,EAAc,EAAa,GAC1G,GAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,IAAiC,GAC5C,IAAsB,EAAW,EAAkB,OAAQ,MAC3D,GAAsB,EAAW,EAAmB,QAAS,OAGxD,AAAI,GAAgC,EACzC,GAAsB,EAAW,EAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,EAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,IAAyB,KAAK,sBAAsB,EAAW,EAAmB,QAClF,GAA0B,KAAK,sBAAsB,EAAW,GAAoB,SAC1F,EAAY,EAAU,OAAO,IAAwB,OAAO,IAI9D,GAAM,GAAO,KAAK,mBAAmB,EAAW,EAAK,EAAO,GACtD,EAAkB,EAAI,WAM5B,GAJA,EAAM,AAAS,GAAW,AAAS,GAA8B,GAAO,KACxE,EAAI,WAAa,EAGb,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,EAAO,KAAK,YAAY,SAAW,AAAG,MAAI,MAAM,WAAY,CAC3H,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAM,UAAW,EAAO,EAAG,GAC1E,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAGrJ,GAAM,GAAa,CACjB,OACA,MACA,iBACA,cAAe,EAAI,WACnB,MAAO,GAIT,YAAK,YAAY,GAAK,IAAK,AAAS,GAAY,GAAM,WAAY,EAAI,WAAY,kBAE3E,KAKT,MAAI,GAAO,KAAK,KAAK,SAAS,MAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,EAAE,WAAa,EAAO,KAAK,SAAS,gBACpH,KAAK,cAAgB,EAAQ,OAEtB,IClSX,GAAI,GAAsF,CAAC,KAAM,KAAM,MACnG,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,QAAQ,EAAO,GAChD,EAAuB,GACzB,EAAK,EACT,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,CAAC,GAAc,EAAW,mBAAoB,SAClD,GAAM,GAAU,EAAW,KAAK,IAAI,AAAC,GAAO,CAC1C,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAK,GAAa,WAEjB,EAAc,GACpB,GAAI,EAAW,MAAQ,EAAW,KAAK,OAAS,EAC9C,OAAW,KAAO,QAAO,KAAY,IAAmB,EAAY,GAAO,AAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,KAAK,IAEzI,GAAM,GAA+C,EAAW,IAAM,CACpE,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC/G,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,MAC7G,CAAC,EAAG,EAAG,EAAG,GACR,EAA2C,EAAW,IAAM,CAChE,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GAClD,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GACjD,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,GAChF,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,IAC/E,CAAC,EAAG,EAAG,EAAG,GACd,EAAQ,KAAK,CACX,GAAI,IACJ,MAAO,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IAC5F,SAAU,KAAK,MAAM,IAAM,EAAW,eAAiB,IACvD,UAAW,KAAK,MAAM,IAAM,EAAW,gBAAkB,IACzD,IAAK,EACL,SACA,KAAM,EAAW,KACjB,UACA,cACA,MAAO,EAAW,MAClB,OAAQ,EAAW,QAEjB,EAAW,QAAQ,EAAW,OAAO,UAE3C,MAAO,GAGT,kBAA2B,EAAkE,CAC3F,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAEjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,KAC3L,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,OAE1L,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OACZ,GAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,MAAM,UACxD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,UAClD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,WAExD,GAAe,GAAiB,IAAS,EAAW,GAAI,EAAW,GAAI,EAAW,IAC3E,EAGF,GAAM,IAAuB,GACvB,GAAe,GC5E5B,GAAI,GACE,GAKD,GAED,GAAY,EACZ,GAAU,OAAO,iBAIrB,kBAA2B,EAAqC,CAC9D,GAAM,GAAW,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,WACpE,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,GAH5C,GAAQ,KAAM,AAAG,kBAAe,GAChC,AAAK,EACI,EAAO,OAAO,EAAI,cAAe,GAD9B,EAAI,qBAAsB,EAAO,KAAK,YAAY,YAGzD,EAGF,YAAoB,EAA2B,EAA2B,EAAQ,EAAW,CAGlG,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAM,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC7D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CAkDrC,MAjDc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAEhC,MAAK,GAAM,OAAO,GAAG,MAqCR,AApCC,GAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,MAkC5E,IAAI,KArCa,OA4CvC,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CAjHzE,QAkHE,MAAK,GACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,WAAc,KAAc,GAAU,OAAK,KAAL,cAAW,MAAQ,OAAK,KAAL,cAAW,KAAM,EACrI,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,YAAqB,EACrB,WAAsB,IAGxB,AAAI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,GAAM,QAAQ,IAChE,AAAG,UAAQ,GAEP,GACF,CAAG,OAAK,IAAM,CACZ,GAAM,GAAS,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,WAC5C,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,YAAY,eACvC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,YAAc,KAAK,IAAI,IAAM,IAEnC,GAAM,GAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OAAO,GAAG,WAAW,GAChE,EAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,WACjD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAEpH,GAAM,GAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAI7C,EAAI,WAAa,CAAC,GAAG,EAAK,cAE5B,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,KAGjC,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MA3CS,KCzGrB,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,GAEE,GAAyD,GAC3D,GAAY,EACZ,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAqC,CAC9D,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,IAAS,CAAC,GAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CACvE,MAAK,IACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,WAAc,KAAc,GAAU,GAAK,IAAS,GAAK,GAAK,OAAS,EAC9H,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,EAAO,UAEP,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,EAAI,UACJ,EAAM,UACN,EAAK,UACL,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,EAAQ,UACR,EAAU,UACV,EAAS,UACT,GAAM,GAAY,AAAG,OAAK,IAAM,EAAU,IAAI,IAAK,IAAI,IACvD,EAAU,UACV,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAM,GAAW,KAAM,IAAM,QAAQ,GAC/B,EAAO,EAAS,WACtB,AAAG,UAAQ,GACX,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,EAAU,UACV,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MApCS,KC7Bd,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eCdT,YAAwB,EAA6C,CAC1E,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAoC,CAC7G,GAAM,GAAS,EAAS,EAClB,EAAS,EAAQ,EACjB,EAAY,CAAC,EAAM,IAAO,EAC9B,GAAI,EACJ,MAAO,EAAK,MACZ,OAAQ,CAAC,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,EAAuB,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,GACpI,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAC,KAAK,MAAM,EAAS,EAAI,GAAS,KAAK,MAAM,EAAS,EAAI,IACpE,YAAa,CAAC,EAAS,EAAI,EAAuB,EAAS,EAAI,QAInE,MADoB,GAAM,IAAI,CAAC,EAAM,IAAM,EAAU,EAAM,IAKtD,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CAEZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GCvJpC,GAAM,IAAqB,EACrB,GAAe,GACf,GAAmB,IAAM,EAE/B,YAAkB,EAAQ,EAAgB,EAAU,EAAQ,EAAS,EAAe,EAAmB,EAAG,CACxG,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,KAElE,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAQ,KAG1D,CAAC,EAAQ,GAAS,EAAO,MAEzB,EAAwB,EAAyB,EAAe,SAAU,EAAQ,GAClF,EAAe,EAAgB,GAEjC,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAU,GACrG,EAAiB,AAAM,GACrB,CAAE,EAAG,EAAsB,EAAI,GAAc,EAAG,EAAsB,EAAI,IAC1E,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAGvC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAQ,EAAO,IAAI,EAAsB,EAAG,EAAsB,EAAG,GAC3E,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAI,GAAU,GAAW,SAG7D,YAAoB,EAAM,EAAQ,EAAS,EAAkB,EAAkB,CACpF,GAAM,GAAS,AAAI,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAI,GAAQ,GAAiB,AAAI,GAAQ,KAC3G,EAAW,EAAO,IAAI,CAAC,CAAC,CAAE,KAAkB,GAC5C,EAAW,EAAO,IAAI,CAAC,CAAC,KAAmB,GAC3C,EAAW,EAAO,MAAM,GACxB,EAAW,EAAS,OACpB,EAAY,GAAI,OAAM,GAEtB,EAAY,AAAM,GAAe,EAAK,KAAM,GAAc,GAChE,EAAU,EAAK,KAAK,IAAM,CACxB,MAAO,EAAK,MACZ,KAAM,AAAI,GAAU,EAAK,KAAK,IAC9B,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAIzF,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAGzF,MAAO,GAGT,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAe,EAAQ,CAC7D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,IAAS,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAI7I,MAAO,GAGT,YAAsB,EAAO,CAAE,IAAG,KAAK,EAAY,CACjD,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CA1GvC,MA2GI,GAAM,GAAwB,KAAU,KAAV,cAAuB,SACrD,MAAK,GACE,AAAM,GAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,GADrD,KAKvC,YAA0B,EAAe,EAAW,CAKlD,MAAO,AAJ6B,GAAU,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IAC5E,IAAa,EAAe,EAAU,IAAa,IAAU,GAC3D,GACN,GACkC,EAAU,OAG1C,YAAgB,EAAS,EAAQ,EAAkB,EAAkB,EAAa,EAAe,CACtG,GAAM,GAAoF,GACpF,EAAQ,GAAwB,EAAe,GAErD,KAAO,EAAM,OAAS,GAAe,CAAC,EAAM,SAAS,CAEnD,GAAM,GAAO,EAAM,UAGb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAc,GAEtE,GAAI,GAAa,EAAO,EAAiB,EAAK,KAAK,IAAK,SAExD,GAAI,GAAY,GAAW,EAAM,EAAQ,EAAS,EAAkB,GACpE,EAAY,EAAU,OAAO,AAAC,GAAM,EAAE,MAAQ,GAC9C,GAAM,GAAQ,GAAiB,EAAO,GAChC,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAe,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE3F,MAAO,GChIT,GAAI,GACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,0CAExL,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAM,AAAG,OAAK,IAAM,CACxB,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,GAEnC,GAAM,GAAa,AADH,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KACrE,UAAU,IAAI,OAAO,IAAI,GAE9C,EAAY,AADa,EAAM,QAAQ,EAAY,IAC/B,IAAI,AAAC,GAAM,AAAG,UAAQ,EAAG,CAAC,KACpD,SAAU,GAAK,EAAU,GAAG,UACrB,IAGH,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAW,EAAO,WAC7D,OAAW,KAAK,GAAK,EAAE,UAEvB,GAAM,GAAU,KAAM,AAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,YAAa,EAAO,KAAK,eACxH,MAAK,GAAM,OAAO,GAAG,MACN,AAAK,GAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KADxF,GAKrC,kBAA2B,EAAqC,CAC9D,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,ECxCF,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCtD7C,GAAM,IAAU,CACrB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,QC33FX,YAAmB,CAQxB,YAAY,EAAO,CAbrB,MAcI,KAAK,MAAQ,EACb,KAAK,QAAU,AAAQ,GAAQ,IAAI,AAAC,GAAW,CAAC,EAAO,EAAG,EAAO,IACjE,KAAK,cAAgB,AAAG,WAAS,KAAK,SAEtC,KAAK,UAAY,QAAK,QAAL,cAAY,OAAO,GAAG,MAAM,GAC7C,KAAK,gBAAkB,AAAG,WAAS,CAAC,KAAK,UAAW,KAAK,YACzD,KAAK,sBAAwB,AAAG,WAAS,CAAC,KAAK,UAAY,EAAG,KAAK,UAAY,IAGjF,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,QAAQ,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC1G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,AAAG,UAAQ,GAC/B,EAAQ,UACR,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,KAAK,WAC3E,EAAS,EAAQ,WACjB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,EAAS,UACT,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,YAAa,EAAO,KAAK,aAAc,EAAO,KAAK,eAChI,EAAW,EAAU,YAE3B,EAAQ,UACR,EAAU,UACV,GAAM,GAA2E,GACjF,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,KAAK,mBAAmB,EAAkB,GAAO,QAAQ,CAAC,GAAI,KAClG,EAAiB,UACjB,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,SAAY,UACZ,EAAM,UACC,OAGH,oBAAmB,EAAO,EAA8G,CAC5I,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,EAAM,eAAe,CAAC,KAAK,UAAW,KAAK,YAAY,IAAI,OAAO,IAAI,IAC5F,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,EAAM,UACN,GAAM,GAA0G,GAChH,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,EAAW,IAAI,WACvB,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,EAAW,cAAc,YAC/C,EAAW,IAAI,UACf,EAAW,cAAc,UACzB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCxFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KC5D9C,GAAM,IAAuB,EACvB,GAAuB,KACvB,GAAkB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACvC,GAAwB,EACxB,GAAgC,EAE/B,QAAmB,CAQxB,YAAY,EAAc,EAAe,CApB3C,MAqBI,KAAK,aAAe,EACpB,KAAK,cAAgB,EAErB,KAAK,UAAY,QAAK,gBAAL,cAAoB,OAAO,GAAG,MAAM,GACrD,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAIvB,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,YAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GACzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GACjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAgB,OAAQ,IAC1C,EAAc,cAAc,KAAK,EAAU,GAAgB,IAAI,MAAM,EAAG,IAE1E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,IAC1C,AAAK,GAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,WAIf,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EAGJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,YACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,aAAgB,CAAC,EAAO,KAAK,YAC5I,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAgH,GAGtH,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAwB,EAAW,cAAc,KAAkC,EAChK,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,UAAY,AAAG,MAAI,MAAM,WAAa,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC1I,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,EAAa,IAAI,KACnC,EAAa,UACb,EAAa,UACb,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,cAAc,QAAQ,GAClE,EAAU,UACV,GAAM,GAAa,EAAY,WAAW,GAE1C,GADA,EAAY,UACR,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,EAAkB,YACpC,EAAU,UACV,EAAkB,UAClB,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,IAAK,EAAiB,cAC5C,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,EAAU,cACL,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,IC5IX,GAAM,IAAkB,CACtB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,YAAa,CAAC,EAAG,EAAG,EAAG,GACvB,aAAc,CAAC,EAAG,GAAI,GAAI,IAC1B,WAAY,CAAC,GAAI,GAAI,GAAI,IACzB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,SAAU,CAAC,IAGT,GACA,GACA,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,cAAc,EAAO,GAC5D,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAqB,GAC3B,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,GAAM,GAAc,GACpB,GAAI,EAAY,GAAG,UACjB,OAAW,KAAO,QAAO,KAAK,IAE5B,EAAY,GAAO,GAAgB,GAAK,IAAI,AAAC,GAAU,EAAY,GAAG,UAAU,IAIpF,GAAM,GAAY,EAAY,GAAG,UAE7B,EAAwC,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GAC9F,EAA2C,CAAC,EAAG,EAAG,EAAG,GACzD,GAAI,GAAa,EAAU,OAAS,EAAG,CACrC,OAAW,KAAM,GACf,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GACd,EAAS,CAAC,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,QAEtI,GAAM,EAAY,GAAG,IAAM,CACzB,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KACvH,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,MACrH,CAAC,EAAG,EAAG,EAAG,GACd,EAAS,CACN,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,GACxF,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,IAG7F,EAAM,KAAK,CAAE,GAAI,EAAG,MAAO,KAAK,MAAM,IAAM,EAAY,GAAG,YAAc,IAAK,MAAK,SAAQ,YAAW,gBAExG,MAAO,GAGT,kBAA2B,EAAiE,CAC1F,AAAI,CAAC,IAAqB,CAAC,GAEzB,EAAC,GAAmB,IAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,KAC3K,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,OAE3K,EAAO,KAAK,SACd,CAAI,CAAC,IAAqB,CAAC,GAAkB,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAChG,EAAO,OAAO,EAAI,cAAe,GAAkB,UAC5D,AAAI,CAAC,IAAiB,CAAC,GAAc,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACxF,EAAO,OAAO,EAAI,cAAe,GAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,GAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,GAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,IACnD,UAAe,GAAiB,IAAa,EAAc,IACpD,CAAC,GAAmB,IC1FtB,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YC5DF,GAAI,GAEJ,kBAA2B,EAAqC,CAC9D,MAAK,GAOM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAW,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACpF,EAAM,OAAY,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACrF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAe,EAAiC,CA3B9E,MA4BE,GAAI,CAAC,EAAO,MAAO,GACnB,GAAI,CAAC,EAAO,KAAK,QAAS,MAAO,GACjC,GAAM,GAAU,CAAE,MAAQ,EAAM,MAAM,IAAM,EAAI,OAAS,EAAM,MAAM,IAAM,GACrE,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAU,EAAM,QAAY,IAC3E,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,EAAO,UACP,GAAM,GAAO,KAAM,GAAM,QAAQ,GAC3B,EAAS,MAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,OAA/C,cAAsD,aAAc,GACnF,EAAK,QAAQ,AAAC,GAAM,EAAE,WACtB,EAAU,UACV,GAAM,GAA6H,GAC7H,EAAS,kBAAQ,UAAW,IAAkB,GAAmB,GACjE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACnD,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACpD,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEtC,YAAa,CACX,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,GAE1B,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAGhF,GAAM,GAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAwC,CAC5C,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAEzB,EAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,EAAQ,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACxF,MAAO,CAAC,CAAE,GAAI,EAAG,QAAO,MAAK,SAAQ,cC3DvC,GAAI,GAIE,GAA8B,GAChC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,OAAQ,gBAAiB,aAAc,aAAc,QAAS,eAAgB,YAAa,YAAa,SAAU,WAAY,YAAa,aAAc,UAAW,WAAY,aAE3M,kBAA2B,EAAqC,CAC9D,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAIT,YAAe,EAAQ,EAAU,CAC/B,GAAM,CAAC,EAAO,GAAU,EAAO,MAC/B,MAAO,AAAG,QAAK,IAAM,CAEnB,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,MAAI,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,AAAG,SAAO,EAAG,UAAW,AAAG,SAAO,EAAG,WAEhF,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,IAExC,EAAW,AAAG,MAAI,EAAU,GAAG,WAAW,GAChD,GAAI,EAAW,EAAU,CAEvB,GAAM,GAAS,AAAG,SAAO,EAAU,GAC7B,EAAI,EAAI,EAAQ,GAAO,WAAW,GAClC,EAAI,AAAG,MAAI,EAAQ,AAAG,SAAO,EAAO,UAAU,WAAW,GAC/D,MAAO,CAAC,EAAG,EAAG,GAEhB,MAAO,CAAC,EAAG,EAAG,KAIlB,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,IAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,gBAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAGpG,MADa,AADG,AAAG,OAAI,EAAQ,GACV,IAAI,KAIvB,EAIJ,GAHI,EAAO,KAAK,SAAS,GAAO,KAAM,GAAM,QAAQ,IACpD,EAAO,UAEH,EAAM,CACR,GAAU,OAAS,EACnB,GAAM,GAAU,EAAK,UACrB,AAAG,UAAQ,GAEX,GAAM,GAAQ,EAAQ,QAAQ,GAC9B,AAAG,UAAQ,GAEX,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAa,GAAM,EAAM,GAAK,EAAO,KAAK,eACvD,AAAI,GAAQ,EAAO,KAAK,eACtB,GAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,GAAa,IACrC,KAAM,GAAU,GAChB,YAAa,CAEX,EAAI,EAAM,OAAO,GAAG,MAAM,GAAI,EAAI,EAAM,OAAO,GAAG,MAAM,IAE1D,SAAU,CAER,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,IAAK,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,OAKzH,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAElC,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,EAAQ,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,mBC3G1C,GAAI,IAIE,GAA8B,GAChC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,UAAW,WAAY,UAAW,WAAY,eAAgB,gBAAiB,YAAa,aAAc,YAAa,aAAc,UAAW,WAAY,WAAY,YAAa,YAAa,cAE7N,kBAA2B,EAAqC,CAC9D,MAAK,IAKM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,IAAS,CAAC,GAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,IAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,gBAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,IAAK,IAEpG,MADa,AAAG,QAAK,EAAQ,WAI3B,EAIJ,GAHI,EAAO,KAAK,SAAS,GAAO,KAAM,IAAM,QAAQ,IACpD,EAAO,UAEH,EAAM,CACR,GAAU,OAAS,EACnB,GAAM,GAAM,EAAK,YACjB,AAAG,UAAQ,GACX,GAAM,GAAM,EAAI,GAAG,GACnB,OAAS,GAAK,EAAG,EAAK,EAAI,OAAQ,IAChC,GAAQ,EAAI,GAAI,GACZ,GAAQ,EAAO,KAAK,eACtB,GAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,IAAS,IACjC,KAAM,GAAU,GAChB,YAAa,CACX,EAAI,GAAI,GACR,EAAI,GAAI,IAEV,SAAU,CACR,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,IAC3C,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,OAMrD,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,EAAQ,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,mBCvFnC,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eCxEtB,GAAI,GACA,GAAoB,GACpB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAAuB,GAC3B,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,IAAM,CAlClB,QAmCM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,AADE,EAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IACxC,OAAO,GAAG,YAC5B,EAAS,EAAQ,YACvB,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,GAAM,EAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,GACvB,EAAS,EAAO,IAAI,AAAC,GAAM,KAAK,IAAI,EAAG,KAAK,IAAI,EAAG,KACnD,GAAM,GAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,EAAS,CACb,GAAI,IAEJ,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MAGjB,IAAM,EAAI,IAAI,AAAC,GAAM,KAAK,MAAM,IAChC,OAAQ,GAEV,EAAQ,KAAK,OAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,CAAC,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,KAC/E,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAwB,GAC5B,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eAC5I,EAAS,EAAI,WACb,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAM,IAAQ,EAAO,SAAS,IACtC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,EAAO,IAAI,KAClB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,EAAK,UACL,EAAO,UAEP,GAAI,GACJ,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,IACzD,EAAU,UAEV,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MCjHZ,GAAI,GACA,GAAe,GACf,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAa,EAAW,EAAa,EAAgB,CAC1E,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAuB,GACvB,EAAa,EAAI,YACjB,EAAW,AAAG,UAAQ,GAC5B,EAAI,UACJ,GAAM,GAAM,AAAG,QAAM,EAAU,EAAG,GAClC,EAAS,UAET,GAAM,GAAS,AADA,AAAG,QAAM,CAAC,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,IAAK,GACpC,UAChB,EAAU,EAAI,GAAG,UACjB,EAAW,EAAI,GAAG,UACxB,EAAI,QAAQ,AAAC,GAAM,EAAE,WACrB,GAAM,GAAO,KAAM,AAAG,SAAM,uBAAuB,EAAQ,EAAS,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eACzI,EAAO,UACP,EAAQ,UACR,EAAS,UACT,GAAM,GAAM,EAAK,WACjB,EAAK,UACL,GAAI,GAAI,EACR,OAAW,KAAM,GAAK,CACpB,GAAM,GAAQ,KAAK,MAAM,IAAM,EAAW,GAAG,GAAI,IAAM,IACjD,EAAW,EAAW,GAAG,GAAI,GAC7B,EAAQ,GAAO,GAAU,MACzB,CAAC,EAAG,GAAK,CACb,EAAW,GAAG,GAAI,GAAK,EACvB,EAAW,GAAG,GAAI,GAAK,GAEnB,EAAS,CACb,EACA,EACA,EAAW,GAAG,GAAI,GAAK,EAAY,EACnC,EAAW,GAAG,GAAI,GAAK,EAAY,GAE/B,EAAM,CACV,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,KAErC,EAAQ,KAAK,CAAE,GAAI,IAAK,QAAO,MAAO,EAAU,QAAO,MAAK,WAE9D,MAAO,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,YAChE,EAAU,EAAO,OAAO,QAAU,EAAM,QAAQ,EAAQ,CAAC,uBAAyB,KACxF,EAAO,UAEP,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MClFZ,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CAzHxC,QA0HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GCvgBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAc,EAAwF,CAC5H,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EACpI,GAAI,CAAC,GAAiB,CAAC,EAAgB,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACtE,GAAI,GAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OAuBT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAa,aAChD,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAc,SACrD,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAQ,KAEtD,GAAI,EAAQ,CACV,GAAM,GAAS,EAAO,UACtB,EAAS,EAAO,WAAW,GAC3B,EAAO,UACP,EAAO,WAGX,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UC9JnB,GAAI,GACA,GAAO,GAEX,kBAA2B,EAAqC,CAC9D,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,aAAa,YAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,aAAa,WACvE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAkH,CAzBhJ,QA0BE,GAAM,GAAQ,MAAM,SAAN,cAAc,MAAM,KAAM,EAClC,EAAS,MAAM,SAAN,cAAc,MAAM,KAAM,EAEzC,GADI,CAAC,EAAM,QACP,CAAC,GAAS,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,MAC7C,GAAM,GAAc,AAAG,QAAM,eAAe,EAAM,OAAQ,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC1G,EAAO,EAAY,IAAI,KACvB,EAAM,EAAM,QAAQ,GAG1B,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAU,AAAG,UAAQ,EAAK,GAC5B,EACJ,GAAI,EAAQ,MAAM,KAAO,EAAG,CAE1B,GAAM,GAAU,EAAQ,UAClB,CAAC,EAAI,GAAM,AAAG,UAAQ,EAAS,GAC/B,EAAS,EAAG,WAAW,GACvB,EAAM,EAAO,WAAW,GAC9B,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAO,AAAG,QAAM,cAAc,EAAK,CAAC,CAAC,EAAG,EAAG,GAAK,KAAO,CAAC,GAAI,CAAC,EAAO,IAG1E,EAAe,EAAK,QAAQ,GAC5B,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,OAEX,GAAe,AAAG,QAAM,eAAe,EAAS,CAAC,EAAO,IAG1D,GAAI,MAAO,WAAa,YAAa,MAAO,GAAa,WAEzD,GAAM,GAAW,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACvH,EAAQ,MAAQ,EAChB,EAAQ,OAAS,EACV,WAAS,KAAM,AAAG,WAAQ,SAAS,EAAc,GACxD,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAGX,GAAM,GAAe,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UAC3H,EAAY,MAAQ,EACpB,EAAY,OAAS,EACrB,GAAM,GAAW,EAAY,WAAW,MACxC,EAAS,OAAS,WAClB,KAAM,GAAS,UAAU,EAAS,EAAG,GACrC,GAAM,GAAQ,EAAS,aAAa,EAAG,EAAG,EAAO,GAAQ,KAGnD,EAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACxH,EAAS,MAAQ,EACjB,EAAS,OAAS,EAClB,GAAM,GAAM,EAAS,WAAW,MAChC,MAAI,GAAM,QAAQ,KAAM,GAAI,UAAU,EAAM,OAAQ,EAAG,GAEvD,EAAI,yBAA2B,SAC/B,EAAI,OAAS,YACb,KAAM,GAAI,UAAU,EAAS,EAAG,GAChC,EAAI,yBAA2B,cAC/B,EAAI,OAAS,OAEb,EAAM,OAAS,EAER,EAGT,kBAA8B,EAAc,EAA+B,EAAqE,CAlGhJ,MAmGE,GAAI,GAAM,MAAO,MACjB,GAAO,GACF,GAAO,KAAM,IAAK,GACvB,GAAM,GAAM,AAAM,GAAQ,EAAO,GAC3B,EAAQ,KAAM,IAAQ,GAG5B,GAFA,AAAG,UAAQ,EAAI,QAEX,GAAc,EAAO,CACvB,GAAM,GAAM,AAAM,GAAQ,EAAY,GAChC,EAAK,EAAI,OACf,AAAG,UAAQ,EAAI,QACf,GAAM,GAAK,EAAI,OACT,EAAS,KAAG,WAAW,QAAd,cAAqB,aAAa,EAAG,EAAG,EAAG,MAAO,EAAG,QAAQ,KAEtE,EAAK,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAG,MAAO,EAAG,QAAU,SAAS,cAAc,UACvH,EAAE,MAAQ,EAAG,MACb,EAAE,OAAS,EAAG,OACd,GAAM,GAAM,EAAE,WAAW,MAEzB,EAAI,yBAA2B,OAC/B,EAAI,UAAU,EAAI,EAAG,EAAG,EAAE,MAAO,EAAE,QACnC,GAAM,GAAQ,EAAI,aAAa,EAAG,EAAG,EAAE,MAAO,EAAE,QAChD,OAAS,GAAI,EAAG,EAAI,EAAE,MAAQ,EAAE,OAAQ,IACtC,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAElI,EAAI,aAAa,EAAO,EAAG,GAC3B,EAAI,OAAS,EAEf,UAAO,GACA,EAAI,OCnHb,kBAA2B,EAAU,CACnC,AAAI,EAAS,OAAO,MAClB,CAEE,EAAS,OAAO,KAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,SAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,UAEhB,EAAS,OAAO,cAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,UAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,cACd,KAAM,SAAQ,IAAI,CACpB,EAAS,OAAO,MAAS,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MACzF,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,EAAS,QAAU,MACrI,EAAS,OAAO,UAAa,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MAC7F,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,WAAc,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MACvJ,EAAS,OAAO,eAAkB,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,iBAAmB,AAAc,GAAK,EAAS,QAAU,MACnK,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,SAAY,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACrJ,EAAS,OAAO,WAAc,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MAC3J,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,EAAS,QAAU,MACzI,EAAS,OAAO,cAAiB,GAAS,OAAO,aAAa,QAAU,AAAa,GAAK,EAAS,QAAU,QAG3G,GAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,MAAM,GAAS,OAAO,KAAO,KAAM,AAAS,IAAK,EAAS,SAC3G,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACxJ,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,UAAU,GAAS,OAAO,SAAW,KAAM,AAAS,IAAK,EAAS,SACnH,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,KAAK,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAC9K,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,eAAiB,EAAS,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAS,OAAO,cAAgB,KAAM,AAAU,IAAK,EAAS,SAC1L,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC1K,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,OAAO,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAClL,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC5J,EAAS,OAAO,aAAa,SAAW,CAAC,EAAS,OAAO,cAAc,GAAS,OAAO,aAAe,KAAM,AAAa,IAAK,EAAS,UCjD/I,GAAM,IAAgB,AAAC,GAAgD,CACrE,GAAM,GAAU,CAAC,EAAK,IAAQ,KAAK,MAAM,EAAI,GAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IACvE,GAAI,CAAC,EAAK,YAAY,cAAmB,CAAC,EAAK,YAAY,YAAgB,MAAO,CAAE,QAAS,EAAG,SAAU,GAE1G,GAAM,GAAa,CAAC,EAAG,KACjB,EAAW,EAEX,EAAO,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,KAAK,GACzC,EAAa,EAAO,EAAK,KAAK,KAAO,EAAK,KAAK,KAC/C,EAAY,EACd,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,GACtF,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,GACtF,EAAU,EACZ,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,GAAI,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,IAAI,IACxE,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,GAAI,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAEzE,EAAU,CACb,GAAU,GAAK,EAAW,IAAM,EAAQ,GAAK,EAAW,GACzD,EAAY,GAAW,GAAK,EAAU,IAAM,EAAQ,GAAK,EAAW,IAElE,EAAW,KAAK,KAAM,EAAQ,IAAM,EAAM,EAAQ,IAAM,GAC5D,SAAW,KAAK,IAAI,EAAU,EAAK,OAAO,GAAK,EAAG,EAAK,OAAO,GAAK,GAG5D,CAAE,QAFQ,GAAQ,CAAC,EAAG,GAAI,GAAY,KAAK,GAAK,GAAM,KAAK,GAEhD,aAGd,GAAqB,CAAC,EAAM,IAI7B,CAEH,GAAM,GAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EAAY,EAAY,EAC5B,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,EAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,EAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,EAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEJ,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,EAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAW7D,MATc,CAGZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAM9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,KAAM,CAAE,QAAS,EAAG,SAAU,IAElJ,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAU,GAAI,EAAK,OAAO,GAAK,EAAU,IAAM,IAEhF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAEzB,EAAQ,EAA2B,GAInC,EAAO,EAAK,SAAW,IAAM,GAAc,GAAQ,CAAE,QAAS,EAAG,SAAU,GAEjF,MAAO,CAAE,QAAO,SAAQ,SAGb,GAAa,MAAO,EAAgC,IAAmC,CA9IpG,gBAiJE,GAAI,GACA,EACA,EACA,EACA,EACA,EACE,EAAuB,GAC7B,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,AAAS,IAAQ,EAAO,EAAO,QAEnD,GADA,EAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,GACzC,CAAC,EAAM,OAAS,EAAM,MAAM,SAAW,EAAG,MAAO,GACrD,GAAI,CAAC,EAAO,MAAO,GAEnB,OAAS,GAAI,EAAG,EAAI,EAAM,OAAQ,IAAK,CAKrC,GAJA,EAAO,QAAQ,YAIX,CAAC,EAAM,GAAG,OAAS,EAAM,GAAG,MAAM,mBAAuB,CAC3D,EAAI,2BAA4B,EAAM,GAAG,OACzC,SAGF,GAAM,GAAW,GAAmB,EAAM,GAAI,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAG3E,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAErI,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC3I,EAAO,YAAY,QAAU,KAAK,MAAM,IAAQ,IAElD,EAAO,QAAQ,gBAGf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAEtI,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC5I,EAAO,YAAY,UAAY,KAAK,MAAM,IAAQ,IAEpD,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,KAG3H,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,SAAM,KAAN,cAAU,cAAV,cAAuB,cAAe,SAAM,KAAN,cAAU,cAAV,cAAuB,eACnG,OAAO,GAAM,GAAG,YAAY,YAC5B,MAAO,GAAM,GAAG,YAAY,cAE9B,GAAM,GAAY,MAAM,GAAG,cAAT,cAAsB,cAAe,MAAM,GAAG,cAAT,cAAsB,cAEzE,KAAK,IAAI,KAAK,IAAI,EAAM,GAAG,YAAY,YAAY,GAAG,GAAK,EAAM,GAAG,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAM,GAAG,YAAY,aAAa,GAAG,GAAK,EAAM,GAAG,YAAY,aAAa,GAAG,KAAO,EAAM,MAAM,GAC/M,EAGJ,EAAQ,KAAK,IACR,EAAM,GACT,GAAI,EACJ,IAAK,EAAQ,IACb,OAAQ,EAAQ,OAChB,YAAa,EAAQ,YACrB,UAAW,EAAQ,WACnB,QAAS,EACT,KAAM,IAAa,EAAI,KAAK,MAAM,IAAM,EAAW,MAAQ,IAAM,EACjE,WACA,OAAQ,EAAO,OAAO,KAAK,SAAS,OAAS,AAAG,UAAQ,EAAM,GAAG,OAAS,OAG5E,AAAG,UAAQ,EAAM,GAAG,OAEhB,EAAM,GAAG,OAAO,MAAO,GAAM,GAAG,MAEpC,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,YAAY,MAAM,MAAO,GAAO,YAAY,KACnD,EAAO,YAAY,KAAK,MAAO,GAAO,YAAY,IAClD,EAAO,YAAY,QAAQ,MAAO,GAAO,YAAY,OACrD,EAAO,YAAY,SAAS,MAAO,GAAO,YAAY,SAErD,GC1OF,GAAM,IAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACrG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,MAAM,GAAS,IAC5D,EAAkB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC1D,EAAmB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAE/D,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACtG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,KAAQ,EAAkB,MAAS,EAAmB,OAAO,GAAS,IACnH,GAAkB,KAAQ,EAAmB,MAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACrF,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACjF,EAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,gBAAgB,EAAQ,aAGzE,MAAO,ICnGT,0IAgDO,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,EACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,SAAmB,GACnB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,IAGrB,GAAU,AAAC,GAAU,KAAK,MAAO,EAAQ,IAAO,KAAK,IAE3D,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAsC,GAAI,EAAc,CAC1E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GAAQ,CACvB,GAAM,GAAI,EAAG,IAAM,EACnB,EAAI,YAAc,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACvH,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,OAAO,EAAG,GAAI,KAAK,MAAM,EAAG,KAElC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAsC,GAAI,EAAc,CAC3E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAwB,EAA2B,CAC5G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAmB,GACnB,EAAkB,GAEtB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAQ,EAAK,GAAc,OAAS,EAAI,CACzD,GAAM,GAAM,EAAM,GAAe,EAAI,IAAI,EAAM,KAAO,GAChD,EAAQ,GAAG,EAAM,MAAM,MAAQ,EAAK,KAC1C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAqB,EAA2B,CAnKxG,YAoKE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WAAW,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAE9E,GAAM,GAAkB,GAKxB,GAJA,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,WACpC,EAAE,aAAa,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,iBACnE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,aAAa,EAAE,QACnC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,AAAI,EAAQ,OAAS,GAAG,GAAQ,OAAS,GACzC,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAC3C,GAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,MAAM,iBAAc,GAAQ,EAAE,SAAS,MAAM,kBAAe,GAAQ,EAAE,SAAS,MAAM,cACpJ,EAAE,SAAS,KAAK,SAAS,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,KAAK,iBAExE,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAgB,CACjD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAC5F,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAClG,EAAI,QAAQ,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACjH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAiB,CAClD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EAC9F,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EACpG,EAAI,QAAQ,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACnH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAa,UAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,WAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,UAAW,EAAE,YAAY,aAAkB,EAAE,YAAY,cAAmB,EAAE,YAAY,YAAe,IAAM,EAAE,YAAY,aAAgB,GAAI,CAC5N,EAAI,YAAc,OAClB,EAAI,YAEJ,GAAM,GAAW,CACf,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC3G,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE7G,EAAI,OAAO,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,IAC/E,EAAI,OAAO,EAAS,GAAI,EAAS,IAEjC,GAAM,GAAY,CAChB,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC5G,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE9G,EAAI,OAAO,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,IACjF,EAAI,OAAO,EAAU,GAAI,EAAU,IAEnC,EAAI,aAOd,kBAA2B,EAA6B,EAAqB,EAA2B,CA3QxG,MA4QE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAmBtC,GAlBA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WAAa,EAAO,GAAG,KAAO,MAAO,GAAG,MAAV,cAAe,UAAW,GAEvE,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAE7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAE7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,QAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,OAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,gBAAmB,EAAa,MACzO,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAG,GAG5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,GAAK,QAAQ,MAAS,EAAI,EAAG,SAAS,OAAQ,MAAS,EAAI,EAAG,SAAS,gBAAmB,EAAa,MAC5J,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,GAAK,EAAG,EAAG,SAAS,GAAK,GAIrG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAsC,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACnD,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAqB,EAA2B,CACtG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CAetB,GAdI,EAAa,WACf,GAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAEF,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,WAAY,CAC3B,GAAM,GAAe,CAAC,EAAM,IAAU,CACpC,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,OAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,gBAAmB,EAAa,MAC9J,EAAI,SAAS,EAAO,EAAK,EAAK,OAAS,GAAG,GAAK,EAAG,EAAK,EAAK,OAAS,GAAG,GAAK,IAE/E,EAAI,KAAO,EAAa,KACxB,EAAa,EAAE,YAAY,YAAgB,SAC3C,EAAa,EAAE,YAAY,aAAiB,UAC5C,EAAa,EAAE,YAAY,WAAe,QAC1C,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,SAAa,QAE1C,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAc,AAAC,GAAS,CAC5B,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAI,UAAY,EAAa,UAC7B,EAAY,EAAE,YAAY,aAC1B,EAAY,EAAE,YAAY,cAC1B,EAAY,EAAE,YAAY,YAC1B,EAAY,EAAE,YAAY,OAC1B,EAAY,EAAE,YAAY,UAMhC,kBAA6B,EAA6B,EAAqB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,EAAE,SAAS,KAAK,MAAM,IAAM,EAAE,UAC/C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAAuB,EAA2B,CAC1G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KAExB,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IACjC,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,WAAY,CAC3B,GAAM,GAAQ,WAAW,IACzB,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAE1G,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,IAE1G,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAgB,EAA2B,CAChG,GAAM,GAAY,IACZ,EAAe,EAAU,GAAS,GACxC,AAAI,CAAC,GAAU,CAAC,GACV,YAAoB,oBAE1B,IAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAO,EAAU,EAAO,OAAQ,GAEhC,GAAQ,EAAU,EAAO,QAAS,GAelC,EAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,IClhBxC,YAAc,EAAoB,EAAqB,EAAoB,EAA0B,EAAiD,CAN7J,oCAOE,GAAI,GAAK,EACH,EAAyB,GAC/B,OAAW,KAAQ,GAAO,CACxB,GAAM,GAAiB,CAAE,GAAI,IAAM,OAAM,KAAM,KAAM,MAAO,CAAE,KAAM,KAAM,MAAO,MAAQ,SAAU,GAAI,IAAK,CAAC,EAAG,EAAG,EAAG,IACtH,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,IACtB,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACtD,GAAO,KAAO,GAGlB,GAAI,EAAO,KACT,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC3C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IACjE,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,KAAO,GAEpC,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAClD,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC9B,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,MAAQ,GAI7C,OAAW,KAAW,GACpB,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACnF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACxF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,MAAO,OAAP,cAAa,IAAI,KAAO,WAAP,QAAiB,KAAK,GAChG,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,OAAd,cAAoB,IAAI,KAAO,WAAP,QAAiB,KAAK,GACnG,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,QAAd,cAAqB,KAAI,MAAO,WAAP,QAAiB,KAAK,IAI/G,GAAM,GAAc,GACd,EAAc,GACd,EAAY,AAAC,GAAQ,CACzB,AAAI,GAAO,EAAI,SAAW,GACxB,GAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IAC5B,EAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,MAGhC,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,QAAO,QAAP,cAAc,OAAd,cAAoB,KAC9B,EAAU,QAAO,QAAP,cAAc,QAAd,cAAqB,KAC/B,GAAM,GAAO,KAAK,IAAI,GAAG,GACnB,EAAO,KAAK,IAAI,GAAG,GACzB,EAAO,IAAM,CAAC,EAAM,EAAM,KAAK,IAAI,GAAG,GAAK,EAAM,KAAK,IAAI,GAAG,GAAK,GAG9D,GAAS,EAAM,SAAW,GAAG,GAAO,OAAS,CAAC,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,KAEtJ,EAAQ,KAAK,GAEf,MAAO,GC3DT,GAAM,GAAyB,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,QAAS,GAAI,YAAa,GAAI,UAAW,GAE1H,YAAc,EAA2B,CARhD,8CAaE,GAAM,GAAU,KAAK,MAAQ,EAAU,UAQjC,EAAiB,EAAU,IAAO,EAAI,KAAK,IAAI,GAAW,EAKhE,GAHA,EAAe,OAAS,EAAU,OAG9B,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAM,EAAU,KAAK,GAAG,IAC3B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAS,EAAU,KAAK,GAAG,OAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAa,EAAU,KAAK,GAAG,UAClC,IAAI,CAAC,EAAU,IAAO,EACrB,MAAO,EAAS,MAChB,KAAM,EAAS,KACf,SAAU,CACR,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,GAC3K,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,IAE7K,YAAa,CACX,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,GACjL,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,OAGvL,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,aAKlE,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAY,EAAU,KAAK,GAAG,UACjC,IAAI,CAAC,EAAU,IAAM,EACnB,IAAI,CAAC,GAAO,KAAS,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,IAAK,IAAS,IAC5F,EAAO,OAAO,KAAK,EAAU,KAAK,GAAG,aACrC,EAAc,GACpB,OAAW,KAAO,GAChB,EAAY,GAAO,EAAU,KAAK,GAAG,YAAY,GAC9C,IAAI,CAAC,EAAK,KAAM,EAAI,IAAI,CAAC,GAAO,KAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,YAAY,GAAK,IAAG,IAAK,IAAS,IAE5H,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,YAAW,eAK7E,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAIF,CAAE,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,MAAO,CAAE,KAAM,EAAG,IAAK,EAAG,MAAO,GAAK,KAAM,CAAE,QAAS,EAAG,SAAU,IAC/G,EAAS,OAAS,KAAU,KAAK,GAAG,WAAlB,cAA4B,OAC9C,EAAS,MAAQ,CACf,KAAQ,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,OAAQ,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,OAAQ,IAAM,EACtI,IAAO,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,MAAO,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,MAAO,IAAM,EACnI,MAAS,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,QAAS,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,QAAS,IAAM,GAE3I,EAAS,KAAO,CAEd,QAAW,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,UAAW,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,UAAW,IAAM,EAC7I,SAAY,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,WAAY,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,WAAY,IAAM,GAElJ,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,WAAU,MAAK,UAKpE,GAAI,CAAC,EAAe,QAAW,EAAU,OAAO,SAAW,EAAe,OAAO,OAC/E,EAAe,OAAS,KAAK,MAAM,KAAK,UAAU,EAAU,aAE5D,QAAS,GAAI,EAAG,EAAI,EAAU,OAAO,OAAQ,IAAK,CAChD,GAAM,GAAO,EAAU,OAAO,GAAG,IAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,IAAI,GAAK,GAAK,GAC1E,EAAU,EAAU,OAAO,GAAG,OACjC,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,OAAO,GAAK,GAAK,GACnF,EAAe,OAAO,GAAK,IAAK,EAAU,OAAO,GAAI,MAAK,UAK9D,GAAI,EAAU,QAAS,CACrB,GAAM,GAAa,EAAU,QAC7B,GAAI,CAAC,EAAe,SAAY,EAAW,SAAW,EAAe,QAAQ,OAC3E,EAAe,QAAU,KAAK,MAAM,KAAK,UAAU,QAEnD,QAAS,GAAI,EAAG,EAAI,EAAW,OAAQ,IACrC,EAAe,QAAQ,GAAG,IAAO,EAAW,GAAG,IAC5C,IAAI,CAAC,EAAK,IAAQ,IAAiB,GAAK,EAAe,QAAQ,GAAG,IAAI,GAAK,GAAO,GAM3F,MAAI,GAAU,SAAS,GAAe,QAAU,EAAU,SACtD,EAAU,aAAa,GAAe,YAAc,EAAU,aAE3D,EC/HF,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC/JpB,wCA8DO,QAAY,CA6EjB,YAAY,EAA+C,CAb3D,kBACA,kBACA,kBACA,kBACA,kBACA,kBAkDA,aAAU,IAAI,IAAQ,CACpB,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAiB,KAAK,GAAG,SAAS,MAAM,WACxC,EAAkB,OAAK,IAC7B,OAAK,GAAc,GACnB,GAAM,GAAS,EAAiB,EAChC,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,UAAU,AAAC,GAAyB,CAClC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QAoFT,UAAgB,MAAO,EAAQ,KAAU,CA7R3C,MA8RI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAUzD,GARI,MAAO,SAAW,aAAe,MAAO,oBAAsB,aAAe,KAAK,OAAO,OAAO,EAAI,6BAGpG,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAAc,MAAK,OAAO,QAAU,SAC5F,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAAY,MAAK,OAAO,QAAU,cAE3H,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAEvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAGtC,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAFA,KAAK,GAAG,iBAEJ,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,oBAAqB,IACrC,KAAK,GAAG,IAAI,IAAI,2BAA4B,IAExC,MAAO,MAAK,OAAO,YAAkB,aAAe,KAAK,OAAO,YAClE,GAAI,kDAAmD,IACvD,KAAK,GAAG,IAAI,IAAI,iCAAkC,IAEpD,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAEtG,KAAM,MAAK,GAAG,QACd,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,MAWlD,UAAO,AAAC,GAAoB,AAAY,GAAK,GAAU,KAAK,QAI5D,UAAa,KAAO,IAAU,CAC5B,GAAI,KAAK,OAAO,mBAAqB,EAAG,MAAO,GAC/C,GAAM,GAAa,GACb,EAAkB,EAAM,eAAe,CAAC,KAAK,MAAM,EAAM,MAAM,GAAK,GAAa,KAAK,MAAM,EAAM,MAAM,GAAK,KAQ7G,EAAc,EAAQ,WACxB,EAAM,EACV,OAAS,GAAI,EAAG,EAAI,EAAY,OAAS,EAAG,IAAK,GAAO,EAAY,EAAI,EAAI,GAE5E,EAAQ,UACR,GAAM,GAAO,IAAO,MAAK,IAAI,EAAK,OAAK,KAAiB,KAAK,IAAI,EAAK,OAAK,KAAiB,GAC5F,OAAK,GAAgB,GAGrB,GAAM,GAAY,EAAO,KAAK,IAAI,KAAK,OAAO,iBAAkB,OAAK,KAErE,cAAK,GAAiB,EAAO,GAAK,KAAK,OAAO,iBAAmB,EAAI,GAC9D,IAoMT,UAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAQ,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QACtH,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,UAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,UAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAQ,OAAO,KAAK,EAAK,UACnC,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KA9fP,KAAK,OAAS,EAAU,GAAU,GAAc,IAChD,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,MAAQ,OACb,OAAK,GAAc,GACnB,OAAK,GAAsB,IAC3B,OAAK,GAAe,IACpB,OAAK,GAAY,IACjB,OAAK,GAAiB,GACtB,KAAK,YAAc,CAAE,QAAS,EAAG,KAAM,EAAG,MAAO,EAAG,OAAQ,EAAG,OAAQ,EAAG,QAAS,EAAG,MAAO,EAAG,KAAM,GAEtG,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,QAAS,KACT,SAAU,KACV,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,UAAW,KACX,QAAS,KACT,aAAc,MAIhB,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KACvB,OAAK,GAAgB,GAoCvB,WAAW,EAA2B,EAAmC,CACvE,MAAO,AAAQ,IAAW,EAAY,GAYxC,aAAa,EAAc,EAAoB,CAC7C,MAAO,AAAa,IAAQ,EAAO,EAAY,KAAK,QAQtD,QAAQ,EAA8B,CAEpC,MAAO,AAAQ,IAAQ,GAUzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAOpC,MAAK,EAA+C,CACxD,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAIxD,KAAM,AAAO,IAAK,MAEd,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,OAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,YAAY,MAAkB,IAAI,MAAK,YAAY,KAAO,QAgH1E,QAAO,EAAc,EAAwE,CAEjG,MAAO,IAAI,SAAQ,KAAO,IAAY,CACpC,KAAK,MAAQ,SACb,GAAI,GACA,EAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAmBX,EAAY,IACZ,GAAI,GAAU,AAAM,GAAQ,EAAO,KAAK,QAoBxC,GAnBA,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,QAAQ,cAGT,KAAK,OAAO,aAAa,SAAW,GAAW,EAAQ,QACzD,MAAK,QAAQ,uBACb,KAAK,MAAQ,mBACb,EAAY,IACZ,KAAM,AAAa,IAAQ,GAC3B,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,aAAe,GACjD,EAAQ,QAEV,GAAQ,OAAO,UACf,EAAU,AAAM,GAAQ,EAAQ,OAAQ,KAAK,SAE/C,KAAK,QAAQ,sBAGX,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAGF,EAAY,IACZ,KAAK,OAAO,UAAY,KAAM,QAAK,IAAL,UAAgB,EAAQ,QACjD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACnD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACvD,KAAK,YAAY,SACd,KAAK,OAAO,WAAW,KAAK,YAAY,SAC5C,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,GAC9C,KAAK,QAAQ,kBAIb,GAAI,GACA,EACA,EACA,EAGJ,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAK,GAAW,KAAM,EAAQ,QAAU,GACzE,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAK,IAAW,KAAM,EAAQ,QAAU,GACnF,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAI/C,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACnI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC5I,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAChJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACzI,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACzI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAClJ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACtJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAS,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACjF,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAS,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3F,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACrI,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,KAAK,YAAY,QAAQ,MAAO,MAAK,YAAY,QAErD,MAAK,MAAQ,aACb,EAAY,IACZ,AAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3I,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC7J,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,OAAS,IAEjD,KAAK,QAAQ,eAGT,KAAK,OAAO,OAAO,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAG9G,GAAI,GAAwB,GAC5B,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,YAAY,SAAS,MAAO,MAAK,YAAY,QADnC,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,IAIxE,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,MAAQ,OACb,KAAK,OAAS,CACZ,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,YAClB,OAAQ,EAAQ,OAChB,UAAW,KAAK,SACZ,UAAU,CAnjBtB,MAmjBwB,MAAO,AAAQ,IAAK,EAAS,EAAS,EAAS,EAAY,oBAAS,SAAT,cAAiB,SAI9F,AAAG,UAAQ,EAAQ,QAGnB,EAAQ,KAAK,eAwFX,QAAO,EAA4E,CACvF,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IA9hBT,eACA,eACA,eACA,eACA,eACA,eA6DA,eA6FA,eAuEA,eA2NA,eAkBA,eAiCA", + "sourcesContent": ["/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data) => data.reduce((acc, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n * @typedef Config\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow',\n\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n\n /** Print debug statements to console */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n */\n modelBasePath: string,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n cacheSensitivity: number;\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n skipFrame: boolean;\n\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for each of face models\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - return: return extracted face as tensor for futher user processing, in which case user is reponsible for manually disposing the tensor\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxDetected: number,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n minConfidence: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n },\n\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: body pose model, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - maxDetected: maximum number of people detected in the input, should be set to the minimum number for performance\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetected: number,\n minConfidence: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - landmarks: detect hand landmarks or just hand boundary box\n * - modelPath: paths for hand detector and hand skeleton models, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n\n /** Controlls and configures all object detection specific options\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of detections to return\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n *\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n */\n segmentation: {\n enabled: boolean,\n modelPath: string,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use, leave empty to use default backend\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../node_modules/@tensorflow/tfjs-backend-wasm/dist/', // path for wasm binaries, only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n cacheSensitivity: 0.75, // cache sensitivity\n // values 0..1 where 0.01 means reset cache if input changed more than 1%\n // set to 0 to disable caching\n skipFrame: false, // internal & dynamic\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable gesture recognition based on model results\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface.json', // detector model, can be absolute path or relative to modelBasePath\n rotation: true, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxDetected: 15, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 15, // how many max frames to go without re-running the face bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n return: false, // return extracted face as tensor\n // in which case user is reponsible for disposing the tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model, can be absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 11, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n minConfidence: 0.1, // threshold for discarding a prediction\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 17, // how max many frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json', // body model, can be absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose', 'efficientpose', 'movenet-lightning', 'movenet-thunder'\n maxDetected: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as other models detects single pose\n minConfidence: 0.2, // threshold for discarding a prediction\n skipFrames: 1, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n},\n\n hand: {\n enabled: true,\n rotation: true, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 18, // how many max frames to go without re-running the hand bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 2, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model, can be absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model, can be absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'mb3-centernet' or 'nanodet'\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.4, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 10, // maximum number of objects detected in the input\n skipFrames: 19, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n },\n\n segmentation: {\n enabled: false, // controlls and configures all body segmentation module\n // removes background from input containing person\n // if segmentation is enabled it will run as preprocessing task before any other model\n // alternatively leave it disabled and use it on-demand using human.segmentation method which can\n // remove background or replace it with user-provided background\n modelPath: 'selfie.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'selfie' or 'meet'\n },\n};\nexport { config as defaults };\n", "/**\n * Helper function that returns basic system info\n */\nexport function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "/**\n * Creates tfjs bundle used by Human browser build target\n * @external\n */\n\n// import from dist\n// get versions of all packages\n/*\nimport * as packageBundle from '@tensorflow/tfjs/package.json';\nimport * as packageCore from '@tensorflow/tfjs-core/package.json';\nimport * as packageData from '@tensorflow/tfjs-data/package.json';\nimport * as packageLayers from '@tensorflow/tfjs-layers/package.json';\nimport * as packageConverter from '@tensorflow/tfjs-converter/package.json';\n// for backends, get version from source to avoid incorrect tree shaking\nimport { version_cpu } from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nimport { version_webgl } from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nimport { version_wasm } from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n\n// export all\nexport * from '@tensorflow/tfjs-core/dist/index.js';\nexport * from '@tensorflow/tfjs-layers/dist/index.js';\nexport * from '@tensorflow/tfjs-converter/dist/index.js';\nexport * as data from '@tensorflow/tfjs-data/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-cpu/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-webgl/dist/index.js';\nexport * from '@tensorflow/tfjs-backend-wasm/dist/index.js';\n*/\n\n// import from src\n// get versions of all packages\nimport { version as tfjsVersion } from '@tensorflow/tfjs/package.json';\nimport { version as tfjsCoreVersion } from '@tensorflow/tfjs-core/package.json';\nimport { version as tfjsDataVersion } from '@tensorflow/tfjs-data/package.json';\nimport { version as tfjsLayersVersion } from '@tensorflow/tfjs-layers/package.json';\nimport { version as tfjsConverterVersion } from '@tensorflow/tfjs-converter/package.json';\nimport { version as tfjsBackendCPUVersion } from '@tensorflow/tfjs-backend-cpu/package.json';\nimport { version as tfjsBackendWebGLVersion } from '@tensorflow/tfjs-backend-webgl/package.json';\nimport { version as tfjsBackendWASMVersion } from '@tensorflow/tfjs-backend-wasm/package.json';\n\n// export all\n// requires treeShaking:ignore-annotations due to tfjs misconfiguration\nexport * from '@tensorflow/tfjs-core/src/index';\nexport * from '@tensorflow/tfjs-layers/src/index';\nexport * from '@tensorflow/tfjs-converter/src/index';\nexport * as data from '@tensorflow/tfjs-data/src/index';\nexport * from '@tensorflow/tfjs-backend-cpu/src/index';\nexport * from '@tensorflow/tfjs-backend-webgl/src/index';\nexport * from '@tensorflow/tfjs-backend-wasm/src/index';\n/*\n*/\n\n// export versions\nexport const version = {\n tfjs: tfjsVersion,\n 'tfjs-core': tfjsCoreVersion,\n 'tfjs-data': tfjsDataVersion,\n 'tfjs-layers': tfjsLayersVersion,\n 'tfjs-converter': tfjsConverterVersion,\n 'tfjs-backend-cpu': tfjsBackendCPUVersion,\n 'tfjs-backend-webgl': tfjsBackendWebGLVersion,\n 'tfjs-backend-wasm': tfjsBackendWASMVersion,\n};\n// export const version = {};\n", "/**\n * Custom TFJS backend for Human based on WebGL\n * Not used by default\n */\n\nimport { log } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nexport const config = {\n name: 'humangl',\n priority: 99,\n canvas: null,\n gl: null,\n width: 1024,\n height: 1024,\n extensions: [],\n webGLattr: { // https://www.khronos.org/registry/webgl/specs/latest/1.0/#5.2\n alpha: false,\n antialias: false,\n premultipliedAlpha: false,\n preserveDrawingBuffer: false,\n depth: false,\n stencil: false,\n failIfMajorPerformanceCaveat: false,\n desynchronized: true,\n },\n};\n\nfunction extensions(): void {\n /*\n https://www.khronos.org/registry/webgl/extensions/\n https://webglreport.com/?v=2\n */\n const gl = config.gl;\n if (!gl) return;\n config.extensions = gl.getSupportedExtensions() as string[];\n // gl.getExtension('KHR_parallel_shader_compile');\n}\n\n/**\n * Registers custom WebGL2 backend to be used by Human library\n *\n * @returns void\n */\nexport function register(): void {\n if (!tf.findBackend(config.name)) {\n // log('backend registration:', config.name);\n try {\n config.canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(config.width, config.height) : document.createElement('canvas');\n } catch (err) {\n log('error: cannot create canvas:', err);\n return;\n }\n try {\n config.gl = config.canvas.getContext('webgl2', config.webGLattr) as WebGL2RenderingContext;\n } catch (err) {\n log('error: cannot get WebGL2 context:', err);\n return;\n }\n try {\n tf.setWebGLContext(2, config.gl);\n } catch (err) {\n log('error: cannot set WebGL2 context:', err);\n return;\n }\n try {\n const ctx = new tf.GPGPUContext(config.gl);\n tf.registerBackend(config.name, () => new tf.MathBackendWebGL(ctx), config.priority);\n } catch (err) {\n log('error: cannot register WebGL backend:', err);\n return;\n }\n try {\n const kernels = tf.getKernelsForBackend('webgl');\n kernels.forEach((kernelConfig) => {\n const newKernelConfig = { ...kernelConfig, backendName: config.name };\n tf.registerKernel(newKernelConfig);\n });\n } catch (err) {\n log('error: cannot update WebGL backend registration:', err);\n return;\n }\n try {\n tf.ENV.set('WEBGL_VERSION', 2);\n } catch (err) {\n log('error: cannot set WebGL backend flags:', err);\n return;\n }\n extensions();\n log('backend registered:', config.name);\n }\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n return { startPoint, endPoint };\n}\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [Math.round(centers[0] - halfSize), Math.round(centers[1] - halfSize)];\n const endPoint = [Math.round(centers[0] + halfSize), Math.round(centers[1] + halfSize)];\n return { startPoint, endPoint, landmarks: box.landmarks };\n}\n\nexport function calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint, landmarks };\n}\n\nexport const disposeBox = (t) => {\n t.startPoint.dispose();\n t.endPoint.dispose();\n};\n\nexport const createBox = (startEndTensor) => ({\n startPoint: tf.slice(startEndTensor, [0, 0], [-1, 2]),\n endPoint: tf.slice(startEndTensor, [0, 2], [-1, 2]),\n});\n", "export const IDENTITY_MATRIX = [[1, 0, 0], [0, 1, 0], [0, 0, 1]];\n/**\n * Normalizes the provided angle to the range -pi to pi.\n * @param angle The angle in radians to be normalized.\n */\nexport function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\n/**\n * Computes the angle of rotation between two anchor points.\n * @param point1 First anchor point\n * @param point2 Second anchor point\n */\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport function radToDegrees(rad) {\n return rad * 180 / Math.PI;\n}\n\nexport function buildTranslationMatrix(x, y) {\n return [[1, 0, x], [0, 1, y], [0, 0, 1]];\n}\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n\nexport function xyDistanceBetweenPoints(a, b) {\n return Math.sqrt(((a[0] - b[0]) ** 2) + ((a[1] - b[1]) ** 2));\n}\n\nexport function generateAnchors(inputSize) {\n const spec = { strides: [inputSize / 16, inputSize / 8], anchors: [2, 6] };\n const anchors: Array<[number, number]> = [];\n for (let i = 0; i < spec.strides.length; i++) {\n const stride = spec.strides[i];\n const gridRows = Math.floor((inputSize + stride - 1) / stride);\n const gridCols = Math.floor((inputSize + stride - 1) / stride);\n const anchorsNum = spec.anchors[i];\n for (let gridY = 0; gridY < gridRows; gridY++) {\n const anchorY = stride * (gridY + 0.5);\n for (let gridX = 0; gridX < gridCols; gridX++) {\n const anchorX = stride * (gridX + 0.5);\n for (let n = 0; n < anchorsNum; n++) {\n anchors.push([anchorX, anchorY]);\n }\n }\n }\n }\n return anchors;\n}\n", "import { log, join, mergeDeep } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst keypointsCount = 6;\n\nfunction decodeBounds(boxOutputs, anchors, inputSize) {\n const boxStarts = tf.slice(boxOutputs, [0, 1], [-1, 2]);\n const centers = tf.add(boxStarts, anchors);\n const boxSizes = tf.slice(boxOutputs, [0, 3], [-1, 2]);\n const boxSizesNormalized = tf.div(boxSizes, inputSize);\n const centersNormalized = tf.div(centers, inputSize);\n const halfBoxSize = tf.div(boxSizesNormalized, 2);\n const starts = tf.sub(centersNormalized, halfBoxSize);\n const ends = tf.add(centersNormalized, halfBoxSize);\n const startNormalized = tf.mul(starts, inputSize);\n const endNormalized = tf.mul(ends, inputSize);\n const concatAxis = 1;\n return tf.concat2d([startNormalized, endNormalized], concatAxis);\n}\n\nexport class BlazeFaceModel {\n model: GraphModel;\n anchorsData: [number, number][];\n anchors: Tensor;\n inputSize: number;\n config: Config;\n\n constructor(model, config: Config) {\n this.model = model;\n this.anchorsData = util.generateAnchors(model.inputs[0].shape[1]);\n this.anchors = tf.tensor2d(this.anchorsData);\n this.inputSize = model.inputs[0].shape[2];\n this.config = config;\n }\n\n async getBoundingBoxes(inputImage: Tensor, userConfig: Config) {\n // sanity check on input\n // @ts-ignore isDisposed is internal property\n if ((!inputImage) || (inputImage.isDisposedInternal) || (inputImage.shape.length !== 4) || (inputImage.shape[1] < 1) || (inputImage.shape[2] < 1)) return null;\n const [batch, boxes, scores] = tf.tidy(() => {\n const resizedImage = tf.image.resizeBilinear(inputImage, [this.inputSize, this.inputSize]);\n const normalizedImage = resizedImage.div(127.5).sub(0.5);\n const res = this.model.execute(normalizedImage);\n let batchOut;\n if (Array.isArray(res)) { // are we using tfhub or pinto converted model?\n const sorted = res.sort((a, b) => a.size - b.size);\n const concat384 = tf.concat([sorted[0], sorted[2]], 2); // dim: 384, 1 + 16\n const concat512 = tf.concat([sorted[1], sorted[3]], 2); // dim: 512, 1 + 16\n const concat = tf.concat([concat512, concat384], 1);\n batchOut = concat.squeeze(0);\n } else {\n batchOut = tf.squeeze(res); // when using tfhub model\n }\n const boxesOut = decodeBounds(batchOut, this.anchors, [this.inputSize, this.inputSize]);\n const logits = tf.slice(batchOut, [0, 0], [-1, 1]);\n const scoresOut = tf.sigmoid(logits).squeeze().dataSync();\n return [batchOut, boxesOut, scoresOut];\n });\n\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n const nmsTensor = await tf.image.nonMaxSuppressionAsync(boxes, scores, this.config.face.detector.maxDetected, this.config.face.detector.iouThreshold, this.config.face.detector.minConfidence);\n const nms = nmsTensor.arraySync();\n nmsTensor.dispose();\n const annotatedBoxes: Array<{ box: { startPoint: Tensor, endPoint: Tensor }, landmarks: Tensor, anchor: number[], confidence: number }> = [];\n for (let i = 0; i < nms.length; i++) {\n const confidence = scores[nms[i]];\n if (confidence > this.config.face.detector.minConfidence) {\n const boundingBox = tf.slice(boxes, [nms[i], 0], [1, -1]);\n const localBox = box.createBox(boundingBox);\n boundingBox.dispose();\n const anchor = this.anchorsData[nms[i]];\n const landmarks = tf.tidy(() => tf.slice(batch, [nms[i], keypointsCount - 1], [1, -1]).squeeze().reshape([keypointsCount, -1]));\n annotatedBoxes.push({ box: localBox, landmarks, anchor, confidence });\n }\n }\n // boundingBoxes.forEach((t) => t.dispose());\n batch.dispose();\n boxes.dispose();\n // scores.dispose();\n return {\n boxes: annotatedBoxes,\n scaleFactor: [inputImage.shape[2] / this.inputSize, inputImage.shape[1] / this.inputSize],\n };\n }\n}\n\nexport async function load(config: Config) {\n const model = await tf.loadGraphModel(join(config.modelBasePath, config.face.detector.modelPath), { fromTFHub: config.face.detector.modelPath.includes('tfhub.dev') });\n const blazeFace = new BlazeFaceModel(model, config);\n if (!model || !model.modelUrl) log('load model failed:', config.face.detector.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n return blazeFace;\n}\n", "export const MESH_ANNOTATIONS = {\n silhouette: [\n 10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,\n 397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,\n 172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109,\n ],\n lipsUpperOuter: [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291],\n lipsLowerOuter: [146, 91, 181, 84, 17, 314, 405, 321, 375, 291],\n lipsUpperInner: [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\n lipsLowerInner: [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\n rightEyeUpper0: [246, 161, 160, 159, 158, 157, 173],\n rightEyeLower0: [33, 7, 163, 144, 145, 153, 154, 155, 133],\n rightEyeUpper1: [247, 30, 29, 27, 28, 56, 190],\n rightEyeLower1: [130, 25, 110, 24, 23, 22, 26, 112, 243],\n rightEyeUpper2: [113, 225, 224, 223, 222, 221, 189],\n rightEyeLower2: [226, 31, 228, 229, 230, 231, 232, 233, 244],\n rightEyeLower3: [143, 111, 117, 118, 119, 120, 121, 128, 245],\n rightEyebrowUpper: [156, 70, 63, 105, 66, 107, 55, 193],\n rightEyebrowLower: [35, 124, 46, 53, 52, 65],\n rightEyeIris: [473, 474, 475, 476, 477],\n leftEyeUpper0: [466, 388, 387, 386, 385, 384, 398],\n leftEyeLower0: [263, 249, 390, 373, 374, 380, 381, 382, 362],\n leftEyeUpper1: [467, 260, 259, 257, 258, 286, 414],\n leftEyeLower1: [359, 255, 339, 254, 253, 252, 256, 341, 463],\n leftEyeUpper2: [342, 445, 444, 443, 442, 441, 413],\n leftEyeLower2: [446, 261, 448, 449, 450, 451, 452, 453, 464],\n leftEyeLower3: [372, 340, 346, 347, 348, 349, 350, 357, 465],\n leftEyebrowUpper: [383, 300, 293, 334, 296, 336, 285, 417],\n leftEyebrowLower: [265, 353, 276, 283, 282, 295],\n leftEyeIris: [468, 469, 470, 471, 472],\n midwayBetweenEyes: [168],\n noseTip: [1],\n noseBottom: [2],\n noseRightCorner: [98],\n noseLeftCorner: [327],\n rightCheek: [205],\n leftCheek: [425],\n};\n\nexport const MESH_TO_IRIS_INDICES_MAP = [ // A mapping from facemesh model keypoints to iris model keypoints.\n { key: 'EyeUpper0', indices: [9, 10, 11, 12, 13, 14, 15] },\n { key: 'EyeUpper1', indices: [25, 26, 27, 28, 29, 30, 31] },\n { key: 'EyeUpper2', indices: [41, 42, 43, 44, 45, 46, 47] },\n { key: 'EyeLower0', indices: [0, 1, 2, 3, 4, 5, 6, 7, 8] },\n { key: 'EyeLower1', indices: [16, 17, 18, 19, 20, 21, 22, 23, 24] },\n { key: 'EyeLower2', indices: [32, 33, 34, 35, 36, 37, 38, 39, 40] },\n { key: 'EyeLower3', indices: [54, 55, 56, 57, 58, 59, 60, 61, 62] },\n // { key: 'EyebrowUpper', indices: [63, 64, 65, 66, 67, 68, 69, 70] },\n // { key: 'EyebrowLower', indices: [48, 49, 50, 51, 52, 53] },\n];\n\nexport const UV468 = [\n [0.499976992607117, 0.652534008026123],\n [0.500025987625122, 0.547487020492554],\n [0.499974012374878, 0.602371990680695],\n [0.482113003730774, 0.471979022026062],\n [0.500150978565216, 0.527155995368958],\n [0.499909996986389, 0.498252987861633],\n [0.499523013830185, 0.40106201171875],\n [0.289712011814117, 0.380764007568359],\n [0.499954998493195, 0.312398016452789],\n [0.499987006187439, 0.269918978214264],\n [0.500023007392883, 0.107050001621246],\n [0.500023007392883, 0.666234016418457],\n [0.5000159740448, 0.679224014282227],\n [0.500023007392883, 0.692348003387451],\n [0.499976992607117, 0.695277988910675],\n [0.499976992607117, 0.70593398809433],\n [0.499976992607117, 0.719385027885437],\n [0.499976992607117, 0.737019002437592],\n [0.499967992305756, 0.781370997428894],\n [0.499816000461578, 0.562981009483337],\n [0.473773002624512, 0.573909997940063],\n [0.104906998574734, 0.254140973091125],\n [0.365929991006851, 0.409575998783112],\n [0.338757991790771, 0.41302502155304],\n [0.311120003461838, 0.409460008144379],\n [0.274657994508743, 0.389131009578705],\n [0.393361985683441, 0.403706014156342],\n [0.345234006643295, 0.344011008739471],\n [0.370094001293182, 0.346076011657715],\n [0.319321990013123, 0.347265005111694],\n [0.297903001308441, 0.353591024875641],\n [0.24779200553894, 0.410809993743896],\n [0.396889001131058, 0.842755019664764],\n [0.280097991228104, 0.375599980354309],\n [0.106310002505779, 0.399955987930298],\n [0.2099249958992, 0.391353011131287],\n [0.355807989835739, 0.534406006336212],\n [0.471751004457474, 0.65040397644043],\n [0.474155008792877, 0.680191993713379],\n [0.439785003662109, 0.657229006290436],\n [0.414617002010345, 0.66654098033905],\n [0.450374007225037, 0.680860996246338],\n [0.428770989179611, 0.682690978050232],\n [0.374971002340317, 0.727805018424988],\n [0.486716985702515, 0.547628998756409],\n [0.485300987958908, 0.527395009994507],\n [0.257764995098114, 0.314490020275116],\n [0.401223003864288, 0.455172002315521],\n [0.429818987846375, 0.548614978790283],\n [0.421351999044418, 0.533740997314453],\n [0.276895999908447, 0.532056987285614],\n [0.483370006084442, 0.499586999416351],\n [0.33721199631691, 0.282882988452911],\n [0.296391993761063, 0.293242990970612],\n [0.169294998049736, 0.193813979625702],\n [0.447580009698868, 0.302609980106354],\n [0.392390012741089, 0.353887975215912],\n [0.354490011930466, 0.696784019470215],\n [0.067304998636246, 0.730105042457581],\n [0.442739009857178, 0.572826027870178],\n [0.457098007202148, 0.584792017936707],\n [0.381974011659622, 0.694710969924927],\n [0.392388999462128, 0.694203019142151],\n [0.277076005935669, 0.271932005882263],\n [0.422551989555359, 0.563233017921448],\n [0.385919004678726, 0.281364023685455],\n [0.383103013038635, 0.255840003490448],\n [0.331431001424789, 0.119714021682739],\n [0.229923993349075, 0.232002973556519],\n [0.364500999450684, 0.189113974571228],\n [0.229622006416321, 0.299540996551514],\n [0.173287004232407, 0.278747975826263],\n [0.472878992557526, 0.666198015213013],\n [0.446828007698059, 0.668527007102966],\n [0.422762006521225, 0.673889994621277],\n [0.445307999849319, 0.580065965652466],\n [0.388103008270264, 0.693961024284363],\n [0.403039008378983, 0.706539988517761],\n [0.403629004955292, 0.693953037261963],\n [0.460041999816895, 0.557139039039612],\n [0.431158006191254, 0.692366003990173],\n [0.452181994915009, 0.692366003990173],\n [0.475387006998062, 0.692366003990173],\n [0.465828001499176, 0.779190003871918],\n [0.472328990697861, 0.736225962638855],\n [0.473087012767792, 0.717857003211975],\n [0.473122000694275, 0.704625964164734],\n [0.473033010959625, 0.695277988910675],\n [0.427942007780075, 0.695277988910675],\n [0.426479011774063, 0.703539967536926],\n [0.423162013292313, 0.711845993995667],\n [0.4183090031147, 0.720062971115112],\n [0.390094995498657, 0.639572978019714],\n [0.013953999616206, 0.560034036636353],\n [0.499913990497589, 0.58014702796936],\n [0.413199990987778, 0.69539999961853],\n [0.409626007080078, 0.701822996139526],\n [0.468080013990402, 0.601534962654114],\n [0.422728985548019, 0.585985004901886],\n [0.463079988956451, 0.593783974647522],\n [0.37211999297142, 0.47341400384903],\n [0.334562003612518, 0.496073007583618],\n [0.411671012639999, 0.546965003013611],\n [0.242175996303558, 0.14767599105835],\n [0.290776997804642, 0.201445996761322],\n [0.327338010072708, 0.256527006626129],\n [0.399509996175766, 0.748921036720276],\n [0.441727995872498, 0.261676013469696],\n [0.429764986038208, 0.187834024429321],\n [0.412198007106781, 0.108901023864746],\n [0.288955003023148, 0.398952007293701],\n [0.218936994671822, 0.435410976409912],\n [0.41278201341629, 0.398970007896423],\n [0.257135003805161, 0.355440020561218],\n [0.427684992551804, 0.437960982322693],\n [0.448339998722076, 0.536936044692993],\n [0.178560003638268, 0.45755398273468],\n [0.247308000922203, 0.457193970680237],\n [0.286267012357712, 0.467674970626831],\n [0.332827985286713, 0.460712015628815],\n [0.368755996227264, 0.447206974029541],\n [0.398963987827301, 0.432654976844788],\n [0.476410001516342, 0.405806005001068],\n [0.189241006970406, 0.523923993110657],\n [0.228962004184723, 0.348950982093811],\n [0.490725994110107, 0.562400996685028],\n [0.404670000076294, 0.485132992267609],\n [0.019469000399113, 0.401564002037048],\n [0.426243007183075, 0.420431017875671],\n [0.396993011236191, 0.548797011375427],\n [0.266469985246658, 0.376977026462555],\n [0.439121007919312, 0.51895797252655],\n [0.032313998788595, 0.644356966018677],\n [0.419054001569748, 0.387154996395111],\n [0.462783008813858, 0.505746960639954],\n [0.238978996872902, 0.779744982719421],\n [0.198220998048782, 0.831938028335571],\n [0.107550002634525, 0.540755033493042],\n [0.183610007166862, 0.740257024765015],\n [0.134409993886948, 0.333683013916016],\n [0.385764002799988, 0.883153975009918],\n [0.490967005491257, 0.579378008842468],\n [0.382384985685349, 0.508572995662689],\n [0.174399003386497, 0.397670984268188],\n [0.318785011768341, 0.39623498916626],\n [0.343364000320435, 0.400596976280212],\n [0.396100014448166, 0.710216999053955],\n [0.187885001301765, 0.588537991046906],\n [0.430987000465393, 0.944064974784851],\n [0.318993002176285, 0.898285031318665],\n [0.266247987747192, 0.869701027870178],\n [0.500023007392883, 0.190576016902924],\n [0.499976992607117, 0.954452991485596],\n [0.366169989109039, 0.398822009563446],\n [0.393207013607025, 0.39553701877594],\n [0.410373002290726, 0.391080021858215],\n [0.194993004202843, 0.342101991176605],\n [0.388664990663528, 0.362284004688263],\n [0.365961998701096, 0.355970978736877],\n [0.343364000320435, 0.355356991291046],\n [0.318785011768341, 0.35834002494812],\n [0.301414996385574, 0.363156020641327],\n [0.058132998645306, 0.319076001644135],\n [0.301414996385574, 0.387449026107788],\n [0.499987989664078, 0.618434011936188],\n [0.415838003158569, 0.624195992946625],\n [0.445681989192963, 0.566076993942261],\n [0.465844005346298, 0.620640993118286],\n [0.49992299079895, 0.351523995399475],\n [0.288718998432159, 0.819945991039276],\n [0.335278987884521, 0.852819979190826],\n [0.440512001514435, 0.902418971061707],\n [0.128294005990028, 0.791940987110138],\n [0.408771991729736, 0.373893976211548],\n [0.455606997013092, 0.451801002025604],\n [0.499877005815506, 0.908990025520325],\n [0.375436991453171, 0.924192011356354],\n [0.11421000212431, 0.615022003650665],\n [0.448662012815475, 0.695277988910675],\n [0.4480200111866, 0.704632043838501],\n [0.447111994028091, 0.715808033943176],\n [0.444831997156143, 0.730794012546539],\n [0.430011987686157, 0.766808986663818],\n [0.406787008047104, 0.685672998428345],\n [0.400738000869751, 0.681069016456604],\n [0.392399996519089, 0.677703022956848],\n [0.367855995893478, 0.663918972015381],\n [0.247923001646996, 0.601333022117615],\n [0.452769994735718, 0.420849978923798],\n [0.43639200925827, 0.359887003898621],\n [0.416164010763168, 0.368713974952698],\n [0.413385987281799, 0.692366003990173],\n [0.228018000721931, 0.683571994304657],\n [0.468268007040024, 0.352671027183533],\n [0.411361992359161, 0.804327011108398],\n [0.499989002943039, 0.469825029373169],\n [0.479153990745544, 0.442654013633728],\n [0.499974012374878, 0.439637005329132],\n [0.432112008333206, 0.493588984012604],\n [0.499886006116867, 0.866917014122009],\n [0.49991300702095, 0.821729004383087],\n [0.456548988819122, 0.819200992584229],\n [0.344549000263214, 0.745438992977142],\n [0.37890899181366, 0.574010014533997],\n [0.374292999505997, 0.780184984207153],\n [0.319687992334366, 0.570737957954407],\n [0.357154995203018, 0.604269981384277],\n [0.295284003019333, 0.621580958366394],\n [0.447750002145767, 0.862477004528046],\n [0.410986006259918, 0.508723020553589],\n [0.31395098567009, 0.775308012962341],\n [0.354128003120422, 0.812552988529205],\n [0.324548006057739, 0.703992962837219],\n [0.189096003770828, 0.646299958229065],\n [0.279776990413666, 0.71465802192688],\n [0.1338230073452, 0.682700991630554],\n [0.336768001317978, 0.644733011722565],\n [0.429883986711502, 0.466521978378296],\n [0.455527991056442, 0.548622965812683],\n [0.437114000320435, 0.558896005153656],\n [0.467287987470627, 0.529924988746643],\n [0.414712011814117, 0.335219979286194],\n [0.37704598903656, 0.322777986526489],\n [0.344107985496521, 0.320150971412659],\n [0.312875986099243, 0.32233202457428],\n [0.283526003360748, 0.333190023899078],\n [0.241245999932289, 0.382785975933075],\n [0.102986000478268, 0.468762993812561],\n [0.267612010240555, 0.424560010433197],\n [0.297879010438919, 0.433175981044769],\n [0.333433985710144, 0.433878004550934],\n [0.366427004337311, 0.426115989685059],\n [0.396012008190155, 0.416696012020111],\n [0.420121014118195, 0.41022801399231],\n [0.007561000064015, 0.480777025222778],\n [0.432949006557465, 0.569517970085144],\n [0.458638995885849, 0.479089021682739],\n [0.473466008901596, 0.545744001865387],\n [0.476087987422943, 0.563830018043518],\n [0.468472003936768, 0.555056989192963],\n [0.433990985155106, 0.582361996173859],\n [0.483518004417419, 0.562983989715576],\n [0.482482999563217, 0.57784903049469],\n [0.42645001411438, 0.389798998832703],\n [0.438998997211456, 0.39649498462677],\n [0.450067013502121, 0.400434017181396],\n [0.289712011814117, 0.368252992630005],\n [0.276670008897781, 0.363372981548309],\n [0.517862021923065, 0.471948027610779],\n [0.710287988185883, 0.380764007568359],\n [0.526226997375488, 0.573909997940063],\n [0.895093023777008, 0.254140973091125],\n [0.634069979190826, 0.409575998783112],\n [0.661242008209229, 0.41302502155304],\n [0.688880026340485, 0.409460008144379],\n [0.725341975688934, 0.389131009578705],\n [0.606630027294159, 0.40370500087738],\n [0.654766023159027, 0.344011008739471],\n [0.629905998706818, 0.346076011657715],\n [0.680678009986877, 0.347265005111694],\n [0.702096998691559, 0.353591024875641],\n [0.75221198797226, 0.410804986953735],\n [0.602918028831482, 0.842862963676453],\n [0.719901978969574, 0.375599980354309],\n [0.893692970275879, 0.399959981441498],\n [0.790081977844238, 0.391354024410248],\n [0.643998026847839, 0.534487962722778],\n [0.528249025344849, 0.65040397644043],\n [0.525849997997284, 0.680191040039062],\n [0.560214996337891, 0.657229006290436],\n [0.585384011268616, 0.66654098033905],\n [0.549625992774963, 0.680860996246338],\n [0.57122802734375, 0.682691991329193],\n [0.624852001667023, 0.72809898853302],\n [0.513050019741058, 0.547281980514526],\n [0.51509702205658, 0.527251958847046],\n [0.742246985435486, 0.314507007598877],\n [0.598631024360657, 0.454979002475739],\n [0.570338010787964, 0.548575043678284],\n [0.578631997108459, 0.533622980117798],\n [0.723087012767792, 0.532054007053375],\n [0.516445994377136, 0.499638974666595],\n [0.662801027297974, 0.282917976379395],\n [0.70362401008606, 0.293271005153656],\n [0.830704987049103, 0.193813979625702],\n [0.552385985851288, 0.302568018436432],\n [0.607609987258911, 0.353887975215912],\n [0.645429015159607, 0.696707010269165],\n [0.932694971561432, 0.730105042457581],\n [0.557260990142822, 0.572826027870178],\n [0.542901992797852, 0.584792017936707],\n [0.6180260181427, 0.694710969924927],\n [0.607590973377228, 0.694203019142151],\n [0.722943007946014, 0.271963000297546],\n [0.577413976192474, 0.563166975975037],\n [0.614082992076874, 0.281386971473694],\n [0.616907000541687, 0.255886018276215],\n [0.668509006500244, 0.119913995265961],\n [0.770092010498047, 0.232020974159241],\n [0.635536015033722, 0.189248979091644],\n [0.77039098739624, 0.299556016921997],\n [0.826722025871277, 0.278755009174347],\n [0.527121007442474, 0.666198015213013],\n [0.553171992301941, 0.668527007102966],\n [0.577238023281097, 0.673889994621277],\n [0.554691970348358, 0.580065965652466],\n [0.611896991729736, 0.693961024284363],\n [0.59696102142334, 0.706539988517761],\n [0.596370995044708, 0.693953037261963],\n [0.539958000183105, 0.557139039039612],\n [0.568841993808746, 0.692366003990173],\n [0.547818005084991, 0.692366003990173],\n [0.52461302280426, 0.692366003990173],\n [0.534089982509613, 0.779141008853912],\n [0.527670979499817, 0.736225962638855],\n [0.526912987232208, 0.717857003211975],\n [0.526877999305725, 0.704625964164734],\n [0.526966989040375, 0.695277988910675],\n [0.572058022022247, 0.695277988910675],\n [0.573521018028259, 0.703539967536926],\n [0.57683801651001, 0.711845993995667],\n [0.581691026687622, 0.720062971115112],\n [0.609944999217987, 0.639909982681274],\n [0.986046016216278, 0.560034036636353],\n [0.5867999792099, 0.69539999961853],\n [0.590372025966644, 0.701822996139526],\n [0.531915009021759, 0.601536989212036],\n [0.577268004417419, 0.585934996604919],\n [0.536915004253387, 0.593786001205444],\n [0.627542972564697, 0.473352015018463],\n [0.665585994720459, 0.495950996875763],\n [0.588353991508484, 0.546862006187439],\n [0.757824003696442, 0.14767599105835],\n [0.709249973297119, 0.201507985591888],\n [0.672684013843536, 0.256581008434296],\n [0.600408971309662, 0.74900496006012],\n [0.55826598405838, 0.261672019958496],\n [0.570303976535797, 0.187870979309082],\n [0.588165998458862, 0.109044015407562],\n [0.711045026779175, 0.398952007293701],\n [0.781069993972778, 0.435405015945435],\n [0.587247014045715, 0.398931980133057],\n [0.742869973182678, 0.355445981025696],\n [0.572156012058258, 0.437651991844177],\n [0.55186802148819, 0.536570012569427],\n [0.821442008018494, 0.457556009292603],\n [0.752701997756958, 0.457181990146637],\n [0.71375697851181, 0.467626988887787],\n [0.66711300611496, 0.460672974586487],\n [0.631101012229919, 0.447153985500336],\n [0.6008620262146, 0.432473003864288],\n [0.523481011390686, 0.405627012252808],\n [0.810747981071472, 0.523926019668579],\n [0.771045982837677, 0.348959028720856],\n [0.509127020835876, 0.562718033790588],\n [0.595292985439301, 0.485023975372314],\n [0.980530977249146, 0.401564002037048],\n [0.573499977588654, 0.420000016689301],\n [0.602994978427887, 0.548687994480133],\n [0.733529984951019, 0.376977026462555],\n [0.560611009597778, 0.519016981124878],\n [0.967685997486115, 0.644356966018677],\n [0.580985009670258, 0.387160003185272],\n [0.537728011608124, 0.505385041236877],\n [0.760966002941132, 0.779752969741821],\n [0.801778972148895, 0.831938028335571],\n [0.892440974712372, 0.54076099395752],\n [0.816350996494293, 0.740260004997253],\n [0.865594983100891, 0.333687007427216],\n [0.614073991775513, 0.883246004581451],\n [0.508952975273132, 0.579437971115112],\n [0.617941975593567, 0.508316040039062],\n [0.825608015060425, 0.397674977779388],\n [0.681214988231659, 0.39623498916626],\n [0.656635999679565, 0.400596976280212],\n [0.603900015354156, 0.710216999053955],\n [0.81208598613739, 0.588539004325867],\n [0.56801301240921, 0.944564998149872],\n [0.681007981300354, 0.898285031318665],\n [0.733752012252808, 0.869701027870178],\n [0.633830010890961, 0.398822009563446],\n [0.606792986392975, 0.39553701877594],\n [0.589659988880157, 0.391062021255493],\n [0.805015981197357, 0.342108011245728],\n [0.611334979534149, 0.362284004688263],\n [0.634037971496582, 0.355970978736877],\n [0.656635999679565, 0.355356991291046],\n [0.681214988231659, 0.35834002494812],\n [0.698584973812103, 0.363156020641327],\n [0.941866993904114, 0.319076001644135],\n [0.698584973812103, 0.387449026107788],\n [0.584177017211914, 0.624107003211975],\n [0.554318010807037, 0.566076993942261],\n [0.534153997898102, 0.62064003944397],\n [0.711217999458313, 0.819975018501282],\n [0.664629995822906, 0.852871000766754],\n [0.559099972248077, 0.902631998062134],\n [0.871706008911133, 0.791940987110138],\n [0.591234028339386, 0.373893976211548],\n [0.544341027736664, 0.451583981513977],\n [0.624562978744507, 0.924192011356354],\n [0.88577002286911, 0.615028977394104],\n [0.551338016986847, 0.695277988910675],\n [0.551980018615723, 0.704632043838501],\n [0.552887976169586, 0.715808033943176],\n [0.555167973041534, 0.730794012546539],\n [0.569944024085999, 0.767035007476807],\n [0.593203008174896, 0.685675978660583],\n [0.599261999130249, 0.681069016456604],\n [0.607599973678589, 0.677703022956848],\n [0.631937980651855, 0.663500010967255],\n [0.752032995223999, 0.601315021514893],\n [0.547226011753082, 0.420395016670227],\n [0.563543975353241, 0.359827995300293],\n [0.583841025829315, 0.368713974952698],\n [0.586614012718201, 0.692366003990173],\n [0.771915018558502, 0.683578014373779],\n [0.531597018241882, 0.352482974529266],\n [0.588370978832245, 0.804440975189209],\n [0.52079701423645, 0.442565023899078],\n [0.567984998226166, 0.493479013442993],\n [0.543282985687256, 0.819254994392395],\n [0.655317008495331, 0.745514988899231],\n [0.621008992195129, 0.574018001556396],\n [0.625559985637665, 0.78031200170517],\n [0.680198013782501, 0.570719003677368],\n [0.64276397228241, 0.604337990283966],\n [0.704662978649139, 0.621529996395111],\n [0.552012026309967, 0.862591981887817],\n [0.589071989059448, 0.508637011051178],\n [0.685944974422455, 0.775357007980347],\n [0.645735025405884, 0.812640011310577],\n [0.675342977046967, 0.703978002071381],\n [0.810858011245728, 0.646304965019226],\n [0.72012197971344, 0.714666962623596],\n [0.866151988506317, 0.682704985141754],\n [0.663187026977539, 0.644596993923187],\n [0.570082008838654, 0.466325998306274],\n [0.544561982154846, 0.548375964164734],\n [0.562758982181549, 0.558784961700439],\n [0.531987011432648, 0.530140042304993],\n [0.585271000862122, 0.335177004337311],\n [0.622952997684479, 0.32277899980545],\n [0.655896008014679, 0.320163011550903],\n [0.687132000923157, 0.322345972061157],\n [0.716481983661652, 0.333200991153717],\n [0.758756995201111, 0.382786989212036],\n [0.897013008594513, 0.468769013881683],\n [0.732392013072968, 0.424547016620636],\n [0.70211398601532, 0.433162987232208],\n [0.66652500629425, 0.433866024017334],\n [0.633504986763, 0.426087975502014],\n [0.603875994682312, 0.416586995124817],\n [0.579657971858978, 0.409945011138916],\n [0.992439985275269, 0.480777025222778],\n [0.567192018032074, 0.569419980049133],\n [0.54136598110199, 0.478899002075195],\n [0.526564002037048, 0.546118021011353],\n [0.523913025856018, 0.563830018043518],\n [0.531529009342194, 0.555056989192963],\n [0.566035985946655, 0.582329034805298],\n [0.51631098985672, 0.563053965568542],\n [0.5174720287323, 0.577877044677734],\n [0.573594987392426, 0.389806985855103],\n [0.560697972774506, 0.395331978797913],\n [0.549755990505219, 0.399751007556915],\n [0.710287988185883, 0.368252992630005],\n [0.723330020904541, 0.363372981548309],\n];\n\nexport const TRI468 = [\n 127, 34, 139, 11, 0, 37, 232, 231, 120, 72, 37, 39, 128, 121, 47, 232, 121, 128, 104, 69, 67, 175, 171, 148, 157, 154, 155, 118, 50, 101, 73, 39, 40, 9,\n 151, 108, 48, 115, 131, 194, 204, 211, 74, 40, 185, 80, 42, 183, 40, 92, 186, 230, 229, 118, 202, 212, 214, 83, 18, 17, 76, 61, 146, 160, 29, 30, 56,\n 157, 173, 106, 204, 194, 135, 214, 192, 203, 165, 98, 21, 71, 68, 51, 45, 4, 144, 24, 23, 77, 146, 91, 205, 50, 187, 201, 200, 18, 91, 106, 182, 90, 91,\n 181, 85, 84, 17, 206, 203, 36, 148, 171, 140, 92, 40, 39, 193, 189, 244, 159, 158, 28, 247, 246, 161, 236, 3, 196, 54, 68, 104, 193, 168, 8, 117,\n 228, 31, 189, 193, 55, 98, 97, 99, 126, 47, 100, 166, 79, 218, 155, 154, 26, 209, 49, 131, 135, 136, 150, 47, 126, 217, 223, 52, 53, 45, 51, 134, 211,\n 170, 140, 67, 69, 108, 43, 106, 91, 230, 119, 120, 226, 130, 247, 63, 53, 52, 238, 20, 242, 46, 70, 156, 78, 62, 96, 46, 53, 63, 143, 34, 227, 173,\n 155, 133, 123, 117, 111, 44, 125, 19, 236, 134, 51, 216, 206, 205, 154, 153, 22, 39, 37, 167, 200, 201, 208, 36, 142, 100, 57, 212, 202, 20, 60, 99, 28,\n 158, 157, 35, 226, 113, 160, 159, 27, 204, 202, 210, 113, 225, 46, 43, 202, 204, 62, 76, 77, 137, 123, 116, 41, 38, 72, 203, 129, 142, 64, 98, 240, 49,\n 102, 64, 41, 73, 74, 212, 216, 207, 42, 74, 184, 169, 170, 211, 170, 149, 176, 105, 66, 69, 122, 6, 168, 123, 147, 187, 96, 77, 90, 65, 55, 107, 89,\n 90, 180, 101, 100, 120, 63, 105, 104, 93, 137, 227, 15, 86, 85, 129, 102, 49, 14, 87, 86, 55, 8, 9, 100, 47, 121, 145, 23, 22, 88, 89, 179, 6, 122,\n 196, 88, 95, 96, 138, 172, 136, 215, 58, 172, 115, 48, 219, 42, 80, 81, 195, 3, 51, 43, 146, 61, 171, 175, 199, 81, 82, 38, 53, 46, 225, 144, 163, 110,\n 246, 33, 7, 52, 65, 66, 229, 228, 117, 34, 127, 234, 107, 108, 69, 109, 108, 151, 48, 64, 235, 62, 78, 191, 129, 209, 126, 111, 35, 143, 163, 161, 246,\n 117, 123, 50, 222, 65, 52, 19, 125, 141, 221, 55, 65, 3, 195, 197, 25, 7, 33, 220, 237, 44, 70, 71, 139, 122, 193, 245, 247, 130, 33, 71, 21, 162,\n 153, 158, 159, 170, 169, 150, 188, 174, 196, 216, 186, 92, 144, 160, 161, 2, 97, 167, 141, 125, 241, 164, 167, 37, 72, 38, 12, 145, 159, 160, 38, 82, 13,\n 63, 68, 71, 226, 35, 111, 158, 153, 154, 101, 50, 205, 206, 92, 165, 209, 198, 217, 165, 167, 97, 220, 115, 218, 133, 112, 243, 239, 238, 241, 214,\n 135, 169, 190, 173, 133, 171, 208, 32, 125, 44, 237, 86, 87, 178, 85, 86, 179, 84, 85, 180, 83, 84, 181, 201, 83, 182, 137, 93, 132, 76, 62, 183, 61,\n 76, 184, 57, 61, 185, 212, 57, 186, 214, 207, 187, 34, 143, 156, 79, 239, 237, 123, 137, 177, 44, 1, 4, 201, 194, 32, 64, 102, 129, 213, 215, 138, 59,\n 166, 219, 242, 99, 97, 2, 94, 141, 75, 59, 235, 24, 110, 228, 25, 130, 226, 23, 24, 229, 22, 23, 230, 26, 22, 231, 112, 26, 232, 189, 190, 243, 221, 56,\n 190, 28, 56, 221, 27, 28, 222, 29, 27, 223, 30, 29, 224, 247, 30, 225, 238, 79, 20, 166, 59, 75, 60, 75, 240, 147, 177, 215, 20, 79, 166, 187, 147, 213,\n 112, 233, 244, 233, 128, 245, 128, 114, 188, 114, 217, 174, 131, 115, 220, 217, 198, 236, 198, 131, 134, 177, 132, 58, 143, 35, 124, 110, 163, 7, 228,\n 110, 25, 356, 389, 368, 11, 302, 267, 452, 350, 349, 302, 303, 269, 357, 343, 277, 452, 453, 357, 333, 332, 297, 175, 152, 377, 384, 398, 382, 347,\n 348, 330, 303, 304, 270, 9, 336, 337, 278, 279, 360, 418, 262, 431, 304, 408, 409, 310, 415, 407, 270, 409, 410, 450, 348, 347, 422, 430, 434, 313,\n 314, 17, 306, 307, 375, 387, 388, 260, 286, 414, 398, 335, 406, 418, 364, 367, 416, 423, 358, 327, 251, 284, 298, 281, 5, 4, 373, 374, 253, 307, 320,\n 321, 425, 427, 411, 421, 313, 18, 321, 405, 406, 320, 404, 405, 315, 16, 17, 426, 425, 266, 377, 400, 369, 322, 391, 269, 417, 465, 464, 386, 257, 258,\n 466, 260, 388, 456, 399, 419, 284, 332, 333, 417, 285, 8, 346, 340, 261, 413, 441, 285, 327, 460, 328, 355, 371, 329, 392, 439, 438, 382, 341, 256,\n 429, 420, 360, 364, 394, 379, 277, 343, 437, 443, 444, 283, 275, 440, 363, 431, 262, 369, 297, 338, 337, 273, 375, 321, 450, 451, 349, 446, 342, 467,\n 293, 334, 282, 458, 461, 462, 276, 353, 383, 308, 324, 325, 276, 300, 293, 372, 345, 447, 382, 398, 362, 352, 345, 340, 274, 1, 19, 456, 248, 281, 436,\n 427, 425, 381, 256, 252, 269, 391, 393, 200, 199, 428, 266, 330, 329, 287, 273, 422, 250, 462, 328, 258, 286, 384, 265, 353, 342, 387, 259, 257, 424,\n 431, 430, 342, 353, 276, 273, 335, 424, 292, 325, 307, 366, 447, 345, 271, 303, 302, 423, 266, 371, 294, 455, 460, 279, 278, 294, 271, 272, 304, 432,\n 434, 427, 272, 407, 408, 394, 430, 431, 395, 369, 400, 334, 333, 299, 351, 417, 168, 352, 280, 411, 325, 319, 320, 295, 296, 336, 319, 403, 404, 330,\n 348, 349, 293, 298, 333, 323, 454, 447, 15, 16, 315, 358, 429, 279, 14, 15, 316, 285, 336, 9, 329, 349, 350, 374, 380, 252, 318, 402, 403, 6, 197, 419,\n 318, 319, 325, 367, 364, 365, 435, 367, 397, 344, 438, 439, 272, 271, 311, 195, 5, 281, 273, 287, 291, 396, 428, 199, 311, 271, 268, 283, 444, 445,\n 373, 254, 339, 263, 466, 249, 282, 334, 296, 449, 347, 346, 264, 447, 454, 336, 296, 299, 338, 10, 151, 278, 439, 455, 292, 407, 415, 358, 371, 355,\n 340, 345, 372, 390, 249, 466, 346, 347, 280, 442, 443, 282, 19, 94, 370, 441, 442, 295, 248, 419, 197, 263, 255, 359, 440, 275, 274, 300, 383, 368,\n 351, 412, 465, 263, 467, 466, 301, 368, 389, 380, 374, 386, 395, 378, 379, 412, 351, 419, 436, 426, 322, 373, 390, 388, 2, 164, 393, 370, 462, 461,\n 164, 0, 267, 302, 11, 12, 374, 373, 387, 268, 12, 13, 293, 300, 301, 446, 261, 340, 385, 384, 381, 330, 266, 425, 426, 423, 391, 429, 355, 437, 391,\n 327, 326, 440, 457, 438, 341, 382, 362, 459, 457, 461, 434, 430, 394, 414, 463, 362, 396, 369, 262, 354, 461, 457, 316, 403, 402, 315, 404, 403, 314,\n 405, 404, 313, 406, 405, 421, 418, 406, 366, 401, 361, 306, 408, 407, 291, 409, 408, 287, 410, 409, 432, 436, 410, 434, 416, 411, 264, 368, 383, 309,\n 438, 457, 352, 376, 401, 274, 275, 4, 421, 428, 262, 294, 327, 358, 433, 416, 367, 289, 455, 439, 462, 370, 326, 2, 326, 370, 305, 460, 455, 254,\n 449, 448, 255, 261, 446, 253, 450, 449, 252, 451, 450, 256, 452, 451, 341, 453, 452, 413, 464, 463, 441, 413, 414, 258, 442, 441, 257, 443, 442, 259,\n 444, 443, 260, 445, 444, 467, 342, 445, 459, 458, 250, 289, 392, 290, 290, 328, 460, 376, 433, 435, 250, 290, 392, 411, 416, 433, 341, 463, 464, 453,\n 464, 465, 357, 465, 412, 343, 412, 399, 360, 363, 440, 437, 399, 456, 420, 456, 363, 401, 435, 288, 372, 383, 353, 339, 255, 249, 448, 261, 255, 133,\n 243, 190, 133, 155, 112, 33, 246, 247, 33, 130, 25, 398, 384, 286, 362, 398, 414, 362, 463, 341, 263, 359, 467, 263, 249, 255, 466, 467, 260, 75, 60,\n 166, 238, 239, 79, 162, 127, 139, 72, 11, 37, 121, 232, 120, 73, 72, 39, 114, 128, 47, 233, 232, 128, 103, 104, 67, 152, 175, 148, 173, 157, 155,\n 119, 118, 101, 74, 73, 40, 107, 9, 108, 49, 48, 131, 32, 194, 211, 184, 74, 185, 191, 80, 183, 185, 40, 186, 119, 230, 118, 210, 202, 214, 84, 83, 17,\n 77, 76, 146, 161, 160, 30, 190, 56, 173, 182, 106, 194, 138, 135, 192, 129, 203, 98, 54, 21, 68, 5, 51, 4, 145, 144, 23, 90, 77, 91, 207, 205, 187, 83,\n 201, 18, 181, 91, 182, 180, 90, 181, 16, 85, 17, 205, 206, 36, 176, 148, 140, 165, 92, 39, 245, 193, 244, 27, 159, 28, 30, 247, 161, 174, 236, 196,\n 103, 54, 104, 55, 193, 8, 111, 117, 31, 221, 189, 55, 240, 98, 99, 142, 126, 100, 219, 166, 218, 112, 155, 26, 198, 209, 131, 169, 135, 150, 114, 47,\n 217, 224, 223, 53, 220, 45, 134, 32, 211, 140, 109, 67, 108, 146, 43, 91, 231, 230, 120, 113, 226, 247, 105, 63, 52, 241, 238, 242, 124, 46, 156, 95,\n 78, 96, 70, 46, 63, 116, 143, 227, 116, 123, 111, 1, 44, 19, 3, 236, 51, 207, 216, 205, 26, 154, 22, 165, 39, 167, 199, 200, 208, 101, 36, 100, 43,\n 57, 202, 242, 20, 99, 56, 28, 157, 124, 35, 113, 29, 160, 27, 211, 204, 210, 124, 113, 46, 106, 43, 204, 96, 62, 77, 227, 137, 116, 73, 41, 72, 36, 203,\n 142, 235, 64, 240, 48, 49, 64, 42, 41, 74, 214, 212, 207, 183, 42, 184, 210, 169, 211, 140, 170, 176, 104, 105, 69, 193, 122, 168, 50, 123, 187, 89, 96,\n 90, 66, 65, 107, 179, 89, 180, 119, 101, 120, 68, 63, 104, 234, 93, 227, 16, 15, 85, 209, 129, 49, 15, 14, 86, 107, 55, 9, 120, 100, 121, 153, 145, 22,\n 178, 88, 179, 197, 6, 196, 89, 88, 96, 135, 138, 136, 138, 215, 172, 218, 115, 219, 41, 42, 81, 5, 195, 51, 57, 43, 61, 208, 171, 199, 41, 81, 38,\n 224, 53, 225, 24, 144, 110, 105, 52, 66, 118, 229, 117, 227, 34, 234, 66, 107, 69, 10, 109, 151, 219, 48, 235, 183, 62, 191, 142, 129, 126, 116, 111,\n 143, 7, 163, 246, 118, 117, 50, 223, 222, 52, 94, 19, 141, 222, 221, 65, 196, 3, 197, 45, 220, 44, 156, 70, 139, 188, 122, 245, 139, 71, 162, 145,\n 153, 159, 149, 170, 150, 122, 188, 196, 206, 216, 92, 163, 144, 161, 164, 2, 167, 242, 141, 241, 0, 164, 37, 11, 72, 12, 144, 145, 160, 12, 38, 13, 70,\n 63, 71, 31, 226, 111, 157, 158, 154, 36, 101, 205, 203, 206, 165, 126, 209, 217, 98, 165, 97, 237, 220, 218, 237, 239, 241, 210, 214, 169, 140, 171, 32,\n 241, 125, 237, 179, 86, 178, 180, 85, 179, 181, 84, 180, 182, 83, 181, 194, 201, 182, 177, 137, 132, 184, 76, 183, 185, 61, 184, 186, 57, 185, 216, 212,\n 186, 192, 214, 187, 139, 34, 156, 218, 79, 237, 147, 123, 177, 45, 44, 4, 208, 201, 32, 98, 64, 129, 192, 213, 138, 235, 59, 219, 141, 242, 97, 97, 2,\n 141, 240, 75, 235, 229, 24, 228, 31, 25, 226, 230, 23, 229, 231, 22, 230, 232, 26, 231, 233, 112, 232, 244, 189, 243, 189, 221, 190, 222, 28, 221,\n 223, 27, 222, 224, 29, 223, 225, 30, 224, 113, 247, 225, 99, 60, 240, 213, 147, 215, 60, 20, 166, 192, 187, 213, 243, 112, 244, 244, 233, 245, 245,\n 128, 188, 188, 114, 174, 134, 131, 220, 174, 217, 236, 236, 198, 134, 215, 177, 58, 156, 143, 124, 25, 110, 7, 31, 228, 25, 264, 356, 368, 0, 11, 267,\n 451, 452, 349, 267, 302, 269, 350, 357, 277, 350, 452, 357, 299, 333, 297, 396, 175, 377, 381, 384, 382, 280, 347, 330, 269, 303, 270, 151, 9, 337,\n 344, 278, 360, 424, 418, 431, 270, 304, 409, 272, 310, 407, 322, 270, 410, 449, 450, 347, 432, 422, 434, 18, 313, 17, 291, 306, 375, 259, 387, 260,\n 424, 335, 418, 434, 364, 416, 391, 423, 327, 301, 251, 298, 275, 281, 4, 254, 373, 253, 375, 307, 321, 280, 425, 411, 200, 421, 18, 335, 321, 406,\n 321, 320, 405, 314, 315, 17, 423, 426, 266, 396, 377, 369, 270, 322, 269, 413, 417, 464, 385, 386, 258, 248, 456, 419, 298, 284, 333, 168, 417, 8,\n 448, 346, 261, 417, 413, 285, 326, 327, 328, 277, 355, 329, 309, 392, 438, 381, 382, 256, 279, 429, 360, 365, 364, 379, 355, 277, 437, 282, 443, 283,\n 281, 275, 363, 395, 431, 369, 299, 297, 337, 335, 273, 321, 348, 450, 349, 359, 446, 467, 283, 293, 282, 250, 458, 462, 300, 276, 383, 292, 308, 325,\n 283, 276, 293, 264, 372, 447, 346, 352, 340, 354, 274, 19, 363, 456, 281, 426, 436, 425, 380, 381, 252, 267, 269, 393, 421, 200, 428, 371, 266, 329,\n 432, 287, 422, 290, 250, 328, 385, 258, 384, 446, 265, 342, 386, 387, 257, 422, 424, 430, 445, 342, 276, 422, 273, 424, 306, 292, 307, 352, 366, 345,\n 268, 271, 302, 358, 423, 371, 327, 294, 460, 331, 279, 294, 303, 271, 304, 436, 432, 427, 304, 272, 408, 395, 394, 431, 378, 395, 400, 296, 334, 299,\n 6, 351, 168, 376, 352, 411, 307, 325, 320, 285, 295, 336, 320, 319, 404, 329, 330, 349, 334, 293, 333, 366, 323, 447, 316, 15, 315, 331, 358, 279,\n 317, 14, 316, 8, 285, 9, 277, 329, 350, 253, 374, 252, 319, 318, 403, 351, 6, 419, 324, 318, 325, 397, 367, 365, 288, 435, 397, 278, 344, 439, 310,\n 272, 311, 248, 195, 281, 375, 273, 291, 175, 396, 199, 312, 311, 268, 276, 283, 445, 390, 373, 339, 295, 282, 296, 448, 449, 346, 356, 264, 454, 337,\n 336, 299, 337, 338, 151, 294, 278, 455, 308, 292, 415, 429, 358, 355, 265, 340, 372, 388, 390, 466, 352, 346, 280, 295, 442, 282, 354, 19, 370, 285,\n 441, 295, 195, 248, 197, 457, 440, 274, 301, 300, 368, 417, 351, 465, 251, 301, 389, 385, 380, 386, 394, 395, 379, 399, 412, 419, 410, 436, 322, 387,\n 373, 388, 326, 2, 393, 354, 370, 461, 393, 164, 267, 268, 302, 12, 386, 374, 387, 312, 268, 13, 298, 293, 301, 265, 446, 340, 380, 385, 381, 280, 330,\n 425, 322, 426, 391, 420, 429, 437, 393, 391, 326, 344, 440, 438, 458, 459, 461, 364, 434, 394, 428, 396, 262, 274, 354, 457, 317, 316, 402, 316, 315,\n 403, 315, 314, 404, 314, 313, 405, 313, 421, 406, 323, 366, 361, 292, 306, 407, 306, 291, 408, 291, 287, 409, 287, 432, 410, 427, 434, 411, 372, 264,\n 383, 459, 309, 457, 366, 352, 401, 1, 274, 4, 418, 421, 262, 331, 294, 358, 435, 433, 367, 392, 289, 439, 328, 462, 326, 94, 2, 370, 289, 305, 455, 339,\n 254, 448, 359, 255, 446, 254, 253, 449, 253, 252, 450, 252, 256, 451, 256, 341, 452, 414, 413, 463, 286, 441, 414, 286, 258, 441, 258, 257, 442, 257,\n 259, 443, 259, 260, 444, 260, 467, 445, 309, 459, 250, 305, 289, 290, 305, 290, 460, 401, 376, 435, 309, 250, 392, 376, 411, 433, 453, 341, 464, 357,\n 453, 465, 343, 357, 412, 437, 343, 399, 344, 360, 440, 420, 437, 456, 360, 420, 363, 361, 401, 288, 265, 372, 353, 390, 339, 249, 339, 448, 255];\n\nexport const TRI68 = [0, 1, 36, 0, 36, 17, 1, 2, 41, 1, 41, 36, 2, 3, 31, 2, 31, 41, 3, 4, 48, 3, 48, 31, 4, 5, 48, 5, 6, 48, 6, 7, 59, 6, 59, 48, 7, 8, 58, 7, 58, 59,\n 8, 9, 56, 8, 56, 57, 8, 57, 58, 9, 10, 55, 9, 55, 56, 10, 11, 54, 10, 54, 55, 11, 12, 54, 12, 13, 54, 13, 14, 35, 13, 35, 54, 14, 15, 46, 14, 46, 35, 15, 16,\n 45, 15, 45, 46, 16, 26, 45, 17, 36, 18, 18, 37, 19, 18, 36, 37, 19, 38, 20, 19, 37, 38, 20, 39, 21, 20, 38, 39, 21, 39, 27, 22, 42, 23, 22, 27, 42, 23, 43, 24,\n 23, 42, 43, 24, 44, 25, 24, 43, 44, 25, 45, 26, 25, 44, 45, 27, 39, 28, 27, 28, 42, 28, 39, 29, 28, 29, 42, 29, 31, 30, 29, 30, 35, 29, 40, 31, 29, 35, 47, 29,\n 39, 40, 29, 47, 42, 30, 31, 32, 30, 32, 33, 30, 33, 34, 30, 34, 35, 31, 50, 32, 31, 40, 41, 31, 48, 49, 31, 49, 50, 32, 51, 33, 32, 50, 51, 33, 51, 34, 34, 52,\n 35, 34, 51, 52, 35, 46, 47, 35, 52, 53, 35, 53, 54, 36, 41, 37, 37, 40, 38, 37, 41, 40, 38, 40, 39, 42, 47, 43, 43, 47, 44, 44, 46, 45, 44, 47, 46, 48, 60, 49,\n 48, 59, 60, 49, 61, 50, 49, 60, 61, 50, 62, 51, 50, 61, 62, 51, 62, 52, 52, 63, 53, 52, 62, 63, 53, 64, 54, 53, 63, 64, 54, 64, 55, 55, 65, 56, 55, 64, 65, 56,\n 66, 57, 56, 65, 66, 57, 66, 58, 58, 67, 59, 58, 66, 67, 59, 67, 60, 60, 67, 61, 61, 66, 62, 61, 67, 66, 62, 66, 63, 63, 65, 64, 63, 66, 65, 21, 27, 22];\n\nexport const TRI33 = [\n /* eyes */ 0, 8, 7, 7, 8, 1, 2, 10, 9, 9, 10, 3,\n /* brows */ 17, 0, 18, 18, 0, 7, 18, 7, 19, 19, 7, 1, 19, 1, 11, 19, 11, 20, 21, 3, 22, 21, 9, 3, 20, 9, 21, 20, 2, 9, 20, 11, 2,\n /* 4head */ 23, 17, 18, 25, 21, 22, 24, 19, 20, 24, 18, 19, 24, 20, 21, 24, 23, 18, 24, 21, 25,\n /* nose */ 11, 12, 4, 11, 4, 13, 1, 12, 11, 11, 13, 2, 12, 14, 4, 4, 14, 13,\n /* up-lip */ 14, 5, 15, 14, 15, 6, 12, 5, 14, 14, 6, 13,\n /* cheeks */ 8, 12, 1, 2, 13, 10, 8, 26, 12, 10, 13, 27, 26, 5, 12, 13, 6, 27, 0, 26, 8, 10, 27, 3,\n /* chin */ 5, 32, 16, 16, 32, 6, 5, 30, 32, 6, 32, 31,\n /* cont */ 26, 30, 5, 27, 6, 31, 0, 28, 26, 3, 27, 29, 17, 28, 0, 3, 29, 22, 23, 28, 17, 22, 29, 25, 28, 30, 26, 27, 31, 29,\n];\n\nexport const TRI7 = [0, 4, 1, 2, 4, 3, 4, 5, 6];\n\nexport const VTX68 = [\n /* cont */ 127, 234, 132, 58, 172, 150, 149, 148, 152, 377, 378, 379, 397, 288, 361, 454, 356,\n /* brows */ 70, 63, 105, 66, 107, 336, 296, 334, 293, 300,\n /* nose */ 168, 6, 195, 4, 98, 97, 2, 326, 327,\n /* eyes */ 33, 160, 158, 133, 153, 144, 362, 385, 387, 263, 373, 380,\n /* lip */ 57, 40, 37, 0, 267, 270, 287, 321, 314, 17, 84, 91,\n /* mouth */ 78, 81, 13, 311, 308, 402, 14, 178,\n];\n\nexport const VTX33 = [33, 133, 362, 263, 1, 62, 308, 159, 145, 386, 374, 6, 102, 331, 2, 13, 14, 70, 105, 107, 336, 334, 300, 54, 10, 284, 50, 280, 234, 454, 58, 288, 152];\n\nexport const VTX7 = [33, 133, 362, 263, 1, 78, 308];\n\nexport const UV68 = VTX68.map((x) => UV468[x]);\n\nexport const UV33 = VTX33.map((x) => UV468[x]);\n\nexport const UV7 = VTX7.map((x) => UV468[x]);\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as bounding from './box';\nimport * as util from './util';\nimport * as coords from './coords';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { BlazeFaceModel } from './blazeface';\n\nconst leftOutline = coords.MESH_ANNOTATIONS['leftEyeLower0'];\nconst rightOutline = coords.MESH_ANNOTATIONS['rightEyeLower0'];\n\nconst eyeLandmarks = {\n leftBounds: [leftOutline[0], leftOutline[leftOutline.length - 1]],\n rightBounds: [rightOutline[0], rightOutline[rightOutline.length - 1]],\n};\n\nconst meshLandmarks = {\n count: 468,\n mouth: 13,\n symmetryLine: [13, coords.MESH_ANNOTATIONS['midwayBetweenEyes'][0]],\n};\n\nconst blazeFaceLandmarks = {\n leftEye: 0,\n rightEye: 1,\n nose: 2,\n mouth: 3,\n leftEar: 4,\n rightEar: 5,\n symmetryLine: [3, 2],\n};\n\nconst irisLandmarks = {\n upperCenter: 3,\n lowerCenter: 4,\n index: 71,\n numCoordinates: 76,\n};\n\n// Replace the raw coordinates returned by facemesh with refined iris model coordinates\n// Update the z coordinate to be an average of the original and the new.\nfunction replaceRawCoordinates(rawCoords, newCoords, prefix, keys) {\n for (let i = 0; i < coords.MESH_TO_IRIS_INDICES_MAP.length; i++) {\n const { key, indices } = coords.MESH_TO_IRIS_INDICES_MAP[i];\n const originalIndices = coords.MESH_ANNOTATIONS[`${prefix}${key}`];\n if (!keys || keys.includes(key)) {\n for (let j = 0; j < indices.length; j++) {\n const index = indices[j];\n rawCoords[originalIndices[j]] = [\n newCoords[index][0], newCoords[index][1],\n (newCoords[index][2] + rawCoords[originalIndices[j]][2]) / 2,\n ];\n }\n }\n }\n}\n// The Pipeline coordinates between the bounding box and skeleton models.\nexport class Pipeline {\n storedBoxes: Array<{ startPoint: number[], endPoint: number[], landmarks: Array, confidence: number, faceConfidence?: number }>;\n boundingBoxDetector: BlazeFaceModel; // tf.GraphModel\n meshDetector: GraphModel; // tf.GraphModel\n irisModel: GraphModel; // tf.GraphModel\n boxSize: number;\n meshSize: number;\n irisSize: number;\n irisEnlarge: number;\n skipped: number;\n detectedFaces: number;\n\n constructor(boundingBoxDetector, meshDetector, irisModel) {\n // An array of facial bounding boxes.\n this.storedBoxes = [];\n this.boundingBoxDetector = boundingBoxDetector;\n this.meshDetector = meshDetector;\n this.irisModel = irisModel;\n this.boxSize = boundingBoxDetector?.model?.inputs[0].shape[2] || 0;\n this.meshSize = meshDetector?.inputs[0].shape[2] || boundingBoxDetector?.model?.inputs[0].shape[2];\n this.irisSize = irisModel?.inputs[0].shape[1] || 0;\n this.irisEnlarge = 2.3;\n this.skipped = 0;\n this.detectedFaces = 0;\n }\n\n transformRawCoords(rawCoords, box, angle, rotationMatrix) {\n const boxSize = bounding.getBoxSize({ startPoint: box.startPoint, endPoint: box.endPoint });\n const coordsScaled = rawCoords.map((coord) => ([\n boxSize[0] / this.meshSize * (coord[0] - this.meshSize / 2),\n boxSize[1] / this.meshSize * (coord[1] - this.meshSize / 2),\n coord[2],\n ]));\n const coordsRotationMatrix = (angle !== 0) ? util.buildRotationMatrix(angle, [0, 0]) : util.IDENTITY_MATRIX;\n const coordsRotated = (angle !== 0) ? coordsScaled.map((coord) => ([...util.rotatePoint(coord, coordsRotationMatrix), coord[2]])) : coordsScaled;\n const inverseRotationMatrix = (angle !== 0) ? util.invertTransformMatrix(rotationMatrix) : util.IDENTITY_MATRIX;\n const boxCenter = [...bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint }), 1];\n return coordsRotated.map((coord) => ([\n Math.round(coord[0] + util.dot(boxCenter, inverseRotationMatrix[0])),\n Math.round(coord[1] + util.dot(boxCenter, inverseRotationMatrix[1])),\n Math.round(coord[2]),\n ]));\n }\n\n // eslint-disable-next-line class-methods-use-this\n getLeftToRightEyeDepthDifference(rawCoords) {\n const leftEyeZ = rawCoords[eyeLandmarks.leftBounds[0]][2];\n const rightEyeZ = rawCoords[eyeLandmarks.rightBounds[0]][2];\n return leftEyeZ - rightEyeZ;\n }\n\n // Returns a box describing a cropped region around the eye fit for passing to the iris model.\n getEyeBox(rawCoords, face, eyeInnerCornerIndex, eyeOuterCornerIndex, flip = false) {\n const box = bounding.squarifyBox(bounding.enlargeBox(bounding.calculateLandmarksBoundingBox([rawCoords[eyeInnerCornerIndex], rawCoords[eyeOuterCornerIndex]]), this.irisEnlarge));\n const boxSize = bounding.getBoxSize(box);\n let crop = tf.image.cropAndResize(face, [[\n box.startPoint[1] / this.meshSize,\n box.startPoint[0] / this.meshSize, box.endPoint[1] / this.meshSize,\n box.endPoint[0] / this.meshSize,\n ]], [0], [this.irisSize, this.irisSize]);\n if (flip && tf.ENV.flags.IS_BROWSER) {\n crop = tf.image.flipLeftRight(crop); // flipLeftRight is not defined for tfjs-node\n }\n return { box, boxSize, crop };\n }\n\n // Given a cropped image of an eye, returns the coordinates of the contours surrounding the eye and the iris.\n getEyeCoords(eyeData, eyeBox, eyeBoxSize, flip = false) {\n const eyeRawCoords: Array<[number, number, number]> = [];\n for (let i = 0; i < irisLandmarks.numCoordinates; i++) {\n const x = eyeData[i * 3];\n const y = eyeData[i * 3 + 1];\n const z = eyeData[i * 3 + 2];\n eyeRawCoords.push([\n (flip ? (1 - (x / this.irisSize)) : (x / this.irisSize)) * eyeBoxSize[0] + eyeBox.startPoint[0],\n (y / this.irisSize) * eyeBoxSize[1] + eyeBox.startPoint[1], z,\n ]);\n }\n return { rawCoords: eyeRawCoords, iris: eyeRawCoords.slice(irisLandmarks.index) };\n }\n\n // The z-coordinates returned for the iris are unreliable, so we take the z values from the surrounding keypoints.\n // eslint-disable-next-line class-methods-use-this\n getAdjustedIrisCoords(rawCoords, irisCoords, direction) {\n const upperCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeUpper0`][irisLandmarks.upperCenter]][2];\n const lowerCenterZ = rawCoords[coords.MESH_ANNOTATIONS[`${direction}EyeLower0`][irisLandmarks.lowerCenter]][2];\n const averageZ = (upperCenterZ + lowerCenterZ) / 2;\n // Iris indices: 0: center | 1: right | 2: above | 3: left | 4: below\n return irisCoords.map((coord, i) => {\n let z = averageZ;\n if (i === 2) {\n z = upperCenterZ;\n } else if (i === 4) {\n z = lowerCenterZ;\n }\n return [coord[0], coord[1], z];\n });\n }\n\n async predict(input, config) {\n let useFreshBox = false;\n // run new detector every skipFrames unless we only want box to start with\n let detector;\n if ((this.skipped === 0) || (this.skipped > config.face.detector.skipFrames) || !config.face.mesh.enabled || !config.skipFrame) {\n detector = await this.boundingBoxDetector.getBoundingBoxes(input, config);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (!config.skipFrame || (detector && detector.boxes && (!config.face.mesh.enabled || (detector.boxes.length !== this.detectedFaces) && (this.detectedFaces !== config.face.detector.maxDetected)))) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n for (const possible of detector.boxes) {\n this.storedBoxes.push({ startPoint: possible.box.startPoint.dataSync(), endPoint: possible.box.endPoint.dataSync(), landmarks: possible.landmarks.arraySync(), confidence: possible.confidence });\n }\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n\n if (useFreshBox) {\n if (!detector || !detector.boxes || (detector.boxes.length === 0)) {\n this.storedBoxes = [];\n this.detectedFaces = 0;\n return null;\n }\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const scaledBox = bounding.scaleBoxCoordinates({ startPoint: this.storedBoxes[i].startPoint, endPoint: this.storedBoxes[i].endPoint }, detector.scaleFactor);\n const enlargedBox = bounding.enlargeBox(scaledBox);\n const squarifiedBox = bounding.squarifyBox(enlargedBox);\n const landmarks = this.storedBoxes[i].landmarks;\n const confidence = this.storedBoxes[i].confidence;\n this.storedBoxes[i] = { ...squarifiedBox, confidence, landmarks };\n }\n }\n if (detector && detector.boxes) {\n detector.boxes.forEach((prediction) => {\n prediction.box.startPoint.dispose();\n prediction.box.endPoint.dispose();\n prediction.landmarks.dispose();\n });\n }\n const results = tf.tidy(() => this.storedBoxes.map((box, i) => {\n // The facial bounding box landmarks could come either from blazeface (if we are using a fresh box), or from the mesh model (if we are reusing an old box).\n let face;\n let angle = 0;\n let rotationMatrix;\n\n if (config.face.detector.rotation && config.face.mesh.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input, angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.boxSize, this.boxSize]).div(255);\n } else {\n rotationMatrix = util.IDENTITY_MATRIX;\n const clonedImage = input.clone();\n if (config.face.mesh.enabled) face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.meshSize, this.meshSize]).div(255);\n else face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, clonedImage, [this.boxSize, this.boxSize]).div(255);\n }\n\n // if we're not going to produce mesh, don't spend time with further processing\n if (!config.face.mesh.enabled) {\n const prediction = {\n mesh: [],\n box,\n faceConfidence: null,\n boxConfidence: box.confidence,\n confidence: box.confidence,\n image: face,\n };\n return prediction;\n }\n\n const [, confidence, contourCoords] = this.meshDetector.execute(face) as Array; // The first returned tensor represents facial contours which are already included in the coordinates.\n const faceConfidence = confidence.dataSync()[0] as number;\n if (faceConfidence < config.face.detector.minConfidence) {\n this.storedBoxes[i].confidence = faceConfidence; // reset confidence of cached box\n return null; // if below confidence just exit\n }\n const coordsReshaped = tf.reshape(contourCoords, [-1, 3]);\n let rawCoords = coordsReshaped.arraySync();\n\n if (config.face.iris.enabled) {\n const { box: leftEyeBox, boxSize: leftEyeBoxSize, crop: leftEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.leftBounds[0], eyeLandmarks.leftBounds[1], true);\n const { box: rightEyeBox, boxSize: rightEyeBoxSize, crop: rightEyeCrop } = this.getEyeBox(rawCoords, face, eyeLandmarks.rightBounds[0], eyeLandmarks.rightBounds[1]);\n const eyePredictions = this.irisModel.predict(tf.concat([leftEyeCrop, rightEyeCrop])) as Tensor;\n const eyePredictionsData = eyePredictions.dataSync();\n const leftEyeData = eyePredictionsData.slice(0, irisLandmarks.numCoordinates * 3);\n const { rawCoords: leftEyeRawCoords, iris: leftIrisRawCoords } = this.getEyeCoords(leftEyeData, leftEyeBox, leftEyeBoxSize, true);\n const rightEyeData = eyePredictionsData.slice(irisLandmarks.numCoordinates * 3);\n const { rawCoords: rightEyeRawCoords, iris: rightIrisRawCoords } = this.getEyeCoords(rightEyeData, rightEyeBox, rightEyeBoxSize);\n const leftToRightEyeDepthDifference = this.getLeftToRightEyeDepthDifference(rawCoords);\n if (Math.abs(leftToRightEyeDepthDifference) < 30) { // User is looking straight ahead.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', null);\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', null);\n // If the user is looking to the left or to the right, the iris coordinates tend to diverge too much from the mesh coordinates for them to be merged\n // So we only update a single contour line above and below the eye.\n } else if (leftToRightEyeDepthDifference < 1) { // User is looking towards the right.\n replaceRawCoordinates(rawCoords, leftEyeRawCoords, 'left', ['EyeUpper0', 'EyeLower0']);\n } else { // User is looking towards the left.\n replaceRawCoordinates(rawCoords, rightEyeRawCoords, 'right', ['EyeUpper0', 'EyeLower0']);\n }\n const adjustedLeftIrisCoords = this.getAdjustedIrisCoords(rawCoords, leftIrisRawCoords, 'left');\n const adjustedRightIrisCoords = this.getAdjustedIrisCoords(rawCoords, rightIrisRawCoords, 'right');\n rawCoords = rawCoords.concat(adjustedLeftIrisCoords).concat(adjustedRightIrisCoords);\n }\n\n // override box from detection with one calculated from mesh\n const mesh = this.transformRawCoords(rawCoords, box, angle, rotationMatrix);\n const storeConfidence = box.confidence;\n // @ts-ignore enlargeBox does not include confidence so we append it manually\n box = bounding.enlargeBox(bounding.calculateLandmarksBoundingBox(mesh), 1.5); // redefine box with mesh calculated one\n box.confidence = storeConfidence;\n\n // do rotation one more time with mesh keypoints if we want to return perfect image\n if (config.face.detector.rotation && config.face.mesh.enabled && config.face.description.enabled && tf.ENV.flags.IS_BROWSER) {\n const [indexOfMouth, indexOfForehead] = (box.landmarks.length >= meshLandmarks.count) ? meshLandmarks.symmetryLine : blazeFaceLandmarks.symmetryLine;\n angle = util.computeRotation(box.landmarks[indexOfMouth], box.landmarks[indexOfForehead]);\n const faceCenter = bounding.getBoxCenter({ startPoint: box.startPoint, endPoint: box.endPoint });\n const faceCenterNormalized = [faceCenter[0] / input.shape[2], faceCenter[1] / input.shape[1]];\n const rotatedImage = tf.image.rotateWithOffset(input.toFloat(), angle, 0, faceCenterNormalized); // rotateWithOffset is not defined for tfjs-node\n rotationMatrix = util.buildRotationMatrix(-angle, faceCenter);\n face = bounding.cutBoxFromImageAndResize({ startPoint: box.startPoint, endPoint: box.endPoint }, rotatedImage, [this.meshSize, this.meshSize]).div(255);\n }\n\n const prediction = {\n mesh,\n box,\n faceConfidence,\n boxConfidence: box.confidence,\n image: face,\n };\n\n // updated stored cache values\n this.storedBoxes[i] = { ...bounding.squarifyBox(box), confidence: box.confidence, faceConfidence };\n\n return prediction;\n }));\n\n // results = results.filter((a) => a !== null);\n // remove cache entries for detected boxes on low confidence\n if (config.face.mesh.enabled) this.storedBoxes = this.storedBoxes.filter((a) => a.confidence > config.face.detector.minConfidence);\n this.detectedFaces = results.length;\n\n return results;\n }\n}\n", "/**\n * FaceMesh & BlazeFace Module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as blazeface from './blazeface';\nimport * as facepipeline from './facepipeline';\nimport * as coords from './coords';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Face } from '../result';\nimport { Config } from '../config';\n\nlet faceModels: [blazeface.BlazeFaceModel | null, GraphModel | null, GraphModel | null] = [null, null, null];\nlet facePipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await facePipeline.predict(input, config);\n const results: Array = [];\n let id = 0;\n for (const prediction of (predictions || [])) {\n if (!prediction || prediction.isDisposedInternal) continue; // guard against disposed tensors on long running operations such as pause in middle of processing\n const meshRaw = prediction.mesh.map((pt) => [\n pt[0] / (input.shape[2] || 0),\n pt[1] / (input.shape[1] || 0),\n pt[2] / facePipeline.meshSize,\n ]);\n const annotations = {};\n if (prediction.mesh && prediction.mesh.length > 0) {\n for (const key of Object.keys(coords.MESH_ANNOTATIONS)) annotations[key] = coords.MESH_ANNOTATIONS[key].map((index) => prediction.mesh[index]);\n }\n const clampedBox: [number, number, number, number] = prediction.box ? [\n Math.trunc(Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.max(0, prediction.box.startPoint[1])),\n Math.trunc(Math.min((input.shape[2] || 0), prediction.box.endPoint[0]) - Math.max(0, prediction.box.startPoint[0])),\n Math.trunc(Math.min((input.shape[1] || 0), prediction.box.endPoint[1]) - Math.max(0, prediction.box.startPoint[1])),\n ] : [0, 0, 0, 0];\n const boxRaw: [number, number, number, number] = prediction.box ? [\n prediction.box.startPoint[0] / (input.shape[2] || 0),\n prediction.box.startPoint[1] / (input.shape[1] || 0),\n (prediction.box.endPoint[0] - prediction.box.startPoint[0]) / (input.shape[2] || 0),\n (prediction.box.endPoint[1] - prediction.box.startPoint[1]) / (input.shape[1] || 0),\n ] : [0, 0, 0, 0];\n results.push({\n id: id++,\n score: Math.round(100 * prediction.faceConfidence || 100 * prediction.boxConfidence || 0) / 100,\n boxScore: Math.round(100 * prediction.boxConfidence) / 100,\n faceScore: Math.round(100 * prediction.faceConfidence) / 100,\n box: clampedBox,\n boxRaw,\n mesh: prediction.mesh,\n meshRaw,\n annotations,\n image: prediction.image,\n tensor: prediction.image,\n });\n if (prediction.coords) prediction.coords.dispose();\n }\n return results;\n}\n\nexport async function load(config): Promise<[unknown, GraphModel | null, GraphModel | null]> {\n if ((!faceModels[0] && config.face.enabled) || (!faceModels[1] && config.face.mesh.enabled) || (!faceModels[2] && config.face.iris.enabled)) {\n // @ts-ignore type mismatch for GraphModel\n faceModels = await Promise.all([\n (!faceModels[0] && config.face.enabled) ? blazeface.load(config) : null,\n (!faceModels[1] && config.face.mesh.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.mesh.modelPath), { fromTFHub: config.face.mesh.modelPath.includes('tfhub.dev') }) : null,\n (!faceModels[2] && config.face.iris.enabled) ? tf.loadGraphModel(join(config.modelBasePath, config.face.iris.modelPath), { fromTFHub: config.face.iris.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.face.mesh.enabled) {\n if (!faceModels[1] || !faceModels[1]['modelUrl']) log('load model failed:', config.face.mesh.modelPath);\n else if (config.debug) log('load model:', faceModels[1]['modelUrl']);\n }\n if (config.face.iris.enabled) {\n if (!faceModels[2] || !faceModels[2]['modelUrl']) log('load model failed:', config.face.iris.modelPath);\n else if (config.debug) log('load model:', faceModels[2]['modelUrl']);\n }\n } else if (config.debug) {\n if (faceModels[0]) log('cached model:', faceModels[0].model['modelUrl']);\n if (faceModels[1]) log('cached model:', faceModels[1]['modelUrl']);\n if (faceModels[2]) log('cached model:', faceModels[2]['modelUrl']);\n }\n facePipeline = new facepipeline.Pipeline(faceModels[0], faceModels[1], faceModels[2]);\n return faceModels;\n}\n\nexport const triangulation = coords.TRI468;\nexport const uvmap = coords.UV468;\n", "/**\n * HSE-FaceRes Module\n * Returns Age, Gender, Descriptor\n * Implements Face simmilarity function\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst last: Array<{\n age: number,\n gender: string,\n genderScore: number,\n descriptor: number[],\n}> = [];\n\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\ntype DB = Array<{ name: string, source: string, embedding: number[] }>;\n\nexport async function load(config: Config): Promise {\n const modelUrl = join(config.modelBasePath, config.face.description.modelPath);\n if (!model) {\n // @ts-ignore type mismatch for GraphModel\n model = await tf.loadGraphModel(modelUrl);\n if (!model) log('load model failed:', config.face.description.modelPath);\n else if (config.debug) log('load model:', modelUrl);\n } else if (config.debug) log('cached model:', modelUrl);\n return model;\n}\n\nexport function similarity(embedding1: Array, embedding2: Array, order = 2): number {\n if (!embedding1 || !embedding2) return 0;\n if (embedding1?.length === 0 || embedding2?.length === 0) return 0;\n if (embedding1?.length !== embedding2?.length) return 0;\n // general minkowski distance, euclidean distance is limited case where order is 2\n const distance = 5.0 * embedding1\n .map((_val, i) => (Math.abs(embedding1[i] - embedding2[i]) ** order)) // distance squared\n .reduce((sum, now) => (sum + now), 0) // sum all distances\n ** (1 / order); // get root of\n const res = Math.max(0, 100 - distance) / 100.0;\n return res;\n}\n\nexport function match(embedding: Array, db: DB, threshold = 0) {\n let best = { similarity: 0, name: '', source: '', embedding: [] as number[] };\n if (!embedding || !db || !Array.isArray(embedding) || !Array.isArray(db)) return best;\n for (const f of db) {\n if (f.embedding && f.name) {\n const perc = similarity(embedding, f.embedding);\n if (perc > threshold && perc > best.similarity) best = { ...f, similarity: perc };\n }\n }\n return best;\n}\n\nexport function enhance(input): Tensor {\n const image = tf.tidy(() => {\n // input received from detector is already normalized to 0..1\n // input is also assumed to be straightened\n const tensor = input.image || input.tensor || input;\n if (!(tensor instanceof tf.Tensor)) return null;\n // do a tight crop of image and resize it to fit the model\n const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right\n // const box = [[0.0, 0.0, 1.0, 1.0]]; // basically no crop for test\n if (!model.inputs[0].shape) return null; // model has no shape so no point continuing\n const crop = (tensor.shape.length === 3)\n ? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing\n : tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n\n /*\n // just resize to fit the embedding model instead of cropping\n const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n */\n\n /*\n // convert to black&white to avoid colorization impact\n const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const [red, green, blue] = tf.split(crop, 3, 3);\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);\n */\n\n /*\n // increase image pseudo-contrast 100%\n // (or do it per-channel so mean is done on each channel)\n // (or calculate histogram and do it based on histogram)\n const mean = merge.mean();\n const factor = 2;\n const contrast = merge.sub(mean).mul(factor).add(mean);\n */\n\n /*\n // normalize brightness from 0..1\n // silly way of creating pseudo-hdr of image\n const darken = crop.sub(crop.min());\n const lighten = darken.div(darken.max());\n */\n\n const norm = crop.mul(255);\n\n return norm;\n });\n return image;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.description.skipFrames) && config.skipFrame && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const enhanced = enhance(image);\n\n let resT;\n const obj = {\n age: 0,\n gender: 'unknown',\n genderScore: 0,\n descriptor: [],\n };\n\n if (config.face.description.enabled) resT = await model.predict(enhanced);\n tf.dispose(enhanced);\n\n if (resT) {\n tf.tidy(() => {\n const gender = resT.find((t) => t.shape[1] === 1).dataSync();\n const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;\n if (confidence > config.face.description.minConfidence) {\n obj.gender = gender[0] <= 0.5 ? 'female' : 'male';\n obj.genderScore = Math.min(0.99, confidence);\n }\n const age = resT.find((t) => t.shape[1] === 100).argMax(1).dataSync()[0];\n const all = resT.find((t) => t.shape[1] === 100).dataSync();\n obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;\n\n const desc = resT.find((t) => t.shape[1] === 1024);\n // const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8\n // const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor\n\n obj.descriptor = [...desc.dataSync()];\n });\n resT.forEach((t) => tf.dispose(t));\n }\n\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "/**\n * Emotion Module\n */\n\nimport { log, join } from '../helpers';\nimport { Config } from '../config';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport * as tf from '../../dist/tfjs.esm.js';\n\nconst annotations = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'];\nlet model;\n// let last: Array<{ score: number, emotion: string }> = [];\nconst last: Array> = [];\nlet lastCount = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\n// tuning values\nconst rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.face.emotion.modelPath));\n if (!model || !model.modelUrl) log('load model failed:', config.face.emotion.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config, idx, count) {\n if (!model) return null;\n if ((skipped < config.face.emotion.skipFrames) && config.skipFrame && (lastCount === count) && last[idx] && (last[idx].length > 0)) {\n skipped++;\n return last[idx];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const [red, green, blue] = tf.split(resize, 3, 3);\n resize.dispose();\n // weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html\n const redNorm = tf.mul(red, rgb[0]);\n const greenNorm = tf.mul(green, rgb[1]);\n const blueNorm = tf.mul(blue, rgb[2]);\n red.dispose();\n green.dispose();\n blue.dispose();\n const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);\n redNorm.dispose();\n greenNorm.dispose();\n blueNorm.dispose();\n const normalize = tf.tidy(() => grayscale.sub(0.5).mul(2));\n grayscale.dispose();\n const obj: Array<{ score: number, emotion: string }> = [];\n if (config.face.emotion.enabled) {\n const emotionT = await model.predict(normalize); // result is already in range 0..1, no need for additional activation\n const data = emotionT.dataSync();\n tf.dispose(emotionT);\n for (let i = 0; i < data.length; i++) {\n if (data[i] > config.face.emotion.minConfidence) obj.push({ score: Math.min(0.99, Math.trunc(100 * data[i]) / 100), emotion: annotations[i] });\n }\n obj.sort((a, b) => b.score - a.score);\n }\n normalize.dispose();\n last[idx] = obj;\n lastCount = count;\n resolve(obj);\n });\n}\n", "export const partNames = [\n 'nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder',\n 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist',\n 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle',\n];\n\nexport const count = partNames.length; // 17 keypoints\n\nexport const partIds = partNames.reduce((result, jointName, i) => {\n result[jointName] = i;\n return result;\n}, {});\n\nconst connectedPartNames = [\n ['leftHip', 'leftShoulder'], ['leftElbow', 'leftShoulder'],\n ['leftElbow', 'leftWrist'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['rightHip', 'rightShoulder'],\n ['rightElbow', 'rightShoulder'], ['rightElbow', 'rightWrist'],\n ['rightHip', 'rightKnee'], ['rightKnee', 'rightAnkle'],\n ['leftShoulder', 'rightShoulder'], ['leftHip', 'rightHip'],\n];\nexport const connectedPartIndices = connectedPartNames.map(([jointNameA, jointNameB]) => ([partIds[jointNameA], partIds[jointNameB]]));\n\nexport const poseChain = [\n ['nose', 'leftEye'], ['leftEye', 'leftEar'], ['nose', 'rightEye'],\n ['rightEye', 'rightEar'], ['nose', 'leftShoulder'],\n ['leftShoulder', 'leftElbow'], ['leftElbow', 'leftWrist'],\n ['leftShoulder', 'leftHip'], ['leftHip', 'leftKnee'],\n ['leftKnee', 'leftAnkle'], ['nose', 'rightShoulder'],\n ['rightShoulder', 'rightElbow'], ['rightElbow', 'rightWrist'],\n ['rightShoulder', 'rightHip'], ['rightHip', 'rightKnee'],\n ['rightKnee', 'rightAnkle'],\n];\n", "import * as kpt from './keypoints';\nimport { Body } from '../result';\n\nexport function eitherPointDoesntMeetConfidence(a, b, minConfidence) {\n return (a < minConfidence || b < minConfidence);\n}\n\nexport function getAdjacentKeyPoints(keypoints, minConfidence) {\n return kpt.connectedPartIndices.reduce((result, [leftJoint, rightJoint]) => {\n if (eitherPointDoesntMeetConfidence(keypoints[leftJoint].score, keypoints[rightJoint].score, minConfidence)) {\n return result;\n }\n result.push([keypoints[leftJoint], keypoints[rightJoint]]);\n return result;\n }, []);\n}\n\nexport function getBoundingBox(keypoints): [number, number, number, number] {\n const coord = keypoints.reduce(({ maxX, maxY, minX, minY }, { position: { x, y } }) => ({\n maxX: Math.max(maxX, x),\n maxY: Math.max(maxY, y),\n minX: Math.min(minX, x),\n minY: Math.min(minY, y),\n }), {\n maxX: Number.NEGATIVE_INFINITY,\n maxY: Number.NEGATIVE_INFINITY,\n minX: Number.POSITIVE_INFINITY,\n minY: Number.POSITIVE_INFINITY,\n });\n return [coord.minX, coord.minY, coord.maxX - coord.minX, coord.maxY - coord.minY];\n}\n\nexport function scalePoses(poses, [height, width], [inputResolutionHeight, inputResolutionWidth]): Array {\n const scaleY = height / inputResolutionHeight;\n const scaleX = width / inputResolutionWidth;\n const scalePose = (pose, i) => ({\n id: i,\n score: pose.score,\n boxRaw: [pose.box[0] / inputResolutionWidth, pose.box[1] / inputResolutionHeight, pose.box[2] / inputResolutionWidth, pose.box[3] / inputResolutionHeight],\n box: [Math.trunc(pose.box[0] * scaleX), Math.trunc(pose.box[1] * scaleY), Math.trunc(pose.box[2] * scaleX), Math.trunc(pose.box[3] * scaleY)],\n keypoints: pose.keypoints.map(({ score, part, position }) => ({\n score,\n part,\n position: [Math.trunc(position.x * scaleX), Math.trunc(position.y * scaleY)],\n positionRaw: [position.x / inputResolutionHeight, position.y / inputResolutionHeight],\n })),\n });\n const scaledPoses = poses.map((pose, i) => scalePose(pose, i));\n return scaledPoses;\n}\n\n// algorithm based on Coursera Lecture from Algorithms, Part 1: https://www.coursera.org/learn/algorithms-part1/lecture/ZjoSM/heapsort\nexport class MaxHeap {\n priorityQueue: Array; // don't touch\n numberOfElements: number;\n getElementValue: unknown; // function call\n\n constructor(maxSize, getElementValue) {\n this.priorityQueue = new Array(maxSize);\n this.numberOfElements = -1;\n this.getElementValue = getElementValue;\n }\n\n enqueue(x) {\n this.priorityQueue[++this.numberOfElements] = x;\n this.swim(this.numberOfElements);\n }\n\n dequeue() {\n const max = this.priorityQueue[0];\n this.exchange(0, this.numberOfElements--);\n this.sink(0);\n this.priorityQueue[this.numberOfElements + 1] = null;\n return max;\n }\n\n empty() { return this.numberOfElements === -1; }\n\n size() { return this.numberOfElements + 1; }\n\n all() { return this.priorityQueue.slice(0, this.numberOfElements + 1); }\n\n max() { return this.priorityQueue[0]; }\n\n swim(k) {\n while (k > 0 && this.less(Math.floor(k / 2), k)) {\n this.exchange(k, Math.floor(k / 2));\n k = Math.floor(k / 2);\n }\n }\n\n sink(k) {\n while (2 * k <= this.numberOfElements) {\n let j = 2 * k;\n if (j < this.numberOfElements && this.less(j, j + 1)) j++;\n if (!this.less(k, j)) break;\n this.exchange(k, j);\n k = j;\n }\n }\n\n getValueAt(i) {\n // @ts-ignore getter is of unknown type\n return this.getElementValue(this.priorityQueue[i]);\n }\n\n less(i, j) {\n return this.getValueAt(i) < this.getValueAt(j);\n }\n\n exchange(i, j) {\n const t = this.priorityQueue[i];\n this.priorityQueue[i] = this.priorityQueue[j];\n this.priorityQueue[j] = t;\n }\n}\n\nexport function getOffsetPoint(y, x, keypoint, offsets) {\n return {\n y: offsets.get(y, x, keypoint),\n x: offsets.get(y, x, keypoint + kpt.count),\n };\n}\n\nexport function getImageCoords(part, outputStride, offsets) {\n const { heatmapY, heatmapX, id: keypoint } = part;\n const { y, x } = getOffsetPoint(heatmapY, heatmapX, keypoint, offsets);\n return {\n x: part.heatmapX * outputStride + x,\n y: part.heatmapY * outputStride + y,\n };\n}\n\nexport function fillArray(element, size) {\n const result = new Array(size);\n for (let i = 0; i < size; i++) {\n result[i] = element;\n }\n return result;\n}\n\nexport function clamp(a, min, max) {\n if (a < min) return min;\n if (a > max) return max;\n return a;\n}\n\nexport function squaredDistance(y1, x1, y2, x2) {\n const dy = y2 - y1;\n const dx = x2 - x1;\n return dy * dy + dx * dx;\n}\n\nexport function addVectors(a, b) {\n return { x: a.x + b.x, y: a.y + b.y };\n}\n\nexport function clampVector(a, min, max) {\n return { y: clamp(a.y, min, max), x: clamp(a.x, min, max) };\n}\n", "import * as utils from './utils';\nimport * as kpt from './keypoints';\n\nconst localMaximumRadius = 1;\nconst outputStride = 16;\nconst squaredNmsRadius = 50 ** 2;\n\nfunction traverse(edgeId, sourceKeypoint, targetId, scores, offsets, displacements, offsetRefineStep = 2) {\n const getDisplacement = (point) => ({\n y: displacements.get(point.y, point.x, edgeId),\n x: displacements.get(point.y, point.x, (displacements.shape[2] / 2) + edgeId),\n });\n const getStridedIndexNearPoint = (point, height, width) => ({\n y: utils.clamp(Math.round(point.y / outputStride), 0, height - 1),\n x: utils.clamp(Math.round(point.x / outputStride), 0, width - 1),\n });\n\n const [height, width] = scores.shape;\n // Nearest neighbor interpolation for the source->target displacements.\n const sourceKeypointIndices = getStridedIndexNearPoint(sourceKeypoint.position, height, width);\n const displacement = getDisplacement(sourceKeypointIndices);\n const displacedPoint = utils.addVectors(sourceKeypoint.position, displacement);\n let targetKeypoint = displacedPoint;\n for (let i = 0; i < offsetRefineStep; i++) {\n const targetKeypointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const offsetPoint = utils.getOffsetPoint(targetKeypointIndices.y, targetKeypointIndices.x, targetId, offsets);\n targetKeypoint = utils.addVectors(\n { x: targetKeypointIndices.x * outputStride, y: targetKeypointIndices.y * outputStride },\n { x: offsetPoint.x, y: offsetPoint.y },\n );\n }\n const targetKeyPointIndices = getStridedIndexNearPoint(targetKeypoint, height, width);\n const score = scores.get(targetKeyPointIndices.y, targetKeyPointIndices.x, targetId);\n return { position: targetKeypoint, part: kpt.partNames[targetId], score };\n}\n\nexport function decodePose(root, scores, offsets, displacementsFwd, displacementsBwd) {\n const tuples = kpt.poseChain.map(([parentJoinName, childJoinName]) => ([kpt.partIds[parentJoinName], kpt.partIds[childJoinName]]));\n const edgesFwd = tuples.map(([, childJointId]) => childJointId);\n const edgesBwd = tuples.map(([parentJointId]) => parentJointId);\n const numParts = scores.shape[2]; // [21,21,17]\n const numEdges = edgesFwd.length;\n const keypoints = new Array(numParts);\n // Start a new detection instance at the position of the root.\n const rootPoint = utils.getImageCoords(root.part, outputStride, offsets);\n keypoints[root.part.id] = {\n score: root.score,\n part: kpt.partNames[root.part.id],\n position: rootPoint,\n };\n // Decode the part positions upwards in the tree, following the backward displacements.\n for (let edge = numEdges - 1; edge >= 0; --edge) {\n const sourceId = edgesFwd[edge];\n const targetId = edgesBwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsBwd);\n }\n }\n // Decode the part positions downwards in the tree, following the forward displacements.\n for (let edge = 0; edge < numEdges; ++edge) {\n const sourceId = edgesBwd[edge];\n const targetId = edgesFwd[edge];\n if (keypoints[sourceId] && !keypoints[targetId]) {\n keypoints[targetId] = traverse(edge, keypoints[sourceId], targetId, scores, offsets, displacementsFwd);\n }\n }\n return keypoints;\n}\n\nfunction scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores) {\n const [height, width] = scores.shape;\n let localMaximum = true;\n const yStart = Math.max(heatmapY - localMaximumRadius, 0);\n const yEnd = Math.min(heatmapY + localMaximumRadius + 1, height);\n for (let yCurrent = yStart; yCurrent < yEnd; ++yCurrent) {\n const xStart = Math.max(heatmapX - localMaximumRadius, 0);\n const xEnd = Math.min(heatmapX + localMaximumRadius + 1, width);\n for (let xCurrent = xStart; xCurrent < xEnd; ++xCurrent) {\n if (scores.get(yCurrent, xCurrent, keypointId) > score) {\n localMaximum = false;\n break;\n }\n }\n if (!localMaximum) break;\n }\n return localMaximum;\n}\n\nexport function buildPartWithScoreQueue(minConfidence, scores) {\n const [height, width, numKeypoints] = scores.shape;\n const queue = new utils.MaxHeap(height * width * numKeypoints, ({ score }) => score);\n for (let heatmapY = 0; heatmapY < height; ++heatmapY) {\n for (let heatmapX = 0; heatmapX < width; ++heatmapX) {\n for (let keypointId = 0; keypointId < numKeypoints; ++keypointId) {\n const score = scores.get(heatmapY, heatmapX, keypointId);\n // Only consider parts with score greater or equal to threshold as root candidates.\n if (score < minConfidence) continue;\n // Only consider keypoints whose score is maximum in a local window.\n if (scoreIsMaximumInLocalWindow(keypointId, score, heatmapY, heatmapX, scores)) queue.enqueue({ score, part: { heatmapY, heatmapX, id: keypointId } });\n }\n }\n }\n return queue;\n}\n\nfunction withinRadius(poses, { x, y }, keypointId) {\n return poses.some(({ keypoints }) => {\n const correspondingKeypoint = keypoints[keypointId]?.position;\n if (!correspondingKeypoint) return false;\n return utils.squaredDistance(y, x, correspondingKeypoint.y, correspondingKeypoint.x) <= squaredNmsRadius;\n });\n}\n\nfunction getInstanceScore(existingPoses, keypoints) {\n const notOverlappedKeypointScores = keypoints.reduce((result, { position, score }, keypointId) => {\n if (!withinRadius(existingPoses, position, keypointId)) result += score;\n return result;\n }, 0.0);\n return notOverlappedKeypointScores / keypoints.length;\n}\n\nexport function decode(offsets, scores, displacementsFwd, displacementsBwd, maxDetected, minConfidence) {\n const poses: Array<{ keypoints, box: [number, number, number, number], score: number }> = [];\n const queue = buildPartWithScoreQueue(minConfidence, scores);\n // Generate at most maxDetected object instances per image in decreasing root part score order.\n while (poses.length < maxDetected && !queue.empty()) {\n // The top element in the queue is the next root candidate.\n const root = queue.dequeue();\n // Part-based non-maximum suppression: We reject a root candidate if it is within a disk of `nmsRadius` pixels from the corresponding part of a previously detected instance.\n // @ts-ignore this one is tree walk\n const rootImageCoords = utils.getImageCoords(root.part, outputStride, offsets);\n // @ts-ignore this one is tree walk\n if (withinRadius(poses, rootImageCoords, root.part.id)) continue;\n // Else start a new detection instance at the position of the root.\n let keypoints = decodePose(root, scores, offsets, displacementsFwd, displacementsBwd);\n keypoints = keypoints.filter((a) => a.score > minConfidence);\n const score = getInstanceScore(poses, keypoints);\n const box = utils.getBoundingBox(keypoints);\n if (score > minConfidence) poses.push({ keypoints, box, score: Math.round(100 * score) / 100 });\n }\n return poses;\n}\n", "/**\n * PoseNet module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as poses from './poses';\nimport * as util from './utils';\nimport { Body } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\nconst poseNetOutputs = ['MobilenetV1/offset_2/BiasAdd'/* offsets */, 'MobilenetV1/heatmap_2/BiasAdd'/* heatmapScores */, 'MobilenetV1/displacement_fwd_2/BiasAdd'/* displacementFwd */, 'MobilenetV1/displacement_bwd_2/BiasAdd'/* displacementBwd */];\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const res = tf.tidy(() => {\n if (!model.inputs[0].shape) return [];\n const resized = tf.image.resizeBilinear(input, [model.inputs[0].shape[2], model.inputs[0].shape[1]]);\n const normalized = resized.toFloat().div(127.5).sub(1.0);\n const results: Array = model.execute(normalized, poseNetOutputs) as Array;\n const results3d = results.map((y) => tf.squeeze(y, [0]));\n results3d[1] = results3d[1].sigmoid(); // apply sigmoid on scores\n return results3d;\n });\n\n const buffers = await Promise.all(res.map((tensor) => tensor.buffer()));\n for (const t of res) t.dispose();\n\n const decoded = await poses.decode(buffers[0], buffers[1], buffers[2], buffers[3], config.body.maxDetected, config.body.minConfidence);\n if (!model.inputs[0].shape) return [];\n const scaled = util.scalePoses(decoded, [input.shape[1], input.shape[2]], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) as Body[];\n return scaled;\n}\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch for GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\n\nexport function getBoxSize(box) {\n return [\n Math.abs(box.endPoint[0] - box.startPoint[0]),\n Math.abs(box.endPoint[1] - box.startPoint[1]),\n ];\n}\n\nexport function getBoxCenter(box) {\n return [\n box.startPoint[0] + (box.endPoint[0] - box.startPoint[0]) / 2,\n box.startPoint[1] + (box.endPoint[1] - box.startPoint[1]) / 2,\n ];\n}\n\nexport function cutBoxFromImageAndResize(box, image, cropSize) {\n const h = image.shape[1];\n const w = image.shape[2];\n const boxes = [[\n box.startPoint[1] / h,\n box.startPoint[0] / w,\n box.endPoint[1] / h,\n box.endPoint[0] / w,\n ]];\n return tf.image.cropAndResize(image, boxes, [0], cropSize);\n}\n\nexport function scaleBoxCoordinates(box, factor) {\n const startPoint = [box.startPoint[0] * factor[0], box.startPoint[1] * factor[1]];\n const endPoint = [box.endPoint[0] * factor[0], box.endPoint[1] * factor[1]];\n const palmLandmarks = box.palmLandmarks.map((coord) => {\n const scaledCoord = [coord[0] * factor[0], coord[1] * factor[1]];\n return scaledCoord;\n });\n return { startPoint, endPoint, palmLandmarks, confidence: box.confidence };\n}\n\nexport function enlargeBox(box, factor = 1.5) {\n const center = getBoxCenter(box);\n const size = getBoxSize(box);\n const newHalfSize = [factor * size[0] / 2, factor * size[1] / 2];\n const startPoint = [center[0] - newHalfSize[0], center[1] - newHalfSize[1]];\n const endPoint = [center[0] + newHalfSize[0], center[1] + newHalfSize[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function squarifyBox(box) {\n const centers = getBoxCenter(box);\n const size = getBoxSize(box);\n const maxEdge = Math.max(...size);\n const halfSize = maxEdge / 2;\n const startPoint = [centers[0] - halfSize, centers[1] - halfSize];\n const endPoint = [centers[0] + halfSize, centers[1] + halfSize];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n\nexport function shiftBox(box, shiftFactor) {\n const boxSize = [\n box.endPoint[0] - box.startPoint[0],\n box.endPoint[1] - box.startPoint[1],\n ];\n const shiftVector = [boxSize[0] * shiftFactor[0], boxSize[1] * shiftFactor[1]];\n const startPoint = [box.startPoint[0] + shiftVector[0], box.startPoint[1] + shiftVector[1]];\n const endPoint = [box.endPoint[0] + shiftVector[0], box.endPoint[1] + shiftVector[1]];\n return { startPoint, endPoint, palmLandmarks: box.palmLandmarks };\n}\n", "export const anchors = [\n { x: 0.015625, y: 0.015625 },\n { x: 0.015625, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.046875, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.078125, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.109375, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.140625, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.171875, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.203125, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.234375, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.265625, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.296875, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.328125, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.359375, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.390625, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.421875, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.453125, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.484375, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.515625, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.546875, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.578125, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.609375, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.640625, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.671875, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.703125, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.734375, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.765625, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.796875, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.828125, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.859375, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.890625, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.921875, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.953125, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.984375, y: 0.015625 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.015625, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.046875, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.078125, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.109375, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.140625, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.171875, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.203125, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.234375, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.265625, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.296875, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.328125, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.359375, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.390625, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.421875, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.453125, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.484375, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.515625, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.546875, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.578125, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.609375, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.640625, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.671875, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.703125, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.734375, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.765625, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.796875, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.828125, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.859375, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.890625, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.921875, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.953125, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.984375, y: 0.046875 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.015625, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.046875, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.078125, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.109375, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.140625, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.171875, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.203125, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.234375, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.265625, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.296875, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.328125, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.359375, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.390625, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.421875, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.453125, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.484375, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.515625, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.546875, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.578125, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.609375, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.640625, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.671875, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.703125, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.734375, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.765625, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.796875, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.828125, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.859375, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.890625, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.921875, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.953125, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.984375, y: 0.078125 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.015625, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.046875, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.078125, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.109375, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.140625, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.171875, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.203125, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.234375, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.265625, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.296875, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.328125, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.359375, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.390625, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.421875, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.453125, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.484375, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.515625, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.546875, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.578125, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.609375, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.640625, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.671875, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.703125, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.734375, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.765625, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.796875, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.828125, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.859375, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.890625, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.921875, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.953125, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.984375, y: 0.109375 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.015625, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.046875, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.078125, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.109375, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.140625, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.171875, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.203125, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.234375, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.265625, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.296875, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.328125, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.359375, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.390625, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.421875, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.453125, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.484375, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.515625, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.546875, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.578125, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.609375, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.640625, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.671875, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.703125, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.734375, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.765625, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.796875, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.828125, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.859375, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.890625, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.921875, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.953125, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.984375, y: 0.140625 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.015625, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.046875, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.078125, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.109375, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.140625, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.171875, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.203125, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.234375, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.265625, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.296875, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.328125, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.359375, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.390625, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.421875, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.453125, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.484375, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.515625, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.546875, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.578125, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.609375, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.640625, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.671875, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.703125, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.734375, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.765625, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.796875, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.828125, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.859375, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.890625, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.921875, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.953125, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.984375, y: 0.171875 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.015625, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.046875, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.078125, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.109375, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.140625, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.171875, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.203125, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.234375, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.265625, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.296875, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.328125, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.359375, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.390625, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.421875, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.453125, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.484375, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.515625, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.546875, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.578125, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.609375, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.640625, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.671875, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.703125, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.734375, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.765625, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.796875, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.828125, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.859375, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.890625, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.921875, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.953125, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.984375, y: 0.203125 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.015625, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.046875, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.078125, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.109375, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.140625, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.171875, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.203125, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.234375, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.265625, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.296875, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.328125, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.359375, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.390625, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.421875, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.453125, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.484375, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.515625, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.546875, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.578125, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.609375, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.640625, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.671875, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.703125, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.734375, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.765625, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.796875, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.828125, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.859375, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.890625, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.921875, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.953125, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.984375, y: 0.234375 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.015625, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.046875, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.078125, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.109375, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.140625, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.171875, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.203125, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.234375, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.265625, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.296875, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.328125, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.359375, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.390625, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.421875, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.453125, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.484375, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.515625, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.546875, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.578125, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.609375, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.640625, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.671875, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.703125, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.734375, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.765625, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.796875, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.828125, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.859375, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.890625, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.921875, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.953125, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.984375, y: 0.265625 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.015625, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.046875, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.078125, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.109375, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.140625, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.171875, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.203125, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.234375, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.265625, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.296875, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.328125, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.359375, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.390625, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.421875, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.453125, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.484375, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.515625, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.546875, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.578125, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.609375, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.640625, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.671875, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.703125, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.734375, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.765625, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.796875, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.828125, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.859375, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.890625, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.921875, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.953125, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.984375, y: 0.296875 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.015625, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.046875, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.078125, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.109375, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.140625, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.171875, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.203125, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.234375, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.265625, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.296875, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.328125, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.359375, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.390625, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.421875, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.453125, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.484375, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.515625, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.546875, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.578125, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.609375, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.640625, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.671875, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.703125, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.734375, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.765625, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.796875, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.828125, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.859375, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.890625, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.921875, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.953125, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.984375, y: 0.328125 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.015625, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.046875, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.078125, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.109375, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.140625, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.171875, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.203125, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.234375, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.265625, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.296875, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.328125, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.359375, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.390625, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.421875, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.453125, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.484375, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.515625, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.546875, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.578125, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.609375, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.640625, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.671875, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.703125, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.734375, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.765625, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.796875, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.828125, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.859375, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.890625, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.921875, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.953125, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.984375, y: 0.359375 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.015625, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.046875, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.078125, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.109375, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.140625, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.171875, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.203125, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.234375, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.265625, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.296875, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.328125, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.359375, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.390625, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.421875, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.453125, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.484375, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.515625, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.546875, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.578125, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.609375, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.640625, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.671875, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.703125, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.734375, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.765625, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.796875, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.828125, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.859375, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.890625, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.921875, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.953125, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.984375, y: 0.390625 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.015625, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.046875, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.078125, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.109375, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.140625, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.171875, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.203125, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.234375, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.265625, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.296875, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.328125, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.359375, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.390625, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.421875, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.453125, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.484375, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.515625, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.546875, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.578125, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.609375, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.640625, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.671875, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.703125, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.734375, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.765625, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.796875, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.828125, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.859375, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.890625, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.921875, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.953125, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.984375, y: 0.421875 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.015625, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.046875, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.078125, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.109375, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.140625, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.171875, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.203125, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.234375, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.265625, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.296875, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.328125, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.359375, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.390625, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.421875, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.453125, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.484375, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.515625, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.546875, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.578125, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.609375, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.640625, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.671875, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.703125, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.734375, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.765625, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.796875, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.828125, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.859375, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.890625, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.921875, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.953125, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.984375, y: 0.453125 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.015625, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.046875, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.078125, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.109375, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.140625, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.171875, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.203125, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.234375, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.265625, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.296875, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.328125, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.359375, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.390625, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.421875, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.453125, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.484375, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.515625, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.546875, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.578125, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.609375, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.640625, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.671875, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.703125, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.734375, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.765625, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.796875, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.828125, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.859375, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.890625, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.921875, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.953125, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.984375, y: 0.484375 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.015625, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.046875, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.078125, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.109375, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.140625, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.171875, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.203125, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.234375, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.265625, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.296875, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.328125, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.359375, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.390625, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.421875, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.453125, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.484375, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.515625, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.546875, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.578125, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.609375, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.640625, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.671875, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.703125, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.734375, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.765625, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.796875, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.828125, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.859375, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.890625, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.921875, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.953125, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.984375, y: 0.515625 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.015625, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.046875, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.078125, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.109375, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.140625, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.171875, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.203125, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.234375, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.265625, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.296875, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.328125, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.359375, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.390625, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.421875, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.453125, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.484375, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.515625, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.546875, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.578125, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.609375, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.640625, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.671875, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.703125, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.734375, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.765625, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.796875, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.828125, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.859375, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.890625, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.921875, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.953125, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.984375, y: 0.546875 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.015625, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.046875, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.078125, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.109375, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.140625, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.171875, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.203125, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.234375, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.265625, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.296875, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.328125, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.359375, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.390625, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.421875, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.453125, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.484375, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.515625, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.546875, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.578125, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.609375, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.640625, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.671875, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.703125, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.734375, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.765625, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.796875, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.828125, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.859375, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.890625, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.921875, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.953125, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.984375, y: 0.578125 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.015625, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.046875, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.078125, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.109375, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.140625, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.171875, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.203125, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.234375, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.265625, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.296875, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.328125, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.359375, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.390625, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.421875, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.453125, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.484375, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.515625, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.546875, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.578125, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.609375, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.640625, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.671875, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.703125, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.734375, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.765625, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.796875, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.828125, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.859375, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.890625, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.921875, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.953125, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.984375, y: 0.609375 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.015625, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.046875, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.078125, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.109375, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.140625, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.171875, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.203125, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.234375, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.265625, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.296875, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.328125, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.359375, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.390625, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.421875, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.453125, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.484375, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.515625, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.546875, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.578125, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.609375, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.640625, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.671875, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.703125, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.734375, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.765625, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.796875, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.828125, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.859375, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.890625, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.921875, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.953125, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.984375, y: 0.640625 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.015625, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.046875, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.078125, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.109375, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.140625, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.171875, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.203125, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.234375, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.265625, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.296875, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.328125, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.359375, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.390625, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.421875, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.453125, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.484375, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.515625, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.546875, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.578125, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.609375, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.640625, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.671875, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.703125, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.734375, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.765625, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.796875, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.828125, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.859375, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.890625, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.921875, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.953125, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.984375, y: 0.671875 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.015625, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.046875, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.078125, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.109375, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.140625, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.171875, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.203125, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.234375, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.265625, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.296875, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.328125, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.359375, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.390625, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.421875, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.453125, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.484375, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.515625, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.546875, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.578125, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.609375, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.640625, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.671875, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.703125, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.734375, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.765625, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.796875, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.828125, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.859375, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.890625, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.921875, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.953125, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.984375, y: 0.703125 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.015625, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.046875, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.078125, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.109375, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.140625, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.171875, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.203125, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.234375, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.265625, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.296875, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.328125, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.359375, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.390625, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.421875, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.453125, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.484375, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.515625, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.546875, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.578125, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.609375, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.640625, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.671875, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.703125, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.734375, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.765625, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.796875, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.828125, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.859375, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.890625, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.921875, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.953125, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.984375, y: 0.734375 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.015625, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.046875, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.078125, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.109375, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.140625, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.171875, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.203125, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.234375, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.265625, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.296875, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.328125, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.359375, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.390625, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.421875, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.453125, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.484375, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.515625, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.546875, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.578125, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.609375, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.640625, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.671875, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.703125, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.734375, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.765625, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.796875, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.828125, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.859375, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.890625, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.921875, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.953125, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.984375, y: 0.765625 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.015625, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.046875, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.078125, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.109375, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.140625, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.171875, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.203125, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.234375, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.265625, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.296875, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.328125, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.359375, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.390625, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.421875, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.453125, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.484375, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.515625, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.546875, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.578125, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.609375, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.640625, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.671875, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.703125, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.734375, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.765625, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.796875, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.828125, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.859375, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.890625, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.921875, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.953125, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.984375, y: 0.796875 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.015625, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.046875, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.078125, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.109375, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.140625, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.171875, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.203125, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.234375, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.265625, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.296875, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.328125, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.359375, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.390625, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.421875, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.453125, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.484375, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.515625, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.546875, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.578125, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.609375, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.640625, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.671875, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.703125, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.734375, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.765625, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.796875, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.828125, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.859375, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.890625, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.921875, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.953125, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.984375, y: 0.828125 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.015625, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.046875, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.078125, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.109375, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.140625, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.171875, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.203125, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.234375, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.265625, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.296875, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.328125, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.359375, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.390625, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.421875, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.453125, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.484375, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.515625, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.546875, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.578125, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.609375, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.640625, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.671875, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.703125, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.734375, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.765625, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.796875, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.828125, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.859375, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.890625, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.921875, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.953125, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.984375, y: 0.859375 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.015625, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.046875, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.078125, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.109375, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.140625, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.171875, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.203125, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.234375, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.265625, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.296875, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.328125, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.359375, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.390625, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.421875, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.453125, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.484375, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.515625, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.546875, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.578125, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.609375, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.640625, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.671875, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.703125, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.734375, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.765625, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.796875, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.828125, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.859375, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.890625, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.921875, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.953125, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.984375, y: 0.890625 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.015625, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.046875, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.078125, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.109375, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.140625, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.171875, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.203125, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.234375, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.265625, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.296875, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.328125, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.359375, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.390625, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.421875, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.453125, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.484375, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.515625, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.546875, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.578125, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.609375, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.640625, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.671875, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.703125, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.734375, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.765625, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.796875, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.828125, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.859375, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.890625, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.921875, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.953125, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.984375, y: 0.921875 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.015625, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.046875, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.078125, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.109375, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.140625, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.171875, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.203125, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.234375, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.265625, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.296875, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.328125, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.359375, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.390625, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.421875, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.453125, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.484375, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.515625, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.546875, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.578125, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.609375, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.640625, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.671875, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.703125, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.734375, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.765625, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.796875, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.828125, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.859375, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.890625, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.921875, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.953125, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.984375, y: 0.953125 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.015625, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.046875, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.078125, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.109375, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.140625, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.171875, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.203125, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.234375, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.265625, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.296875, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.328125, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.359375, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.390625, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.421875, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.453125, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.484375, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.515625, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.546875, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.578125, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.609375, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.640625, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.671875, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.703125, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.734375, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.765625, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.796875, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.828125, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.859375, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.890625, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.921875, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.953125, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.984375, y: 0.984375 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.03125, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.09375, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.15625, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.21875, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.28125, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.34375, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.40625, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.46875, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.53125, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.59375, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.65625, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.71875, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.78125, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.84375, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.90625, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.96875, y: 0.03125 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.03125, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.09375, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.15625, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.21875, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.28125, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.34375, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.40625, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.46875, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.53125, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.59375, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.65625, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.71875, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.78125, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.84375, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.90625, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.96875, y: 0.09375 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.03125, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.09375, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.15625, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.21875, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.28125, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.34375, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.40625, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.46875, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.53125, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.59375, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.65625, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.71875, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.78125, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.84375, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.90625, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.96875, y: 0.15625 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.03125, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.09375, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.15625, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.21875, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.28125, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.34375, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.40625, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.46875, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.53125, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.59375, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.65625, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.71875, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.78125, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.84375, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.90625, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.96875, y: 0.21875 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.03125, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.09375, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.15625, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.21875, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.28125, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.34375, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.40625, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.46875, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.53125, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.59375, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.65625, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.71875, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.78125, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.84375, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.90625, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.96875, y: 0.28125 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.03125, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.09375, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.15625, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.21875, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.28125, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.34375, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.40625, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.46875, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.53125, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.59375, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.65625, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.71875, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.78125, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.84375, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.90625, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.96875, y: 0.34375 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.03125, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.09375, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.15625, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.21875, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.28125, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.34375, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.40625, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.46875, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.53125, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.59375, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.65625, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.71875, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.78125, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.84375, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.90625, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.96875, y: 0.40625 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.03125, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.09375, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.15625, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.21875, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.28125, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.34375, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.40625, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.46875, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.53125, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.59375, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.65625, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.71875, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.78125, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.84375, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.90625, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.96875, y: 0.46875 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.03125, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.09375, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.15625, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.21875, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.28125, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.34375, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.40625, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.46875, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.53125, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.59375, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.65625, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.71875, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.78125, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.84375, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.90625, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.96875, y: 0.53125 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.03125, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.09375, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.15625, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.21875, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.28125, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.34375, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.40625, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.46875, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.53125, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.59375, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.65625, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.71875, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.78125, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.84375, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.90625, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.96875, y: 0.59375 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.03125, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.09375, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.15625, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.21875, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.28125, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.34375, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.40625, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.46875, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.53125, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.59375, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.65625, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.71875, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.78125, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.84375, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.90625, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.96875, y: 0.65625 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.03125, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.09375, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.15625, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.21875, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.28125, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.34375, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.40625, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.46875, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.53125, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.59375, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.65625, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.71875, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.78125, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.84375, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.90625, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.96875, y: 0.71875 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.03125, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.09375, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.15625, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.21875, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.28125, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.34375, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.40625, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.46875, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.53125, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.59375, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.65625, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.71875, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.78125, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.84375, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.90625, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.96875, y: 0.78125 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.03125, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.09375, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.15625, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.21875, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.28125, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.34375, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.40625, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.46875, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.53125, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.59375, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.65625, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.71875, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.78125, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.84375, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.90625, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.96875, y: 0.84375 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.03125, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.09375, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.15625, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.21875, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.28125, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.34375, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.40625, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.46875, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.53125, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.59375, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.65625, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.71875, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.78125, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.84375, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.90625, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.96875, y: 0.90625 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.03125, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.09375, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.15625, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.21875, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.28125, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.34375, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.40625, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.46875, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.53125, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.59375, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.65625, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.71875, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.78125, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.84375, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.90625, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.96875, y: 0.96875 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.0625, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.1875, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.3125, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.4375, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.5625, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.6875, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.8125, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.9375, y: 0.0625 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.0625, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.1875, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.3125, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.4375, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.5625, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.6875, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.8125, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.9375, y: 0.1875 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.0625, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.1875, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.3125, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.4375, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.5625, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.6875, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.8125, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.9375, y: 0.3125 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.0625, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.1875, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.3125, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.4375, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.5625, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.6875, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.8125, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.9375, y: 0.4375 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.0625, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.1875, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.3125, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.4375, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.5625, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.6875, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.8125, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.9375, y: 0.5625 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.0625, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.1875, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.3125, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.4375, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.5625, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.6875, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.8125, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.9375, y: 0.6875 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.0625, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.1875, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.3125, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.4375, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.5625, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.6875, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.8125, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.9375, y: 0.8125 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.0625, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.1875, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.3125, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.4375, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.5625, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.6875, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.8125, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n { x: 0.9375, y: 0.9375 },\n];\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as anchors from './anchors';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nexport class HandDetector {\n model: GraphModel;\n anchors: number[][];\n anchorsTensor: Tensor;\n inputSize: number;\n inputSizeTensor: Tensor;\n doubleInputSizeTensor: Tensor;\n\n constructor(model) {\n this.model = model;\n this.anchors = anchors.anchors.map((anchor) => [anchor.x, anchor.y]);\n this.anchorsTensor = tf.tensor2d(this.anchors);\n // @ts-ignore model is not undefined here\n this.inputSize = this.model?.inputs[0].shape[2];\n this.inputSizeTensor = tf.tensor1d([this.inputSize, this.inputSize]);\n this.doubleInputSizeTensor = tf.tensor1d([this.inputSize * 2, this.inputSize * 2]);\n }\n\n normalizeBoxes(boxes) {\n return tf.tidy(() => {\n const boxOffsets = tf.slice(boxes, [0, 0], [-1, 2]);\n const boxSizes = tf.slice(boxes, [0, 2], [-1, 2]);\n const boxCenterPoints = tf.add(tf.div(boxOffsets, this.inputSizeTensor), this.anchorsTensor);\n const halfBoxSizes = tf.div(boxSizes, this.doubleInputSizeTensor);\n const startPoints = tf.mul(tf.sub(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n const endPoints = tf.mul(tf.add(boxCenterPoints, halfBoxSizes), this.inputSizeTensor);\n return tf.concat2d([startPoints, endPoints], 1);\n });\n }\n\n normalizeLandmarks(rawPalmLandmarks, index) {\n return tf.tidy(() => {\n const landmarks = tf.add(tf.div(rawPalmLandmarks.reshape([-1, 7, 2]), this.inputSizeTensor), this.anchors[index]);\n return tf.mul(landmarks, this.inputSizeTensor);\n });\n }\n\n async getBoxes(input, config) {\n const batched = this.model.predict(input) as Tensor;\n const predictions = tf.squeeze(batched);\n batched.dispose();\n const scoresT = tf.tidy(() => tf.sigmoid(tf.slice(predictions, [0, 0], [-1, 1])).squeeze());\n const scores = scoresT.dataSync();\n const rawBoxes = tf.slice(predictions, [0, 1], [-1, 4]);\n const boxes = this.normalizeBoxes(rawBoxes);\n rawBoxes.dispose();\n const filteredT = await tf.image.nonMaxSuppressionAsync(boxes, scores, config.hand.maxDetected, config.hand.iouThreshold, config.hand.minConfidence);\n const filtered = filteredT.arraySync();\n\n scoresT.dispose();\n filteredT.dispose();\n const hands: Array<{ box: Tensor, palmLandmarks: Tensor, confidence: number }> = [];\n for (const index of filtered) {\n if (scores[index] >= config.hand.minConfidence) {\n const matchingBox = tf.slice(boxes, [index, 0], [1, -1]);\n const rawPalmLandmarks = tf.slice(predictions, [index, 5], [1, 14]);\n const palmLandmarks = tf.tidy(() => this.normalizeLandmarks(rawPalmLandmarks, index).reshape([-1, 2]));\n rawPalmLandmarks.dispose();\n hands.push({ box: matchingBox, palmLandmarks, confidence: scores[index] });\n }\n }\n predictions.dispose();\n boxes.dispose();\n return hands;\n }\n\n async estimateHandBounds(input, config): Promise<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }[]> {\n const inputHeight = input.shape[1];\n const inputWidth = input.shape[2];\n const image = tf.tidy(() => input.resizeBilinear([this.inputSize, this.inputSize]).div(127.5).sub(1));\n const predictions = await this.getBoxes(image, config);\n image.dispose();\n const hands: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number }> = [];\n if (!predictions || predictions.length === 0) return hands;\n for (const prediction of predictions) {\n const boxes = prediction.box.dataSync();\n const startPoint = boxes.slice(0, 2);\n const endPoint = boxes.slice(2, 4);\n const palmLandmarks = prediction.palmLandmarks.arraySync();\n prediction.box.dispose();\n prediction.palmLandmarks.dispose();\n hands.push(box.scaleBoxCoordinates({ startPoint, endPoint, palmLandmarks, confidence: prediction.confidence }, [inputWidth / this.inputSize, inputHeight / this.inputSize]));\n }\n return hands;\n }\n}\n", "export function normalizeRadians(angle) {\n return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI));\n}\n\nexport function computeRotation(point1, point2) {\n const radians = Math.PI / 2 - Math.atan2(-(point2[1] - point1[1]), point2[0] - point1[0]);\n return normalizeRadians(radians);\n}\n\nexport const buildTranslationMatrix = (x, y) => [[1, 0, x], [0, 1, y], [0, 0, 1]];\n\nexport function dot(v1, v2) {\n let product = 0;\n for (let i = 0; i < v1.length; i++) {\n product += v1[i] * v2[i];\n }\n return product;\n}\n\nexport function getColumnFrom2DArr(arr, columnIndex) {\n const column: Array = [];\n for (let i = 0; i < arr.length; i++) {\n column.push(arr[i][columnIndex]);\n }\n return column;\n}\n\nexport function multiplyTransformMatrices(mat1, mat2) {\n const product: Array = [];\n const size = mat1.length;\n for (let row = 0; row < size; row++) {\n product.push([]);\n for (let col = 0; col < size; col++) {\n product[row].push(dot(mat1[row], getColumnFrom2DArr(mat2, col)));\n }\n }\n return product;\n}\n\nexport function buildRotationMatrix(rotation, center) {\n const cosA = Math.cos(rotation);\n const sinA = Math.sin(rotation);\n const rotationMatrix = [[cosA, -sinA, 0], [sinA, cosA, 0], [0, 0, 1]];\n const translationMatrix = buildTranslationMatrix(center[0], center[1]);\n const translationTimesRotation = multiplyTransformMatrices(translationMatrix, rotationMatrix);\n const negativeTranslationMatrix = buildTranslationMatrix(-center[0], -center[1]);\n return multiplyTransformMatrices(translationTimesRotation, negativeTranslationMatrix);\n}\n\nexport function invertTransformMatrix(matrix) {\n const rotationComponent = [[matrix[0][0], matrix[1][0]], [matrix[0][1], matrix[1][1]]];\n const translationComponent = [matrix[0][2], matrix[1][2]];\n const invertedTranslation = [\n -dot(rotationComponent[0], translationComponent),\n -dot(rotationComponent[1], translationComponent),\n ];\n return [\n rotationComponent[0].concat(invertedTranslation[0]),\n rotationComponent[1].concat(invertedTranslation[1]),\n [0, 0, 1],\n ];\n}\n\nexport function rotatePoint(homogeneousCoordinate, rotationMatrix) {\n return [\n dot(homogeneousCoordinate, rotationMatrix[0]),\n dot(homogeneousCoordinate, rotationMatrix[1]),\n ];\n}\n", "import * as tf from '../../dist/tfjs.esm.js';\nimport * as box from './box';\nimport * as util from './util';\nimport * as detector from './handdetector';\nimport { Tensor, GraphModel } from '../tfjs/types';\n\nconst palmBoxEnlargeFactor = 5; // default 3\nconst handBoxEnlargeFactor = 1.65; // default 1.65\nconst palmLandmarkIds = [0, 5, 9, 13, 17, 1, 2];\nconst palmLandmarksPalmBase = 0;\nconst palmLandmarksMiddleFingerBase = 2;\n\nexport class HandPipeline {\n handDetector: detector.HandDetector;\n handPoseModel: GraphModel;\n inputSize: number;\n storedBoxes: Array<{ startPoint: number[]; endPoint: number[]; palmLandmarks: number[]; confidence: number } | null>;\n skipped: number;\n detectedHands: number;\n\n constructor(handDetector, handPoseModel) {\n this.handDetector = handDetector;\n this.handPoseModel = handPoseModel;\n // @ts-ignore model is not undefined here\n this.inputSize = this.handPoseModel?.inputs[0].shape[2];\n this.storedBoxes = [];\n this.skipped = 0;\n this.detectedHands = 0;\n }\n\n // eslint-disable-next-line class-methods-use-this\n calculateLandmarksBoundingBox(landmarks) {\n const xs = landmarks.map((d) => d[0]);\n const ys = landmarks.map((d) => d[1]);\n const startPoint = [Math.min(...xs), Math.min(...ys)];\n const endPoint = [Math.max(...xs), Math.max(...ys)];\n return { startPoint, endPoint };\n }\n\n getBoxForPalmLandmarks(palmLandmarks, rotationMatrix) {\n const rotatedPalmLandmarks = palmLandmarks.map((coord) => util.rotatePoint([...coord, 1], rotationMatrix));\n const boxAroundPalm = this.calculateLandmarksBoundingBox(rotatedPalmLandmarks);\n return box.enlargeBox(box.squarifyBox(boxAroundPalm), palmBoxEnlargeFactor);\n }\n\n getBoxForHandLandmarks(landmarks) {\n const boundingBox = this.calculateLandmarksBoundingBox(landmarks);\n const boxAroundHand = box.enlargeBox(box.squarifyBox(boundingBox), handBoxEnlargeFactor);\n boxAroundHand.palmLandmarks = [];\n for (let i = 0; i < palmLandmarkIds.length; i++) {\n boxAroundHand.palmLandmarks.push(landmarks[palmLandmarkIds[i]].slice(0, 2));\n }\n return boxAroundHand;\n }\n\n transformRawCoords(rawCoords, box2, angle, rotationMatrix) {\n const boxSize = box.getBoxSize(box2);\n const scaleFactor = [boxSize[0] / this.inputSize, boxSize[1] / this.inputSize, (boxSize[0] + boxSize[1]) / this.inputSize / 2];\n const coordsScaled = rawCoords.map((coord) => [\n scaleFactor[0] * (coord[0] - this.inputSize / 2),\n scaleFactor[1] * (coord[1] - this.inputSize / 2),\n scaleFactor[2] * coord[2],\n ]);\n const coordsRotationMatrix = util.buildRotationMatrix(angle, [0, 0]);\n const coordsRotated = coordsScaled.map((coord) => {\n const rotated = util.rotatePoint(coord, coordsRotationMatrix);\n return [...rotated, coord[2]];\n });\n const inverseRotationMatrix = util.invertTransformMatrix(rotationMatrix);\n const boxCenter = [...box.getBoxCenter(box2), 1];\n const originalBoxCenter = [\n util.dot(boxCenter, inverseRotationMatrix[0]),\n util.dot(boxCenter, inverseRotationMatrix[1]),\n ];\n return coordsRotated.map((coord) => [\n Math.trunc(coord[0] + originalBoxCenter[0]),\n Math.trunc(coord[1] + originalBoxCenter[1]),\n Math.trunc(coord[2]),\n ]);\n }\n\n async estimateHands(image, config) {\n let useFreshBox = false;\n\n // run new detector every skipFrames unless we only want box to start with\n let boxes;\n\n // console.log(this.skipped, config.hand.skipFrames, !config.hand.landmarks, !config.skipFrame);\n if ((this.skipped === 0) || (this.skipped > config.hand.skipFrames) || !config.hand.landmarks || !config.skipFrame) {\n boxes = await this.handDetector.estimateHandBounds(image, config);\n this.skipped = 0;\n }\n if (config.skipFrame) this.skipped++;\n\n // if detector result count doesn't match current working set, use it to reset current working set\n if (boxes && (boxes.length > 0) && ((boxes.length !== this.detectedHands) && (this.detectedHands !== config.hand.maxDetected) || !config.hand.landmarks)) {\n this.detectedHands = 0;\n this.storedBoxes = [...boxes];\n // for (const possible of boxes) this.storedBoxes.push(possible);\n if (this.storedBoxes.length > 0) useFreshBox = true;\n }\n const hands: Array<{ landmarks?: number[], confidence: number, box: { topLeft: number[], bottomRight: number[] } }> = [];\n\n // go through working set of boxes\n for (let i = 0; i < this.storedBoxes.length; i++) {\n const currentBox = this.storedBoxes[i];\n if (!currentBox) continue;\n if (config.hand.landmarks) {\n const angle = config.hand.rotation ? util.computeRotation(currentBox.palmLandmarks[palmLandmarksPalmBase], currentBox.palmLandmarks[palmLandmarksMiddleFingerBase]) : 0;\n const palmCenter = box.getBoxCenter(currentBox);\n const palmCenterNormalized = [palmCenter[0] / image.shape[2], palmCenter[1] / image.shape[1]];\n const rotatedImage = config.hand.rotation && tf.ENV.flags.IS_BROWSER ? tf.image.rotateWithOffset(image, angle, 0, palmCenterNormalized) : image.clone();\n const rotationMatrix = util.buildRotationMatrix(-angle, palmCenter);\n const newBox = useFreshBox ? this.getBoxForPalmLandmarks(currentBox.palmLandmarks, rotationMatrix) : currentBox;\n const croppedInput = box.cutBoxFromImageAndResize(newBox, rotatedImage, [this.inputSize, this.inputSize]);\n const handImage = croppedInput.div(255);\n croppedInput.dispose();\n rotatedImage.dispose();\n const [confidenceT, keypoints] = await this.handPoseModel.predict(handImage) as Array;\n handImage.dispose();\n const confidence = confidenceT.dataSync()[0];\n confidenceT.dispose();\n if (confidence >= config.hand.minConfidence) {\n const keypointsReshaped = tf.reshape(keypoints, [-1, 3]);\n const rawCoords = keypointsReshaped.arraySync();\n keypoints.dispose();\n keypointsReshaped.dispose();\n const coords = this.transformRawCoords(rawCoords, newBox, angle, rotationMatrix);\n const nextBoundingBox = this.getBoxForHandLandmarks(coords);\n this.storedBoxes[i] = { ...nextBoundingBox, confidence };\n const result = {\n landmarks: coords,\n confidence,\n box: { topLeft: nextBoundingBox.startPoint, bottomRight: nextBoundingBox.endPoint },\n };\n hands.push(result);\n } else {\n this.storedBoxes[i] = null;\n }\n keypoints.dispose();\n } else {\n // const enlarged = box.enlargeBox(box.squarifyBox(box.shiftBox(currentBox, HAND_BOX_SHIFT_VECTOR)), handBoxEnlargeFactor);\n const enlarged = box.enlargeBox(box.squarifyBox(currentBox), handBoxEnlargeFactor);\n const result = {\n confidence: currentBox.confidence,\n box: { topLeft: enlarged.startPoint, bottomRight: enlarged.endPoint },\n };\n hands.push(result);\n }\n }\n this.storedBoxes = this.storedBoxes.filter((a) => a !== null);\n this.detectedHands = hands.length;\n return hands;\n }\n}\n", "/**\n * HandPose module entry point\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as handdetector from './handdetector';\nimport * as handpipeline from './handpipeline';\nimport { Hand } from '../result';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Config } from '../config';\n\nconst meshAnnotations = {\n thumb: [1, 2, 3, 4],\n indexFinger: [5, 6, 7, 8],\n middleFinger: [9, 10, 11, 12],\n ringFinger: [13, 14, 15, 16],\n pinky: [17, 18, 19, 20],\n palmBase: [0],\n};\n\nlet handDetectorModel: GraphModel | null;\nlet handPoseModel: GraphModel | null;\nlet handPipeline: handpipeline.HandPipeline;\n\nexport async function predict(input: Tensor, config: Config): Promise {\n const predictions = await handPipeline.estimateHands(input, config);\n if (!predictions) return [];\n const hands: Array = [];\n for (let i = 0; i < predictions.length; i++) {\n const annotations = {};\n if (predictions[i].landmarks) {\n for (const key of Object.keys(meshAnnotations)) {\n // @ts-ignore landmarks are not undefined\n annotations[key] = meshAnnotations[key].map((index) => predictions[i].landmarks[index]);\n }\n }\n\n const keypoints = predictions[i].landmarks as unknown as Array<[number, number, number]>;\n\n let box: [number, number, number, number] = [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER, 0, 0]; // maximums so conditionals work\n let boxRaw: [number, number, number, number] = [0, 0, 0, 0];\n if (keypoints && keypoints.length > 0) { // if we have landmarks, calculate box based on landmarks\n for (const pt of keypoints) {\n if (pt[0] < box[0]) box[0] = pt[0];\n if (pt[1] < box[1]) box[1] = pt[1];\n if (pt[0] > box[2]) box[2] = pt[0];\n if (pt[1] > box[3]) box[3] = pt[1];\n }\n box[2] -= box[0];\n box[3] -= box[1];\n boxRaw = [box[0] / (input.shape[2] || 0), box[1] / (input.shape[1] || 0), box[2] / (input.shape[2] || 0), box[3] / (input.shape[1] || 0)];\n } else { // otherwise use box from prediction\n box = predictions[i].box ? [\n Math.trunc(Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.max(0, predictions[i].box.topLeft[1])),\n Math.trunc(Math.min((input.shape[2] || 0), predictions[i].box.bottomRight[0]) - Math.max(0, predictions[i].box.topLeft[0])),\n Math.trunc(Math.min((input.shape[1] || 0), predictions[i].box.bottomRight[1]) - Math.max(0, predictions[i].box.topLeft[1])),\n ] : [0, 0, 0, 0];\n boxRaw = [\n (predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n (predictions[i].box.bottomRight[0] - predictions[i].box.topLeft[0]) / (input.shape[2] || 0),\n (predictions[i].box.bottomRight[1] - predictions[i].box.topLeft[1]) / (input.shape[1] || 0),\n ];\n }\n hands.push({ id: i, score: Math.round(100 * predictions[i].confidence) / 100, box, boxRaw, keypoints, annotations });\n }\n return hands;\n}\n\nexport async function load(config: Config): Promise<[GraphModel | null, GraphModel | null]> {\n if (!handDetectorModel || !handPoseModel) {\n // @ts-ignore type mismatch on GraphModel\n [handDetectorModel, handPoseModel] = await Promise.all([\n config.hand.enabled ? tf.loadGraphModel(join(config.modelBasePath, config.hand.detector.modelPath), { fromTFHub: config.hand.detector.modelPath.includes('tfhub.dev') }) : null,\n config.hand.landmarks ? tf.loadGraphModel(join(config.modelBasePath, config.hand.skeleton.modelPath), { fromTFHub: config.hand.skeleton.modelPath.includes('tfhub.dev') }) : null,\n ]);\n if (config.hand.enabled) {\n if (!handDetectorModel || !handDetectorModel['modelUrl']) log('load model failed:', config.hand.detector.modelPath);\n else if (config.debug) log('load model:', handDetectorModel['modelUrl']);\n if (!handPoseModel || !handPoseModel['modelUrl']) log('load model failed:', config.hand.skeleton.modelPath);\n else if (config.debug) log('load model:', handPoseModel['modelUrl']);\n }\n } else {\n if (config.debug) log('cached model:', handDetectorModel['modelUrl']);\n if (config.debug) log('cached model:', handPoseModel['modelUrl']);\n }\n const handDetector = new handdetector.HandDetector(handDetectorModel);\n handPipeline = new handpipeline.HandPipeline(handDetector, handPoseModel);\n return [handDetectorModel, handPoseModel];\n}\n", "export const full = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'leftWrist',\n 'rightWrist',\n 'leftPalm',\n 'rightPalm',\n 'leftIndex',\n 'rightIndex',\n 'leftPinky',\n 'rightPinky',\n 'leftHip',\n 'rightHip',\n 'leftKnee',\n 'rightKnee',\n 'leftAnkle',\n 'rightAnkle',\n 'leftHeel',\n 'rightHeel',\n 'leftFoot',\n 'rightFoot',\n 'midHip',\n 'forehead',\n 'leftThumb',\n 'leftHand',\n 'rightThumb',\n 'rightHand',\n];\n\nexport const upper = [\n 'nose',\n 'leftEyeInside',\n 'leftEye',\n 'leftEyeOutside',\n 'rightEyeInside',\n 'rightEye',\n 'rightEyeOutside',\n 'leftEar',\n 'rightEar',\n 'leftMouth',\n 'rightMouth',\n 'leftShoulder',\n 'rightShoulder',\n 'leftElbow',\n 'rightElbow',\n 'left:15',\n 'right:16',\n 'left:17',\n 'right:18',\n 'left:19',\n 'right:20',\n 'left:21',\n 'right:22',\n 'leftChest',\n 'rightChest',\n 'neck',\n 'forehead',\n 'left:27',\n 'right:28',\n 'left:29',\n 'right:30',\n];\n", "/**\n * BlazePose Module\n */\n\n// paper: https://ai.googleblog.com/2020/08/on-device-real-time-body-pose-tracking.html\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as annotations from './annotations';\nimport { Tensor, GraphModel } from '../tfjs/types';\nimport { Body } from '../result';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch for Graphmodel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n model['width'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[2].size);\n model['height'] = parseInt(model['signature'].inputs['input_1:0'].tensorShape.dim[1].size);\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if (!model) return [];\n if (!config.body.enabled) return [];\n const imgSize = { width: (image.shape[2] || 0), height: (image.shape[1] || 0) };\n const resize = tf.image.resizeBilinear(image, [model['width'], model['height']], false);\n const normalize = tf.div(resize, [255.0]);\n resize.dispose();\n const resT = await model.predict(normalize) as Array;\n const points = resT.find((t) => (t.size === 195 || t.size === 155))?.dataSync() || []; // order of output tensors may change between models, full has 195 and upper has 155 items\n resT.forEach((t) => t.dispose());\n normalize.dispose();\n const keypoints: Array<{ id, part, position: [number, number, number], positionRaw: [number, number, number], score, presence }> = [];\n const labels = points?.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints\n const depth = 5; // each points has x,y,z,visibility,presence\n for (let i = 0; i < points.length / depth; i++) {\n keypoints.push({\n id: i,\n part: labels[i],\n position: [\n Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255\n Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255\n Math.trunc(points[depth * i + 2]) + 0, // fix negative zero\n ],\n positionRaw: [\n points[depth * i + 0] / 255, // return x value normalized to 0..1\n points[depth * i + 1] / 255, // return y value normalized to 0..1\n points[depth * i + 2] + 0, // fix negative zero\n ],\n score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value\n presence: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 4])))) / 100, // reverse sigmoid value\n });\n }\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n const box: [number, number, number, number] = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...x),\n ];\n const boxRaw: [number, number, number, number] = [0, 0, 0, 0]; // not yet implemented\n const score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n return [{ id: 0, score, box, boxRaw, keypoints }];\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\n\nconst keypoints: Array = [];\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['head', 'neck', 'rightShoulder', 'rightElbow', 'rightWrist', 'chest', 'leftShoulder', 'leftElbow', 'leftWrist', 'pelvis', 'rightHip', 'rightKnee', 'rightAnkle', 'leftHip', 'leftKnee', 'leftAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch on GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\n// performs argmax and max functions on a 2d tensor\nfunction max2d(inputs, minScore) {\n const [width, height] = inputs.shape;\n return tf.tidy(() => {\n // modulus op implemented in tf\n const mod = (a, b) => tf.sub(a, tf.mul(tf.div(a, tf.scalar(b, 'int32')), tf.scalar(b, 'int32')));\n // combine all data\n const reshaped = tf.reshape(inputs, [height * width]);\n // get highest score\n const newScore = tf.max(reshaped, 0).dataSync()[0];\n if (newScore > minScore) {\n // skip coordinate calculation is score is too low\n const coords = tf.argMax(reshaped, 0);\n const x = mod(coords, width).dataSync()[0];\n const y = tf.div(coords, tf.scalar(width, 'int32')).dataSync()[0];\n return [x, y, newScore];\n }\n return [0, 0, newScore];\n });\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const enhance = tf.mul(resize, 2);\n const norm = enhance.sub(1);\n return norm;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tensor.dispose();\n\n if (resT) {\n keypoints.length = 0;\n const squeeze = resT.squeeze();\n tf.dispose(resT);\n // body parts are basically just a stack of 2d tensors\n const stack = squeeze.unstack(2);\n tf.dispose(squeeze);\n // process each unstacked tensor as a separate body part\n for (let id = 0; id < stack.length; id++) {\n // actual processing to get coordinates and score\n const [x, y, partScore] = max2d(stack[id], config.body.minConfidence);\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * partScore) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n // @ts-ignore model is not undefined here\n x / model.inputs[0].shape[2], y / model.inputs[0].shape[1],\n ],\n position: [ // normalized to input image size\n // @ts-ignore model is not undefined here\n Math.round(image.shape[2] * x / model.inputs[0].shape[2]), Math.round(image.shape[1] * y / model.inputs[0].shape[1]),\n ],\n });\n }\n }\n stack.forEach((s) => tf.dispose(s));\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n resolve([{ id: 0, score, box, boxRaw, keypoints }]);\n });\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { Body } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model: GraphModel;\n\ntype Keypoints = { score: number, part: string, position: [number, number], positionRaw: [number, number] };\n\nconst keypoints: Array = [];\nlet box: [number, number, number, number] = [0, 0, 0, 0];\nlet boxRaw: [number, number, number, number] = [0, 0, 0, 0];\nlet score = 0;\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst bodyParts = ['nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder', 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist', 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle'];\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch on GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.body.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.body.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.body.skipFrames) && config.skipFrame && Object.keys(keypoints).length > 0) {\n skipped++;\n return [{ id: 0, score, box, boxRaw, keypoints }];\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const tensor = tf.tidy(() => {\n if (!model.inputs[0].shape) return null;\n const resize = tf.image.resizeBilinear(image, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);\n const cast = tf.cast(resize, 'int32');\n return cast;\n });\n\n let resT;\n if (config.body.enabled) resT = await model.predict(tensor);\n tensor.dispose();\n\n if (resT) {\n keypoints.length = 0;\n const res = resT.arraySync();\n tf.dispose(resT);\n const kpt = res[0][0];\n for (let id = 0; id < kpt.length; id++) {\n score = kpt[id][2];\n if (score > config.body.minConfidence) {\n keypoints.push({\n score: Math.round(100 * score) / 100,\n part: bodyParts[id],\n positionRaw: [ // normalized to 0..1\n kpt[id][1],\n kpt[id][0],\n ],\n position: [ // normalized to input image size\n Math.round((image.shape[2] || 0) * kpt[id][1]),\n Math.round((image.shape[1] || 0) * kpt[id][0]),\n ],\n });\n }\n }\n }\n score = keypoints.reduce((prev, curr) => (curr.score > prev ? curr.score : prev), 0);\n const x = keypoints.map((a) => a.position[0]);\n const y = keypoints.map((a) => a.position[1]);\n box = [\n Math.min(...x),\n Math.min(...y),\n Math.max(...x) - Math.min(...x),\n Math.max(...y) - Math.min(...y),\n ];\n const xRaw = keypoints.map((a) => a.positionRaw[0]);\n const yRaw = keypoints.map((a) => a.positionRaw[1]);\n boxRaw = [\n Math.min(...xRaw),\n Math.min(...yRaw),\n Math.max(...xRaw) - Math.min(...xRaw),\n Math.max(...yRaw) - Math.min(...yRaw),\n ];\n resolve([{ id: 0, score, box, boxRaw, keypoints }]);\n });\n}\n", "/**\n * CoCo Labels used by object detection modules\n */\nexport const labels = [\n { class: 1, label: 'person' },\n { class: 2, label: 'bicycle' },\n { class: 3, label: 'car' },\n { class: 4, label: 'motorcycle' },\n { class: 5, label: 'airplane' },\n { class: 6, label: 'bus' },\n { class: 7, label: 'train' },\n { class: 8, label: 'truck' },\n { class: 9, label: 'boat' },\n { class: 10, label: 'traffic light' },\n { class: 11, label: 'fire hydrant' },\n { class: 12, label: 'stop sign' },\n { class: 13, label: 'parking meter' },\n { class: 14, label: 'bench' },\n { class: 15, label: 'bird' },\n { class: 16, label: 'cat' },\n { class: 17, label: 'dog' },\n { class: 18, label: 'horse' },\n { class: 19, label: 'sheep' },\n { class: 20, label: 'cow' },\n { class: 21, label: 'elephant' },\n { class: 22, label: 'bear' },\n { class: 23, label: 'zebra' },\n { class: 24, label: 'giraffe' },\n { class: 25, label: 'backpack' },\n { class: 26, label: 'umbrella' },\n { class: 27, label: 'handbag' },\n { class: 28, label: 'tie' },\n { class: 29, label: 'suitcase' },\n { class: 30, label: 'frisbee' },\n { class: 31, label: 'skis' },\n { class: 32, label: 'snowboard' },\n { class: 33, label: 'sports ball' },\n { class: 34, label: 'kite' },\n { class: 35, label: 'baseball bat' },\n { class: 36, label: 'baseball glove' },\n { class: 37, label: 'skateboard' },\n { class: 38, label: 'surfboard' },\n { class: 39, label: 'tennis racket' },\n { class: 40, label: 'bottle' },\n { class: 41, label: 'wine glass' },\n { class: 42, label: 'cup' },\n { class: 43, label: 'fork' },\n { class: 44, label: 'knife' },\n { class: 45, label: 'spoon' },\n { class: 46, label: 'bowl' },\n { class: 47, label: 'banana' },\n { class: 48, label: 'apple' },\n { class: 49, label: 'sandwich' },\n { class: 50, label: 'orange' },\n { class: 51, label: 'broccoli' },\n { class: 52, label: 'carrot' },\n { class: 53, label: 'hot dog' },\n { class: 54, label: 'pizza' },\n { class: 55, label: 'donut' },\n { class: 56, label: 'cake' },\n { class: 57, label: 'chair' },\n { class: 58, label: 'couch' },\n { class: 59, label: 'potted plant' },\n { class: 60, label: 'bed' },\n { class: 61, label: 'dining table' },\n { class: 62, label: 'toilet' },\n { class: 63, label: 'tv' },\n { class: 64, label: 'laptop' },\n { class: 65, label: 'mouse' },\n { class: 66, label: 'remote' },\n { class: 67, label: 'keyboard' },\n { class: 68, label: 'cell phone' },\n { class: 69, label: 'microwave' },\n { class: 70, label: 'oven' },\n { class: 71, label: 'toaster' },\n { class: 72, label: 'sink' },\n { class: 73, label: 'refrigerator' },\n { class: 74, label: 'book' },\n { class: 75, label: 'clock' },\n { class: 76, label: 'vase' },\n { class: 77, label: 'scissors' },\n { class: 78, label: 'teddy bear' },\n { class: 79, label: 'hair drier' },\n { class: 80, label: 'toothbrush' },\n];\n", "/**\n * NanoDet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Array = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nconst scaleBox = 2.5; // increase box size\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res, inputSize, outputShape, config) {\n let id = 0;\n let results: Array = [];\n for (const strideSize of [1, 2, 4]) { // try each stride size as it detects large/medium/small objects\n // find scores, boxes, classes\n tf.tidy(() => { // wrap in tidy to automatically deallocate temp tensors\n const baseSize = strideSize * 13; // 13x13=169, 26x26=676, 52x52=2704\n // find boxes and scores output depending on stride\n const scoresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] === labels.length))?.squeeze();\n const featuresT = res.find((a) => (a.shape[1] === (baseSize ** 2) && a.shape[2] < labels.length))?.squeeze();\n const boxesMax = featuresT.reshape([-1, 4, featuresT.shape[1] / 4]); // reshape [output] to [4, output / 4] where number is number of different features inside each stride\n const boxIdx = boxesMax.argMax(2).arraySync(); // what we need is indexes of features with highest scores, not values itself\n const scores = scoresT.arraySync(); // optionally use exponential scores or just as-is\n for (let i = 0; i < scoresT.shape[0]; i++) { // total strides (x * y matrix)\n for (let j = 0; j < scoresT.shape[1]; j++) { // one score for each class\n const score = scores[i][j]; // get score for current position\n if (score > config.object.minConfidence && j !== 61) {\n const cx = (0.5 + Math.trunc(i % baseSize)) / baseSize; // center.x normalized to range 0..1\n const cy = (0.5 + Math.trunc(i / baseSize)) / baseSize; // center.y normalized to range 0..1\n const boxOffset = boxIdx[i].map((a) => a * (baseSize / strideSize / inputSize)); // just grab indexes of features with highest scores\n const [x, y] = [\n cx - (scaleBox / strideSize * boxOffset[0]),\n cy - (scaleBox / strideSize * boxOffset[1]),\n ];\n const [w, h] = [\n cx + (scaleBox / strideSize * boxOffset[2]) - x,\n cy + (scaleBox / strideSize * boxOffset[3]) - y,\n ];\n let boxRaw = [x, y, w, h]; // results normalized to range 0..1\n boxRaw = boxRaw.map((a) => Math.max(0, Math.min(a, 1))); // fix out-of-bounds coords\n const box = [ // results normalized to input image pixels\n boxRaw[0] * outputShape[0],\n boxRaw[1] * outputShape[1],\n boxRaw[2] * outputShape[0],\n boxRaw[3] * outputShape[1],\n ];\n const result = {\n id: id++,\n // strideSize,\n score: Math.round(100 * score) / 100,\n class: j + 1,\n label: labels[j].label,\n // center: [Math.trunc(outputShape[0] * cx), Math.trunc(outputShape[1] * cy)],\n // centerRaw: [cx, cy],\n box: (box.map((a) => Math.trunc(a))) as [number, number, number, number],\n boxRaw: boxRaw as [number, number, number, number],\n };\n results.push(result);\n }\n }\n }\n });\n }\n // deallocate tensors\n res.forEach((t) => tf.dispose(t));\n\n // normally nms is run on raw results, but since boxes need to be calculated this way we skip calulcation of\n // unnecessary boxes and run nms only on good candidates (basically it just does IOU analysis as scores are already filtered)\n const nmsBoxes = results.map((a) => [a.boxRaw[1], a.boxRaw[0], a.boxRaw[3], a.boxRaw[2]]); // switches coordinates from x,y to y,x as expected by tf.nms\n const nmsScores = results.map((a) => a.score);\n let nmsIdx: Array = [];\n if (nmsBoxes && nmsBoxes.length > 0) {\n const nms = await tf.image.nonMaxSuppressionAsync(nmsBoxes, nmsScores, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n nmsIdx = nms.dataSync();\n tf.dispose(nms);\n }\n\n // filter & sort results\n results = results\n .filter((_val, idx) => nmsIdx.includes(idx))\n .sort((a, b) => (b.score - a.score));\n\n return results;\n}\n\nexport async function predict(image: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [image.shape[2], image.shape[1]];\n const resize = tf.image.resizeBilinear(image, [model.inputSize, model.inputSize], false);\n const norm = resize.div(255);\n const transpose = norm.transpose([0, 3, 1, 2]);\n norm.dispose();\n resize.dispose();\n\n let objectT;\n if (config.object.enabled) objectT = await model.predict(transpose);\n transpose.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/**\n * CenterNet object detection module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport { labels } from './labels';\nimport { Item } from '../result';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\nlet model;\nlet last: Item[] = [];\nlet skipped = Number.MAX_SAFE_INTEGER;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n model = await tf.loadGraphModel(join(config.modelBasePath, config.object.modelPath));\n const inputs = Object.values(model.modelSignature['inputs']);\n model.inputSize = Array.isArray(inputs) ? parseInt(inputs[0].tensorShape.dim[2].size) : null;\n if (!model.inputSize) throw new Error(`Human: Cannot determine model inputSize: ${config.object.modelPath}`);\n if (!model || !model.modelUrl) log('load model failed:', config.object.modelPath);\n else if (config.debug) log('load model:', model.modelUrl);\n } else if (config.debug) log('cached model:', model.modelUrl);\n return model;\n}\n\nasync function process(res: Tensor, inputSize, outputShape, config: Config) {\n if (!res) return [];\n const results: Array = [];\n const detections = res.arraySync();\n const squeezeT = tf.squeeze(res);\n res.dispose();\n const arr = tf.split(squeezeT, 6, 1); // x1, y1, x2, y2, score, class\n squeezeT.dispose();\n const stackT = tf.stack([arr[1], arr[0], arr[3], arr[2]], 1); // reorder dims as tf.nms expects y, x\n const boxesT = stackT.squeeze();\n const scoresT = arr[4].squeeze();\n const classesT = arr[5].squeeze();\n arr.forEach((t) => t.dispose());\n const nmsT = await tf.image.nonMaxSuppressionAsync(boxesT, scoresT, config.object.maxDetected, config.object.iouThreshold, config.object.minConfidence);\n boxesT.dispose();\n scoresT.dispose();\n classesT.dispose();\n const nms = nmsT.dataSync();\n nmsT.dispose();\n let i = 0;\n for (const id of nms) {\n const score = Math.trunc(100 * detections[0][id][4]) / 100;\n const classVal = detections[0][id][5];\n const label = labels[classVal].label;\n const [x, y] = [\n detections[0][id][0] / inputSize,\n detections[0][id][1] / inputSize,\n ];\n const boxRaw = [\n x,\n y,\n detections[0][id][2] / inputSize - x,\n detections[0][id][3] / inputSize - y,\n ] as [number, number, number, number];\n const box = [\n Math.trunc(boxRaw[0] * outputShape[0]),\n Math.trunc(boxRaw[1] * outputShape[1]),\n Math.trunc(boxRaw[2] * outputShape[0]),\n Math.trunc(boxRaw[3] * outputShape[1]),\n ] as [number, number, number, number];\n results.push({ id: i++, score, class: classVal, label, box, boxRaw });\n }\n return results;\n}\n\nexport async function predict(input: Tensor, config: Config): Promise {\n if ((skipped < config.object.skipFrames) && config.skipFrame && (last.length > 0)) {\n skipped++;\n return last;\n }\n skipped = 0;\n return new Promise(async (resolve) => {\n const outputSize = [input.shape[2], input.shape[1]];\n const resize = tf.image.resizeBilinear(input, [model.inputSize, model.inputSize]);\n const objectT = config.object.enabled ? model.execute(resize, ['tower_0/detections']) : null;\n resize.dispose();\n\n const obj = await process(objectT, model.inputSize, outputSize, config);\n last = obj;\n resolve(obj);\n });\n}\n", "/*\nWebGLImageFilter by Dominic Szablewski: \n*/\n\nfunction GLProgram(gl, vertexSource, fragmentSource) {\n const _collect = function (source, prefix, collection) {\n const r = new RegExp('\\\\b' + prefix + ' \\\\w+ (\\\\w+)', 'ig');\n source.replace(r, (match, name) => {\n collection[name] = 0;\n return match;\n });\n };\n\n const _compile = function (source, type) {\n const shader = gl.createShader(type);\n gl.shaderSource(shader, source);\n gl.compileShader(shader);\n if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) throw new Error('Filter: GL compile failed', gl.getShaderInfoLog(shader));\n return shader;\n };\n\n this.uniform = {};\n this.attribute = {};\n const _vsh = _compile(vertexSource, gl.VERTEX_SHADER);\n const _fsh = _compile(fragmentSource, gl.FRAGMENT_SHADER);\n this.id = gl.createProgram();\n gl.attachShader(this.id, _vsh);\n gl.attachShader(this.id, _fsh);\n gl.linkProgram(this.id);\n\n if (!gl.getProgramParameter(this.id, gl.LINK_STATUS)) throw new Error('Filter: GL link failed', gl.getProgramInfoLog(this.id));\n\n gl.useProgram(this.id);\n // Collect attributes\n _collect(vertexSource, 'attribute', this.attribute);\n for (const a in this.attribute) this.attribute[a] = gl.getAttribLocation(this.id, a);\n // Collect uniforms\n _collect(vertexSource, 'uniform', this.uniform);\n _collect(fragmentSource, 'uniform', this.uniform);\n for (const u in this.uniform) this.uniform[u] = gl.getUniformLocation(this.id, u);\n}\n\n// export const GLImageFilter = function (params) {\nexport function GLImageFilter(params) {\n if (!params) params = { };\n let _drawCount = 0;\n let _sourceTexture = null;\n let _lastInChain = false;\n let _currentFramebufferIndex = -1;\n let _tempFramebuffers = [null, null];\n let _filterChain = [];\n let _width = -1;\n let _height = -1;\n let _vertexBuffer = null;\n let _currentProgram = null;\n const _filter = {};\n const _canvas = params.canvas || document.createElement('canvas');\n // key is the shader program source, value is the compiled program\n const _shaderProgramCache = { };\n const DRAW = { INTERMEDIATE: 1 };\n const gl = _canvas.getContext('webgl');\n if (!gl) throw new Error('Filter: getContext() failed');\n\n this.addFilter = function (name) {\n // eslint-disable-next-line prefer-rest-params\n const args = Array.prototype.slice.call(arguments, 1);\n const filter = _filter[name];\n _filterChain.push({ func: filter, args });\n };\n\n this.reset = function () {\n _filterChain = [];\n };\n\n const _resize = function (width, height) {\n // Same width/height? Nothing to do here\n if (width === _width && height === _height) { return; }\n _canvas.width = width;\n _width = width;\n _canvas.height = height;\n _height = height;\n // Create the context if we don't have it yet\n if (!_vertexBuffer) {\n // Create the vertex buffer for the two triangles [x, y, u, v] * 6\n const vertices = new Float32Array([\n -1, -1, 0, 1, 1, -1, 1, 1, -1, 1, 0, 0,\n -1, 1, 0, 0, 1, -1, 1, 1, 1, 1, 1, 0,\n ]);\n // eslint-disable-next-line no-unused-expressions\n (_vertexBuffer = gl.createBuffer(), gl.bindBuffer(gl.ARRAY_BUFFER, _vertexBuffer));\n gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);\n gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);\n }\n gl.viewport(0, 0, _width, _height);\n // Delete old temp framebuffers\n _tempFramebuffers = [null, null];\n };\n\n const _createFramebufferTexture = function (width, height) {\n const fbo = gl.createFramebuffer();\n gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);\n const renderbuffer = gl.createRenderbuffer();\n gl.bindRenderbuffer(gl.RENDERBUFFER, renderbuffer);\n const texture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, texture);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, width, height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0);\n gl.bindTexture(gl.TEXTURE_2D, null);\n gl.bindFramebuffer(gl.FRAMEBUFFER, null);\n return { fbo, texture };\n };\n\n const _getTempFramebuffer = function (index) {\n _tempFramebuffers[index] = _tempFramebuffers[index] || _createFramebufferTexture(_width, _height);\n return _tempFramebuffers[index];\n };\n\n const _draw = function (flags = null) {\n let source = null;\n let target = null;\n let flipY = false;\n // Set up the source\n if (_drawCount === 0) {\n // First draw call - use the source texture\n source = _sourceTexture;\n } else {\n // All following draw calls use the temp buffer last drawn to\n source = _getTempFramebuffer(_currentFramebufferIndex)?.texture;\n }\n _drawCount++;\n // Set up the target\n if (_lastInChain && !(flags & DRAW.INTERMEDIATE)) {\n // Last filter in our chain - draw directly to the WebGL Canvas. We may\n // also have to flip the image vertically now\n target = null;\n flipY = _drawCount % 2 === 0;\n } else {\n // Intermediate draw call - get a temp buffer to draw to\n _currentFramebufferIndex = (_currentFramebufferIndex + 1) % 2;\n target = _getTempFramebuffer(_currentFramebufferIndex)?.fbo;\n }\n // Bind the source and target and draw the two triangles\n gl.bindTexture(gl.TEXTURE_2D, source);\n gl.bindFramebuffer(gl.FRAMEBUFFER, target);\n gl.uniform1f(_currentProgram.uniform.flipY, (flipY ? -1 : 1));\n gl.drawArrays(gl.TRIANGLES, 0, 6);\n };\n\n this.apply = function (image) {\n _resize(image.width, image.height);\n _drawCount = 0;\n // Create the texture for the input image if we haven't yet\n if (!_sourceTexture) _sourceTexture = gl.createTexture();\n gl.bindTexture(gl.TEXTURE_2D, _sourceTexture);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);\n gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);\n gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);\n // No filters? Just draw\n if (_filterChain.length === 0) {\n // const program = _compileShader(SHADER.FRAGMENT_IDENTITY);\n _draw();\n return _canvas;\n }\n for (let i = 0; i < _filterChain.length; i++) {\n _lastInChain = (i === _filterChain.length - 1);\n const f = _filterChain[i];\n f.func.apply(this, f.args || []);\n }\n return _canvas;\n };\n\n const _compileShader = function (fragmentSource) {\n if (_shaderProgramCache[fragmentSource]) {\n _currentProgram = _shaderProgramCache[fragmentSource];\n gl.useProgram(_currentProgram.id);\n return _currentProgram;\n }\n // Compile shaders\n const SHADER = {};\n SHADER.VERTEX_IDENTITY = [\n 'precision highp float;',\n 'attribute vec2 pos;',\n 'attribute vec2 uv;',\n 'varying vec2 vUv;',\n 'uniform float flipY;',\n 'void main(void) {',\n 'vUv = uv;',\n 'gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);',\n '}',\n ].join('\\n');\n SHADER.FRAGMENT_IDENTITY = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'void main(void) {',\n 'gl_FragColor = texture2D(texture, vUv);',\n '}',\n ].join('\\n');\n _currentProgram = new GLProgram(gl, SHADER.VERTEX_IDENTITY, fragmentSource);\n const floatSize = Float32Array.BYTES_PER_ELEMENT;\n const vertSize = 4 * floatSize;\n gl.enableVertexAttribArray(_currentProgram.attribute.pos);\n gl.vertexAttribPointer(_currentProgram.attribute.pos, 2, gl.FLOAT, false, vertSize, 0 * floatSize);\n gl.enableVertexAttribArray(_currentProgram.attribute.uv);\n gl.vertexAttribPointer(_currentProgram.attribute.uv, 2, gl.FLOAT, false, vertSize, 2 * floatSize);\n _shaderProgramCache[fragmentSource] = _currentProgram;\n return _currentProgram;\n };\n\n // -------------------------------------------------------------------------\n // Color Matrix Filter\n _filter.colorMatrix = function (matrix) {\n // Create a Float32 Array and normalize the offset component to 0-1\n const m = new Float32Array(matrix);\n m[4] /= 255;\n m[9] /= 255;\n m[14] /= 255;\n m[19] /= 255;\n // Can we ignore the alpha value? Makes things a bit faster.\n const shader = (m[18] === 1 && m[3] === 0 && m[8] === 0 && m[13] === 0 && m[15] === 0 && m[16] === 0 && m[17] === 0 && m[19] === 0)\n ? _filter.colorMatrix.SHADER.WITHOUT_ALPHA\n : _filter.colorMatrix.SHADER.WITH_ALPHA;\n const program = _compileShader(shader);\n gl.uniform1fv(program.uniform.m, m);\n _draw();\n };\n _filter.colorMatrix.SHADER = {};\n _filter.colorMatrix.SHADER.WITH_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];',\n 'gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];',\n '}',\n ].join('\\n');\n _filter.colorMatrix.SHADER.WITHOUT_ALPHA = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform float m[20];',\n 'void main(void) {',\n 'vec4 c = texture2D(texture, vUv);',\n 'gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];',\n 'gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];',\n 'gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];',\n 'gl_FragColor.a = c.a;',\n '}',\n ].join('\\n');\n\n _filter.brightness = function (brightness) {\n const b = (brightness || 0) + 1;\n _filter.colorMatrix([\n b, 0, 0, 0, 0,\n 0, b, 0, 0, 0,\n 0, 0, b, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.saturation = function (amount) {\n const x = (amount || 0) * 2 / 3 + 1;\n const y = ((x - 1) * -0.5);\n _filter.colorMatrix([\n x, y, y, 0, 0,\n y, x, y, 0, 0,\n y, y, x, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturate = function () {\n _filter.saturation(-1);\n };\n\n _filter.contrast = function (amount) {\n const v = (amount || 0) + 1;\n const o = -128 * (v - 1);\n\n _filter.colorMatrix([\n v, 0, 0, 0, o,\n 0, v, 0, 0, o,\n 0, 0, v, 0, o,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.negative = function () {\n _filter.contrast(-2);\n };\n\n _filter.hue = function (rotation) {\n rotation = (rotation || 0) / 180 * Math.PI;\n const cos = Math.cos(rotation);\n const sin = Math.sin(rotation);\n const lumR = 0.213;\n const lumG = 0.715;\n const lumB = 0.072;\n\n _filter.colorMatrix([\n lumR + cos * (1 - lumR) + sin * (-lumR), lumG + cos * (-lumG) + sin * (-lumG), lumB + cos * (-lumB) + sin * (1 - lumB), 0, 0,\n lumR + cos * (-lumR) + sin * (0.143), lumG + cos * (1 - lumG) + sin * (0.140), lumB + cos * (-lumB) + sin * (-0.283), 0, 0,\n lumR + cos * (-lumR) + sin * (-(1 - lumR)), lumG + cos * (-lumG) + sin * (lumG), lumB + cos * (1 - lumB) + sin * (lumB), 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.desaturateLuminance = function () {\n _filter.colorMatrix([\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0.2764723, 0.9297080, 0.0938197, 0, -37.1,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.sepia = function () {\n _filter.colorMatrix([\n 0.393, 0.7689999, 0.18899999, 0, 0,\n 0.349, 0.6859999, 0.16799999, 0, 0,\n 0.272, 0.5339999, 0.13099999, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.brownie = function () {\n _filter.colorMatrix([\n 0.5997023498159715, 0.34553243048391263, -0.2708298674538042, 0, 47.43192855600873,\n -0.037703249837783157, 0.8609577587992641, 0.15059552388459913, 0, -36.96841498319127,\n 0.24113635128153335, -0.07441037908422492, 0.44972182064877153, 0, -7.562075277591283,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.vintagePinhole = function () {\n _filter.colorMatrix([\n 0.6279345635605994, 0.3202183420819367, -0.03965408211312453, 0, 9.651285835294123,\n 0.02578397704808868, 0.6441188644374771, 0.03259127616149294, 0, 7.462829176470591,\n 0.0466055556782719, -0.0851232987247891, 0.5241648018700465, 0, 5.159190588235296,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.kodachrome = function () {\n _filter.colorMatrix([\n 1.1285582396593525, -0.3967382283601348, -0.03992559172921793, 0, 63.72958762196502,\n -0.16404339962244616, 1.0835251566291304, -0.05498805115633132, 0, 24.732407896706203,\n -0.16786010706155763, -0.5603416277695248, 1.6014850761964943, 0, 35.62982807460946,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.technicolor = function () {\n _filter.colorMatrix([\n 1.9125277891456083, -0.8545344976951645, -0.09155508482755585, 0, 11.793603434377337,\n -0.3087833385928097, 1.7658908555458428, -0.10601743074722245, 0, -70.35205161461398,\n -0.231103377548616, -0.7501899197440212, 1.847597816108189, 0, 30.950940869491138,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.polaroid = function () {\n _filter.colorMatrix([\n 1.438, -0.062, -0.062, 0, 0,\n -0.122, 1.378, -0.122, 0, 0,\n -0.016, -0.016, 1.483, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n _filter.shiftToBGR = function () {\n _filter.colorMatrix([\n 0, 0, 1, 0, 0,\n 0, 1, 0, 0, 0,\n 1, 0, 0, 0, 0,\n 0, 0, 0, 1, 0,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Convolution Filter\n _filter.convolution = function (matrix) {\n const m = new Float32Array(matrix);\n const pixelSizeX = 1 / _width;\n const pixelSizeY = 1 / _height;\n const program = _compileShader(_filter.convolution.SHADER);\n gl.uniform1fv(program.uniform.m, m);\n gl.uniform2f(program.uniform.px, pixelSizeX, pixelSizeY);\n _draw();\n };\n\n _filter.convolution.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'uniform float m[9];',\n 'void main(void) {',\n 'vec4 c11 = texture2D(texture, vUv - px);', // top left\n 'vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));', // top center\n 'vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));', // top right\n 'vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );', // mid left\n 'vec4 c22 = texture2D(texture, vUv);', // mid center\n 'vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );', // mid right\n 'vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );', // bottom left\n 'vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );', // bottom center\n 'vec4 c33 = texture2D(texture, vUv + px );', // bottom right\n 'gl_FragColor = ',\n 'c11 * m[0] + c12 * m[1] + c22 * m[2] +',\n 'c21 * m[3] + c22 * m[4] + c23 * m[5] +',\n 'c31 * m[6] + c32 * m[7] + c33 * m[8];',\n 'gl_FragColor.a = c22.a;',\n '}',\n ].join('\\n');\n\n _filter.detectEdges = function () {\n _filter.convolution.call(this, [\n 0, 1, 0,\n 1, -4, 1,\n 0, 1, 0,\n ]);\n };\n\n _filter.sobelX = function () {\n _filter.convolution.call(this, [\n -1, 0, 1,\n -2, 0, 2,\n -1, 0, 1,\n ]);\n };\n\n _filter.sobelY = function () {\n _filter.convolution.call(this, [\n -1, -2, -1,\n 0, 0, 0,\n 1, 2, 1,\n ]);\n };\n\n _filter.sharpen = function (amount) {\n const a = amount || 1;\n _filter.convolution.call(this, [\n 0, -1 * a, 0,\n -1 * a, 1 + 4 * a, -1 * a,\n 0, -1 * a, 0,\n ]);\n };\n\n _filter.emboss = function (size) {\n const s = size || 1;\n _filter.convolution.call(this, [\n -2 * s, -1 * s, 0,\n -1 * s, 1, 1 * s,\n 0, 1 * s, 2 * s,\n ]);\n };\n\n // -------------------------------------------------------------------------\n // Blur Filter\n _filter.blur = function (size) {\n const blurSizeX = (size / 7) / _width;\n const blurSizeY = (size / 7) / _height;\n const program = _compileShader(_filter.blur.SHADER);\n // Vertical\n gl.uniform2f(program.uniform.px, 0, blurSizeY);\n _draw(DRAW.INTERMEDIATE);\n // Horizontal\n gl.uniform2f(program.uniform.px, blurSizeX, 0);\n _draw();\n };\n\n _filter.blur.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform sampler2D texture;',\n 'uniform vec2 px;',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv )*0.159576912161;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;',\n 'gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;',\n '}',\n ].join('\\n');\n\n // -------------------------------------------------------------------------\n // Pixelate Filter\n _filter.pixelate = function (size) {\n const blurSizeX = (size) / _width;\n const blurSizeY = (size) / _height;\n const program = _compileShader(_filter.pixelate.SHADER);\n // Horizontal\n gl.uniform2f(program.uniform.size, blurSizeX, blurSizeY);\n _draw();\n };\n\n _filter.pixelate.SHADER = [\n 'precision highp float;',\n 'varying vec2 vUv;',\n 'uniform vec2 size;',\n 'uniform sampler2D texture;',\n 'vec2 pixelate(vec2 coord, vec2 size) {',\n 'return floor( coord / size ) * size;',\n '}',\n 'void main(void) {',\n 'gl_FragColor = vec4(0.0);',\n 'vec2 coord = pixelate(vUv, size);',\n 'gl_FragColor += texture2D(texture, coord);',\n '}',\n ].join('\\n');\n}\n", "/**\n * Image Processing module used by Human\n */\n\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as fxImage from './imagefx';\nimport { Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nconst maxSize = 2048;\n// internal temp canvases\nlet inCanvas;\nlet outCanvas;\n// instance of fximage\nlet fx;\n\n// process input image and return tensor\n// input can be tensor, imagedata, htmlimageelement, htmlvideoelement\n// input is resized and run through imagefx filter\nexport function process(input: Input, config: Config): { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement } {\n let tensor;\n if (!input) throw new Error('Human: Input is missing');\n // sanity checks since different browsers do not implement all dom elements\n if (\n !(input instanceof tf.Tensor)\n && !(typeof Image !== 'undefined' && input instanceof Image)\n && !(typeof ImageData !== 'undefined' && input instanceof ImageData)\n && !(typeof ImageBitmap !== 'undefined' && input instanceof ImageBitmap)\n && !(typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n && !(typeof HTMLMediaElement !== 'undefined' && input instanceof HTMLMediaElement)\n && !(typeof HTMLVideoElement !== 'undefined' && input instanceof HTMLVideoElement)\n && !(typeof HTMLCanvasElement !== 'undefined' && input instanceof HTMLCanvasElement)\n && !(typeof OffscreenCanvas !== 'undefined' && input instanceof OffscreenCanvas)\n ) {\n throw new Error('Human: Input type is not recognized');\n }\n if (input instanceof tf.Tensor) {\n // if input is tensor, use as-is\n if (input.shape && input.shape.length === 4 && input.shape[0] === 1 && input.shape[3] === 3) tensor = tf.clone(input);\n else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${input.shape}`);\n } else {\n // check if resizing will be needed\n const originalWidth = input['naturalWidth'] || input['videoWidth'] || input['width'] || (input['shape'] && (input['shape'][1] > 0));\n const originalHeight = input['naturalHeight'] || input['videoHeight'] || input['height'] || (input['shape'] && (input['shape'][2] > 0));\n if (!originalWidth || !originalHeight) return { tensor: null, canvas: inCanvas }; // video may become temporarily unavailable due to onresize\n let targetWidth = originalWidth;\n let targetHeight = originalHeight;\n if (targetWidth > maxSize) {\n targetWidth = maxSize;\n targetHeight = targetWidth * originalHeight / originalWidth;\n }\n if (targetHeight > maxSize) {\n targetHeight = maxSize;\n targetWidth = targetHeight * originalWidth / originalHeight;\n }\n\n // create our canvas and resize it if needed\n if (config.filter.width > 0) targetWidth = config.filter.width;\n else if (config.filter.height > 0) targetWidth = originalWidth * (config.filter.height / originalHeight);\n if (config.filter.height > 0) targetHeight = config.filter.height;\n else if (config.filter.width > 0) targetHeight = originalHeight * (config.filter.width / originalWidth);\n if (!targetWidth || !targetHeight) throw new Error('Human: Input cannot determine dimension');\n if (!inCanvas || (inCanvas?.width !== targetWidth) || (inCanvas?.height !== targetHeight)) {\n inCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n if (inCanvas?.width !== targetWidth) inCanvas.width = targetWidth;\n if (inCanvas?.height !== targetHeight) inCanvas.height = targetHeight;\n }\n\n // draw input to our canvas\n const ctx = inCanvas.getContext('2d');\n if (input instanceof ImageData) {\n ctx.putImageData(input, 0, 0);\n } else {\n if (config.filter.flip && typeof ctx.translate !== 'undefined') {\n ctx.translate(originalWidth, 0);\n ctx.scale(-1, 1);\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n ctx.setTransform(1, 0, 0, 1, 0, 0); // resets transforms to defaults\n } else {\n ctx.drawImage(input, 0, 0, originalWidth, originalHeight, 0, 0, inCanvas?.width, inCanvas?.height);\n }\n }\n\n // imagefx transforms using gl\n if (config.filter.enabled) {\n if (!fx || !outCanvas || (inCanvas.width !== outCanvas.width) || (inCanvas?.height !== outCanvas?.height)) {\n outCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(inCanvas?.width, inCanvas?.height) : document.createElement('canvas');\n if (outCanvas?.width !== inCanvas?.width) outCanvas.width = inCanvas?.width;\n if (outCanvas?.height !== inCanvas?.height) outCanvas.height = inCanvas?.height;\n // log('created FX filter');\n fx = tf.ENV.flags.IS_BROWSER ? new fxImage.GLImageFilter({ canvas: outCanvas }) : null; // && (typeof document !== 'undefined')\n }\n if (!fx) return { tensor: null, canvas: inCanvas };\n fx.reset();\n fx.addFilter('brightness', config.filter.brightness); // must have at least one filter enabled\n if (config.filter.contrast !== 0) fx.addFilter('contrast', config.filter.contrast);\n if (config.filter.sharpness !== 0) fx.addFilter('sharpen', config.filter.sharpness);\n if (config.filter.blur !== 0) fx.addFilter('blur', config.filter.blur);\n if (config.filter.saturation !== 0) fx.addFilter('saturation', config.filter.saturation);\n if (config.filter.hue !== 0) fx.addFilter('hue', config.filter.hue);\n if (config.filter.negative) fx.addFilter('negative');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.vintage) fx.addFilter('brownie');\n if (config.filter.sepia) fx.addFilter('sepia');\n if (config.filter.kodachrome) fx.addFilter('kodachrome');\n if (config.filter.technicolor) fx.addFilter('technicolor');\n if (config.filter.polaroid) fx.addFilter('polaroid');\n if (config.filter.pixelate !== 0) fx.addFilter('pixelate', config.filter.pixelate);\n fx.apply(inCanvas);\n // read pixel data\n /*\n const gl = outCanvas.getContext('webgl');\n if (gl) {\n const glBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 4);\n const pixBuffer = new Uint8Array(outCanvas.width * outCanvas.height * 3);\n gl.readPixels(0, 0, outCanvas.width, outCanvas.height, gl.RGBA, gl.UNSIGNED_BYTE, glBuffer);\n // gl returns rbga while we only need rgb, so discarding alpha channel\n // gl returns starting point as lower left, so need to invert vertical\n let i = 0;\n for (let y = outCanvas.height - 1; y >= 0; y--) {\n for (let x = 0; x < outCanvas.width; x++) {\n const index = (x + y * outCanvas.width) * 4;\n pixBuffer[i++] = glBuffer[index + 0];\n pixBuffer[i++] = glBuffer[index + 1];\n pixBuffer[i++] = glBuffer[index + 2];\n }\n }\n outCanvas.data = pixBuffer;\n }\n */\n } else {\n outCanvas = inCanvas;\n if (fx) fx = null;\n }\n\n // create tensor from image\n let pixels;\n if (outCanvas.data) { // if we have data, just convert to tensor\n const shape = [outCanvas.height, outCanvas.width, 3];\n pixels = tf.tensor3d(outCanvas.data, shape, 'int32');\n } else if (outCanvas instanceof ImageData) { // if input is imagedata, just use it\n pixels = tf.browser ? tf.browser.fromPixels(outCanvas) : null;\n } else if (config.backend === 'webgl' || config.backend === 'humangl') { // tf kernel-optimized method to get imagedata\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n pixels = tf.browser ? tf.browser.fromPixels(tempCanvas) : null;\n } else { // cpu and wasm kernel does not implement efficient fromPixels method\n // we can use canvas as-is as it already has a context, so we do a silly one more canvas\n const tempCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(targetWidth, targetHeight) : document.createElement('canvas');\n tempCanvas.width = targetWidth;\n tempCanvas.height = targetHeight;\n const tempCtx = tempCanvas.getContext('2d');\n tempCtx?.drawImage(outCanvas, 0, 0);\n const data = tempCtx?.getImageData(0, 0, targetWidth, targetHeight);\n pixels = tf.browser ? tf.browser.fromPixels(data) : null;\n }\n if (pixels) {\n const casted = pixels.toFloat();\n tensor = casted.expandDims(0);\n pixels.dispose();\n casted.dispose();\n }\n }\n const canvas = config.filter.return ? outCanvas : null;\n return { tensor, canvas };\n}\n", "/**\n * EfficientPose Module\n */\n\nimport { log, join } from '../helpers';\nimport * as tf from '../../dist/tfjs.esm.js';\nimport * as image from '../image/image';\nimport { GraphModel, Tensor } from '../tfjs/types';\nimport { Config } from '../config';\n\ntype Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\nlet model: GraphModel;\nlet busy = false;\n\nexport async function load(config: Config): Promise {\n if (!model) {\n // @ts-ignore type mismatch on GraphModel\n model = await tf.loadGraphModel(join(config.modelBasePath, config.segmentation.modelPath));\n if (!model || !model['modelUrl']) log('load model failed:', config.segmentation.modelPath);\n else if (config.debug) log('load model:', model['modelUrl']);\n } else if (config.debug) log('cached model:', model['modelUrl']);\n return model;\n}\n\nexport async function predict(input: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement }): Promise {\n const width = input.tensor?.shape[1] || 0;\n const height = input.tensor?.shape[2] || 0;\n if (!input.tensor) return null;\n if (!model || !model.inputs[0].shape) return null;\n const resizeInput = tf.image.resizeBilinear(input.tensor, [model.inputs[0].shape[1], model.inputs[0].shape[2]], false);\n const norm = resizeInput.div(255);\n const res = model.predict(norm) as Tensor;\n // meet output: 1,256,256,1\n // selfie output: 1,144,256,2\n tf.dispose(resizeInput);\n tf.dispose(norm);\n\n const squeeze = tf.squeeze(res, 0);\n let resizeOutput;\n if (squeeze.shape[2] === 2) {\n // model meet has two channels for fg and bg\n const softmax = squeeze.softmax();\n const [bg, fg] = tf.unstack(softmax, 2);\n const expand = fg.expandDims(2);\n const pad = expand.expandDims(0);\n tf.dispose(softmax);\n tf.dispose(bg);\n tf.dispose(fg);\n // running sofmax before unstack creates 2x2 matrix so we only take upper-left quadrant\n const crop = tf.image.cropAndResize(pad, [[0, 0, 0.5, 0.5]], [0], [width, height]);\n // otherwise run softmax after unstack and use standard resize\n // resizeOutput = tf.image.resizeBilinear(expand, [input.tensor?.shape[1], input.tensor?.shape[2]]);\n resizeOutput = crop.squeeze(0);\n tf.dispose(crop);\n tf.dispose(expand);\n tf.dispose(pad);\n } else { // model selfie has a single channel that we can use directly\n resizeOutput = tf.image.resizeBilinear(squeeze, [width, height]);\n }\n\n if (typeof document === 'undefined') return resizeOutput.dataSync(); // we're running in nodejs so return alpha array as-is\n\n const overlay = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas');\n overlay.width = width;\n overlay.height = height;\n if (tf.browser) await tf.browser.toPixels(resizeOutput, overlay);\n tf.dispose(resizeOutput);\n tf.dispose(squeeze);\n tf.dispose(res);\n\n // get alpha channel data\n const alphaCanvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n alphaCanvas.width = width;\n alphaCanvas.height = height;\n const ctxAlpha = alphaCanvas.getContext('2d') as CanvasRenderingContext2D;\n ctxAlpha.filter = 'blur(8px';\n await ctxAlpha.drawImage(overlay, 0, 0);\n const alpha = ctxAlpha.getImageData(0, 0, width, height).data;\n\n // get original canvas merged with overlay\n const original = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(width, height) : document.createElement('canvas'); // need one more copy since input may already have gl context so 2d context fails\n original.width = width;\n original.height = height;\n const ctx = original.getContext('2d') as CanvasRenderingContext2D;\n if (input.canvas) await ctx.drawImage(input.canvas, 0, 0);\n // https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/globalCompositeOperation // best options are: darken, color-burn, multiply\n ctx.globalCompositeOperation = 'darken';\n ctx.filter = 'blur(8px)'; // use css filter for bluring, can be done with gaussian blur manually instead\n await ctx.drawImage(overlay, 0, 0);\n ctx.globalCompositeOperation = 'source-over'; // reset\n ctx.filter = 'none'; // reset\n\n input.canvas = original;\n\n return alpha;\n}\n\nexport async function process(input: Input, background: Input | undefined, config: Config): Promise {\n if (busy) return null;\n busy = true;\n if (!model) await load(config);\n const img = image.process(input, config);\n const alpha = await predict(img);\n tf.dispose(img.tensor);\n\n if (background && alpha) {\n const tmp = image.process(background, config);\n const bg = tmp.canvas;\n tf.dispose(tmp.tensor);\n const fg = img.canvas;\n const fgData = fg.getContext('2d')?.getImageData(0, 0, fg.width, fg.height).data as Uint8ClampedArray;\n\n const c = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(fg.width, fg.height) : document.createElement('canvas');\n c.width = fg.width;\n c.height = fg.height;\n const ctx = c.getContext('2d') as CanvasRenderingContext2D;\n\n ctx.globalCompositeOperation = 'copy'; // reset\n ctx.drawImage(bg, 0, 0, c.width, c.height);\n const cData = ctx.getImageData(0, 0, c.width, c.height) as ImageData;\n for (let i = 0; i < c.width * c.height; i++) { // this should be done with globalCompositeOperation instead of looping through image data\n cData.data[4 * i + 0] = ((255 - alpha[4 * i + 0]) / 255.0 * cData.data[4 * i + 0]) + (alpha[4 * i + 0] / 255.0 * fgData[4 * i + 0]);\n cData.data[4 * i + 1] = ((255 - alpha[4 * i + 1]) / 255.0 * cData.data[4 * i + 1]) + (alpha[4 * i + 1] / 255.0 * fgData[4 * i + 1]);\n cData.data[4 * i + 2] = ((255 - alpha[4 * i + 2]) / 255.0 * cData.data[4 * i + 2]) + (alpha[4 * i + 2] / 255.0 * fgData[4 * i + 2]);\n cData.data[4 * i + 3] = ((255 - alpha[4 * i + 3]) / 255.0 * cData.data[4 * i + 3]) + (alpha[4 * i + 3] / 255.0 * fgData[4 * i + 3]);\n }\n ctx.putImageData(cData, 0, 0);\n img.canvas = c;\n }\n busy = false;\n return img.canvas;\n}\n", "import * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as emotion from './emotion/emotion';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\n\n/** Load method preloads all instance.configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userinstance.config?: {@link instance.config}\n*/\nexport async function load(instance) {\n if (instance.config.async) { // load models concurrently\n [\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.face,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.emotion,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.handpose,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.posenet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.blazepose,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.efficientpose,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.movenet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.nanodet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.centernet,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.faceres,\n // @ts-ignore models loaded via promise array cannot be correctly inferred\n instance.models.segmentation,\n ] = await Promise.all([\n instance.models.face || (instance.config.face.enabled ? facemesh.load(instance.config) : null),\n instance.models.emotion || ((instance.config.face.enabled && instance.config.face.emotion.enabled) ? emotion.load(instance.config) : null),\n instance.models.handpose || (instance.config.hand.enabled ? handpose.load(instance.config) : null),\n instance.models.posenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('posenet') ? posenet.load(instance.config) : null),\n instance.models.blazepose || (instance.config.body.enabled && instance.config.body.modelPath.includes('blazepose') ? blazepose.load(instance.config) : null),\n instance.models.efficientpose || (instance.config.body.enabled && instance.config.body.modelPath.includes('efficientpose') ? efficientpose.load(instance.config) : null),\n instance.models.movenet || (instance.config.body.enabled && instance.config.body.modelPath.includes('movenet') ? movenet.load(instance.config) : null),\n instance.models.nanodet || (instance.config.object.enabled && instance.config.object.modelPath.includes('nanodet') ? nanodet.load(instance.config) : null),\n instance.models.centernet || (instance.config.object.enabled && instance.config.object.modelPath.includes('centernet') ? centernet.load(instance.config) : null),\n instance.models.faceres || ((instance.config.face.enabled && instance.config.face.description.enabled) ? faceres.load(instance.config) : null),\n instance.models.segmentation || (instance.config.segmentation.enabled ? segmentation.load(instance.config) : null),\n ]);\n } else { // load models sequentially\n if (instance.config.face.enabled && !instance.models.face) instance.models.face = await facemesh.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.emotion.enabled && !instance.models.emotion) instance.models.emotion = await emotion.load(instance.config);\n if (instance.config.hand.enabled && !instance.models.handpose) instance.models.handpose = await handpose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.posenet && instance.config.body.modelPath.includes('posenet')) instance.models.posenet = await posenet.load(instance.config);\n if (instance.config.body.enabled && !instance.models.blazepose && instance.config.body.modelPath.includes('blazepose')) instance.models.blazepose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.efficientpose && instance.config.body.modelPath.includes('efficientpose')) instance.models.efficientpose = await blazepose.load(instance.config);\n if (instance.config.body.enabled && !instance.models.movenet && instance.config.body.modelPath.includes('movenet')) instance.models.movenet = await movenet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.nanodet && instance.config.object.modelPath.includes('nanodet')) instance.models.nanodet = await nanodet.load(instance.config);\n if (instance.config.object.enabled && !instance.models.centernet && instance.config.object.modelPath.includes('centernet')) instance.models.centernet = await centernet.load(instance.config);\n if (instance.config.face.enabled && instance.config.face.description.enabled && !instance.models.faceres) instance.models.faceres = await faceres.load(instance.config);\n if (instance.config.segmentation.enabled && !instance.models.segmentation) instance.models.segmentation = await segmentation.load(instance.config);\n }\n}\n", "/**\n * Module that analyzes person age\n * Obsolete\n */\n\nimport { log, now } from './helpers';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as facemesh from './blazeface/facemesh';\nimport * as emotion from './emotion/emotion';\nimport * as faceres from './faceres/faceres';\nimport { Face } from './result';\nimport { Tensor } from './tfjs/types';\n\n// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nconst calculateGaze = (face): { bearing: number, strength: number } => {\n const radians = (pt1, pt2) => Math.atan2(pt1[1] - pt2[1], pt1[0] - pt2[0]); // function to calculate angle between any two points\n if (!face.annotations['rightEyeIris'] || !face.annotations['leftEyeIris']) return { bearing: 0, strength: 0 };\n\n const offsetIris = [0, -0.1]; // iris center may not align with average of eye extremes\n const eyeRatio = 1; // factor to normalize changes x vs y\n\n const left = face.mesh[33][2] > face.mesh[263][2]; // pick left or right eye depending which one is closer bazed on outsize point z axis\n const irisCenter = left ? face.mesh[473] : face.mesh[468];\n const eyeCenter = left // eye center is average of extreme points on x axis for both x and y, ignoring y extreme points as eyelids naturally open/close more when gazing up/down so relative point is less precise\n ? [(face.mesh[133][0] + face.mesh[33][0]) / 2, (face.mesh[133][1] + face.mesh[33][1]) / 2]\n : [(face.mesh[263][0] + face.mesh[362][0]) / 2, (face.mesh[263][1] + face.mesh[362][1]) / 2];\n const eyeSize = left // eye size is difference between extreme points for both x and y, used to normalize & squarify eye dimensions\n ? [face.mesh[133][0] - face.mesh[33][0], face.mesh[23][1] - face.mesh[27][1]]\n : [face.mesh[263][0] - face.mesh[362][0], face.mesh[253][1] - face.mesh[257][1]];\n\n const eyeDiff = [ // x distance between extreme point and center point normalized with eye size\n (eyeCenter[0] - irisCenter[0]) / eyeSize[0] - offsetIris[0],\n eyeRatio * (irisCenter[1] - eyeCenter[1]) / eyeSize[1] - offsetIris[1],\n ];\n let strength = Math.sqrt((eyeDiff[0] ** 2) + (eyeDiff[1] ** 2)); // vector length is a diagonal between two differences\n strength = Math.min(strength, face.boxRaw[2] / 2, face.boxRaw[3] / 2); // limit strength to half of box size to avoid clipping due to low precision\n const bearing = (radians([0, 0], eyeDiff) + (Math.PI / 2)) % Math.PI; // using eyeDiff instead eyeCenter/irisCenter combo due to manual adjustments and rotate clockwise 90degrees\n\n return { bearing, strength };\n};\n\nconst calculateFaceAngle = (face, imageSize): {\n angle: { pitch: number, yaw: number, roll: number },\n matrix: [number, number, number, number, number, number, number, number, number],\n gaze: { bearing: number, strength: number },\n} => {\n // const degrees = (theta) => Math.abs(((theta * 180) / Math.PI) % 360);\n const normalize = (v) => { // normalize vector\n const length = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);\n v[0] /= length;\n v[1] /= length;\n v[2] /= length;\n return v;\n };\n const subVectors = (a, b) => { // vector subtraction (a - b)\n const x = a[0] - b[0];\n const y = a[1] - b[1];\n const z = a[2] - b[2];\n return [x, y, z];\n };\n const crossVectors = (a, b) => { // vector cross product (a x b)\n const x = a[1] * b[2] - a[2] * b[1];\n const y = a[2] * b[0] - a[0] * b[2];\n const z = a[0] * b[1] - a[1] * b[0];\n return [x, y, z];\n };\n // 3x3 rotation matrix to Euler angles based on https://www.geometrictools.com/Documentation/EulerAngles.pdf\n const rotationMatrixToEulerAngle = (r) => {\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const [r00, r01, r02, r10, r11, r12, r20, r21, r22] = r;\n let thetaX; let thetaY; let thetaZ;\n if (r10 < 1) { // YZX calculation\n if (r10 > -1) {\n thetaZ = Math.asin(r10);\n thetaY = Math.atan2(-r20, r00);\n thetaX = Math.atan2(-r12, r11);\n } else {\n thetaZ = -Math.PI / 2;\n thetaY = -Math.atan2(r21, r22);\n thetaX = 0;\n }\n } else {\n thetaZ = Math.PI / 2;\n thetaY = Math.atan2(r21, r22);\n thetaX = 0;\n }\n return { pitch: 2 * -thetaX, yaw: 2 * -thetaY, roll: 2 * -thetaZ };\n };\n // simple Euler angle calculation based existing 3D mesh\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const meshToEulerAngle = (mesh) => {\n const radians = (a1, a2, b1, b2) => Math.atan2(b2 - a2, b1 - a1);\n // eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars\n const angle = {\n // values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees, value of 0 means center\n // pitch is face move up/down\n pitch: radians(mesh[10][1], mesh[10][2], mesh[152][1], mesh[152][2]), // looking at y,z of top and bottom points of the face\n // yaw is face turn left/right\n yaw: radians(mesh[33][0], mesh[33][2], mesh[263][0], mesh[263][2]), // looking at x,z of outside corners of leftEye and rightEye\n // roll is face lean left/right\n roll: radians(mesh[33][0], mesh[33][1], mesh[263][0], mesh[263][1]), // looking at x,y of outside corners of leftEye and rightEye\n };\n return angle;\n };\n\n // initialize gaze and mesh\n const mesh = face.meshRaw;\n if (!mesh || mesh.length < 300) return { angle: { pitch: 0, yaw: 0, roll: 0 }, matrix: [1, 0, 0, 0, 1, 0, 0, 0, 1], gaze: { bearing: 0, strength: 0 } };\n\n const size = Math.max(face.boxRaw[2] * imageSize[0], face.boxRaw[3] * imageSize[1]) / 1.5;\n // top, bottom, left, right\n const pts = [mesh[10], mesh[152], mesh[234], mesh[454]].map((pt) => [\n // make the xyz coordinates proportional, independent of the image/box size\n pt[0] * imageSize[0] / size,\n pt[1] * imageSize[1] / size,\n pt[2],\n ]);\n\n const y_axis = normalize(subVectors(pts[1], pts[0]));\n let x_axis = normalize(subVectors(pts[3], pts[2]));\n const z_axis = normalize(crossVectors(x_axis, y_axis));\n // adjust x_axis to make sure that all axes are perpendicular to each other\n x_axis = crossVectors(y_axis, z_axis);\n\n // Rotation Matrix from Axis Vectors - http://renderdan.blogspot.com/2006/05/rotation-matrix-from-axis-vectors.html\n // 3x3 rotation matrix is flatten to array in row-major order. Note that the rotation represented by this matrix is inverted.\n const matrix: [number, number, number, number, number, number, number, number, number] = [\n x_axis[0], x_axis[1], x_axis[2],\n y_axis[0], y_axis[1], y_axis[2],\n z_axis[0], z_axis[1], z_axis[2],\n ];\n const angle = rotationMatrixToEulerAngle(matrix);\n // const angle = meshToEulerAngle(mesh);\n\n // we have iris keypoints so we can calculate gaze direction\n const gaze = mesh.length === 478 ? calculateGaze(face) : { bearing: 0, strength: 0 };\n\n return { angle, matrix, gaze };\n};\n\nexport const detectFace = async (parent /* instance of human */, input: Tensor): Promise => {\n // run facemesh, includes blazeface and iris\n // eslint-disable-next-line no-async-promise-executor\n let timeStamp;\n let ageRes;\n let genderRes;\n let emotionRes;\n let embeddingRes;\n let descRes;\n const faceRes: Array = [];\n parent.state = 'run:face';\n timeStamp = now();\n const faces = await facemesh.predict(input, parent.config);\n parent.performance.face = Math.trunc(now() - timeStamp);\n if (!input.shape || input.shape.length !== 4) return [];\n if (!faces) return [];\n // for (const face of faces) {\n for (let i = 0; i < faces.length; i++) {\n parent.analyze('Get Face');\n\n // is something went wrong, skip the face\n // @ts-ignore possibly undefined\n if (!faces[i].image || faces[i].image['isDisposedInternal']) {\n log('Face object is disposed:', faces[i].image);\n continue;\n }\n\n const rotation = calculateFaceAngle(faces[i], [input.shape[2], input.shape[1]]);\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Emotion:');\n if (parent.config.async) {\n emotionRes = parent.config.face.emotion.enabled ? emotion.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : {};\n } else {\n parent.state = 'run:emotion';\n timeStamp = now();\n emotionRes = parent.config.face.emotion.enabled ? await emotion.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : {};\n parent.performance.emotion = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Emotion:');\n\n // run emotion, inherits face from blazeface\n parent.analyze('Start Description:');\n if (parent.config.async) {\n descRes = parent.config.face.description.enabled ? faceres.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : [];\n } else {\n parent.state = 'run:description';\n timeStamp = now();\n descRes = parent.config.face.description.enabled ? await faceres.predict(faces[i].image || tf.tensor([]), parent.config, i, faces.length) : [];\n parent.performance.embedding = Math.trunc(now() - timeStamp);\n }\n parent.analyze('End Description:');\n\n // if async wait for results\n if (parent.config.async) {\n [ageRes, genderRes, emotionRes, embeddingRes, descRes] = await Promise.all([ageRes, genderRes, emotionRes, embeddingRes, descRes]);\n }\n\n parent.analyze('Finish Face:');\n\n // calculate iris distance\n // iris: array[ center, left, top, right, bottom]\n if (!parent.config.face.iris.enabled && faces[i]?.annotations?.leftEyeIris && faces[i]?.annotations?.rightEyeIris) {\n delete faces[i].annotations.leftEyeIris;\n delete faces[i].annotations.rightEyeIris;\n }\n const irisSize = (faces[i].annotations?.leftEyeIris && faces[i].annotations?.rightEyeIris)\n /* note: average human iris size is 11.7mm */\n ? Math.max(Math.abs(faces[i].annotations.leftEyeIris[3][0] - faces[i].annotations.leftEyeIris[1][0]), Math.abs(faces[i].annotations.rightEyeIris[4][1] - faces[i].annotations.rightEyeIris[2][1])) / input.shape[2]\n : 0;\n\n // combine results\n faceRes.push({\n ...faces[i],\n id: i,\n age: descRes.age,\n gender: descRes.gender,\n genderScore: descRes.genderScore,\n embedding: descRes.descriptor,\n emotion: emotionRes,\n iris: irisSize !== 0 ? Math.trunc(500 / irisSize / 11.7) / 100 : 0,\n rotation,\n tensor: parent.config.face.detector.return ? tf.squeeze(faces[i].image) : null,\n });\n // dispose original face tensor\n tf.dispose(faces[i].image);\n // delete temp face image\n if (faces[i].image) delete faces[i].image;\n\n parent.analyze('End Face');\n }\n parent.analyze('End FaceMesh:');\n if (parent.config.async) {\n if (parent.performance.face) delete parent.performance.face;\n if (parent.performance.age) delete parent.performance.age;\n if (parent.performance.gender) delete parent.performance.gender;\n if (parent.performance.emotion) delete parent.performance.emotion;\n }\n return faceRes;\n};\n", "/**\n * Gesture detection module\n */\n\nimport { Gesture } from '../result';\n\nexport const body = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ body: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n // raising hands\n const leftWrist = res[i].keypoints.find((a) => (a.part === 'leftWrist'));\n const rightWrist = res[i].keypoints.find((a) => (a.part === 'rightWrist'));\n const nose = res[i].keypoints.find((a) => (a.part === 'nose'));\n if (nose && leftWrist && rightWrist && (leftWrist.position.y < nose.position.y) && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'i give up' });\n else if (nose && leftWrist && (leftWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise left hand' });\n else if (nose && rightWrist && (rightWrist.position.y < nose.position.y)) gestures.push({ body: i, gesture: 'raise right hand' });\n\n // leaning\n const leftShoulder = res[i].keypoints.find((a) => (a.part === 'leftShoulder'));\n const rightShoulder = res[i].keypoints.find((a) => (a.part === 'rightShoulder'));\n if (leftShoulder && rightShoulder) gestures.push({ body: i, gesture: `leaning ${(leftShoulder.position.y > rightShoulder.position.y) ? 'left' : 'right'}` });\n }\n return gestures;\n};\n\nexport const face = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ face: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (res[i].mesh && res[i].mesh.length > 0) {\n const eyeFacing = res[i].mesh[33][2] - res[i].mesh[263][2];\n if (Math.abs(eyeFacing) < 10) gestures.push({ face: i, gesture: 'facing center' });\n else gestures.push({ face: i, gesture: `facing ${eyeFacing < 0 ? 'left' : 'right'}` });\n const openLeft = Math.abs(res[i].mesh[374][1] - res[i].mesh[386][1]) / Math.abs(res[i].mesh[443][1] - res[i].mesh[450][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openLeft < 0.2) gestures.push({ face: i, gesture: 'blink left eye' });\n const openRight = Math.abs(res[i].mesh[145][1] - res[i].mesh[159][1]) / Math.abs(res[i].mesh[223][1] - res[i].mesh[230][1]); // center of eye inner lid y coord div center of wider eye border y coord\n if (openRight < 0.2) gestures.push({ face: i, gesture: 'blink right eye' });\n const mouthOpen = Math.min(100, 500 * Math.abs(res[i].mesh[13][1] - res[i].mesh[14][1]) / Math.abs(res[i].mesh[10][1] - res[i].mesh[152][1]));\n if (mouthOpen > 10) gestures.push({ face: i, gesture: `mouth ${Math.trunc(mouthOpen)}% open` });\n const chinDepth = res[i].mesh[152][2];\n if (Math.abs(chinDepth) > 10) gestures.push({ face: i, gesture: `head ${chinDepth < 0 ? 'up' : 'down'}` });\n }\n }\n return gestures;\n};\n\nexport const iris = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ iris: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n if (!res[i].annotations || !res[i].annotations.leftEyeIris || !res[i].annotations.rightEyeIris) continue;\n const sizeXLeft = res[i].annotations.leftEyeIris[3][0] - res[i].annotations.leftEyeIris[1][0];\n const sizeYLeft = res[i].annotations.leftEyeIris[4][1] - res[i].annotations.leftEyeIris[2][1];\n const areaLeft = Math.abs(sizeXLeft * sizeYLeft);\n\n const sizeXRight = res[i].annotations.rightEyeIris[3][0] - res[i].annotations.rightEyeIris[1][0];\n const sizeYRight = res[i].annotations.rightEyeIris[4][1] - res[i].annotations.rightEyeIris[2][1];\n const areaRight = Math.abs(sizeXRight * sizeYRight);\n\n let center = false;\n const difference = Math.abs(areaLeft - areaRight) / Math.max(areaLeft, areaRight);\n if (difference < 0.25) {\n center = true;\n gestures.push({ iris: i, gesture: 'facing center' });\n }\n\n const rightIrisCenterX = Math.abs(res[i].mesh[33][0] - res[i].annotations.rightEyeIris[0][0]) / res[i].box[2];\n const leftIrisCenterX = Math.abs(res[i].mesh[263][0] - res[i].annotations.leftEyeIris[0][0]) / res[i].box[2];\n if (leftIrisCenterX > 0.06 || rightIrisCenterX > 0.06) center = false;\n if (leftIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking right' });\n if (rightIrisCenterX > 0.06) gestures.push({ iris: i, gesture: 'looking left' });\n\n const rightIrisCenterY = Math.abs(res[i].mesh[145][1] - res[i].annotations.rightEyeIris[0][1]) / res[i].box[3];\n const leftIrisCenterY = Math.abs(res[i].mesh[374][1] - res[i].annotations.leftEyeIris[0][1]) / res[i].box[3];\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01 || leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) center = false;\n if (leftIrisCenterY < 0.01 || rightIrisCenterY < 0.01) gestures.push({ iris: i, gesture: 'looking down' });\n if (leftIrisCenterY > 0.022 || rightIrisCenterY > 0.022) gestures.push({ iris: i, gesture: 'looking up' });\n\n // still center;\n if (center) gestures.push({ iris: i, gesture: 'looking center' });\n }\n return gestures;\n};\n\nexport const hand = (res): Gesture[] => {\n if (!res) return [];\n const gestures: Array<{ hand: number, gesture: string }> = [];\n for (let i = 0; i < res.length; i++) {\n const fingers: Array<{ name: string, position: number }> = [];\n for (const [finger, pos] of Object.entries(res[i]['annotations'])) {\n if (finger !== 'palmBase' && Array.isArray(pos)) fingers.push({ name: finger.toLowerCase(), position: pos[0] }); // get tip of each finger\n }\n if (fingers && fingers.length > 0) {\n const closest = fingers.reduce((best, a) => (best.position[2] < a.position[2] ? best : a));\n const highest = fingers.reduce((best, a) => (best.position[1] < a.position[1] ? best : a));\n gestures.push({ hand: i, gesture: `${closest.name} forward ${highest.name} up` });\n }\n }\n return gestures;\n};\n", "/**\n * Module that implements helper draw functions, exposed as human.draw\n */\n\nimport { TRI468 as triangulation } from '../blazeface/coords';\nimport { mergeDeep, now } from '../helpers';\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from '../result';\n\n/**\n * Draw Options\n * Accessed via `human.draw.options` or provided per each draw method as the drawOptions optional parameter\n * -color: draw color\n * -labelColor: color for labels\n * -shadowColor: optional shadow color for labels\n * -font: font for labels\n * -lineHeight: line height for labels, used for multi-line labels,\n * -lineWidth: width of any lines,\n * -pointSize: size of any point,\n * -roundRect: for boxes, round corners by this many pixels,\n * -drawPoints: should points be drawn,\n * -drawLabels: should labels be drawn,\n * -drawBoxes: should boxes be drawn,\n * -drawPolygons: should polygons be drawn,\n * -fillPolygons: should drawn polygons be filled,\n * -useDepth: use z-axis coordinate as color shade,\n * -useCurves: draw polygons as cures or as lines,\n * -bufferedOutput: experimental: allows to call draw methods multiple times for each detection and interpolate results between results thus achieving smoother animations\n */\nexport interface DrawOptions {\n color: string,\n labelColor: string,\n shadowColor: string,\n font: string,\n lineHeight: number,\n lineWidth: number,\n pointSize: number,\n roundRect: number,\n drawPoints: boolean,\n drawLabels: boolean,\n drawBoxes: boolean,\n drawPolygons: boolean,\n drawGaze: boolean,\n fillPolygons: boolean,\n useDepth: boolean,\n useCurves: boolean,\n bufferedOutput: boolean,\n}\n\nexport const options: DrawOptions = {\n color: 'rgba(173, 216, 230, 0.6)', // 'lightblue' with light alpha channel\n labelColor: 'rgba(173, 216, 230, 1)', // 'lightblue' with dark alpha channel\n shadowColor: 'black',\n font: 'small-caps 14px \"Segoe UI\"',\n lineHeight: 18,\n lineWidth: 4,\n pointSize: 2,\n roundRect: 8,\n drawPoints: false,\n drawLabels: true,\n drawBoxes: true,\n drawPolygons: true,\n drawGaze: true,\n fillPolygons: false,\n useDepth: true,\n useCurves: false,\n bufferedOutput: true,\n};\n\nconst rad2deg = (theta) => Math.round((theta * 180) / Math.PI);\n\nfunction point(ctx, x, y, z = 0, localOptions) {\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.beginPath();\n ctx.arc(x, y, localOptions.pointSize, 0, 2 * Math.PI);\n ctx.fill();\n}\n\nfunction rect(ctx, x, y, width, height, localOptions) {\n ctx.beginPath();\n if (localOptions.useCurves) {\n const cx = (x + x + width) / 2;\n const cy = (y + y + height) / 2;\n ctx.ellipse(cx, cy, width / 2, height / 2, 0, 0, 2 * Math.PI);\n } else {\n ctx.lineWidth = localOptions.lineWidth;\n ctx.moveTo(x + localOptions.roundRect, y);\n ctx.lineTo(x + width - localOptions.roundRect, y);\n ctx.quadraticCurveTo(x + width, y, x + width, y + localOptions.roundRect);\n ctx.lineTo(x + width, y + height - localOptions.roundRect);\n ctx.quadraticCurveTo(x + width, y + height, x + width - localOptions.roundRect, y + height);\n ctx.lineTo(x + localOptions.roundRect, y + height);\n ctx.quadraticCurveTo(x, y + height, x, y + height - localOptions.roundRect);\n ctx.lineTo(x, y + localOptions.roundRect);\n ctx.quadraticCurveTo(x, y, x + localOptions.roundRect, y);\n ctx.closePath();\n }\n ctx.stroke();\n}\n\nfunction lines(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n ctx.beginPath();\n ctx.moveTo(points[0][0], points[0][1]);\n for (const pt of points) {\n const z = pt[2] || 0;\n ctx.strokeStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.fillStyle = localOptions.useDepth && z ? `rgba(${127.5 + (2 * z)}, ${127.5 - (2 * z)}, 255, 0.3)` : localOptions.color;\n ctx.lineTo(pt[0], Math.round(pt[1]));\n }\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nfunction curves(ctx, points: [number, number, number?][] = [], localOptions) {\n if (points === undefined || points.length === 0) return;\n if (!localOptions.useCurves || points.length <= 2) {\n lines(ctx, points, localOptions);\n return;\n }\n ctx.moveTo(points[0][0], points[0][1]);\n for (let i = 0; i < points.length - 2; i++) {\n const xc = (points[i][0] + points[i + 1][0]) / 2;\n const yc = (points[i][1] + points[i + 1][1]) / 2;\n ctx.quadraticCurveTo(points[i][0], points[i][1], xc, yc);\n }\n ctx.quadraticCurveTo(points[points.length - 2][0], points[points.length - 2][1], points[points.length - 1][0], points[points.length - 1][1]);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.closePath();\n ctx.fill();\n }\n}\n\nexport async function gesture(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.font = localOptions.font;\n ctx.fillStyle = localOptions.color;\n let i = 1;\n for (let j = 0; j < result.length; j++) {\n let where: unknown[] = []; // what&where is a record\n let what: unknown[] = []; // what&where is a record\n [where, what] = Object.entries(result[j]);\n if ((what.length > 1) && ((what[1] as string).length > 0)) {\n const who = where[1] as number > 0 ? `#${where[1]}` : '';\n const label = `${where[0]} ${who}: ${what[1]}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, 8, 2 + (i * localOptions.lineHeight));\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, 6, 0 + (i * localOptions.lineHeight));\n i += 1;\n }\n }\n}\n\nexport async function face(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n for (const f of result) {\n ctx.font = localOptions.font;\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n if (localOptions.drawBoxes) rect(ctx, f.box[0], f.box[1], f.box[2], f.box[3], localOptions);\n // silly hack since fillText does not suport new line\n const labels:string[] = [];\n labels.push(`face: ${Math.trunc(100 * f.score)}%`);\n if (f.genderScore) labels.push(`${f.gender || ''} ${Math.trunc(100 * f.genderScore)}%`);\n if (f.age) labels.push(`age: ${f.age || ''}`);\n if (f.iris) labels.push(`distance: ${f.iris}`);\n if (f.emotion && f.emotion.length > 0) {\n const emotion = f.emotion.map((a) => `${Math.trunc(100 * a.score)}% ${a.emotion}`);\n if (emotion.length > 3) emotion.length = 3;\n labels.push(emotion.join(' '));\n }\n if (f.rotation && f.rotation.angle && f.rotation.gaze) {\n if (f.rotation.angle.roll) labels.push(`roll: ${rad2deg(f.rotation.angle.roll)}\u00B0 yaw:${rad2deg(f.rotation.angle.yaw)}\u00B0 pitch:${rad2deg(f.rotation.angle.pitch)}\u00B0`);\n if (f.rotation.gaze.bearing) labels.push(`gaze: ${rad2deg(f.rotation.gaze.bearing)}\u00B0`);\n }\n if (labels.length === 0) labels.push('face');\n ctx.fillStyle = localOptions.color;\n for (let i = labels.length - 1; i >= 0; i--) {\n const x = Math.max(f.box[0], 0);\n const y = i * localOptions.lineHeight + f.box[1];\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(labels[i], x + 5, y + 16);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(labels[i], x + 4, y + 15);\n }\n ctx.lineWidth = 1;\n if (f.mesh && f.mesh.length > 0) {\n if (localOptions.drawPoints) {\n for (const pt of f.mesh) point(ctx, pt[0], pt[1], pt[2], localOptions);\n // for (const pt of f.meshRaw) point(ctx, pt[0] * inCanvas.offsetWidth, pt[1] * inCanvas.offsetHeight, pt[2]);\n }\n if (localOptions.drawPolygons) {\n ctx.lineWidth = 1;\n for (let i = 0; i < triangulation.length / 3; i++) {\n const points = [\n triangulation[i * 3 + 0],\n triangulation[i * 3 + 1],\n triangulation[i * 3 + 2],\n ].map((index) => f.mesh[index]);\n lines(ctx, points, localOptions);\n }\n // iris: array[center, left, top, right, bottom]\n if (f.annotations && f.annotations['leftEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['leftEyeIris'][3][0] - f.annotations['leftEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['leftEyeIris'][4][1] - f.annotations['leftEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (f.annotations && f.annotations['rightEyeIris']) {\n ctx.strokeStyle = localOptions.useDepth ? 'rgba(255, 200, 255, 0.3)' : localOptions.color;\n ctx.beginPath();\n const sizeX = Math.abs(f.annotations['rightEyeIris'][3][0] - f.annotations['rightEyeIris'][1][0]) / 2;\n const sizeY = Math.abs(f.annotations['rightEyeIris'][4][1] - f.annotations['rightEyeIris'][2][1]) / 2;\n ctx.ellipse(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1], sizeX, sizeY, 0, 0, 2 * Math.PI);\n ctx.stroke();\n if (localOptions.fillPolygons) {\n ctx.fillStyle = localOptions.useDepth ? 'rgba(255, 255, 200, 0.3)' : localOptions.color;\n ctx.fill();\n }\n }\n if (localOptions.drawGaze && f.rotation?.gaze?.strength && f.rotation?.gaze?.bearing && f.annotations['leftEyeIris'] && f.annotations['rightEyeIris'] && f.annotations['leftEyeIris'][0] && f.annotations['rightEyeIris'][0]) {\n ctx.strokeStyle = 'pink';\n ctx.beginPath();\n\n const leftGaze = [\n f.annotations['leftEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['leftEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['leftEyeIris'][0][0], f.annotations['leftEyeIris'][0][1]);\n ctx.lineTo(leftGaze[0], leftGaze[1]);\n\n const rightGaze = [\n f.annotations['rightEyeIris'][0][0] + (Math.sin(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[3]),\n f.annotations['rightEyeIris'][0][1] + (Math.cos(f.rotation.gaze.bearing) * f.rotation.gaze.strength * f.box[2]),\n ];\n ctx.moveTo(f.annotations['rightEyeIris'][0][0], f.annotations['rightEyeIris'][0][1]);\n ctx.lineTo(rightGaze[0], rightGaze[1]);\n\n ctx.stroke();\n }\n }\n }\n }\n}\n\nexport async function body(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n for (let i = 0; i < result.length; i++) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n ctx.lineWidth = localOptions.lineWidth;\n ctx.font = localOptions.font;\n if (localOptions.drawBoxes && result[i].box && result[i].box?.length === 4) {\n // @ts-ignore box may not exist\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n // @ts-ignore box may not exist\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n // @ts-ignore box may not exist\n ctx.fillText(`body ${100 * result[i].score}%`, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n }\n if (localOptions.drawPoints) {\n for (let pt = 0; pt < result[i].keypoints.length; pt++) {\n ctx.fillStyle = localOptions.useDepth && result[i].keypoints[pt].position[2] ? `rgba(${127.5 + (2 * (result[i].keypoints[pt].position[2] || 0))}, ${127.5 - (2 * (result[i].keypoints[pt].position[2] || 0))}, 255, 0.5)` : localOptions.color;\n point(ctx, result[i].keypoints[pt].position[0], result[i].keypoints[pt].position[1], 0, localOptions);\n }\n }\n if (localOptions.drawLabels) {\n ctx.font = localOptions.font;\n if (result[i].keypoints) {\n for (const pt of result[i].keypoints) {\n ctx.fillStyle = localOptions.useDepth && pt.position[2] ? `rgba(${127.5 + (2 * pt.position[2])}, ${127.5 - (2 * pt.position[2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(`${pt.part} ${Math.trunc(100 * pt.score)}%`, pt.position[0] + 4, pt.position[1] + 4);\n }\n }\n }\n if (localOptions.drawPolygons && result[i].keypoints) {\n let part;\n const points: [number, number, number?][] = [];\n // shoulder line\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // torso main\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n if (points.length === 4) lines(ctx, points, localOptions); // only draw if we have complete torso\n // leg left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // leg right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightHip');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightKnee');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightAnkle');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightHeel');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightFoot');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm left\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'leftShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'leftPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // arm right\n points.length = 0;\n part = result[i].keypoints.find((a) => a.part === 'rightShoulder');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightElbow');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightWrist');\n if (part) points.push([part.position[0], part.position[1]]);\n part = result[i].keypoints.find((a) => a.part === 'rightPalm');\n if (part) points.push([part.position[0], part.position[1]]);\n curves(ctx, points, localOptions);\n // draw all\n }\n }\n}\n\nexport async function hand(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText('hand', h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText('hand', h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n if (localOptions.drawPoints) {\n if (h.keypoints && h.keypoints.length > 0) {\n for (const pt of h.keypoints) {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * pt[2])}, ${127.5 - (2 * pt[2])}, 255, 0.5)` : localOptions.color;\n point(ctx, pt[0], pt[1], 0, localOptions);\n }\n }\n }\n if (localOptions.drawLabels) {\n const addHandLabel = (part, title) => {\n ctx.fillStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[part.length - 1][2])}, ${127.5 - (2 * part[part.length - 1][2])}, 255, 0.5)` : localOptions.color;\n ctx.fillText(title, part[part.length - 1][0] + 4, part[part.length - 1][1] + 4);\n };\n ctx.font = localOptions.font;\n addHandLabel(h.annotations['indexFinger'], 'index');\n addHandLabel(h.annotations['middleFinger'], 'middle');\n addHandLabel(h.annotations['ringFinger'], 'ring');\n addHandLabel(h.annotations['pinky'], 'pinky');\n addHandLabel(h.annotations['thumb'], 'thumb');\n addHandLabel(h.annotations['palmBase'], 'palm');\n }\n if (localOptions.drawPolygons) {\n const addHandLine = (part) => {\n if (!part) return;\n for (let i = 0; i < part.length; i++) {\n ctx.beginPath();\n ctx.strokeStyle = localOptions.useDepth ? `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)` : localOptions.color;\n ctx.moveTo(part[i > 0 ? i - 1 : 0][0], part[i > 0 ? i - 1 : 0][1]);\n ctx.lineTo(part[i][0], part[i][1]);\n ctx.stroke();\n }\n };\n ctx.lineWidth = localOptions.lineWidth;\n addHandLine(h.annotations['indexFinger']);\n addHandLine(h.annotations['middleFinger']);\n addHandLine(h.annotations['ringFinger']);\n addHandLine(h.annotations['pinky']);\n addHandLine(h.annotations['thumb']);\n // addPart(h.annotations.palmBase);\n }\n }\n}\n\nexport async function object(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n for (const h of result) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, h.box[0], h.box[1], h.box[2], h.box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `${h.label} ${Math.round(100 * h.score)}%`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, h.box[0] + 3, 1 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, h.box[0] + 2, 0 + h.box[1] + localOptions.lineHeight, h.box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function person(inCanvas: HTMLCanvasElement, result: Array, drawOptions?: DrawOptions) {\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n const ctx = inCanvas.getContext('2d');\n if (!ctx) return;\n ctx.lineJoin = 'round';\n ctx.font = localOptions.font;\n\n for (let i = 0; i < result.length; i++) {\n if (localOptions.drawBoxes) {\n ctx.strokeStyle = localOptions.color;\n ctx.fillStyle = localOptions.color;\n rect(ctx, result[i].box[0], result[i].box[1], result[i].box[2], result[i].box[3], localOptions);\n if (localOptions.drawLabels) {\n const label = `person #${i}`;\n if (localOptions.shadowColor && localOptions.shadowColor !== '') {\n ctx.fillStyle = localOptions.shadowColor;\n ctx.fillText(label, result[i].box[0] + 3, 1 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.fillStyle = localOptions.labelColor;\n ctx.fillText(label, result[i].box[0] + 2, 0 + result[i].box[1] + localOptions.lineHeight, result[i].box[2]);\n }\n ctx.stroke();\n }\n }\n}\n\nexport async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {\n if (!inCanvas || !outCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;\n const outCtx = inCanvas.getContext('2d');\n outCtx?.drawImage(inCanvas, 0, 0);\n}\n\nexport async function all(inCanvas: HTMLCanvasElement, result: Result, drawOptions?: DrawOptions) {\n const timestamp = now();\n const localOptions = mergeDeep(options, drawOptions);\n if (!result || !inCanvas) return;\n if (!(inCanvas instanceof HTMLCanvasElement)) return;\n\n face(inCanvas, result.face, localOptions);\n body(inCanvas, result.body, localOptions);\n hand(inCanvas, result.hand, localOptions);\n object(inCanvas, result.object, localOptions);\n // person(inCanvas, result.persons, localOptions);\n gesture(inCanvas, result.gesture, localOptions); // gestures do not have buffering\n\n /*\n if (!bufferedResult) bufferedResult = result; // first pass\n else if (localOptions.bufferedOutput) calcBuffered(result); // do results interpolation\n else bufferedResult = result; // or just use results as-is\n const promises: Promise[] = [];\n promises.push(face(inCanvas, bufferedResult.face, localOptions));\n promises.push(body(inCanvas, bufferedResult.body, localOptions));\n promises.push(hand(inCanvas, bufferedResult.hand, localOptions));\n promises.push(object(inCanvas, bufferedResult.object, localOptions));\n // promises.push(person(inCanvas, bufferedResult.persons, localOptions));\n promises.push(gesture(inCanvas, result.gesture, localOptions)); // gestures do not have buffering\n // await Promise.all(promises);\n */\n result.performance.draw = Math.trunc(now() - timestamp);\n}\n", "/**\n * Module that analyzes existing results and recombines them into a unified person object\n */\n\nimport { Face, Body, Hand, Gesture, Person } from './result';\n\nexport function join(faces: Array, bodies: Array, hands: Array, gestures: Array, shape: Array | undefined): Array {\n let id = 0;\n const persons: Array = [];\n for (const face of faces) { // person is defined primarily by face and then we append other objects as found\n const person: Person = { id: id++, face, body: null, hands: { left: null, right: null }, gestures: [], box: [0, 0, 0, 0] };\n for (const body of bodies) {\n if (face.box[0] > body.box[0] // x within body\n && face.box[0] < body.box[0] + body.box[2]\n && face.box[1] + face.box[3] > body.box[1] // y within body\n && face.box[1] + face.box[3] < body.box[1] + body.box[3]) {\n person.body = body;\n }\n }\n if (person.body) { // only try to join hands if body is found\n for (const hand of hands) {\n if (hand.box[0] + hand.box[2] > person.body.box[0] // x within body for left hand\n && hand.box[0] + hand.box[2] < person.body.box[0] + person.body.box[2]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for left hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.left = hand;\n }\n if (hand.box[0] < person.body.box[0] + person.body.box[2] // x within body for right hand\n && hand.box[0] > person.body.box[0]\n && hand.box[1] + hand.box[3] > person.body.box[1] // x within body for right hand\n && hand.box[1] + hand.box[3] < person.body.box[1] + person.body.box[3]) {\n if (person.hands) person.hands.right = hand;\n }\n }\n }\n for (const gesture of gestures) { // append all gestures according to ids\n if (gesture['face'] !== undefined && gesture['face'] === face.id) person.gestures?.push(gesture);\n else if (gesture['iris'] !== undefined && gesture['iris'] === face.id) person.gestures?.push(gesture);\n else if (gesture['body'] !== undefined && gesture['body'] === person.body?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.left?.id) person.gestures?.push(gesture);\n else if (gesture['hand'] !== undefined && gesture['hand'] === person.hands?.right?.id) person.gestures?.push(gesture);\n }\n\n // create new overarching box from all boxes beloning to person\n const x: number[] = [];\n const y: number[] = [];\n const extractXY = (box) => { // extract all [x, y] coordinates from boxes [x, y, width, height]\n if (box && box.length === 4) {\n x.push(box[0], box[0] + box[2]);\n y.push(box[1], box[1] + box[3]);\n }\n };\n extractXY(person.face?.box);\n extractXY(person.body?.box);\n extractXY(person.hands?.left?.box);\n extractXY(person.hands?.right?.box);\n const minX = Math.min(...x);\n const minY = Math.min(...y);\n person.box = [minX, minY, Math.max(...x) - minX, Math.max(...y) - minY]; // create new overarching box\n\n // shape is known so we calculate boxRaw as well\n if (shape && shape.length === 4) person.boxRaw = [person.box[0] / shape[2], person.box[1] / shape[1], person.box[2] / shape[2], person.box[3] / shape[1]];\n\n persons.push(person);\n }\n return persons;\n}\n", "/**\n * Module that interpolates results for smoother animations\n */\n\nimport type { Result, Face, Body, Hand, Item, Gesture, Person } from './result';\n\nconst bufferedResult: Result = { face: [], body: [], hand: [], gesture: [], object: [], persons: [], performance: {}, timestamp: 0 };\n\nexport function calc(newResult: Result): Result {\n // each record is only updated using deep clone when number of detected record changes, otherwise it will converge by itself\n // otherwise bufferedResult is a shallow clone of result plus updated local calculated values\n // thus mixing by-reference and by-value assignments to minimize memory operations\n\n const elapsed = Date.now() - newResult.timestamp;\n // curve fitted: buffer = 8 - ln(delay)\n // interpolation formula: current = ((buffer - 1) * previous + live) / buffer\n // - at 50ms delay buffer = ~4.1 => 28% towards live data\n // - at 250ms delay buffer = ~2.5 => 40% towards live data\n // - at 500ms delay buffer = ~1.8 => 55% towards live data\n // - at 750ms delay buffer = ~1.4 => 71% towards live data\n // - at 1sec delay buffer = 1 which means live data is used\n const bufferedFactor = elapsed < 1000 ? 8 - Math.log(elapsed) : 1;\n\n bufferedResult.canvas = newResult.canvas;\n\n // interpolate body results\n if (!bufferedResult.body || (newResult.body.length !== bufferedResult.body.length)) {\n bufferedResult.body = JSON.parse(JSON.stringify(newResult.body as Body[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.body.length; i++) {\n const box = newResult.body[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].box[j] + b) / bufferedFactor) as [number, number, number, number];\n const boxRaw = newResult.body[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.body[i].boxRaw[j] + b) / bufferedFactor) as [number, number, number, number];\n const keypoints = (newResult.body[i].keypoints // update keypoints\n .map((keypoint, j) => ({\n score: keypoint.score,\n part: keypoint.part,\n position: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[0] + keypoint.position[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].position[1] + keypoint.position[1]) / bufferedFactor : keypoint.position[1],\n ],\n positionRaw: [\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[0] + keypoint.positionRaw[0]) / bufferedFactor : keypoint.position[0],\n bufferedResult.body[i].keypoints[j] ? ((bufferedFactor - 1) * bufferedResult.body[i].keypoints[j].positionRaw[1] + keypoint.positionRaw[1]) / bufferedFactor : keypoint.position[1],\n ],\n }))) as Array<{ score: number, part: string, position: [number, number, number?], positionRaw: [number, number, number?] }>;\n bufferedResult.body[i] = { ...newResult.body[i], box, boxRaw, keypoints }; // shallow clone plus updated values\n }\n }\n\n // interpolate hand results\n if (!bufferedResult.hand || (newResult.hand.length !== bufferedResult.hand.length)) {\n bufferedResult.hand = JSON.parse(JSON.stringify(newResult.hand as Hand[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.hand.length; i++) {\n const box = (newResult.hand[i].box// update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.hand[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.hand[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const keypoints = newResult.hand[i].keypoints // update landmarks\n .map((landmark, j) => landmark\n .map((coord, k) => (((bufferedFactor - 1) * bufferedResult.hand[i].keypoints[j][k] + coord) / bufferedFactor)) as [number, number, number]);\n const keys = Object.keys(newResult.hand[i].annotations); // update annotations\n const annotations = {};\n for (const key of keys) {\n annotations[key] = newResult.hand[i].annotations[key]\n .map((val, j) => val.map((coord, k) => ((bufferedFactor - 1) * bufferedResult.hand[i].annotations[key][j][k] + coord) / bufferedFactor));\n }\n bufferedResult.hand[i] = { ...newResult.hand[i], box, boxRaw, keypoints, annotations }; // shallow clone plus updated values\n }\n }\n\n // interpolate face results\n if (!bufferedResult.face || (newResult.face.length !== bufferedResult.face.length)) {\n bufferedResult.face = JSON.parse(JSON.stringify(newResult.face as Face[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.face.length; i++) {\n const box = (newResult.face[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.face[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.face[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n const rotation: {\n matrix: [number, number, number, number, number, number, number, number, number],\n angle: { roll: number, yaw: number, pitch: number },\n gaze: { bearing: number, strength: number }\n } = { matrix: [0, 0, 0, 0, 0, 0, 0, 0, 0], angle: { roll: 0, yaw: 0, pitch: 0 }, gaze: { bearing: 0, strength: 0 } };\n rotation.matrix = newResult.face[i].rotation?.matrix as [number, number, number, number, number, number, number, number, number];\n rotation.angle = {\n roll: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.roll || 0) + (newResult.face[i].rotation?.angle?.roll || 0)) / bufferedFactor,\n yaw: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.yaw || 0) + (newResult.face[i].rotation?.angle?.yaw || 0)) / bufferedFactor,\n pitch: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.angle?.pitch || 0) + (newResult.face[i].rotation?.angle?.pitch || 0)) / bufferedFactor,\n };\n rotation.gaze = {\n // not fully correct due projection on circle, also causes wrap-around draw on jump from negative to positive\n bearing: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.bearing || 0) + (newResult.face[i].rotation?.gaze?.bearing || 0)) / bufferedFactor,\n strength: ((bufferedFactor - 1) * (bufferedResult.face[i].rotation?.gaze?.strength || 0) + (newResult.face[i].rotation?.gaze?.strength || 0)) / bufferedFactor,\n };\n bufferedResult.face[i] = { ...newResult.face[i], rotation, box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate object detection results\n if (!bufferedResult.object || (newResult.object.length !== bufferedResult.object.length)) {\n bufferedResult.object = JSON.parse(JSON.stringify(newResult.object as Item[])); // deep clone once\n } else {\n for (let i = 0; i < newResult.object.length; i++) {\n const box = (newResult.object[i].box // update box\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].box[j] + b) / bufferedFactor)) as [number, number, number, number];\n const boxRaw = (newResult.object[i].boxRaw // update boxRaw\n .map((b, j) => ((bufferedFactor - 1) * bufferedResult.object[i].boxRaw[j] + b) / bufferedFactor)) as [number, number, number, number];\n bufferedResult.object[i] = { ...newResult.object[i], box, boxRaw }; // shallow clone plus updated values\n }\n }\n\n // interpolate person results\n if (newResult.persons) {\n const newPersons = newResult.persons; // trigger getter function\n if (!bufferedResult.persons || (newPersons.length !== bufferedResult.persons.length)) {\n bufferedResult.persons = JSON.parse(JSON.stringify(newPersons as Person[]));\n } else {\n for (let i = 0; i < newPersons.length; i++) { // update person box, we don't update the rest as it's updated as reference anyhow\n bufferedResult.persons[i].box = (newPersons[i].box\n .map((box, j) => ((bufferedFactor - 1) * bufferedResult.persons[i].box[j] + box) / bufferedFactor)) as [number, number, number, number];\n }\n }\n }\n\n // just copy latest gestures without interpolation\n if (newResult.gesture) bufferedResult.gesture = newResult.gesture as Gesture[];\n if (newResult.performance) bufferedResult.performance = newResult.performance;\n\n return bufferedResult;\n}\n", "/**\n * Embedded sample images used during warmup in dataURL format\n */\n\n// data:image/jpeg;base64,\nexport const face = `\n/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA\nAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu\nbmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob\nIxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo\nKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E\nAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB\nAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET\nIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla\nY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG\nx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML\nXp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF\nPUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/\nAJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z\n5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9\nzZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO\ntHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6\n8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W\nwA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk\nEtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6\nGhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT\nA7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep\nrBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb\nLCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ\nih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K\nKAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l\npBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x\nUqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4\nHaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr\nxL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS\nNO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD\n1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX\n+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3\nGBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K\nq4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0\nnhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm\nuic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH\nArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV\nwF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8\n87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P\nFQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD\nYNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv\nJmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ\nQmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el\nUJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681\nly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly\nCK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc\nUDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF\n63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x\nXY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2\nZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk\nXb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK\ncBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef\neNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4\n/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5\nrl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru\n/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A\nzviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO\nI4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1\njfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ\nGRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG\ncZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb\nWmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis\nZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH\nckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi\nlbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO\nxuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK\nJtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX\nPaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c\nW0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t\nC6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk\n4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn\nxHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW\nvHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi\nqr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV\nhamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F\nj4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6\nwqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm\noy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ\nk7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg\nnQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP\n1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1\nH1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ\n1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx\nzSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt\nfFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp\nOxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj\nVtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy\nrFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe\n5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D\nd/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69\nMlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ\nFbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ\nMA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP\nByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn\n0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU\nyOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is\npNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz\nTSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu\nuCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem\ngGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk\nHvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy\ns9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu\nm6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb\n0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz\n9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN\nDNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n\nR6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk\nnmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu\n6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd\n9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb\nSms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S\nMSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz\nFEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8\nVSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx\nY0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ\nmupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+\n5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh\n05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd\nua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ\n5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR\nMqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8\n1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4\nB9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag\nBc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA\n3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn\n3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx\n1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU\ntzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6\nf3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA\nbvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ\nzyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup\n6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM\n350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0\n/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a\nYfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ\nagBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO\nmAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl\nmOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR\nnqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo\nEPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt\n4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ\nScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p\niMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj\nPQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l\nc6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1\n8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3\nylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY\neuPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`;\n\n// data:image/jpeg;base64,\nexport const body = `\n/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk\nJyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF\nRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA\nAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA\nAQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA\nAAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA\nAhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj\n+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt\nFh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR\nPLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl\nmZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp\n+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa\nzhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D\nh1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2\nex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67\nd4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y\nRv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP\nLd3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC\nvy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi\neSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/\nMx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+\nr3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO\nO0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s\ntfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN\nTmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc\n0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj\nq83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w\n+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s\nd8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t\ncI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4\nYibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe\nbzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi\nKxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6\nrNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ\n9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf\nJvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V\nbxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q\nVbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM\nlorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/\n/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme\nE4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv\nfauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6\njkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN\n+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk\nRvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK\ncGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop\nyW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn\nE8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX\n12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW\niI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS\nRWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf\n0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx\nDS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL\nG8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK\nxC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ\na9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4\nZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6\ntvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+\nfJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE\nerk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR\nMd5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9\nlcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD\nj8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV\n5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt\nCu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/\n+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c\nvUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p\njrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0\n77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP\nSel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8\n5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe\nY0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R\nHwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV\nrWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU\nz7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8\nto6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X\ny8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt\nstcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/\nw9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT\nDpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l\nXV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t\nydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS\n34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX\ne09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn\n26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf\n3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q\n6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P\nNbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO\nyZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN\n3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8\n2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h\ndqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx\nkr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t\nDHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb\neFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc\n1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka\nc258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE\nxEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu\ns5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK\n0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9\ndM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt\nPXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T\nMd/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T\nadq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b\nSVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt\npdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm\nvfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr\nEejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N\nvwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh\nZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I\ntkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW\nd43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe\nN4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218\n8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG\nPNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY\nV1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw\nw18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT\nEx5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1\naxqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/\ntDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I\nmbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe\nXRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1\nizjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2\ncrFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4\nOadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2\nr8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx\nzc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz\n+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v\nMevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu\nryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095\nYZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE\n9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8\nmNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O\nuSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O\nfft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6\nOlty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT\nuTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3\n6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1\nMb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF\nfeH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq\nxVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v\ned7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ\nmtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz\nmWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP\nB39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0\n5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1\nmkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt\nmxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO\n1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq\nZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q\nky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7\nROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK\nGEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i\ntMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T\n+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+\nO8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO\nesd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es\nvPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz\nXV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1\n+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY\n36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL\nq555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY\n3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz\np7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr\n1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV\nxUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt\npCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS\nfP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH\nmMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z\n1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+\nn3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d\nMRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df\nzXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl\nJ2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs\nzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH\nDpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ\ndHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR\ntER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j\nadmFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC\nb2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X\nqdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh\nydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O\n8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L\nT7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0\nZa1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr\nvNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer\nrWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL\noNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq\nj/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh\nodZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8\n8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1\nlNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+\noza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL\nknU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK\nEtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N\nmtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm\n9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N\nIpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W\nMYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2\n+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql\no+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37\nO99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE\nTE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1\nL7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4\nizsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt\n1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb\nV5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum\nL37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12\nCvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE\nebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo\nGvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu\nL8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh\n5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3\n6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9\nXO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM\nfeKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj\nSZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF\nXaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr\n79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h\nyeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT\nOC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223\n2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt\nadohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y\ncnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX\nDpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p\n7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso\nS24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l\nbPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe\nvVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG\nH6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7\nx3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz\n5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY\nq+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn\nvLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2\nIjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK\nz0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ\nYYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON\nZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW\nekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf\ncjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c\nbiuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO\nCkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw\ny1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi\nQXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E\nbL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r\ntv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t\nLRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP\nRqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm\ns7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el\nXX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1\nvK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq\nqrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v\nVYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0\nZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q\nmT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm\n6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG\nf63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo\ndPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22\ngtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M\nMoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb\nc2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX\n6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn\n1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK\nfOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ\nEqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u\n7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT\nqPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa\nS2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf\nLp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU\nIiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O\n8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c\nvU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx\n5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V\nKTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm\n2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu\nj8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB\nTTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9\nRUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL\nCWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA\nAAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8\ncTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj\nqKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF\n0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK\nZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK\n66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu\nXT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9\nXOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN\nM2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv\nVrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK\n7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI\n3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m\nXY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m\n1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A\nJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC\nEgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9\n8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL\nOrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H\nM+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA\nTsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8\nelpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp\nBjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS\nCRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r\nrcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY\njbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW\nUsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB\nKUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb\nSz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL\n+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v\nT471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM\nsfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj\nFontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl\n5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q\n7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv\n6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa\n0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/\nAOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM\nd8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5\n6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP\nbFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu\nLJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy\nwt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX\n0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK\n3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn\nKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0\nvobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t\nzya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps\nuOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi\nFdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2\nO3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z\naK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz\n0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb\nT/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l\nqMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t\ntrJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn\nmvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa\neq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe\nPwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of\nTdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O\n1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG\nf/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi\n0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY\n5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc\nV2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L\n/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM\nt/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd\nVknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD\nKLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R\nfwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3\nVxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ\nDJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ\n3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv\nx7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD\nweqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI\n6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew\nPnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk\nj3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm\nOqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/\nAKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez\nN9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ\n92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp\n+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue\nV9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv\navHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0\nvQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP\n8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt\nn1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw\nnUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3\n7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P\n0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U\nx8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG\n0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L\nfaQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ\nQKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA\nBAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A\ntLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv\n9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr\njn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm\nb7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB\nACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk\ndEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1\nrMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+\nx+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA\nAAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr\nYvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4\n5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V\nkK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg\nBIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA\nAAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g\nWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx\nOEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2\nH/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF\n+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V\nh6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA\nEgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu\nZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml\nHMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl\nn0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN\n3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi\n/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00\n+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC\nUACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2\nM2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp\n5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn\nN1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS\nOjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL\n/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo\nstLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3\nGyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA\nAAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4\nqmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy\nWEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a\nfJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI\nrTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2\nrz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc\n3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3\nTur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA\nAAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx\nskA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F\no7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx\nNO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h\n2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te\npSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7\ncvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7\nmZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA\nAAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA\nhGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J\nqx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI\nXRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy\nRHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX\nqNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX\nkaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P\nya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC\nExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA\nlAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA\nAAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o\nb9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP\ny6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae\nkzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu\n9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ\nk7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1\n8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp\nDXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh\nnyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ\nAAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA\nAAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO\nyvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5\nPM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii\nIpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r\nO3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE\nyTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX\n6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2\nJgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS\nAAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA\nAAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx\nWa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI\n6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5\nK2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7\nVv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id\nPW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ\n2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4\neF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7\npiVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR\nACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ\nJQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i\nUiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61\nrZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq\nZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2\nf0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO\nIjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts\nbAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA\nAAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA\nBAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2\nSbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T\nlBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/\n2Q==`;\n", "/**\n * Human main module\n */\n\nimport { log, now, mergeDeep } from './helpers';\nimport { Config, defaults } from './config';\nimport { Result, Gesture } from './result';\nimport * as sysinfo from './sysinfo';\nimport * as tf from '../dist/tfjs.esm.js';\nimport * as backend from './tfjs/backend';\nimport * as models from './models';\nimport * as face from './face';\nimport * as facemesh from './blazeface/facemesh';\nimport * as faceres from './faceres/faceres';\nimport * as posenet from './posenet/posenet';\nimport * as handpose from './handpose/handpose';\nimport * as blazepose from './blazepose/blazepose';\nimport * as efficientpose from './efficientpose/efficientpose';\nimport * as movenet from './movenet/movenet';\nimport * as nanodet from './object/nanodet';\nimport * as centernet from './object/centernet';\nimport * as segmentation from './segmentation/segmentation';\nimport * as gesture from './gesture/gesture';\nimport * as image from './image/image';\nimport * as draw from './draw/draw';\nimport * as persons from './persons';\nimport * as interpolate from './interpolate';\nimport * as sample from './sample';\nimport * as app from '../package.json';\nimport { Tensor, GraphModel } from './tfjs/types';\n\n// export types\nexport type { Config } from './config';\nexport type { Result, Face, Hand, Body, Item, Gesture, Person } from './result';\nexport type { DrawOptions } from './draw/draw';\n\n/** Defines all possible input types for **Human** detection\n * @typedef Input Type\n */\nexport type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;\n\n/** Error message\n * @typedef Error Type\n */\nexport type Error = { error: string };\n\n/** Instance of TensorFlow/JS\n * @external\n */\nexport type TensorFlow = typeof tf;\n\n/**\n * **Human** library main class\n *\n * All methods and properties are available only as members of Human class\n *\n * - Configuration object definition: {@link Config}\n * - Results object definition: {@link Result}\n * - Possible inputs: {@link Input}\n *\n * @param userConfig: {@link Config}\n */\nexport class Human {\n /** Current version of Human library in *semver* format */\n version: string;\n /** Current configuration\n * - Details: {@link Config}\n */\n config: Config;\n /** Last known result of detect run\n * - Can be accessed anytime after initial detection\n */\n result: Result;\n /** Current state of Human library\n * - Can be polled to determine operations that are currently executed\n * - Progresses through: 'config', 'check', 'backend', 'load', 'run:', 'idle'\n */\n state: string;\n /** @internal: Instance of current image being processed */\n image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };\n /** @internal: Instance of TensorFlow/JS used by Human\n * - Can be embedded or externally provided\n */\n tf: TensorFlow;\n /** Draw helper classes that can draw detected objects on canvas using specified draw\n * - options: {@link DrawOptions} global settings for all draw operations, can be overriden for each draw method\n * - face: draw detected faces\n * - body: draw detected people and body parts\n * - hand: draw detected hands and hand parts\n * - canvas: draw processed canvas which is a processed copy of the input\n * - all: meta-function that performs: canvas, face, body, hand\n */\n draw: {\n options: draw.DrawOptions,\n gesture: typeof draw.gesture,\n face: typeof draw.face,\n body: typeof draw.body,\n hand: typeof draw.hand,\n canvas: typeof draw.canvas,\n all: typeof draw.all,\n };\n /** @internal: Currently loaded models */\n models: {\n face: [unknown, GraphModel | null, GraphModel | null] | null,\n posenet: GraphModel | null,\n blazepose: GraphModel | null,\n efficientpose: GraphModel | null,\n movenet: GraphModel | null,\n handpose: [GraphModel | null, GraphModel | null] | null,\n age: GraphModel | null,\n gender: GraphModel | null,\n emotion: GraphModel | null,\n embedding: GraphModel | null,\n nanodet: GraphModel | null,\n centernet: GraphModel | null,\n faceres: GraphModel | null,\n segmentation: GraphModel | null,\n };\n /** Reference face triangualtion array of 468 points, used for triangle references between points */\n faceTriangulation: typeof facemesh.triangulation;\n /** Refernce UV map of 468 values, used for 3D mapping of the face mesh */\n faceUVMap: typeof facemesh.uvmap;\n /** Platform and agent information detected by Human */\n sysinfo: { platform: string, agent: string };\n /** Performance object that contains values for all recently performed operations */\n performance: Record; // perf members are dynamically defined as needed\n #numTensors: number;\n #analyzeMemoryLeaks: boolean;\n #checkSanity: boolean;\n #firstRun: boolean;\n #lastInputSum: number;\n #lastCacheDiff: number;\n\n // definition end\n\n /**\n * Creates instance of Human library that is futher used for all operations\n * @param userConfig: {@link Config}\n */\n constructor(userConfig?: Config | Record) {\n this.config = mergeDeep(defaults, userConfig || {});\n this.tf = tf;\n this.draw = draw;\n this.version = app.version;\n this.state = 'idle';\n this.#numTensors = 0;\n this.#analyzeMemoryLeaks = false;\n this.#checkSanity = false;\n this.#firstRun = true;\n this.#lastCacheDiff = 0;\n this.performance = { backend: 0, load: 0, image: 0, frames: 0, cached: 0, changed: 0, total: 0, draw: 0 };\n // object that contains all initialized models\n this.models = {\n face: null,\n posenet: null,\n blazepose: null,\n efficientpose: null,\n movenet: null,\n handpose: null,\n age: null,\n gender: null,\n emotion: null,\n embedding: null,\n nanodet: null,\n centernet: null,\n faceres: null,\n segmentation: null,\n };\n // export access to image processing\n // @ts-ignore eslint-typescript cannot correctly infer type in anonymous function\n this.image = (input: Input) => image.process(input, this.config);\n // export raw access to underlying models\n this.faceTriangulation = facemesh.triangulation;\n this.faceUVMap = facemesh.uvmap;\n // include platform info\n this.sysinfo = sysinfo.info();\n this.#lastInputSum = 1;\n }\n\n // helper function: measure tensor leak\n /** @hidden */\n analyze = (...msg) => {\n if (!this.#analyzeMemoryLeaks) return;\n const currentTensors = this.tf.engine().state.numTensors;\n const previousTensors = this.#numTensors;\n this.#numTensors = currentTensors;\n const leaked = currentTensors - previousTensors;\n if (leaked !== 0) log(...msg, leaked);\n }\n\n // quick sanity check on inputs\n /** @hidden */\n #sanity = (input): null | string => {\n if (!this.#checkSanity) return null;\n if (!input) return 'input is not defined';\n if (this.tf.ENV.flags.IS_NODE && !(input instanceof tf.Tensor)) return 'input must be a tensor';\n try {\n this.tf.getBackend();\n } catch {\n return 'backend not loaded';\n }\n return null;\n }\n\n /** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)\n * - Calculation is based on normalized Minkowski distance between\n *\n * @param embedding1: face descriptor as array of numbers\n * @param embedding2: face descriptor as array of numbers\n * @returns similarity: number\n */\n // eslint-disable-next-line class-methods-use-this\n similarity(embedding1: Array, embedding2: Array): number {\n return faceres.similarity(embedding1, embedding2);\n }\n\n /**\n * Segmentation method takes any input and returns processed canvas with body segmentation\n * Optional parameter background is used to fill the background with specific input\n * Segmentation is not triggered as part of detect process\n *\n * @param input: {@link Input}\n * @param background?: {@link Input}\n * @returns Canvas\n */\n segmentation(input: Input, background?: Input) {\n return segmentation.process(input, background, this.config);\n }\n\n /** Enhance method performs additional enhacements to face image previously detected for futher processing\n * @param input: Tensor as provided in human.result.face[n].tensor\n * @returns Tensor\n */\n // eslint-disable-next-line class-methods-use-this\n enhance(input: Tensor): Tensor | null {\n // @ts-ignore type mismach for Tensor\n return faceres.enhance(input);\n }\n\n /** Math method find best match between provided face descriptor and predefined database of known descriptors\n * @param faceEmbedding: face descriptor previsouly calculated on any face\n * @param db: array of mapping of face descriptors to known values\n * @param threshold: minimum score for matching to be considered in the result\n * @returns best match\n */\n // eslint-disable-next-line class-methods-use-this\n match(faceEmbedding: Array, db: Array<{ name: string, source: string, embedding: number[] }>, threshold = 0): { name: string, source: string, similarity: number, embedding: number[] } {\n return faceres.match(faceEmbedding, db, threshold);\n }\n\n /** Load method preloads all configured models on-demand\n * - Not explicitly required as any required model is load implicitly on it's first run\n * @param userConfig?: {@link Config}\n */\n async load(userConfig?: Config | Record) {\n this.state = 'load';\n const timeStamp = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n\n if (this.#firstRun) { // print version info on first run and check for correct backend setup\n if (this.config.debug) log(`version: ${this.version}`);\n if (this.config.debug) log(`tfjs version: ${this.tf.version_core}`);\n if (this.config.debug) log('platform:', this.sysinfo.platform);\n if (this.config.debug) log('agent:', this.sysinfo.agent);\n\n await this.#checkBackend(true);\n if (this.tf.ENV.flags.IS_BROWSER) {\n if (this.config.debug) log('configuration:', this.config);\n if (this.config.debug) log('tf flags:', this.tf.ENV.flags);\n }\n }\n\n await models.load(this); // actually loads models\n\n if (this.#firstRun) { // print memory stats on first run\n if (this.config.debug) log('tf engine state:', this.tf.engine().state.numBytes, 'bytes', this.tf.engine().state.numTensors, 'tensors');\n this.#firstRun = false;\n }\n\n const current = Math.trunc(now() - timeStamp);\n if (current > (this.performance.load as number || 0)) this.performance.load = current;\n }\n\n // check if backend needs initialization if it changed\n /** @hidden */\n #checkBackend = async (force = false) => {\n if (this.config.backend && (this.config.backend.length > 0) && force || (this.tf.getBackend() !== this.config.backend)) {\n const timeStamp = now();\n this.state = 'backend';\n /* force backend reload\n if (this.config.backend in tf.engine().registry) {\n const backendFactory = tf.findBackendFactory(this.config.backend);\n tf.removeBackend(this.config.backend);\n tf.registerBackend(this.config.backend, backendFactory);\n } else {\n log('Backend not registred:', this.config.backend);\n }\n */\n\n if (this.config.backend && this.config.backend.length > 0) {\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (typeof window === 'undefined' && typeof WorkerGlobalScope !== 'undefined' && this.config.debug) log('running inside web worker');\n\n // force browser vs node backend\n if (this.tf.ENV.flags.IS_BROWSER && this.config.backend === 'tensorflow') this.config.backend = 'webgl';\n if (this.tf.ENV.flags.IS_NODE && (this.config.backend === 'webgl' || this.config.backend === 'humangl')) this.config.backend = 'tensorflow';\n\n if (this.config.debug) log('setting backend:', this.config.backend);\n\n if (this.config.backend === 'wasm') {\n if (this.config.debug) log('wasm path:', this.config.wasmPath);\n if (typeof this.tf?.setWasmPaths !== 'undefined') this.tf.setWasmPaths(this.config.wasmPath);\n else throw new Error('Human: WASM backend is not loaded');\n const simd = await this.tf.env().getAsync('WASM_HAS_SIMD_SUPPORT');\n const mt = await this.tf.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT');\n if (this.config.debug) log(`wasm execution: ${simd ? 'SIMD' : 'no SIMD'} ${mt ? 'multithreaded' : 'singlethreaded'}`);\n if (this.config.debug && !simd) log('warning: wasm simd support is not enabled');\n }\n\n if (this.config.backend === 'humangl') backend.register();\n try {\n await this.tf.setBackend(this.config.backend);\n } catch (err) {\n log('error: cannot set backend:', this.config.backend, err);\n }\n }\n this.tf.enableProdMode();\n // this.tf.enableDebugMode();\n if (this.tf.getBackend() === 'webgl' || this.tf.getBackend() === 'humangl') {\n this.tf.ENV.set('CHECK_COMPUTATION_FOR_ERRORS', false);\n this.tf.ENV.set('WEBGL_CPU_FORWARD', true);\n this.tf.ENV.set('WEBGL_PACK_DEPTHWISECONV', true);\n // if (!this.config.object.enabled) this.tf.ENV.set('WEBGL_FORCE_F16_TEXTURES', true); // safe to use 16bit precision\n if (typeof this.config['deallocate'] !== 'undefined' && this.config['deallocate']) { // hidden param\n log('changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:', true);\n this.tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0);\n }\n const gl = await this.tf.backend().getGPGPUContext().gl;\n if (this.config.debug) log(`gl version:${gl.getParameter(gl.VERSION)} renderer:${gl.getParameter(gl.RENDERER)}`);\n }\n await this.tf.ready();\n this.performance.backend = Math.trunc(now() - timeStamp);\n }\n }\n\n /**\n * Runs interpolation using last known result and returns smoothened result\n * Interpolation is based on time since last known result so can be called independently\n *\n * @param result?: {@link Result} optional use specific result set to run interpolation on\n * @returns result: {@link Result}\n */\n next = (result?: Result) => interpolate.calc(result || this.result) as Result;\n\n // check if input changed sufficiently to trigger new detections\n /** @hidden */\n #skipFrame = async (input) => {\n if (this.config.cacheSensitivity === 0) return false;\n const resizeFact = 32;\n const reduced: Tensor = input.resizeBilinear([Math.trunc(input.shape[1] / resizeFact), Math.trunc(input.shape[2] / resizeFact)]);\n // use tensor sum\n /*\n const sumT = this.tf.sum(reduced);\n const sum = sumT.dataSync()[0] as number;\n sumT.dispose();\n */\n // use js loop sum, faster than uploading tensor to gpu calculating and downloading back\n const reducedData = reduced.dataSync(); // raw image rgb array\n let sum = 0;\n for (let i = 0; i < reducedData.length / 3; i++) sum += reducedData[3 * i + 2]; // look only at green value of each pixel\n\n reduced.dispose();\n const diff = 100 * (Math.max(sum, this.#lastInputSum) / Math.min(sum, this.#lastInputSum) - 1);\n this.#lastInputSum = sum;\n // if previous frame was skipped, skip this frame if changed more than cacheSensitivity\n // if previous frame was not skipped, then look for cacheSensitivity or difference larger than one in previous frame to avoid resetting cache in subsequent frames unnecessarily\n const skipFrame = diff < Math.max(this.config.cacheSensitivity, this.#lastCacheDiff);\n // if difference is above 10x threshold, don't use last value to force reset cache for significant change of scenes or images\n this.#lastCacheDiff = diff > 10 * this.config.cacheSensitivity ? 0 : diff;\n return skipFrame;\n }\n\n /** Main detection method\n * - Analyze configuration: {@link Config}\n * - Pre-process input: {@link Input}\n * - Run inference for all configured models\n * - Process and return result: {@link Result}\n *\n * @param input: Input\n * @param userConfig?: {@link Config}\n * @returns result: {@link Result}\n */\n async detect(input: Input, userConfig?: Config | Record): Promise {\n // detection happens inside a promise\n return new Promise(async (resolve) => {\n this.state = 'config';\n let timeStamp;\n let elapsedTime;\n\n // update configuration\n this.config = mergeDeep(this.config, userConfig) as Config;\n\n // sanity checks\n this.state = 'check';\n const error = this.#sanity(input);\n if (error) {\n log(error, input);\n resolve({ error });\n }\n\n const timeStart = now();\n\n // configure backend\n await this.#checkBackend();\n\n // load models if enabled\n await this.load();\n\n /*\n // function disabled in favor of inputChanged\n // disable video optimization for inputs of type image, but skip if inside worker thread\n let previousVideoOptimized;\n // @ts-ignore ignore missing type for WorkerGlobalScope as that is the point\n if (input && this.config.videoOptimized && (typeof window !== 'undefined') && (typeof WorkerGlobalScope !== 'undefined') && (\n (typeof HTMLImageElement !== 'undefined' && input instanceof HTMLImageElement)\n || (typeof Image !== 'undefined' && input instanceof Image)\n || (typeof ImageData !== 'undefined' && input instanceof ImageData)\n || (typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap))\n ) {\n log('disabling video optimization');\n previousVideoOptimized = this.config.videoOptimized;\n this.config.videoOptimized = false;\n }\n */\n\n timeStamp = now();\n let process = image.process(input, this.config);\n this.performance.image = Math.trunc(now() - timeStamp);\n this.analyze('Get Image:');\n\n // run segmentation preprocessing\n if (this.config.segmentation.enabled && process && process.tensor) {\n this.analyze('Start Segmentation:');\n this.state = 'run:segmentation';\n timeStamp = now();\n await segmentation.predict(process);\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.segmentation = elapsedTime;\n if (process.canvas) {\n // replace input\n process.tensor.dispose();\n process = image.process(process.canvas, this.config);\n }\n this.analyze('End Segmentation:');\n }\n\n if (!process || !process.tensor) {\n log('could not convert input to tensor');\n resolve({ error: 'could not convert input to tensor' });\n return;\n }\n\n timeStamp = now();\n this.config.skipFrame = await this.#skipFrame(process.tensor);\n if (!this.performance.frames) this.performance.frames = 0;\n if (!this.performance.cached) this.performance.cached = 0;\n (this.performance.frames as number)++;\n if (this.config.skipFrame) this.performance.cached++;\n this.performance.changed = Math.trunc(now() - timeStamp);\n this.analyze('Check Changed:');\n\n // prepare where to store model results\n // keep them with weak typing as it can be promise or not\n let faceRes;\n let bodyRes;\n let handRes;\n let objectRes;\n\n // run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion\n if (this.config.async) {\n faceRes = this.config.face.enabled ? face.detectFace(this, process.tensor) : [];\n if (this.performance.face) delete this.performance.face;\n } else {\n this.state = 'run:face';\n timeStamp = now();\n faceRes = this.config.face.enabled ? await face.detectFace(this, process.tensor) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.face = elapsedTime;\n }\n\n // run body: can be posenet, blazepose, efficientpose, movenet\n this.analyze('Start Body:');\n if (this.config.async) {\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(process.tensor, this.config) : [];\n if (this.performance.body) delete this.performance.body;\n } else {\n this.state = 'run:body';\n timeStamp = now();\n if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];\n else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.body = elapsedTime;\n }\n this.analyze('End Body:');\n\n // run handpose\n this.analyze('Start Hand:');\n if (this.config.async) {\n handRes = this.config.hand.enabled ? handpose.predict(process.tensor, this.config) : [];\n if (this.performance.hand) delete this.performance.hand;\n } else {\n this.state = 'run:hand';\n timeStamp = now();\n handRes = this.config.hand.enabled ? await handpose.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.hand = elapsedTime;\n }\n this.analyze('End Hand:');\n\n // run nanodet\n this.analyze('Start Object:');\n if (this.config.async) {\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(process.tensor, this.config) : [];\n if (this.performance.object) delete this.performance.object;\n } else {\n this.state = 'run:object';\n timeStamp = now();\n if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];\n else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(process.tensor, this.config) : [];\n elapsedTime = Math.trunc(now() - timeStamp);\n if (elapsedTime > 0) this.performance.object = elapsedTime;\n }\n this.analyze('End Object:');\n\n // if async wait for results\n if (this.config.async) [faceRes, bodyRes, handRes, objectRes] = await Promise.all([faceRes, bodyRes, handRes, objectRes]);\n\n // run gesture analysis last\n let gestureRes: Gesture[] = [];\n if (this.config.gesture.enabled) {\n timeStamp = now();\n gestureRes = [...gesture.face(faceRes), ...gesture.body(bodyRes), ...gesture.hand(handRes), ...gesture.iris(faceRes)];\n if (!this.config.async) this.performance.gesture = Math.trunc(now() - timeStamp);\n else if (this.performance.gesture) delete this.performance.gesture;\n }\n\n this.performance.total = Math.trunc(now() - timeStart);\n this.state = 'idle';\n this.result = {\n face: faceRes,\n body: bodyRes,\n hand: handRes,\n gesture: gestureRes,\n object: objectRes,\n performance: this.performance,\n canvas: process.canvas,\n timestamp: Date.now(),\n get persons() { return persons.join(faceRes, bodyRes, handRes, gestureRes, process?.tensor?.shape); },\n };\n\n // finally dispose input tensor\n tf.dispose(process.tensor);\n\n // log('Result:', result);\n resolve(this.result);\n });\n }\n\n /** @hidden */\n #warmupBitmap = async () => {\n const b64toBlob = (base64, type = 'application/octet-stream') => fetch(`data:${type};base64,${base64}`).then((res) => res.blob());\n let blob;\n let res;\n switch (this.config.warmup) {\n case 'face': blob = await b64toBlob(sample.face); break;\n case 'full': blob = await b64toBlob(sample.body); break;\n default: blob = null;\n }\n if (blob) {\n const bitmap = await createImageBitmap(blob);\n res = await this.detect(bitmap, this.config);\n bitmap.close();\n }\n return res;\n }\n\n /** @hidden */\n #warmupCanvas = async () => new Promise((resolve) => {\n let src;\n let size = 0;\n switch (this.config.warmup) {\n case 'face':\n size = 256;\n src = 'data:image/jpeg;base64,' + sample.face;\n break;\n case 'full':\n case 'body':\n size = 1200;\n src = 'data:image/jpeg;base64,' + sample.body;\n break;\n default:\n src = null;\n }\n // src = encodeURI('../assets/human-sample-upper.jpg');\n const img = new Image();\n img.onload = async () => {\n const canvas = (typeof OffscreenCanvas !== 'undefined') ? new OffscreenCanvas(size, size) : document.createElement('canvas');\n canvas.width = img.naturalWidth;\n canvas.height = img.naturalHeight;\n const ctx = canvas.getContext('2d');\n ctx?.drawImage(img, 0, 0);\n // const data = ctx?.getImageData(0, 0, canvas.height, canvas.width);\n const res = await this.detect(canvas, this.config);\n resolve(res);\n };\n if (src) img.src = src;\n else resolve(null);\n });\n\n /** @hidden */\n #warmupNode = async () => {\n const atob = (str) => Buffer.from(str, 'base64');\n let img;\n if (this.config.warmup === 'face') img = atob(sample.face);\n if (this.config.warmup === 'body' || this.config.warmup === 'full') img = atob(sample.body);\n if (!img) return null;\n let res;\n if (typeof tf['node'] !== 'undefined') {\n const data = tf['node'].decodeJpeg(img);\n const expanded = data.expandDims(0);\n this.tf.dispose(data);\n // log('Input:', expanded);\n res = await this.detect(expanded, this.config);\n this.tf.dispose(expanded);\n } else {\n if (this.config.debug) log('Warmup tfjs-node not loaded');\n /*\n const input = await canvasJS.loadImage(img);\n const canvas = canvasJS.createCanvas(input.width, input.height);\n const ctx = canvas.getContext('2d');\n ctx.drawImage(img, 0, 0, input.width, input.height);\n res = await this.detect(input, this.config);\n */\n }\n return res;\n }\n\n /** Warmup method pre-initializes all configured models for faster inference\n * - can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n * @param userConfig?: Config\n */\n async warmup(userConfig?: Config | Record): Promise {\n const t0 = now();\n if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;\n if (!this.config.warmup || this.config.warmup === 'none') return { error: 'null' };\n let res;\n if (typeof createImageBitmap === 'function') res = await this.#warmupBitmap();\n else if (typeof Image !== 'undefined') res = await this.#warmupCanvas();\n else res = await this.#warmupNode();\n const t1 = now();\n if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);\n return res;\n }\n}\n\n/**\n * Class Human is also available as default export\n */\nexport { Human as default };\n"], + "mappings": ";;;;;;owBAKO,WAAc,EAAgB,EAAsB,CACzD,GAAM,GAAY,EAAO,SAAS,KAAO,GAAK,IAExC,EAAO,AADI,EAAK,WAAW,MAAQ,EAAK,WAAW,MAAQ,EAAK,WAAW,UAAY,EAAK,WAAW,WAAa,EAAK,WAAW,SAClH,GAAG,IAAS,GAAG,IAAS,IAAY,IAC5D,GAAI,CAAC,EAAK,oBAAoB,SAAS,SAAU,KAAM,IAAI,OAAM,2BAA2B,yBAC5F,MAAO,GAIF,cAAgB,EAAW,CAChC,GAAM,GAAK,GAAI,MACT,EAAK,GAAG,EAAG,WAAW,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,aAAa,WAAW,SAAS,EAAG,QAAQ,EAAG,kBAAkB,WAAW,SAAS,EAAG,OAErM,AAAI,GAAK,QAAQ,IAAI,EAAI,SAAU,GAAG,GAIjC,GAAM,GAAM,IACb,MAAO,cAAgB,YAAoB,YAAY,MACpD,SAAU,QAAO,QAAQ,OAAO,UAAY,IAAO,KAAM,YAI3D,cAAsB,EAAS,CACpC,GAAM,GAAW,AAAC,GAAQ,GAAO,MAAO,IAAQ,SAChD,MAAO,GAAQ,OAAO,CAAC,EAAM,IAC3B,QAAO,KAAK,GAAO,IAAI,QAAQ,AAAC,GAAQ,CACtC,GAAM,GAAO,EAAK,GACZ,EAAO,EAAI,GACjB,AAAI,MAAM,QAAQ,IAAS,MAAM,QAAQ,GAAO,EAAK,GAAO,EAAK,OAAO,GAAG,GACtE,AAAI,EAAS,IAAS,EAAS,GAAO,EAAK,GAAO,EAAU,EAAM,GAClE,EAAK,GAAO,IAEZ,GACN,IC+KL,GAAM,IAAiB,CACrB,QAAS,QAET,cAAe,aACf,SAAU,sDACV,MAAO,GACP,MAAO,GACP,OAAQ,OAIR,iBAAkB,IAGlB,UAAW,GACX,OAAQ,CAEN,QAAS,GACT,MAAO,EACP,OAAQ,EAIR,KAAM,GACN,OAAQ,GACR,WAAY,EACZ,SAAU,EACV,UAAW,EACX,KAAM,EACN,WAAY,EACZ,IAAK,EACL,SAAU,GACV,MAAO,GACP,QAAS,GACT,WAAY,GACZ,YAAa,GACb,SAAU,GACV,SAAU,GAGZ,QAAS,CACP,QAAS,IAGX,KAAM,CACJ,QAAS,GAIT,SAAU,CACR,UAAW,iBACX,SAAU,GAGV,YAAa,GAEb,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,OAAQ,IAIV,KAAM,CACJ,QAAS,GACT,UAAW,iBAGb,KAAM,CACJ,QAAS,GACT,UAAW,aAIb,YAAa,CACX,QAAS,GAET,UAAW,eAEX,WAAY,GAEZ,cAAe,IAGjB,QAAS,CACP,QAAS,GACT,cAAe,GACf,WAAY,GAEZ,UAAW,iBAIf,KAAM,CACJ,QAAS,GACT,UAAW,yBAEX,YAAa,EAGb,cAAe,GACf,WAAY,GAId,KAAM,CACJ,QAAS,GACT,SAAU,GAEV,WAAY,GAKZ,cAAe,GACf,aAAc,GACd,YAAa,EAEb,UAAW,GACX,SAAU,CACR,UAAW,mBAEb,SAAU,CACR,UAAW,sBAIf,OAAQ,CACN,QAAS,GACT,UAAW,qBAEX,cAAe,GACf,aAAc,GACd,YAAa,GACb,WAAY,IAId,aAAc,CACZ,QAAS,GAKT,UAAW,gBCvWR,aAAqD,CAC1D,GAAI,GACA,EACJ,GAAI,MAAO,YAAc,YAAa,CACpC,GAAM,GAAM,UAAU,UAAU,MAAM,iBACtC,GAAI,GAAO,EAAI,GAAI,CACjB,GAAM,GAAgB,EAAI,GAAG,MAAM,iBACnC,EAAW,EAAgB,EAAc,GAAG,QAAQ,SAAU,IAAM,GACpE,EAAQ,UAAU,UAAU,QAAQ,EAAI,GAAI,IACxC,EAAS,IAAI,GAAQ,EAAM,QAAQ,EAAI,GAAI,KAC/C,EAAQ,EAAM,QAAQ,MAAO,UAE1B,AAAI,OAAO,UAAY,aAC5B,GAAW,GAAG,QAAQ,YAAY,QAAQ,OAC1C,EAAQ,UAAU,QAAQ,WAE5B,MAAO,CAAE,WAAU,qDCsBrB,QACA,QACA,QAEA,QACA,QACA,QAjBA,yDACA,8DACA,8DACA,gEACA,mEACA,qEACA,uEACA,sEAIA,mDACA,qDACA,wDACA,mDACA,0DACA,4DACA,2DAKO,GAAM,IAAU,CACrB,KAAM,GACN,YAAa,GACb,YAAa,GACb,cAAe,GACf,iBAAkB,GAClB,mBAAoB,GACpB,qBAAsB,GACtB,oBAAqB,ICpDhB,GAAM,GAAS,CACpB,KAAM,UACN,SAAU,GACV,OAAoD,KACpD,GAAmC,KACnC,MAAO,KACP,OAAQ,KACR,WAAuB,GACvB,UAAW,CACT,MAAO,GACP,UAAW,GACX,mBAAoB,GACpB,sBAAuB,GACvB,MAAO,GACP,QAAS,GACT,6BAA8B,GAC9B,eAAgB,KAIpB,aAA4B,CAK1B,GAAM,GAAK,EAAO,GAClB,AAAI,CAAC,GACL,GAAO,WAAa,EAAG,0BASlB,aAA0B,CAC/B,GAAI,CAAC,AAAG,cAAY,EAAO,MAAO,CAEhC,GAAI,CACF,EAAO,OAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,MAAO,EAAO,QAAU,SAAS,cAAc,gBAC9H,EAAP,CACA,EAAI,+BAAgC,GACpC,OAEF,GAAI,CACF,EAAO,GAAK,EAAO,OAAO,WAAW,SAAU,EAAO,iBAC/C,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,AAAG,kBAAgB,EAAG,EAAO,UACtB,EAAP,CACA,EAAI,oCAAqC,GACzC,OAEF,GAAI,CACF,GAAM,GAAM,GAAO,gBAAa,EAAO,IACvC,AAAG,kBAAgB,EAAO,KAAM,IAAM,GAAO,oBAAiB,GAAM,EAAO,gBACpE,EAAP,CACA,EAAI,wCAAyC,GAC7C,OAEF,GAAI,CAEF,AADgB,AAAG,uBAAqB,SAChC,QAAQ,AAAC,GAAiB,CAChC,GAAM,GAAkB,IAAK,EAAc,YAAa,EAAO,MAC/D,AAAG,iBAAe,WAEb,EAAP,CACA,EAAI,mDAAoD,GACxD,OAEF,GAAI,CACF,AAAG,MAAI,IAAI,gBAAiB,SACrB,EAAP,CACA,EAAI,yCAA0C,GAC9C,OAEF,KACA,EAAI,sBAAuB,EAAO,OCvF/B,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IACxE,MAAO,CAAE,aAAY,YAGhB,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IACzE,EAAW,CAAC,KAAK,MAAM,EAAQ,GAAK,GAAW,KAAK,MAAM,EAAQ,GAAK,IAC7E,MAAO,CAAE,aAAY,WAAU,UAAW,EAAI,WAGzC,YAAuC,EAAW,CACvD,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,WAAU,aAQ1B,GAAM,IAAY,AAAC,GAAoB,EAC5C,WAAY,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,IAClD,SAAU,AAAG,QAAM,EAAgB,CAAC,EAAG,GAAI,CAAC,GAAI,MCpE3C,GAAM,IAAkB,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAKtD,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAQjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAOnB,YAAgC,EAAG,EAAG,CAC3C,MAAO,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAGhC,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KAQvC,YAAyB,EAAW,CACzC,GAAM,GAAO,CAAE,QAAS,CAAC,EAAY,GAAI,EAAY,GAAI,QAAS,CAAC,EAAG,IAChE,EAAmC,GACzC,OAAS,GAAI,EAAG,EAAI,EAAK,QAAQ,OAAQ,IAAK,CAC5C,GAAM,GAAS,EAAK,QAAQ,GACtB,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAW,KAAK,MAAO,GAAY,EAAS,GAAK,GACjD,EAAa,EAAK,QAAQ,GAChC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAQ,EAAG,EAAQ,EAAU,IAAS,CAC7C,GAAM,GAAU,EAAU,GAAQ,IAClC,OAAS,GAAI,EAAG,EAAI,EAAY,IAC9B,EAAQ,KAAK,CAAC,EAAS,MAK/B,MAAO,GCrGT,GAAM,IAAiB,EAEvB,YAAsB,EAAY,EAAS,EAAW,CACpD,GAAM,GAAY,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAU,AAAG,MAAI,EAAW,GAC5B,EAAW,AAAG,QAAM,EAAY,CAAC,EAAG,GAAI,CAAC,GAAI,IAC7C,EAAqB,AAAG,MAAI,EAAU,GACtC,EAAoB,AAAG,MAAI,EAAS,GACpC,EAAc,AAAG,MAAI,EAAoB,GACzC,EAAS,AAAG,MAAI,EAAmB,GACnC,EAAO,AAAG,MAAI,EAAmB,GACjC,EAAkB,AAAG,MAAI,EAAQ,GACjC,EAAgB,AAAG,MAAI,EAAM,GAEnC,MAAO,AAAG,YAAS,CAAC,EAAiB,GADlB,GAId,YAAqB,CAO1B,YAAY,EAAO,EAAgB,CACjC,KAAK,MAAQ,EACb,KAAK,YAAc,AAAK,GAAgB,EAAM,OAAO,GAAG,MAAM,IAC9D,KAAK,QAAU,AAAG,WAAS,KAAK,aAChC,KAAK,UAAY,EAAM,OAAO,GAAG,MAAM,GACvC,KAAK,OAAS,OAGV,kBAAiB,EAAoB,EAAoB,CAG7D,GAAK,CAAC,GAAgB,EAAW,oBAAwB,EAAW,MAAM,SAAW,GAAO,EAAW,MAAM,GAAK,GAAO,EAAW,MAAM,GAAK,EAAI,MAAO,MAC1J,GAAM,CAAC,EAAO,EAAO,GAAU,AAAG,OAAK,IAAM,CAE3C,GAAM,GAAkB,AADH,AAAG,QAAM,eAAe,EAAY,CAAC,KAAK,UAAW,KAAK,YAC1C,IAAI,OAAO,IAAI,IAC9C,EAAM,KAAK,MAAM,QAAQ,GAC3B,EACJ,GAAI,MAAM,QAAQ,GAAM,CACtB,GAAM,GAAS,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,KAAO,EAAE,MACvC,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAC9C,EAAY,AAAG,SAAO,CAAC,EAAO,GAAI,EAAO,IAAK,GAEpD,EAAW,AADI,AAAG,SAAO,CAAC,EAAW,GAAY,GAC/B,QAAQ,OAE1B,GAAW,AAAG,UAAQ,GAExB,GAAM,GAAW,GAAa,EAAU,KAAK,QAAS,CAAC,KAAK,UAAW,KAAK,YACtE,EAAS,AAAG,QAAM,EAAU,CAAC,EAAG,GAAI,CAAC,GAAI,IACzC,EAAY,AAAG,UAAQ,GAAQ,UAAU,WAC/C,MAAO,CAAC,EAAU,EAAU,KAG9B,KAAK,OAAS,EAAU,KAAK,OAAQ,GAErC,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,KAAK,OAAO,KAAK,SAAS,YAAa,KAAK,OAAO,KAAK,SAAS,aAAc,KAAK,OAAO,KAAK,SAAS,eAC1K,EAAM,EAAU,YACtB,EAAU,UACV,GAAM,GAAoI,GAC1I,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAa,EAAO,EAAI,IAC9B,GAAI,EAAa,KAAK,OAAO,KAAK,SAAS,cAAe,CACxD,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAI,CAAC,EAAG,KAC/C,EAAW,AAAI,GAAU,GAC/B,EAAY,UACZ,GAAM,GAAS,KAAK,YAAY,EAAI,IAC9B,EAAY,AAAG,OAAK,IAAM,AAAG,QAAM,EAAO,CAAC,EAAI,GAAI,GAAiB,GAAI,CAAC,EAAG,KAAK,UAAU,QAAQ,CAAC,GAAgB,MAC1H,EAAe,KAAK,CAAE,IAAK,EAAU,YAAW,SAAQ,gBAI5D,SAAM,UACN,EAAM,UAEC,CACL,MAAO,EACP,YAAa,CAAC,EAAW,MAAM,GAAK,KAAK,UAAW,EAAW,MAAM,GAAK,KAAK,cAKrF,kBAA2B,EAAgB,CACzC,GAAM,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eACjJ,EAAY,GAAI,IAAe,EAAO,GAC5C,MAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACrE,EAAO,OAAO,EAAI,cAAe,EAAM,UACzC,EChGF,GAAM,IAAmB,CAC9B,WAAY,CACV,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACvD,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,KAEpD,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,KAC7D,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC3D,eAAgB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,GAAI,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,KAC9D,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,eAAgB,CAAC,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,KAC1C,eAAgB,CAAC,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,KACpD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC/C,eAAgB,CAAC,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,eAAgB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACzD,kBAAmB,CAAC,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,KACnD,kBAAmB,CAAC,GAAI,IAAK,GAAI,GAAI,GAAI,IACzC,aAAc,CAAC,IAAK,IAAK,IAAK,IAAK,KACnC,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAC9C,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,cAAe,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACxD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KACtD,iBAAkB,CAAC,IAAK,IAAK,IAAK,IAAK,IAAK,KAC5C,YAAa,CAAC,IAAK,IAAK,IAAK,IAAK,KAClC,kBAAmB,CAAC,KACpB,QAAS,CAAC,GACV,WAAY,CAAC,GACb,gBAAiB,CAAC,IAClB,eAAgB,CAAC,KACjB,WAAY,CAAC,KACb,UAAW,CAAC,MAGD,GAA2B,CACtC,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,GAAI,GAAI,GAAI,GAAI,GAAI,KACrD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KACtD,CAAE,IAAK,YAAa,QAAS,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,IACtD,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,KAC9D,CAAE,IAAK,YAAa,QAAS,CAAC,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,MAKnD,GAAQ,CACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,iBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,iBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,iBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,gBAAkB,kBACnB,CAAC,cAAgB,kBACjB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,gBAAkB,kBACnB,CAAC,eAAiB,kBAClB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,kBACpB,CAAC,iBAAmB,mBAGT,GAAS,CACpB,IAAK,GAAI,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,EACtJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GACrJ,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAC7I,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAClJ,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GACrJ,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GACpJ,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,GACjJ,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,EAAG,EAAG,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,EAAG,IAC/I,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,GAAI,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,EAAG,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GACtJ,GAAI,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,GAClJ,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACnJ,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,IAClJ,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,EAAG,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IACnJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,EAAG,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC7I,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,EAAG,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GACnJ,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,EAAG,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,EAAG,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAClJ,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAClJ,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAChJ,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IACpJ,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GACrJ,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GACpJ,IAAK,GAAI,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAC/I,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,IAAK,GAAI,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,GAAI,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,GAAI,GACpJ,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GACrJ,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,EAAG,IAAK,IAAK,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,GAAI,EACpJ,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,GAAI,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAC9I,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,EAAG,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAC9I,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAC9I,IAAK,GAAI,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/I,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAChJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAClJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IACpJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACjJ,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,KAwBvI,GAAM,IAAQ,CACP,IAAK,IAAK,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAC/E,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAC1C,IAAK,EAAG,IAAK,EAAG,GAAI,GAAI,EAAG,IAAK,IAChC,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IAAK,IACtD,GAAI,GAAI,GAAI,EAAG,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,GAChD,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,GAAI,KAGhC,GAAQ,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,EAAG,IAAK,IAAK,EAAG,GAAI,GAAI,GAAI,IAAK,IAAK,IAAK,IAAK,IAAK,GAAI,GAAI,IAAK,GAAI,IAAK,IAAK,IAAK,GAAI,IAAK,KAE1J,GAAO,CAAC,GAAI,IAAK,IAAK,IAAK,EAAG,GAAI,KAElC,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAO,GAAM,IAAI,AAAC,GAAM,GAAM,IAE9B,GAAM,GAAK,IAAI,AAAC,GAAM,GAAM,IChoBzC,GAAM,IAAc,AAAO,GAAiB,cACtC,GAAe,AAAO,GAAiB,eAEvC,GAAe,CACnB,WAAY,CAAC,GAAY,GAAI,GAAY,GAAY,OAAS,IAC9D,YAAa,CAAC,GAAa,GAAI,GAAa,GAAa,OAAS,KAG9D,GAAgB,CACpB,MAAO,IACP,MAAO,GACP,aAAc,CAAC,GAAI,AAAO,GAAiB,kBAAqB,KAG5D,GAAqB,CACzB,QAAS,EACT,SAAU,EACV,KAAM,EACN,MAAO,EACP,QAAS,EACT,SAAU,EACV,aAAc,CAAC,EAAG,IAGd,GAAgB,CACpB,YAAa,EACb,YAAa,EACb,MAAO,GACP,eAAgB,IAKlB,YAA+B,EAAW,EAAW,EAAQ,EAAM,CACjE,OAAS,GAAI,EAAG,EAAI,AAAO,GAAyB,OAAQ,IAAK,CAC/D,GAAM,CAAE,MAAK,WAAY,AAAO,GAAyB,GACnD,EAAkB,AAAO,GAAiB,GAAG,IAAS,KAC5D,GAAI,CAAC,GAAQ,EAAK,SAAS,GACzB,OAAS,GAAI,EAAG,EAAI,EAAQ,OAAQ,IAAK,CACvC,GAAM,GAAQ,EAAQ,GACtB,EAAU,EAAgB,IAAM,CAC9B,EAAU,GAAO,GAAI,EAAU,GAAO,GACrC,GAAU,GAAO,GAAK,EAAU,EAAgB,IAAI,IAAM,KAO9D,YAAe,CAYpB,YAAY,EAAqB,EAAc,EAAW,CApE5D,QAsEI,KAAK,YAAc,GACnB,KAAK,oBAAsB,EAC3B,KAAK,aAAe,EACpB,KAAK,UAAY,EACjB,KAAK,QAAU,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,KAAM,EACjE,KAAK,SAAW,kBAAc,OAAO,GAAG,MAAM,KAAM,qBAAqB,QAArB,cAA4B,OAAO,GAAG,MAAM,IAChG,KAAK,SAAW,kBAAW,OAAO,GAAG,MAAM,KAAM,EACjD,KAAK,YAAc,IACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAGvB,mBAAmB,EAAW,EAAK,EAAO,EAAgB,CACxD,GAAM,GAAU,AAAS,GAAW,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC1E,EAAe,EAAU,IAAI,AAAC,GAAW,CAC7C,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAQ,GAAK,KAAK,SAAY,GAAM,GAAK,KAAK,SAAW,GACzD,EAAM,KAEF,EAAwB,IAAU,EAAK,AAAK,GAAoB,EAAO,CAAC,EAAG,IAAW,GACtF,EAAiB,IAAU,EAAK,EAAa,IAAI,AAAC,GAAW,CAAC,GAAG,AAAK,GAAY,EAAO,GAAuB,EAAM,KAAQ,EAC9H,EAAyB,IAAU,EAAK,AAAK,GAAsB,GAAuB,GAC1F,EAAY,CAAC,GAAG,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAAa,GACrG,MAAO,GAAc,IAAI,AAAC,GAAW,CACnC,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,GAAK,AAAK,GAAI,EAAW,EAAsB,KAChE,KAAK,MAAM,EAAM,MAKrB,iCAAiC,EAAW,CAC1C,GAAM,GAAW,EAAU,GAAa,WAAW,IAAI,GACjD,EAAY,EAAU,GAAa,YAAY,IAAI,GACzD,MAAO,GAAW,EAIpB,UAAU,EAAW,EAAM,EAAqB,EAAqB,EAAO,GAAO,CACjF,GAAM,GAAM,AAAS,GAAY,AAAS,GAAW,AAAS,GAA8B,CAAC,EAAU,GAAsB,EAAU,KAAwB,KAAK,cAC9J,EAAU,AAAS,GAAW,GAChC,EAAO,AAAG,QAAM,cAAc,EAAM,CAAC,CACvC,EAAI,WAAW,GAAK,KAAK,SACzB,EAAI,WAAW,GAAK,KAAK,SAAU,EAAI,SAAS,GAAK,KAAK,SAC1D,EAAI,SAAS,GAAK,KAAK,WACrB,CAAC,GAAI,CAAC,KAAK,SAAU,KAAK,WAC9B,MAAI,IAAQ,AAAG,MAAI,MAAM,YACvB,GAAO,AAAG,QAAM,cAAc,IAEzB,CAAE,MAAK,UAAS,QAIzB,aAAa,EAAS,EAAQ,EAAY,EAAO,GAAO,CACtD,GAAM,GAAgD,GACtD,OAAS,GAAI,EAAG,EAAI,GAAc,eAAgB,IAAK,CACrD,GAAM,GAAI,EAAQ,EAAI,GAChB,EAAI,EAAQ,EAAI,EAAI,GACpB,EAAI,EAAQ,EAAI,EAAI,GAC1B,EAAa,KAAK,CACf,GAAQ,EAAK,EAAI,KAAK,SAAc,EAAI,KAAK,UAAa,EAAW,GAAK,EAAO,WAAW,GAC5F,EAAI,KAAK,SAAY,EAAW,GAAK,EAAO,WAAW,GAAI,IAGhE,MAAO,CAAE,UAAW,EAAc,KAAM,EAAa,MAAM,GAAc,QAK3E,sBAAsB,EAAW,EAAY,EAAW,CACtD,GAAM,GAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAe,EAAU,AAAO,GAAiB,GAAG,cAAsB,GAAc,cAAc,GACtG,EAAY,GAAe,GAAgB,EAEjD,MAAO,GAAW,IAAI,CAAC,EAAO,IAAM,CAClC,GAAI,GAAI,EACR,MAAI,KAAM,EACR,EAAI,EACK,IAAM,GACf,GAAI,GAEC,CAAC,EAAM,GAAI,EAAM,GAAI,UAI1B,SAAQ,EAAO,EAAQ,CAC3B,GAAI,GAAc,GAEd,EAQJ,GAPK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,SAAS,YAAe,CAAC,EAAO,KAAK,KAAK,SAAW,CAAC,EAAO,YACnH,GAAW,KAAM,MAAK,oBAAoB,iBAAiB,EAAO,GAClE,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,CAAC,EAAO,WAAc,GAAY,EAAS,OAAU,EAAC,EAAO,KAAK,KAAK,SAAY,EAAS,MAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,SAAS,aAAgB,CACnM,KAAK,YAAc,GACnB,KAAK,cAAgB,EACrB,OAAW,KAAY,GAAS,MAC9B,KAAK,YAAY,KAAK,CAAE,WAAY,EAAS,IAAI,WAAW,WAAY,SAAU,EAAS,IAAI,SAAS,WAAY,UAAW,EAAS,UAAU,YAAa,WAAY,EAAS,aAEtL,AAAI,KAAK,YAAY,OAAS,GAAG,GAAc,IAGjD,GAAI,EAAa,CACf,GAAI,CAAC,GAAY,CAAC,EAAS,OAAU,EAAS,MAAM,SAAW,EAC7D,YAAK,YAAc,GACnB,KAAK,cAAgB,EACd,KAET,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAY,AAAS,GAAoB,CAAE,WAAY,KAAK,YAAY,GAAG,WAAY,SAAU,KAAK,YAAY,GAAG,UAAY,EAAS,aAC1I,EAAc,AAAS,GAAW,GAClC,EAAgB,AAAS,GAAY,GACrC,EAAY,KAAK,YAAY,GAAG,UAChC,EAAa,KAAK,YAAY,GAAG,WACvC,KAAK,YAAY,GAAK,IAAK,EAAe,aAAY,cAG1D,AAAI,GAAY,EAAS,OACvB,EAAS,MAAM,QAAQ,AAAC,GAAe,CACrC,EAAW,IAAI,WAAW,UAC1B,EAAW,IAAI,SAAS,UACxB,EAAW,UAAU,YAGzB,GAAM,GAAU,AAAG,OAAK,IAAM,KAAK,YAAY,IAAI,CAAC,EAAK,IAAM,CAE7D,GAAI,GACA,EAAQ,EACR,EAEJ,GAAI,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,AAAG,MAAI,MAAM,WAAY,CACxF,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAChE,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC5K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,SACjJ,CACL,EAAsB,GACtB,GAAM,GAAc,EAAM,QAC1B,AAAI,EAAO,KAAK,KAAK,QAAS,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAC3K,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAa,CAAC,KAAK,QAAS,KAAK,UAAU,IAAI,KAIvJ,GAAI,CAAC,EAAO,KAAK,KAAK,QASpB,MARmB,CACjB,KAAM,GACN,MACA,eAAgB,KAChB,cAAe,EAAI,WACnB,WAAY,EAAI,WAChB,MAAO,GAKX,GAAM,CAAC,CAAE,EAAY,GAAiB,KAAK,aAAa,QAAQ,GAC1D,EAAiB,EAAW,WAAW,GAC7C,GAAI,EAAiB,EAAO,KAAK,SAAS,cACxC,YAAK,YAAY,GAAG,WAAa,EAC1B,KAGT,GAAI,GAAY,AADO,AAAG,UAAQ,EAAe,CAAC,GAAI,IACvB,YAE/B,GAAI,EAAO,KAAK,KAAK,QAAS,CAC5B,GAAM,CAAE,IAAK,EAAY,QAAS,EAAgB,KAAM,GAAgB,KAAK,UAAU,EAAW,EAAM,GAAa,WAAW,GAAI,GAAa,WAAW,GAAI,IAC1J,CAAE,IAAK,EAAa,QAAS,EAAiB,KAAM,GAAiB,KAAK,UAAU,EAAW,EAAM,GAAa,YAAY,GAAI,GAAa,YAAY,IAE3J,EAAqB,AADJ,KAAK,UAAU,QAAQ,AAAG,SAAO,CAAC,EAAa,KAC5B,WACpC,EAAc,EAAmB,MAAM,EAAG,GAAc,eAAiB,GACzE,CAAE,UAAW,EAAkB,KAAM,GAAsB,KAAK,aAAa,EAAa,EAAY,EAAgB,IACtH,EAAe,EAAmB,MAAM,GAAc,eAAiB,GACvE,CAAE,UAAW,EAAmB,KAAM,IAAuB,KAAK,aAAa,EAAc,EAAa,GAC1G,GAAgC,KAAK,iCAAiC,GAC5E,AAAI,KAAK,IAAI,IAAiC,GAC5C,IAAsB,EAAW,EAAkB,OAAQ,MAC3D,GAAsB,EAAW,EAAmB,QAAS,OAGxD,AAAI,GAAgC,EACzC,GAAsB,EAAW,EAAkB,OAAQ,CAAC,YAAa,cAEzE,GAAsB,EAAW,EAAmB,QAAS,CAAC,YAAa,cAE7E,GAAM,IAAyB,KAAK,sBAAsB,EAAW,EAAmB,QAClF,GAA0B,KAAK,sBAAsB,EAAW,GAAoB,SAC1F,EAAY,EAAU,OAAO,IAAwB,OAAO,IAI9D,GAAM,GAAO,KAAK,mBAAmB,EAAW,EAAK,EAAO,GACtD,EAAkB,EAAI,WAM5B,GAJA,EAAM,AAAS,GAAW,AAAS,GAA8B,GAAO,KACxE,EAAI,WAAa,EAGb,EAAO,KAAK,SAAS,UAAY,EAAO,KAAK,KAAK,SAAW,EAAO,KAAK,YAAY,SAAW,AAAG,MAAI,MAAM,WAAY,CAC3H,GAAM,CAAC,EAAc,GAAoB,EAAI,UAAU,QAAU,GAAc,MAAS,GAAc,aAAe,GAAmB,aACxI,EAAQ,AAAK,GAAgB,EAAI,UAAU,GAAe,EAAI,UAAU,IACxE,GAAM,GAAa,AAAS,GAAa,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,WAC/E,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,AAAG,QAAM,iBAAiB,EAAM,UAAW,EAAO,EAAG,GAC1E,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAO,AAAS,GAAyB,CAAE,WAAY,EAAI,WAAY,SAAU,EAAI,UAAY,EAAc,CAAC,KAAK,SAAU,KAAK,WAAW,IAAI,KAGrJ,GAAM,GAAa,CACjB,OACA,MACA,iBACA,cAAe,EAAI,WACnB,MAAO,GAIT,YAAK,YAAY,GAAK,IAAK,AAAS,GAAY,GAAM,WAAY,EAAI,WAAY,kBAE3E,KAKT,MAAI,GAAO,KAAK,KAAK,SAAS,MAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,EAAE,WAAa,EAAO,KAAK,SAAS,gBACpH,KAAK,cAAgB,EAAQ,OAEtB,IClSX,GAAI,GAAsF,CAAC,KAAM,KAAM,MACnG,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,QAAQ,EAAO,GAChD,EAAuB,GACzB,EAAK,EACT,OAAW,KAAe,IAAe,GAAK,CAC5C,GAAI,CAAC,GAAc,EAAW,mBAAoB,SAClD,GAAM,GAAU,EAAW,KAAK,IAAI,AAAC,GAAO,CAC1C,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAM,GAAM,MAAM,IAAM,GAC3B,EAAG,GAAK,GAAa,WAEjB,EAAc,GACpB,GAAI,EAAW,MAAQ,EAAW,KAAK,OAAS,EAC9C,OAAW,KAAO,QAAO,KAAY,IAAmB,EAAY,GAAO,AAAO,GAAiB,GAAK,IAAI,AAAC,GAAU,EAAW,KAAK,IAEzI,GAAM,GAA+C,EAAW,IAAM,CACpE,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KACjD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,KAC/G,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAW,IAAI,SAAS,IAAM,KAAK,IAAI,EAAG,EAAW,IAAI,WAAW,MAC7G,CAAC,EAAG,EAAG,EAAG,GACR,EAA2C,EAAW,IAAM,CAChE,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GAClD,EAAW,IAAI,WAAW,GAAM,GAAM,MAAM,IAAM,GACjD,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,GAChF,GAAW,IAAI,SAAS,GAAK,EAAW,IAAI,WAAW,IAAO,GAAM,MAAM,IAAM,IAC/E,CAAC,EAAG,EAAG,EAAG,GACd,EAAQ,KAAK,CACX,GAAI,IACJ,MAAO,KAAK,MAAM,IAAM,EAAW,gBAAkB,IAAM,EAAW,eAAiB,GAAK,IAC5F,SAAU,KAAK,MAAM,IAAM,EAAW,eAAiB,IACvD,UAAW,KAAK,MAAM,IAAM,EAAW,gBAAkB,IACzD,IAAK,EACL,SACA,KAAM,EAAW,KACjB,UACA,cACA,MAAO,EAAW,MAClB,OAAQ,EAAW,QAEjB,EAAW,QAAQ,EAAW,OAAO,UAE3C,MAAO,GAGT,kBAA2B,EAAkE,CAC3F,MAAK,CAAC,EAAW,IAAM,EAAO,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,SAAa,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAEjI,GAAa,KAAM,SAAQ,IAAI,CAC5B,CAAC,EAAW,IAAM,EAAO,KAAK,QAAW,AAAU,GAAK,GAAU,KAClE,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,KAC3L,CAAC,EAAW,IAAM,EAAO,KAAK,KAAK,QAAW,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,KAAK,WAAY,CAAE,UAAW,EAAO,KAAK,KAAK,UAAU,SAAS,eAAkB,OAE1L,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,WAEtD,EAAO,KAAK,KAAK,SACnB,CAAI,CAAC,EAAW,IAAM,CAAC,EAAW,GAAG,SAAa,EAAI,qBAAsB,EAAO,KAAK,KAAK,WACpF,EAAO,OAAO,EAAI,cAAe,EAAW,GAAG,YAEjD,EAAO,OACZ,GAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,MAAM,UACxD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,UAClD,EAAW,IAAI,EAAI,gBAAiB,EAAW,GAAG,WAExD,GAAe,GAAiB,IAAS,EAAW,GAAI,EAAW,GAAI,EAAW,IAC3E,EAGF,GAAM,IAAuB,GACvB,GAAe,GC5E5B,GAAI,GACE,GAKD,GAED,GAAY,EACZ,GAAU,OAAO,iBAIrB,kBAA2B,EAAqC,CAC9D,GAAM,GAAW,EAAK,EAAO,cAAe,EAAO,KAAK,YAAY,WACpE,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,GAH5C,GAAQ,KAAM,AAAG,kBAAe,GAChC,AAAK,EACI,EAAO,OAAO,EAAI,cAAe,GAD9B,EAAI,qBAAsB,EAAO,KAAK,YAAY,YAGzD,EAGF,YAAoB,EAA2B,EAA2B,EAAQ,EAAW,CAGlG,GAFI,CAAC,GAAc,CAAC,GAChB,kBAAY,UAAW,GAAK,kBAAY,UAAW,GACnD,kBAAY,UAAW,kBAAY,QAAQ,MAAO,GAEtD,GAAM,GAAW,EAAM,EACpB,IAAI,CAAC,EAAM,IAAO,KAAK,IAAI,EAAW,GAAK,EAAW,KAAO,GAC7D,OAAO,CAAC,EAAK,IAAS,EAAM,EAAM,IAC/B,GAAI,GAEV,MADY,MAAK,IAAI,EAAG,IAAM,GAAY,IAIrC,YAAe,EAA0B,EAAQ,EAAY,EAAG,CACrE,GAAI,GAAO,CAAE,WAAY,EAAG,KAAM,GAAI,OAAQ,GAAI,UAAW,IAC7D,GAAI,CAAC,GAAa,CAAC,GAAM,CAAC,MAAM,QAAQ,IAAc,CAAC,MAAM,QAAQ,GAAK,MAAO,GACjF,OAAW,KAAK,GACd,GAAI,EAAE,WAAa,EAAE,KAAM,CACzB,GAAM,GAAO,GAAW,EAAW,EAAE,WACrC,AAAI,EAAO,GAAa,EAAO,EAAK,YAAY,GAAO,IAAK,EAAG,WAAY,IAG/E,MAAO,GAGF,YAAiB,EAAe,CAkDrC,MAjDc,AAAG,QAAK,IAAM,CAG1B,GAAM,GAAS,EAAM,OAAS,EAAM,QAAU,EAC9C,GAAI,CAAE,aAAqB,WAAS,MAAO,MAE3C,GAAM,GAAM,CAAC,CAAC,IAAM,IAAM,IAAM,MAEhC,MAAK,GAAM,OAAO,GAAG,MAqCR,AApCC,GAAO,MAAM,SAAW,EAClC,AAAG,QAAM,cAAc,AAAG,aAAW,EAAQ,GAAI,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KAC5G,AAAG,QAAM,cAAc,EAAQ,EAAK,CAAC,GAAI,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,MAkC5E,IAAI,KArCa,OA4CvC,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CAjHzE,QAkHE,MAAK,GACA,GAAU,EAAO,KAAK,YAAY,YAAe,EAAO,WAAc,KAAc,GAAU,OAAK,KAAL,cAAW,MAAQ,OAAK,KAAL,cAAW,KAAM,EACrI,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAW,GAAQ,GAErB,EACE,EAAM,CACV,IAAa,EACb,OAAgB,UAChB,YAAqB,EACrB,WAAsB,IAGxB,AAAI,EAAO,KAAK,YAAY,SAAS,GAAO,KAAM,GAAM,QAAQ,IAChE,AAAG,UAAQ,GAEP,GACF,CAAG,OAAK,IAAM,CACZ,GAAM,GAAS,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,GAAG,WAC5C,EAAa,KAAK,MAAM,IAAM,KAAK,IAAK,EAAO,GAAK,KAAS,IACnE,AAAI,EAAa,EAAO,KAAK,YAAY,eACvC,GAAI,OAAS,EAAO,IAAM,GAAM,SAAW,OAC3C,EAAI,YAAc,KAAK,IAAI,IAAM,IAEnC,GAAM,GAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,OAAO,GAAG,WAAW,GAChE,EAAM,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,KAAK,WACjD,EAAI,IAAM,KAAK,MAAM,EAAI,EAAM,GAAK,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,GAAK,GAAK,EAAM,IAAM,EAAI,EAAM,IAAM,GAEpH,GAAM,GAAO,EAAK,KAAK,AAAC,GAAM,EAAE,MAAM,KAAO,MAI7C,EAAI,WAAa,CAAC,GAAG,EAAK,cAE5B,EAAK,QAAQ,AAAC,GAAM,AAAG,UAAQ,KAGjC,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MA3CS,KCzGrB,GAAM,IAAc,CAAC,QAAS,UAAW,OAAQ,QAAS,MAAO,WAAY,WACzE,GAEE,GAAyD,GAC3D,GAAY,EACZ,GAAU,OAAO,iBAGf,GAAM,CAAC,MAAQ,KAAQ,MAE7B,kBAA2B,EAAqC,CAC9D,MAAK,IAIM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,QAAQ,YAC/E,AAAI,CAAC,IAAS,CAAC,GAAM,SAAU,EAAI,qBAAsB,EAAO,KAAK,QAAQ,WACpE,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA8B,EAAe,EAAgB,EAAK,EAAO,CACvE,MAAK,IACA,GAAU,EAAO,KAAK,QAAQ,YAAe,EAAO,WAAc,KAAc,GAAU,GAAK,IAAS,GAAK,GAAK,OAAS,EAC9H,MACO,GAAK,IAEd,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,IAAK,IAC9F,CAAC,EAAK,EAAO,GAAQ,AAAG,QAAM,EAAQ,EAAG,GAC/C,EAAO,UAEP,GAAM,GAAU,AAAG,MAAI,EAAK,GAAI,IAC1B,EAAY,AAAG,MAAI,EAAO,GAAI,IAC9B,EAAW,AAAG,MAAI,EAAM,GAAI,IAClC,EAAI,UACJ,EAAM,UACN,EAAK,UACL,GAAM,GAAY,AAAG,OAAK,CAAC,EAAS,EAAW,IAC/C,EAAQ,UACR,EAAU,UACV,EAAS,UACT,GAAM,GAAY,AAAG,OAAK,IAAM,EAAU,IAAI,IAAK,IAAI,IACvD,EAAU,UACV,GAAM,GAAiD,GACvD,GAAI,EAAO,KAAK,QAAQ,QAAS,CAC/B,GAAM,GAAW,KAAM,IAAM,QAAQ,GAC/B,EAAO,EAAS,WACtB,AAAG,UAAQ,GACX,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,AAAI,EAAK,GAAK,EAAO,KAAK,QAAQ,eAAe,EAAI,KAAK,CAAE,MAAO,KAAK,IAAI,IAAM,KAAK,MAAM,IAAM,EAAK,IAAM,KAAM,QAAS,GAAY,KAE3I,EAAI,KAAK,CAAC,EAAG,IAAM,EAAE,MAAQ,EAAE,OAEjC,EAAU,UACV,GAAK,GAAO,EACZ,GAAY,EACZ,EAAQ,MApCS,KC7Bd,GAAM,IAAY,CACvB,OAAQ,UAAW,WAAY,UAAW,WAAY,eACtD,gBAAiB,YAAa,aAAc,YAAa,aACzD,UAAW,WAAY,WAAY,YAAa,YAAa,cAGlD,GAAQ,GAAU,OAElB,GAAU,GAAU,OAAO,CAAC,EAAQ,EAAW,IAC1D,GAAO,GAAa,EACb,GACN,IAEG,GAAqB,CACzB,CAAC,UAAW,gBAAiB,CAAC,YAAa,gBAC3C,CAAC,YAAa,aAAc,CAAC,UAAW,YACxC,CAAC,WAAY,aAAc,CAAC,WAAY,iBACxC,CAAC,aAAc,iBAAkB,CAAC,aAAc,cAChD,CAAC,WAAY,aAAc,CAAC,YAAa,cACzC,CAAC,eAAgB,iBAAkB,CAAC,UAAW,aAEpC,GAAuB,GAAmB,IAAI,CAAC,CAAC,EAAY,KAAiB,CAAC,GAAQ,GAAa,GAAQ,KAE3G,GAAY,CACvB,CAAC,OAAQ,WAAY,CAAC,UAAW,WAAY,CAAC,OAAQ,YACtD,CAAC,WAAY,YAAa,CAAC,OAAQ,gBACnC,CAAC,eAAgB,aAAc,CAAC,YAAa,aAC7C,CAAC,eAAgB,WAAY,CAAC,UAAW,YACzC,CAAC,WAAY,aAAc,CAAC,OAAQ,iBACpC,CAAC,gBAAiB,cAAe,CAAC,aAAc,cAChD,CAAC,gBAAiB,YAAa,CAAC,WAAY,aAC5C,CAAC,YAAa,eCdT,YAAwB,EAA6C,CAC1E,GAAM,GAAQ,EAAU,OAAO,CAAC,CAAE,OAAM,OAAM,OAAM,QAAQ,CAAE,SAAU,CAAE,IAAG,QAAW,EACtF,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,GACrB,KAAM,KAAK,IAAI,EAAM,KACnB,CACF,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,kBACb,KAAM,OAAO,oBAEf,MAAO,CAAC,EAAM,KAAM,EAAM,KAAM,EAAM,KAAO,EAAM,KAAM,EAAM,KAAO,EAAM,MAGvE,YAAoB,EAAO,CAAC,EAAQ,GAAQ,CAAC,EAAuB,GAAoC,CAC7G,GAAM,GAAS,EAAS,EAClB,EAAS,EAAQ,EACjB,EAAY,CAAC,EAAM,IAAO,EAC9B,GAAI,EACJ,MAAO,EAAK,MACZ,OAAQ,CAAC,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,EAAuB,EAAK,IAAI,GAAK,EAAsB,EAAK,IAAI,GAAK,GACpI,IAAK,CAAC,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,GAAS,KAAK,MAAM,EAAK,IAAI,GAAK,IACrI,UAAW,EAAK,UAAU,IAAI,CAAC,CAAE,QAAO,OAAM,cAAgB,EAC5D,QACA,OACA,SAAU,CAAC,KAAK,MAAM,EAAS,EAAI,GAAS,KAAK,MAAM,EAAS,EAAI,IACpE,YAAa,CAAC,EAAS,EAAI,EAAuB,EAAS,EAAI,QAInE,MADoB,GAAM,IAAI,CAAC,EAAM,IAAM,EAAU,EAAM,IAKtD,YAAc,CAKnB,YAAY,EAAS,EAAiB,CACpC,KAAK,cAAgB,GAAI,OAAM,GAC/B,KAAK,iBAAmB,GACxB,KAAK,gBAAkB,EAGzB,QAAQ,EAAG,CACT,KAAK,cAAc,EAAE,KAAK,kBAAoB,EAC9C,KAAK,KAAK,KAAK,kBAGjB,SAAU,CACR,GAAM,GAAM,KAAK,cAAc,GAC/B,YAAK,SAAS,EAAG,KAAK,oBACtB,KAAK,KAAK,GACV,KAAK,cAAc,KAAK,iBAAmB,GAAK,KACzC,EAGT,OAAQ,CAAE,MAAO,MAAK,mBAAqB,GAE3C,MAAO,CAAE,MAAO,MAAK,iBAAmB,EAExC,KAAM,CAAE,MAAO,MAAK,cAAc,MAAM,EAAG,KAAK,iBAAmB,GAEnE,KAAM,CAAE,MAAO,MAAK,cAAc,GAElC,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,KAAK,KAAK,MAAM,EAAI,GAAI,IAC3C,KAAK,SAAS,EAAG,KAAK,MAAM,EAAI,IAChC,EAAI,KAAK,MAAM,EAAI,GAIvB,KAAK,EAAG,CACN,KAAO,EAAI,GAAK,KAAK,kBAAkB,CACrC,GAAI,GAAI,EAAI,EAEZ,GADI,EAAI,KAAK,kBAAoB,KAAK,KAAK,EAAG,EAAI,IAAI,IAClD,CAAC,KAAK,KAAK,EAAG,GAAI,MACtB,KAAK,SAAS,EAAG,GACjB,EAAI,GAIR,WAAW,EAAG,CAEZ,MAAO,MAAK,gBAAgB,KAAK,cAAc,IAGjD,KAAK,EAAG,EAAG,CACT,MAAO,MAAK,WAAW,GAAK,KAAK,WAAW,GAG9C,SAAS,EAAG,EAAG,CACb,GAAM,GAAI,KAAK,cAAc,GAC7B,KAAK,cAAc,GAAK,KAAK,cAAc,GAC3C,KAAK,cAAc,GAAK,IAIrB,YAAwB,EAAG,EAAG,EAAU,EAAS,CACtD,MAAO,CACL,EAAG,EAAQ,IAAI,EAAG,EAAG,GACrB,EAAG,EAAQ,IAAI,EAAG,EAAG,EAAe,KAIjC,YAAwB,EAAM,EAAc,EAAS,CAC1D,GAAM,CAAE,WAAU,WAAU,GAAI,GAAa,EACvC,CAAE,IAAG,KAAM,GAAe,EAAU,EAAU,EAAU,GAC9D,MAAO,CACL,EAAG,EAAK,SAAW,EAAe,EAClC,EAAG,EAAK,SAAW,EAAe,GAY/B,YAAe,EAAG,EAAK,EAAK,CACjC,MAAI,GAAI,EAAY,EAChB,EAAI,EAAY,EACb,EAGF,YAAyB,EAAI,EAAI,EAAI,EAAI,CAC9C,GAAM,GAAK,EAAK,EACV,EAAK,EAAK,EAChB,MAAO,GAAK,EAAK,EAAK,EAGjB,YAAoB,EAAG,EAAG,CAC/B,MAAO,CAAE,EAAG,EAAE,EAAI,EAAE,EAAG,EAAG,EAAE,EAAI,EAAE,GCvJpC,GAAM,IAAqB,EACrB,GAAe,GACf,GAAmB,IAAM,EAE/B,YAAkB,EAAQ,EAAgB,EAAU,EAAQ,EAAS,EAAe,EAAmB,EAAG,CACxG,GAAM,GAAkB,AAAC,GAAW,EAClC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAG,GACvC,EAAG,EAAc,IAAI,EAAM,EAAG,EAAM,EAAI,EAAc,MAAM,GAAK,EAAK,KAElE,EAA2B,CAAC,EAAO,EAAQ,IAAW,EAC1D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAS,GAC/D,EAAG,AAAM,GAAM,KAAK,MAAM,EAAM,EAAI,IAAe,EAAG,EAAQ,KAG1D,CAAC,EAAQ,GAAS,EAAO,MAEzB,EAAwB,EAAyB,EAAe,SAAU,EAAQ,GAClF,EAAe,EAAgB,GAEjC,EADmB,AAAM,GAAW,EAAe,SAAU,GAEjE,OAAS,GAAI,EAAG,EAAI,EAAkB,IAAK,CACzC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAc,AAAM,GAAe,EAAsB,EAAG,EAAsB,EAAG,EAAU,GACrG,EAAiB,AAAM,GACrB,CAAE,EAAG,EAAsB,EAAI,GAAc,EAAG,EAAsB,EAAI,IAC1E,CAAE,EAAG,EAAY,EAAG,EAAG,EAAY,IAGvC,GAAM,GAAwB,EAAyB,EAAgB,EAAQ,GACzE,EAAQ,EAAO,IAAI,EAAsB,EAAG,EAAsB,EAAG,GAC3E,MAAO,CAAE,SAAU,EAAgB,KAAM,AAAI,GAAU,GAAW,SAG7D,YAAoB,EAAM,EAAQ,EAAS,EAAkB,EAAkB,CACpF,GAAM,GAAS,AAAI,GAAU,IAAI,CAAC,CAAC,EAAgB,KAAoB,CAAC,AAAI,GAAQ,GAAiB,AAAI,GAAQ,KAC3G,EAAW,EAAO,IAAI,CAAC,CAAC,CAAE,KAAkB,GAC5C,EAAW,EAAO,IAAI,CAAC,CAAC,KAAmB,GAC3C,EAAW,EAAO,MAAM,GACxB,EAAW,EAAS,OACpB,EAAY,GAAI,OAAM,GAEtB,EAAY,AAAM,GAAe,EAAK,KAAM,GAAc,GAChE,EAAU,EAAK,KAAK,IAAM,CACxB,MAAO,EAAK,MACZ,KAAM,AAAI,GAAU,EAAK,KAAK,IAC9B,SAAU,GAGZ,OAAS,GAAO,EAAW,EAAG,GAAQ,EAAG,EAAE,EAAM,CAC/C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAIzF,OAAS,GAAO,EAAG,EAAO,EAAU,EAAE,EAAM,CAC1C,GAAM,GAAW,EAAS,GACpB,EAAW,EAAS,GAC1B,AAAI,EAAU,IAAa,CAAC,EAAU,IACpC,GAAU,GAAY,GAAS,EAAM,EAAU,GAAW,EAAU,EAAQ,EAAS,IAGzF,MAAO,GAGT,YAAqC,EAAY,EAAO,EAAU,EAAU,EAAQ,CAClF,GAAM,CAAC,EAAQ,GAAS,EAAO,MAC3B,EAAe,GACb,EAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAAU,CACvD,GAAM,GAAS,KAAK,IAAI,EAAW,GAAoB,GACjD,EAAO,KAAK,IAAI,EAAW,GAAqB,EAAG,GACzD,OAAS,GAAW,EAAQ,EAAW,EAAM,EAAE,EAC7C,GAAI,EAAO,IAAI,EAAU,EAAU,GAAc,EAAO,CACtD,EAAe,GACf,MAGJ,GAAI,CAAC,EAAc,MAErB,MAAO,GAGF,YAAiC,EAAe,EAAQ,CAC7D,GAAM,CAAC,EAAQ,EAAO,GAAgB,EAAO,MACvC,EAAQ,GAAU,IAAQ,EAAS,EAAQ,EAAc,CAAC,CAAE,WAAY,GAC9E,OAAS,GAAW,EAAG,EAAW,EAAQ,EAAE,EAC1C,OAAS,GAAW,EAAG,EAAW,EAAO,EAAE,EACzC,OAAS,GAAa,EAAG,EAAa,EAAc,EAAE,EAAY,CAChE,GAAM,GAAQ,EAAO,IAAI,EAAU,EAAU,GAE7C,AAAI,EAAQ,GAER,GAA4B,EAAY,EAAO,EAAU,EAAU,IAAS,EAAM,QAAQ,CAAE,QAAO,KAAM,CAAE,WAAU,WAAU,GAAI,KAI7I,MAAO,GAGT,YAAsB,EAAO,CAAE,IAAG,KAAK,EAAY,CACjD,MAAO,GAAM,KAAK,CAAC,CAAE,eAAgB,CA1GvC,MA2GI,GAAM,GAAwB,KAAU,KAAV,cAAuB,SACrD,MAAK,GACE,AAAM,GAAgB,EAAG,EAAG,EAAsB,EAAG,EAAsB,IAAM,GADrD,KAKvC,YAA0B,EAAe,EAAW,CAKlD,MAAO,AAJ6B,GAAU,OAAO,CAAC,EAAQ,CAAE,WAAU,SAAS,IAC5E,IAAa,EAAe,EAAU,IAAa,IAAU,GAC3D,GACN,GACkC,EAAU,OAG1C,YAAgB,EAAS,EAAQ,EAAkB,EAAkB,EAAa,EAAe,CACtG,GAAM,GAAoF,GACpF,EAAQ,GAAwB,EAAe,GAErD,KAAO,EAAM,OAAS,GAAe,CAAC,EAAM,SAAS,CAEnD,GAAM,GAAO,EAAM,UAGb,EAAkB,AAAM,GAAe,EAAK,KAAM,GAAc,GAEtE,GAAI,GAAa,EAAO,EAAiB,EAAK,KAAK,IAAK,SAExD,GAAI,GAAY,GAAW,EAAM,EAAQ,EAAS,EAAkB,GACpE,EAAY,EAAU,OAAO,AAAC,GAAM,EAAE,MAAQ,GAC9C,GAAM,GAAQ,GAAiB,EAAO,GAChC,EAAM,AAAM,GAAe,GACjC,AAAI,EAAQ,GAAe,EAAM,KAAK,CAAE,YAAW,MAAK,MAAO,KAAK,MAAM,IAAM,GAAS,MAE3F,MAAO,GChIT,GAAI,GACE,GAAiB,CAAC,+BAA6C,gCAAoD,yCAA+D,0CAExL,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAM,AAAG,OAAK,IAAM,CACxB,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,GAEnC,GAAM,GAAa,AADH,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KACrE,UAAU,IAAI,OAAO,IAAI,GAE9C,EAAY,AADa,EAAM,QAAQ,EAAY,IAC/B,IAAI,AAAC,GAAM,AAAG,UAAQ,EAAG,CAAC,KACpD,SAAU,GAAK,EAAU,GAAG,UACrB,IAGH,EAAU,KAAM,SAAQ,IAAI,EAAI,IAAI,AAAC,GAAW,EAAO,WAC7D,OAAW,KAAK,GAAK,EAAE,UAEvB,GAAM,GAAU,KAAM,AAAM,IAAO,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAQ,GAAI,EAAO,KAAK,YAAa,EAAO,KAAK,eACxH,MAAK,GAAM,OAAO,GAAG,MACN,AAAK,GAAW,EAAS,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAAK,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,KADxF,GAKrC,kBAA2B,EAAqC,CAC9D,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,ECxCF,YAAoB,EAAK,CAC9B,MAAO,CACL,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,IAC1C,KAAK,IAAI,EAAI,SAAS,GAAK,EAAI,WAAW,KAIvC,YAAsB,EAAK,CAChC,MAAO,CACL,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,EAC5D,EAAI,WAAW,GAAM,GAAI,SAAS,GAAK,EAAI,WAAW,IAAM,GAIzD,YAAkC,EAAK,EAAO,EAAU,CAC7D,GAAM,GAAI,EAAM,MAAM,GAChB,EAAI,EAAM,MAAM,GAChB,EAAQ,CAAC,CACb,EAAI,WAAW,GAAK,EACpB,EAAI,WAAW,GAAK,EACpB,EAAI,SAAS,GAAK,EAClB,EAAI,SAAS,GAAK,IAEpB,MAAO,AAAG,SAAM,cAAc,EAAO,EAAO,CAAC,GAAI,GAG5C,YAA6B,EAAK,EAAQ,CAC/C,GAAM,GAAa,CAAC,EAAI,WAAW,GAAK,EAAO,GAAI,EAAI,WAAW,GAAK,EAAO,IACxE,EAAW,CAAC,EAAI,SAAS,GAAK,EAAO,GAAI,EAAI,SAAS,GAAK,EAAO,IAClE,EAAgB,EAAI,cAAc,IAAI,AAAC,GACvB,CAAC,EAAM,GAAK,EAAO,GAAI,EAAM,GAAK,EAAO,KAG/D,MAAO,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAI,YAGzD,YAAoB,EAAK,EAAS,IAAK,CAC5C,GAAM,GAAS,GAAa,GACtB,EAAO,GAAW,GAClB,EAAc,CAAC,EAAS,EAAK,GAAK,EAAG,EAAS,EAAK,GAAK,GACxD,EAAa,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IAClE,EAAW,CAAC,EAAO,GAAK,EAAY,GAAI,EAAO,GAAK,EAAY,IACtE,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eAG7C,YAAqB,EAAK,CAC/B,GAAM,GAAU,GAAa,GACvB,EAAO,GAAW,GAElB,EAAW,AADD,KAAK,IAAI,GAAG,GACD,EACrB,EAAa,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GAClD,EAAW,CAAC,EAAQ,GAAK,EAAU,EAAQ,GAAK,GACtD,MAAO,CAAE,aAAY,WAAU,cAAe,EAAI,eCtD7C,GAAM,IAAU,CACrB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,QAAU,EAAG,SAClB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,OAAS,EAAG,QACjB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,OAChB,CAAE,EAAG,MAAQ,EAAG,QC33FX,YAAmB,CAQxB,YAAY,EAAO,CAbrB,MAcI,KAAK,MAAQ,EACb,KAAK,QAAU,AAAQ,GAAQ,IAAI,AAAC,GAAW,CAAC,EAAO,EAAG,EAAO,IACjE,KAAK,cAAgB,AAAG,WAAS,KAAK,SAEtC,KAAK,UAAY,QAAK,QAAL,cAAY,OAAO,GAAG,MAAM,GAC7C,KAAK,gBAAkB,AAAG,WAAS,CAAC,KAAK,UAAW,KAAK,YACzD,KAAK,sBAAwB,AAAG,WAAS,CAAC,KAAK,UAAY,EAAG,KAAK,UAAY,IAGjF,eAAe,EAAO,CACpB,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAa,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IAC1C,EAAW,AAAG,QAAM,EAAO,CAAC,EAAG,GAAI,CAAC,GAAI,IACxC,EAAkB,AAAG,MAAI,AAAG,MAAI,EAAY,KAAK,iBAAkB,KAAK,eACxE,EAAe,AAAG,MAAI,EAAU,KAAK,uBACrC,EAAc,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACjE,EAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,GAAe,KAAK,iBACrE,MAAO,AAAG,YAAS,CAAC,EAAa,GAAY,KAIjD,mBAAmB,EAAkB,EAAO,CAC1C,MAAO,AAAG,QAAK,IAAM,CACnB,GAAM,GAAY,AAAG,MAAI,AAAG,MAAI,EAAiB,QAAQ,CAAC,GAAI,EAAG,IAAK,KAAK,iBAAkB,KAAK,QAAQ,IAC1G,MAAO,AAAG,OAAI,EAAW,KAAK,wBAI5B,UAAS,EAAO,EAAQ,CAC5B,GAAM,GAAU,KAAK,MAAM,QAAQ,GAC7B,EAAc,AAAG,UAAQ,GAC/B,EAAQ,UACR,GAAM,GAAU,AAAG,OAAK,IAAM,AAAG,UAAQ,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,KAAK,WAC3E,EAAS,EAAQ,WACjB,EAAW,AAAG,QAAM,EAAa,CAAC,EAAG,GAAI,CAAC,GAAI,IAC9C,EAAQ,KAAK,eAAe,GAClC,EAAS,UACT,GAAM,GAAY,KAAM,AAAG,SAAM,uBAAuB,EAAO,EAAQ,EAAO,KAAK,YAAa,EAAO,KAAK,aAAc,EAAO,KAAK,eAChI,EAAW,EAAU,YAE3B,EAAQ,UACR,EAAU,UACV,GAAM,GAA2E,GACjF,OAAW,KAAS,GAClB,GAAI,EAAO,IAAU,EAAO,KAAK,cAAe,CAC9C,GAAM,GAAc,AAAG,QAAM,EAAO,CAAC,EAAO,GAAI,CAAC,EAAG,KAC9C,EAAmB,AAAG,QAAM,EAAa,CAAC,EAAO,GAAI,CAAC,EAAG,KACzD,EAAgB,AAAG,OAAK,IAAM,KAAK,mBAAmB,EAAkB,GAAO,QAAQ,CAAC,GAAI,KAClG,EAAiB,UACjB,EAAM,KAAK,CAAE,IAAK,EAAa,gBAAe,WAAY,EAAO,KAGrE,SAAY,UACZ,EAAM,UACC,OAGH,oBAAmB,EAAO,EAA8G,CAC5I,GAAM,GAAc,EAAM,MAAM,GAC1B,EAAa,EAAM,MAAM,GACzB,EAAQ,AAAG,OAAK,IAAM,EAAM,eAAe,CAAC,KAAK,UAAW,KAAK,YAAY,IAAI,OAAO,IAAI,IAC5F,EAAc,KAAM,MAAK,SAAS,EAAO,GAC/C,EAAM,UACN,GAAM,GAA0G,GAChH,GAAI,CAAC,GAAe,EAAY,SAAW,EAAG,MAAO,GACrD,OAAW,KAAc,GAAa,CACpC,GAAM,GAAQ,EAAW,IAAI,WACvB,EAAa,EAAM,MAAM,EAAG,GAC5B,EAAW,EAAM,MAAM,EAAG,GAC1B,EAAgB,EAAW,cAAc,YAC/C,EAAW,IAAI,UACf,EAAW,cAAc,UACzB,EAAM,KAAK,AAAI,GAAoB,CAAE,aAAY,WAAU,gBAAe,WAAY,EAAW,YAAc,CAAC,EAAa,KAAK,UAAW,EAAc,KAAK,aAElK,MAAO,KCxFJ,YAA0B,EAAO,CACtC,MAAO,GAAQ,EAAI,KAAK,GAAK,KAAK,MAAO,GAAQ,KAAK,IAAO,GAAI,KAAK,KAGjE,YAAyB,EAAQ,EAAQ,CAC9C,GAAM,GAAU,KAAK,GAAK,EAAI,KAAK,MAAM,CAAE,GAAO,GAAK,EAAO,IAAK,EAAO,GAAK,EAAO,IACtF,MAAO,IAAiB,GAGnB,GAAM,IAAyB,CAAC,EAAG,IAAM,CAAC,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,GAAI,CAAC,EAAG,EAAG,IAEvE,YAAa,EAAI,EAAI,CAC1B,GAAI,GAAU,EACd,OAAS,GAAI,EAAG,EAAI,EAAG,OAAQ,IAC7B,GAAW,EAAG,GAAK,EAAG,GAExB,MAAO,GAGF,YAA4B,EAAK,EAAa,CACnD,GAAM,GAAwB,GAC9B,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,EAAO,KAAK,EAAI,GAAG,IAErB,MAAO,GAGF,YAAmC,EAAM,EAAM,CACpD,GAAM,GAA2B,GAC3B,EAAO,EAAK,OAClB,OAAS,GAAM,EAAG,EAAM,EAAM,IAAO,CACnC,EAAQ,KAAK,IACb,OAAS,GAAM,EAAG,EAAM,EAAM,IAC5B,EAAQ,GAAK,KAAK,GAAI,EAAK,GAAM,GAAmB,EAAM,KAG9D,MAAO,GAGF,YAA6B,EAAU,EAAQ,CACpD,GAAM,GAAO,KAAK,IAAI,GAChB,EAAO,KAAK,IAAI,GAChB,EAAiB,CAAC,CAAC,EAAM,CAAC,EAAM,GAAI,CAAC,EAAM,EAAM,GAAI,CAAC,EAAG,EAAG,IAC5D,EAAoB,GAAuB,EAAO,GAAI,EAAO,IAC7D,EAA2B,GAA0B,EAAmB,GACxE,EAA4B,GAAuB,CAAC,EAAO,GAAI,CAAC,EAAO,IAC7E,MAAO,IAA0B,EAA0B,GAGtD,YAA+B,EAAQ,CAC5C,GAAM,GAAoB,CAAC,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAAK,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,KAC5E,EAAuB,CAAC,EAAO,GAAG,GAAI,EAAO,GAAG,IAChD,EAAsB,CAC1B,CAAC,GAAI,EAAkB,GAAI,GAC3B,CAAC,GAAI,EAAkB,GAAI,IAE7B,MAAO,CACL,EAAkB,GAAG,OAAO,EAAoB,IAChD,EAAkB,GAAG,OAAO,EAAoB,IAChD,CAAC,EAAG,EAAG,IAIJ,YAAqB,EAAuB,EAAgB,CACjE,MAAO,CACL,GAAI,EAAuB,EAAe,IAC1C,GAAI,EAAuB,EAAe,KC5D9C,GAAM,IAAuB,EACvB,GAAuB,KACvB,GAAkB,CAAC,EAAG,EAAG,EAAG,GAAI,GAAI,EAAG,GACvC,GAAwB,EACxB,GAAgC,EAE/B,QAAmB,CAQxB,YAAY,EAAc,EAAe,CApB3C,MAqBI,KAAK,aAAe,EACpB,KAAK,cAAgB,EAErB,KAAK,UAAY,QAAK,gBAAL,cAAoB,OAAO,GAAG,MAAM,GACrD,KAAK,YAAc,GACnB,KAAK,QAAU,EACf,KAAK,cAAgB,EAIvB,8BAA8B,EAAW,CACvC,GAAM,GAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAK,EAAU,IAAI,AAAC,GAAM,EAAE,IAC5B,EAAa,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC3C,EAAW,CAAC,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAC/C,MAAO,CAAE,aAAY,YAGvB,uBAAuB,EAAe,EAAgB,CACpD,GAAM,GAAuB,EAAc,IAAI,AAAC,GAAU,AAAK,GAAY,CAAC,GAAG,EAAO,GAAI,IACpF,EAAgB,KAAK,8BAA8B,GACzD,MAAO,AAAI,IAAW,AAAI,GAAY,GAAgB,IAGxD,uBAAuB,EAAW,CAChC,GAAM,GAAc,KAAK,8BAA8B,GACjD,EAAgB,AAAI,GAAW,AAAI,GAAY,GAAc,IACnE,EAAc,cAAgB,GAC9B,OAAS,GAAI,EAAG,EAAI,GAAgB,OAAQ,IAC1C,EAAc,cAAc,KAAK,EAAU,GAAgB,IAAI,MAAM,EAAG,IAE1E,MAAO,GAGT,mBAAmB,EAAW,EAAM,EAAO,EAAgB,CACzD,GAAM,GAAU,AAAI,GAAW,GACzB,EAAc,CAAC,EAAQ,GAAK,KAAK,UAAW,EAAQ,GAAK,KAAK,UAAY,GAAQ,GAAK,EAAQ,IAAM,KAAK,UAAY,GACtH,EAAe,EAAU,IAAI,AAAC,GAAU,CAC5C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAM,GAAM,GAAK,KAAK,UAAY,GAC9C,EAAY,GAAK,EAAM,KAEnB,EAAuB,AAAK,GAAoB,EAAO,CAAC,EAAG,IAC3D,EAAgB,EAAa,IAAI,AAAC,GAE/B,CAAC,GADQ,AAAK,GAAY,EAAO,GACpB,EAAM,KAEtB,EAAwB,AAAK,GAAsB,GACnD,EAAY,CAAC,GAAG,AAAI,GAAa,GAAO,GACxC,EAAoB,CACxB,AAAK,GAAI,EAAW,EAAsB,IAC1C,AAAK,GAAI,EAAW,EAAsB,KAE5C,MAAO,GAAc,IAAI,AAAC,GAAU,CAClC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,GAAK,EAAkB,IACxC,KAAK,MAAM,EAAM,WAIf,eAAc,EAAO,EAAQ,CACjC,GAAI,GAAc,GAGd,EAGJ,AAAK,MAAK,UAAY,GAAO,KAAK,QAAU,EAAO,KAAK,YAAe,CAAC,EAAO,KAAK,WAAa,CAAC,EAAO,YACvG,GAAQ,KAAM,MAAK,aAAa,mBAAmB,EAAO,GAC1D,KAAK,QAAU,GAEb,EAAO,WAAW,KAAK,UAGvB,GAAU,EAAM,OAAS,GAAQ,GAAM,SAAW,KAAK,eAAmB,KAAK,gBAAkB,EAAO,KAAK,aAAgB,CAAC,EAAO,KAAK,YAC5I,MAAK,cAAgB,EACrB,KAAK,YAAc,CAAC,GAAG,GAEnB,KAAK,YAAY,OAAS,GAAG,GAAc,KAEjD,GAAM,GAAgH,GAGtH,OAAS,GAAI,EAAG,EAAI,KAAK,YAAY,OAAQ,IAAK,CAChD,GAAM,GAAa,KAAK,YAAY,GACpC,GAAI,EAAC,EACL,GAAI,EAAO,KAAK,UAAW,CACzB,GAAM,GAAQ,EAAO,KAAK,SAAW,AAAK,GAAgB,EAAW,cAAc,IAAwB,EAAW,cAAc,KAAkC,EAChK,EAAa,AAAI,GAAa,GAC9B,EAAuB,CAAC,EAAW,GAAK,EAAM,MAAM,GAAI,EAAW,GAAK,EAAM,MAAM,IACpF,EAAe,EAAO,KAAK,UAAY,AAAG,MAAI,MAAM,WAAa,AAAG,QAAM,iBAAiB,EAAO,EAAO,EAAG,GAAwB,EAAM,QAC1I,EAAiB,AAAK,GAAoB,CAAC,EAAO,GAClD,EAAS,EAAc,KAAK,uBAAuB,EAAW,cAAe,GAAkB,EAC/F,EAAe,AAAI,GAAyB,EAAQ,EAAc,CAAC,KAAK,UAAW,KAAK,YACxF,EAAY,EAAa,IAAI,KACnC,EAAa,UACb,EAAa,UACb,GAAM,CAAC,EAAa,GAAa,KAAM,MAAK,cAAc,QAAQ,GAClE,EAAU,UACV,GAAM,GAAa,EAAY,WAAW,GAE1C,GADA,EAAY,UACR,GAAc,EAAO,KAAK,cAAe,CAC3C,GAAM,GAAoB,AAAG,UAAQ,EAAW,CAAC,GAAI,IAC/C,EAAY,EAAkB,YACpC,EAAU,UACV,EAAkB,UAClB,GAAM,GAAS,KAAK,mBAAmB,EAAW,EAAQ,EAAO,GAC3D,EAAkB,KAAK,uBAAuB,GACpD,KAAK,YAAY,GAAK,IAAK,EAAiB,cAC5C,GAAM,GAAS,CACb,UAAW,EACX,aACA,IAAK,CAAE,QAAS,EAAgB,WAAY,YAAa,EAAgB,WAE3E,EAAM,KAAK,OAEX,MAAK,YAAY,GAAK,KAExB,EAAU,cACL,CAEL,GAAM,GAAW,AAAI,GAAW,AAAI,GAAY,GAAa,IACvD,EAAS,CACb,WAAY,EAAW,WACvB,IAAK,CAAE,QAAS,EAAS,WAAY,YAAa,EAAS,WAE7D,EAAM,KAAK,IAGf,YAAK,YAAc,KAAK,YAAY,OAAO,AAAC,GAAM,IAAM,MACxD,KAAK,cAAgB,EAAM,OACpB,IC5IX,GAAM,IAAkB,CACtB,MAAO,CAAC,EAAG,EAAG,EAAG,GACjB,YAAa,CAAC,EAAG,EAAG,EAAG,GACvB,aAAc,CAAC,EAAG,GAAI,GAAI,IAC1B,WAAY,CAAC,GAAI,GAAI,GAAI,IACzB,MAAO,CAAC,GAAI,GAAI,GAAI,IACpB,SAAU,CAAC,IAGT,GACA,GACA,GAEJ,kBAA8B,EAAe,EAAiC,CAC5E,GAAM,GAAc,KAAM,IAAa,cAAc,EAAO,GAC5D,GAAI,CAAC,EAAa,MAAO,GACzB,GAAM,GAAqB,GAC3B,OAAS,GAAI,EAAG,EAAI,EAAY,OAAQ,IAAK,CAC3C,GAAM,GAAc,GACpB,GAAI,EAAY,GAAG,UACjB,OAAW,KAAO,QAAO,KAAK,IAE5B,EAAY,GAAO,GAAgB,GAAK,IAAI,AAAC,GAAU,EAAY,GAAG,UAAU,IAIpF,GAAM,GAAY,EAAY,GAAG,UAE7B,EAAwC,CAAC,OAAO,iBAAkB,OAAO,iBAAkB,EAAG,GAC9F,EAA2C,CAAC,EAAG,EAAG,EAAG,GACzD,GAAI,GAAa,EAAU,OAAS,EAAG,CACrC,OAAW,KAAM,GACf,AAAI,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAC5B,EAAG,GAAK,EAAI,IAAI,GAAI,GAAK,EAAG,IAElC,EAAI,IAAM,EAAI,GACd,EAAI,IAAM,EAAI,GACd,EAAS,CAAC,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,GAAI,EAAI,GAAM,GAAM,MAAM,IAAM,QAEtI,GAAM,EAAY,GAAG,IAAM,CACzB,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KAClD,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,KACvH,KAAK,MAAM,KAAK,IAAK,EAAM,MAAM,IAAM,EAAI,EAAY,GAAG,IAAI,YAAY,IAAM,KAAK,IAAI,EAAG,EAAY,GAAG,IAAI,QAAQ,MACrH,CAAC,EAAG,EAAG,EAAG,GACd,EAAS,CACN,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,EAAY,GAAG,IAAI,QAAQ,GAAO,GAAM,MAAM,IAAM,GACpD,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,GACxF,GAAY,GAAG,IAAI,YAAY,GAAK,EAAY,GAAG,IAAI,QAAQ,IAAO,GAAM,MAAM,IAAM,IAG7F,EAAM,KAAK,CAAE,GAAI,EAAG,MAAO,KAAK,MAAM,IAAM,EAAY,GAAG,YAAc,IAAK,MAAK,SAAQ,YAAW,gBAExG,MAAO,GAGT,kBAA2B,EAAiE,CAC1F,AAAI,CAAC,IAAqB,CAAC,GAEzB,EAAC,GAAmB,IAAiB,KAAM,SAAQ,IAAI,CACrD,EAAO,KAAK,QAAU,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,KAC3K,EAAO,KAAK,UAAY,AAAG,iBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,SAAS,WAAY,CAAE,UAAW,EAAO,KAAK,SAAS,UAAU,SAAS,eAAkB,OAE3K,EAAO,KAAK,SACd,CAAI,CAAC,IAAqB,CAAC,GAAkB,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WAChG,EAAO,OAAO,EAAI,cAAe,GAAkB,UAC5D,AAAI,CAAC,IAAiB,CAAC,GAAc,SAAa,EAAI,qBAAsB,EAAO,KAAK,SAAS,WACxF,EAAO,OAAO,EAAI,cAAe,GAAc,YAGtD,GAAO,OAAO,EAAI,gBAAiB,GAAkB,UACrD,EAAO,OAAO,EAAI,gBAAiB,GAAc,WAEvD,GAAM,GAAe,GAAiB,IAAa,IACnD,UAAe,GAAiB,IAAa,EAAc,IACpD,CAAC,GAAmB,IC1FtB,GAAM,IAAO,CAClB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,YACA,aACA,WACA,YACA,YACA,aACA,YACA,aACA,UACA,WACA,WACA,YACA,YACA,aACA,WACA,YACA,WACA,YACA,SACA,WACA,YACA,WACA,aACA,aAGW,GAAQ,CACnB,OACA,gBACA,UACA,iBACA,iBACA,WACA,kBACA,UACA,WACA,YACA,aACA,eACA,gBACA,YACA,aACA,UACA,WACA,UACA,WACA,UACA,WACA,UACA,WACA,YACA,aACA,OACA,WACA,UACA,WACA,UACA,YC5DF,GAAI,GAEJ,kBAA2B,EAAqC,CAC9D,MAAK,GAOM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UALlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,EAAM,MAAW,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACpF,EAAM,OAAY,SAAS,EAAM,UAAa,OAAO,aAAa,YAAY,IAAI,GAAG,MACrF,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAe,EAAiC,CA3B9E,MA4BE,GAAI,CAAC,EAAO,MAAO,GACnB,GAAI,CAAC,EAAO,KAAK,QAAS,MAAO,GACjC,GAAM,GAAU,CAAE,MAAQ,EAAM,MAAM,IAAM,EAAI,OAAS,EAAM,MAAM,IAAM,GACrE,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,MAAU,EAAM,QAAY,IAC3E,EAAY,AAAG,MAAI,EAAQ,CAAC,MAClC,EAAO,UACP,GAAM,GAAO,KAAM,GAAM,QAAQ,GAC3B,EAAS,MAAK,KAAK,AAAC,GAAO,EAAE,OAAS,KAAO,EAAE,OAAS,OAA/C,cAAsD,aAAc,GACnF,EAAK,QAAQ,AAAC,GAAM,EAAE,WACtB,EAAU,UACV,GAAM,GAA6H,GAC7H,EAAS,kBAAQ,UAAW,IAAkB,GAAmB,GACjE,EAAQ,EACd,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAO,IACzC,EAAU,KAAK,CACb,GAAI,EACJ,KAAM,EAAO,GACb,SAAU,CACR,KAAK,MAAM,EAAQ,MAAQ,EAAO,EAAQ,EAAI,GAAK,KACnD,KAAK,MAAM,EAAQ,OAAS,EAAO,EAAQ,EAAI,GAAK,KACpD,KAAK,MAAM,EAAO,EAAQ,EAAI,IAAM,GAEtC,YAAa,CACX,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,IACxB,EAAO,EAAQ,EAAI,GAAK,GAE1B,MAAQ,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,IACzE,SAAW,KAAM,KAAK,MAAM,IAAO,GAAI,KAAK,IAAI,EAAO,EAAQ,EAAI,OAAS,MAGhF,GAAM,GAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,EAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAwC,CAC5C,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAEzB,EAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,EAAQ,EAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GACxF,MAAO,CAAC,CAAE,GAAI,EAAG,QAAO,MAAK,SAAQ,cC3DvC,GAAI,GAIE,GAA8B,GAChC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,OAAQ,gBAAiB,aAAc,aAAc,QAAS,eAAgB,YAAa,YAAa,SAAU,WAAY,YAAa,aAAc,UAAW,WAAY,aAE3M,kBAA2B,EAAqC,CAC9D,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAIT,YAAe,EAAQ,EAAU,CAC/B,GAAM,CAAC,EAAO,GAAU,EAAO,MAC/B,MAAO,AAAG,QAAK,IAAM,CAEnB,GAAM,GAAM,CAAC,EAAG,IAAM,AAAG,MAAI,EAAG,AAAG,MAAI,AAAG,MAAI,EAAG,AAAG,SAAO,EAAG,UAAW,AAAG,SAAO,EAAG,WAEhF,EAAW,AAAG,UAAQ,EAAQ,CAAC,EAAS,IAExC,EAAW,AAAG,MAAI,EAAU,GAAG,WAAW,GAChD,GAAI,EAAW,EAAU,CAEvB,GAAM,GAAS,AAAG,SAAO,EAAU,GAC7B,EAAI,EAAI,EAAQ,GAAO,WAAW,GAClC,EAAI,AAAG,MAAI,EAAQ,AAAG,SAAO,EAAO,UAAU,WAAW,GAC/D,MAAO,CAAC,EAAG,EAAG,GAEhB,MAAO,CAAC,EAAG,EAAG,KAIlB,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,IAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,gBAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAGpG,MADa,AADG,AAAG,OAAI,EAAQ,GACV,IAAI,KAIvB,EAIJ,GAHI,EAAO,KAAK,SAAS,GAAO,KAAM,GAAM,QAAQ,IACpD,EAAO,UAEH,EAAM,CACR,GAAU,OAAS,EACnB,GAAM,GAAU,EAAK,UACrB,AAAG,UAAQ,GAEX,GAAM,GAAQ,EAAQ,QAAQ,GAC9B,AAAG,UAAQ,GAEX,OAAS,GAAK,EAAG,EAAK,EAAM,OAAQ,IAAM,CAExC,GAAM,CAAC,EAAG,EAAG,GAAa,GAAM,EAAM,GAAK,EAAO,KAAK,eACvD,AAAI,GAAQ,EAAO,KAAK,eACtB,GAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,GAAa,IACrC,KAAM,GAAU,GAChB,YAAa,CAEX,EAAI,EAAM,OAAO,GAAG,MAAM,GAAI,EAAI,EAAM,OAAO,GAAG,MAAM,IAE1D,SAAU,CAER,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,IAAK,KAAK,MAAM,EAAM,MAAM,GAAK,EAAI,EAAM,OAAO,GAAG,MAAM,OAKzH,EAAM,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAElC,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,EAAQ,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,mBC3G1C,GAAI,IAIE,GAA8B,GAChC,GAAwC,CAAC,EAAG,EAAG,EAAG,GAClD,GAA2C,CAAC,EAAG,EAAG,EAAG,GACrD,GAAQ,EACR,GAAU,OAAO,iBAEf,GAAY,CAAC,OAAQ,UAAW,WAAY,UAAW,WAAY,eAAgB,gBAAiB,YAAa,aAAc,YAAa,aAAc,UAAW,WAAY,WAAY,YAAa,YAAa,cAE7N,kBAA2B,EAAqC,CAC9D,MAAK,IAKM,EAAO,OAAO,EAAI,gBAAiB,GAAM,UAHlD,IAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,KAAK,YACvE,AAAI,CAAC,IAAS,CAAC,GAAM,SAAa,EAAI,qBAAsB,EAAO,KAAK,WAC/D,EAAO,OAAO,EAAI,cAAe,GAAM,WAE3C,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,KAAK,YAAe,EAAO,WAAa,OAAO,KAAK,IAAW,OAAS,EAC5F,MACO,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,gBAEvC,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAS,AAAG,OAAK,IAAM,CAC3B,GAAI,CAAC,GAAM,OAAO,GAAG,MAAO,MAAO,MACnC,GAAM,GAAS,AAAG,QAAM,eAAe,EAAO,CAAC,GAAM,OAAO,GAAG,MAAM,GAAI,GAAM,OAAO,GAAG,MAAM,IAAK,IAEpG,MADa,AAAG,QAAK,EAAQ,WAI3B,EAIJ,GAHI,EAAO,KAAK,SAAS,GAAO,KAAM,IAAM,QAAQ,IACpD,EAAO,UAEH,EAAM,CACR,GAAU,OAAS,EACnB,GAAM,GAAM,EAAK,YACjB,AAAG,UAAQ,GACX,GAAM,GAAM,EAAI,GAAG,GACnB,OAAS,GAAK,EAAG,EAAK,EAAI,OAAQ,IAChC,GAAQ,EAAI,GAAI,GACZ,GAAQ,EAAO,KAAK,eACtB,GAAU,KAAK,CACb,MAAO,KAAK,MAAM,IAAM,IAAS,IACjC,KAAM,GAAU,GAChB,YAAa,CACX,EAAI,GAAI,GACR,EAAI,GAAI,IAEV,SAAU,CACR,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,IAC3C,KAAK,MAAO,GAAM,MAAM,IAAM,GAAK,EAAI,GAAI,OAMrD,GAAQ,GAAU,OAAO,CAAC,EAAM,IAAU,EAAK,MAAQ,EAAO,EAAK,MAAQ,EAAO,GAClF,GAAM,GAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IACpC,EAAI,GAAU,IAAI,AAAC,GAAM,EAAE,SAAS,IAC1C,GAAM,CACJ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,GAC7B,KAAK,IAAI,GAAG,GAAK,KAAK,IAAI,GAAG,IAE/B,GAAM,GAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAC1C,EAAO,GAAU,IAAI,AAAC,GAAM,EAAE,YAAY,IAChD,GAAS,CACP,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GACZ,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,GAChC,KAAK,IAAI,GAAG,GAAQ,KAAK,IAAI,GAAG,IAElC,EAAQ,CAAC,CAAE,GAAI,EAAG,SAAO,OAAK,UAAQ,mBCvFnC,GAAM,IAAS,CACpB,CAAE,MAAO,EAAG,MAAO,UACnB,CAAE,MAAO,EAAG,MAAO,WACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,cACnB,CAAE,MAAO,EAAG,MAAO,YACnB,CAAE,MAAO,EAAG,MAAO,OACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,SACnB,CAAE,MAAO,EAAG,MAAO,QACnB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,eACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,kBACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,iBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,OACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,MACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,UACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,aACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,WACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,gBACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,SACpB,CAAE,MAAO,GAAI,MAAO,QACpB,CAAE,MAAO,GAAI,MAAO,YACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,cACpB,CAAE,MAAO,GAAI,MAAO,eCxEtB,GAAI,GACA,GAAoB,GACpB,GAAU,OAAO,iBAEf,GAAW,IAEjB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAK,EAAW,EAAa,EAAQ,CAC1D,GAAI,GAAK,EACL,EAAuB,GAC3B,OAAW,KAAc,CAAC,EAAG,EAAG,GAE9B,AAAG,OAAK,IAAM,CAlClB,QAmCM,GAAM,GAAW,EAAa,GAExB,EAAU,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,KAAO,GAAO,UAAzE,cAAmF,UAC7F,EAAY,KAAI,KAAK,AAAC,GAAO,EAAE,MAAM,KAAQ,GAAY,GAAM,EAAE,MAAM,GAAK,GAAO,UAAvE,cAAiF,UAE7F,EAAS,AADE,EAAU,QAAQ,CAAC,GAAI,EAAG,EAAU,MAAM,GAAK,IACxC,OAAO,GAAG,YAC5B,EAAS,EAAQ,YACvB,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IACpC,OAAS,GAAI,EAAG,EAAI,EAAQ,MAAM,GAAI,IAAK,CACzC,GAAM,GAAQ,EAAO,GAAG,GACxB,GAAI,EAAQ,EAAO,OAAO,eAAiB,IAAM,GAAI,CACnD,GAAM,GAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAM,IAAM,KAAK,MAAM,EAAI,IAAa,EACxC,EAAY,EAAO,GAAG,IAAI,AAAC,GAAM,EAAK,GAAW,EAAa,IAC9D,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GACxC,EAAM,GAAW,EAAa,EAAU,IAEpC,CAAC,EAAG,GAAK,CACb,EAAM,GAAW,EAAa,EAAU,GAAM,EAC9C,EAAM,GAAW,EAAa,EAAU,GAAM,GAE5C,EAAS,CAAC,EAAG,EAAG,EAAG,GACvB,EAAS,EAAO,IAAI,AAAC,GAAM,KAAK,IAAI,EAAG,KAAK,IAAI,EAAG,KACnD,GAAM,GAAM,CACV,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,GACxB,EAAO,GAAK,EAAY,IAEpB,EAAS,CACb,GAAI,IAEJ,MAAO,KAAK,MAAM,IAAM,GAAS,IACjC,MAAO,EAAI,EACX,MAAO,GAAO,GAAG,MAGjB,IAAM,EAAI,IAAI,AAAC,GAAM,KAAK,MAAM,IAChC,OAAQ,GAEV,EAAQ,KAAK,OAOvB,EAAI,QAAQ,AAAC,GAAM,AAAG,UAAQ,IAI9B,GAAM,GAAW,EAAQ,IAAI,AAAC,GAAM,CAAC,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,GAAI,EAAE,OAAO,KAC/E,EAAY,EAAQ,IAAI,AAAC,GAAM,EAAE,OACnC,EAAwB,GAC5B,GAAI,GAAY,EAAS,OAAS,EAAG,CACnC,GAAM,GAAM,KAAM,AAAG,SAAM,uBAAuB,EAAU,EAAW,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eAC5I,EAAS,EAAI,WACb,AAAG,UAAQ,GAIb,SAAU,EACP,OAAO,CAAC,EAAM,IAAQ,EAAO,SAAS,IACtC,KAAK,CAAC,EAAG,IAAO,EAAE,MAAQ,EAAE,OAExB,EAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,WAAY,IAC5E,EAAO,EAAO,IAAI,KAClB,EAAY,EAAK,UAAU,CAAC,EAAG,EAAG,EAAG,IAC3C,EAAK,UACL,EAAO,UAEP,GAAI,GACJ,AAAI,EAAO,OAAO,SAAS,GAAU,KAAM,GAAM,QAAQ,IACzD,EAAU,UAEV,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MCjHZ,GAAI,GACA,GAAe,GACf,GAAU,OAAO,iBAErB,kBAA2B,EAAqC,CAC9D,GAAK,EAOE,AAAI,EAAO,OAAO,EAAI,gBAAiB,EAAM,cAPxC,CACV,EAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,OAAO,YACzE,GAAM,GAAS,OAAO,OAAO,EAAM,eAAe,QAElD,GADA,EAAM,UAAY,MAAM,QAAQ,GAAU,SAAS,EAAO,GAAG,YAAY,IAAI,GAAG,MAAQ,KACpF,CAAC,EAAM,UAAW,KAAM,IAAI,OAAM,4CAA4C,EAAO,OAAO,aAChG,AAAI,CAAC,GAAS,CAAC,EAAM,SAAU,EAAI,qBAAsB,EAAO,OAAO,WAC9D,EAAO,OAAO,EAAI,cAAe,EAAM,UAElD,MAAO,GAGT,kBAAuB,EAAa,EAAW,EAAa,EAAgB,CAC1E,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAuB,GACvB,EAAa,EAAI,YACjB,EAAW,AAAG,UAAQ,GAC5B,EAAI,UACJ,GAAM,GAAM,AAAG,QAAM,EAAU,EAAG,GAClC,EAAS,UAET,GAAM,GAAS,AADA,AAAG,QAAM,CAAC,EAAI,GAAI,EAAI,GAAI,EAAI,GAAI,EAAI,IAAK,GACpC,UAChB,EAAU,EAAI,GAAG,UACjB,EAAW,EAAI,GAAG,UACxB,EAAI,QAAQ,AAAC,GAAM,EAAE,WACrB,GAAM,GAAO,KAAM,AAAG,SAAM,uBAAuB,EAAQ,EAAS,EAAO,OAAO,YAAa,EAAO,OAAO,aAAc,EAAO,OAAO,eACzI,EAAO,UACP,EAAQ,UACR,EAAS,UACT,GAAM,GAAM,EAAK,WACjB,EAAK,UACL,GAAI,GAAI,EACR,OAAW,KAAM,GAAK,CACpB,GAAM,GAAQ,KAAK,MAAM,IAAM,EAAW,GAAG,GAAI,IAAM,IACjD,EAAW,EAAW,GAAG,GAAI,GAC7B,EAAQ,GAAO,GAAU,MACzB,CAAC,EAAG,GAAK,CACb,EAAW,GAAG,GAAI,GAAK,EACvB,EAAW,GAAG,GAAI,GAAK,GAEnB,EAAS,CACb,EACA,EACA,EAAW,GAAG,GAAI,GAAK,EAAY,EACnC,EAAW,GAAG,GAAI,GAAK,EAAY,GAE/B,EAAM,CACV,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,IACnC,KAAK,MAAM,EAAO,GAAK,EAAY,KAErC,EAAQ,KAAK,CAAE,GAAI,IAAK,QAAO,MAAO,EAAU,QAAO,MAAK,WAE9D,MAAO,GAGT,kBAA8B,EAAe,EAAiC,CAC5E,MAAK,IAAU,EAAO,OAAO,YAAe,EAAO,WAAc,GAAK,OAAS,EAC7E,MACO,IAET,IAAU,EACH,GAAI,SAAQ,KAAO,IAAY,CACpC,GAAM,GAAa,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,IAC1C,EAAS,AAAG,QAAM,eAAe,EAAO,CAAC,EAAM,UAAW,EAAM,YAChE,EAAU,EAAO,OAAO,QAAU,EAAM,QAAQ,EAAQ,CAAC,uBAAyB,KACxF,EAAO,UAEP,GAAM,GAAM,KAAM,IAAQ,EAAS,EAAM,UAAW,EAAY,GAChE,GAAO,EACP,EAAQ,MClFZ,YAAmB,EAAI,EAAc,EAAgB,CACnD,GAAM,GAAW,SAAU,EAAQ,EAAQ,EAAY,CACrD,GAAM,GAAI,GAAI,QAAO,MAAQ,EAAS,eAAgB,MACtD,EAAO,QAAQ,EAAG,CAAC,EAAO,IACxB,GAAW,GAAQ,EACZ,KAIL,EAAW,SAAU,EAAQ,EAAM,CACvC,GAAM,GAAS,EAAG,aAAa,GAG/B,GAFA,EAAG,aAAa,EAAQ,GACxB,EAAG,cAAc,GACb,CAAC,EAAG,mBAAmB,EAAQ,EAAG,gBAAiB,KAAM,IAAI,OAAM,4BAA6B,EAAG,iBAAiB,IACxH,MAAO,IAGT,KAAK,QAAU,GACf,KAAK,UAAY,GACjB,GAAM,GAAO,EAAS,EAAc,EAAG,eACjC,EAAO,EAAS,EAAgB,EAAG,iBAMzC,GALA,KAAK,GAAK,EAAG,gBACb,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,aAAa,KAAK,GAAI,GACzB,EAAG,YAAY,KAAK,IAEhB,CAAC,EAAG,oBAAoB,KAAK,GAAI,EAAG,aAAc,KAAM,IAAI,OAAM,yBAA0B,EAAG,kBAAkB,KAAK,KAE1H,EAAG,WAAW,KAAK,IAEnB,EAAS,EAAc,YAAa,KAAK,WACzC,OAAW,KAAK,MAAK,UAAW,KAAK,UAAU,GAAK,EAAG,kBAAkB,KAAK,GAAI,GAElF,EAAS,EAAc,UAAW,KAAK,SACvC,EAAS,EAAgB,UAAW,KAAK,SACzC,OAAW,KAAK,MAAK,QAAS,KAAK,QAAQ,GAAK,EAAG,mBAAmB,KAAK,GAAI,GAI1E,YAAuB,EAAQ,CACpC,AAAK,GAAQ,GAAS,IACtB,GAAI,GAAa,EACb,EAAiB,KACjB,EAAe,GACf,EAA2B,GAC3B,EAAoB,CAAC,KAAM,MAC3B,EAAe,GACf,EAAS,GACT,EAAU,GACV,EAAgB,KAChB,EAAkB,KAChB,EAAU,GACV,EAAU,EAAO,QAAU,SAAS,cAAc,UAElD,EAAsB,GACtB,EAAO,CAAE,aAAc,GACvB,EAAK,EAAQ,WAAW,SAC9B,GAAI,CAAC,EAAI,KAAM,IAAI,OAAM,+BAEzB,KAAK,UAAY,SAAU,EAAM,CAE/B,GAAM,GAAO,MAAM,UAAU,MAAM,KAAK,UAAW,GAC7C,EAAS,EAAQ,GACvB,EAAa,KAAK,CAAE,KAAM,EAAQ,UAGpC,KAAK,MAAQ,UAAY,CACvB,EAAe,IAGjB,GAAM,GAAU,SAAU,EAAO,EAAQ,CAEvC,GAAI,MAAU,GAAU,IAAW,GAMnC,IALA,EAAQ,MAAQ,EAChB,EAAS,EACT,EAAQ,OAAS,EACjB,EAAU,EAEN,CAAC,EAAe,CAElB,GAAM,GAAW,GAAI,cAAa,CAChC,GAAI,GAAI,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,GAAI,EAAG,EAAG,EACrC,GAAI,EAAG,EAAG,EAAG,EAAG,GAAI,EAAG,EAAG,EAAG,EAAG,EAAG,IAGrC,AAAC,EAAgB,EAAG,eAAgB,EAAG,WAAW,EAAG,aAAc,GACnE,EAAG,WAAW,EAAG,aAAc,EAAU,EAAG,aAC5C,EAAG,YAAY,EAAG,+BAAgC,IAEpD,EAAG,SAAS,EAAG,EAAG,EAAQ,GAE1B,EAAoB,CAAC,KAAM,QAGvB,EAA4B,SAAU,EAAO,EAAQ,CACzD,GAAM,GAAM,EAAG,oBACf,EAAG,gBAAgB,EAAG,YAAa,GACnC,GAAM,GAAe,EAAG,qBACxB,EAAG,iBAAiB,EAAG,aAAc,GACrC,GAAM,GAAU,EAAG,gBACnB,SAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAO,EAAQ,EAAG,EAAG,KAAM,EAAG,cAAe,MACtF,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,QAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,qBAAqB,EAAG,YAAa,EAAG,kBAAmB,EAAG,WAAY,EAAS,GACtF,EAAG,YAAY,EAAG,WAAY,MAC9B,EAAG,gBAAgB,EAAG,YAAa,MAC5B,CAAE,MAAK,YAGV,EAAsB,SAAU,EAAO,CAC3C,SAAkB,GAAS,EAAkB,IAAU,EAA0B,EAAQ,GAClF,EAAkB,IAGrB,EAAQ,SAAU,EAAQ,KAAM,CAzHxC,QA0HI,GAAI,GAAS,KACT,EAAS,KACT,EAAQ,GAEZ,AAAI,IAAe,EAEjB,EAAS,EAGT,EAAS,KAAoB,KAApB,cAA+C,QAE1D,IAEA,AAAI,GAAgB,CAAE,GAAQ,EAAK,cAGjC,GAAS,KACT,EAAQ,EAAa,GAAM,GAG3B,GAA4B,GAA2B,GAAK,EAC5D,EAAS,KAAoB,KAApB,cAA+C,KAG1D,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,gBAAgB,EAAG,YAAa,GACnC,EAAG,UAAU,EAAgB,QAAQ,MAAQ,EAAQ,GAAK,GAC1D,EAAG,WAAW,EAAG,UAAW,EAAG,IAGjC,KAAK,MAAQ,SAAU,EAAO,CAY5B,GAXA,EAAQ,EAAM,MAAO,EAAM,QAC3B,EAAa,EAER,GAAgB,GAAiB,EAAG,iBACzC,EAAG,YAAY,EAAG,WAAY,GAC9B,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,eAAgB,EAAG,eACtD,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,cAAc,EAAG,WAAY,EAAG,mBAAoB,EAAG,SAC1D,EAAG,WAAW,EAAG,WAAY,EAAG,EAAG,KAAM,EAAG,KAAM,EAAG,cAAe,GAEhE,EAAa,SAAW,EAE1B,WACO,EAET,OAAS,GAAI,EAAG,EAAI,EAAa,OAAQ,IAAK,CAC5C,EAAgB,IAAM,EAAa,OAAS,EAC5C,GAAM,GAAI,EAAa,GACvB,EAAE,KAAK,MAAM,KAAM,EAAE,MAAQ,IAE/B,MAAO,IAGT,GAAM,GAAiB,SAAU,EAAgB,CAC/C,GAAI,EAAoB,GACtB,SAAkB,EAAoB,GACtC,EAAG,WAAW,EAAgB,IACvB,EAGT,GAAM,GAAS,GACf,EAAO,gBAAkB,CACvB,yBACA,sBACA,qBACA,oBACA,uBACA,oBACA,YACA,mDACA,KACA,KAAK;AAAA,GACP,EAAO,kBAAoB,CACzB,yBACA,oBACA,6BACA,oBACA,0CACA,KACA,KAAK;AAAA,GACP,EAAkB,GAAI,IAAU,EAAI,EAAO,gBAAiB,GAC5D,GAAM,GAAY,aAAa,kBACzB,EAAW,EAAI,EACrB,SAAG,wBAAwB,EAAgB,UAAU,KACrD,EAAG,oBAAoB,EAAgB,UAAU,IAAK,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACxF,EAAG,wBAAwB,EAAgB,UAAU,IACrD,EAAG,oBAAoB,EAAgB,UAAU,GAAI,EAAG,EAAG,MAAO,GAAO,EAAU,EAAI,GACvF,EAAoB,GAAkB,EAC/B,GAKT,EAAQ,YAAc,SAAU,EAAQ,CAEtC,GAAM,GAAI,GAAI,cAAa,GAC3B,EAAE,IAAM,IACR,EAAE,IAAM,IACR,EAAE,KAAO,IACT,EAAE,KAAO,IAET,GAAM,GAAU,EAAE,MAAQ,GAAK,EAAE,KAAO,GAAK,EAAE,KAAO,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,GAAK,EAAE,MAAQ,EAC7H,EAAQ,YAAY,OAAO,cAC3B,EAAQ,YAAY,OAAO,WACzB,EAAU,EAAe,GAC/B,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,KAEF,EAAQ,YAAY,OAAS,GAC7B,EAAQ,YAAY,OAAO,WAAa,CACtC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,6EACA,6EACA,kFACA,kFACA,KACA,KAAK;AAAA,GACP,EAAQ,YAAY,OAAO,cAAgB,CACzC,yBACA,oBACA,6BACA,uBACA,oBACA,oCACA,gEACA,gEACA,oEACA,wBACA,KACA,KAAK;AAAA,GAEP,EAAQ,WAAa,SAAU,EAAY,CACzC,GAAM,GAAK,IAAc,GAAK,EAC9B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,SAAU,EAAQ,CACrC,GAAM,GAAK,IAAU,GAAK,EAAI,EAAI,EAC5B,EAAM,GAAI,GAAK,IACrB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,WAAW,KAGrB,EAAQ,SAAW,SAAU,EAAQ,CACnC,GAAM,GAAK,IAAU,GAAK,EACpB,EAAI,KAAQ,GAAI,GAEtB,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,SAAS,KAGnB,EAAQ,IAAM,SAAU,EAAU,CAChC,EAAY,IAAY,GAAK,IAAM,KAAK,GACxC,GAAM,GAAM,KAAK,IAAI,GACf,EAAM,KAAK,IAAI,GACf,EAAO,KACP,EAAO,KACP,EAAO,KAEb,EAAQ,YAAY,CAClB,EAAO,EAAO,GAAI,GAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAC,EAAO,EAAO,EAAO,CAAC,EAAQ,EAAO,GAAI,GAAO,EAAG,EAC3H,EAAO,EAAO,CAAC,EAAQ,EAAO,KAAQ,EAAO,EAAO,GAAI,GAAQ,EAAO,IAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,MAAS,EAAG,EACzH,EAAO,EAAO,CAAC,EAAQ,EAAO,CAAE,GAAI,GAAQ,EAAO,EAAO,CAAC,EAAQ,EAAO,EAAO,EAAO,EAAO,GAAI,GAAQ,EAAO,EAAO,EAAG,EAC5H,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,oBAAsB,UAAY,CACxC,EAAQ,YAAY,CAClB,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,SAAW,QAAW,SAAW,EAAG,MACpC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,MAAQ,UAAY,CAC1B,EAAQ,YAAY,CAClB,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,KAAO,SAAW,UAAY,EAAG,EACjC,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,QAAU,UAAY,CAC5B,EAAQ,YAAY,CAClB,kBAAoB,mBAAqB,mBAAqB,EAAG,kBACjE,qBAAuB,kBAAoB,mBAAqB,EAAG,mBACnE,mBAAqB,oBAAsB,mBAAqB,EAAG,mBACnE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,eAAiB,UAAY,CACnC,EAAQ,YAAY,CAClB,kBAAoB,kBAAoB,oBAAsB,EAAG,kBACjE,mBAAqB,kBAAoB,mBAAqB,EAAG,kBACjE,kBAAoB,mBAAqB,kBAAoB,EAAG,kBAChE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,kBAClE,oBAAsB,mBAAoB,oBAAsB,EAAG,mBACnE,oBAAsB,mBAAqB,mBAAoB,EAAG,kBAClE,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,CAClB,mBAAoB,mBAAqB,oBAAsB,EAAG,mBAClE,mBAAqB,mBAAoB,oBAAsB,EAAG,mBAClE,kBAAoB,mBAAqB,kBAAmB,EAAG,mBAC/D,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,SAAW,UAAY,CAC7B,EAAQ,YAAY,CAClB,MAAO,MAAQ,MAAQ,EAAG,EAC1B,MAAQ,MAAO,MAAQ,EAAG,EAC1B,MAAQ,MAAQ,MAAO,EAAG,EAC1B,EAAG,EAAG,EAAG,EAAG,KAIhB,EAAQ,WAAa,UAAY,CAC/B,EAAQ,YAAY,CAClB,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,EACZ,EAAG,EAAG,EAAG,EAAG,KAMhB,EAAQ,YAAc,SAAU,EAAQ,CACtC,GAAM,GAAI,GAAI,cAAa,GACrB,EAAa,EAAI,EACjB,EAAa,EAAI,EACjB,EAAU,EAAe,EAAQ,YAAY,QACnD,EAAG,WAAW,EAAQ,QAAQ,EAAG,GACjC,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAY,GAC7C,KAGF,EAAQ,YAAY,OAAS,CAC3B,yBACA,oBACA,6BACA,mBACA,sBACA,oBACA,2CACA,4DACA,mEACA,6DACA,sCACA,6DACA,oEACA,6DACA,4CACA,kBACA,yCACA,yCACA,wCACA,0BACA,KACA,KAAK;AAAA,GAEP,EAAQ,YAAc,UAAY,CAChC,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,EAAG,EACN,EAAG,GAAI,EACP,EAAG,EAAG,KAIV,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,EAAG,EACP,GAAI,EAAG,EACP,GAAI,EAAG,KAIX,EAAQ,OAAS,UAAY,CAC3B,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAI,GAAI,GACR,EAAG,EAAG,EACN,EAAG,EAAG,KAIV,EAAQ,QAAU,SAAU,EAAQ,CAClC,GAAM,GAAI,GAAU,EACpB,EAAQ,YAAY,KAAK,KAAM,CAC7B,EAAG,GAAK,EAAG,EACX,GAAK,EAAG,EAAI,EAAI,EAAG,GAAK,EACxB,EAAG,GAAK,EAAG,KAIf,EAAQ,OAAS,SAAU,EAAM,CAC/B,GAAM,GAAI,GAAQ,EAClB,EAAQ,YAAY,KAAK,KAAM,CAC7B,GAAK,EAAG,GAAK,EAAG,EAChB,GAAK,EAAG,EAAG,EAAI,EACf,EAAG,EAAI,EAAG,EAAI,KAMlB,EAAQ,KAAO,SAAU,EAAM,CAC7B,GAAM,GAAa,EAAO,EAAK,EACzB,EAAa,EAAO,EAAK,EACzB,EAAU,EAAe,EAAQ,KAAK,QAE5C,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAG,GACpC,EAAM,EAAK,cAEX,EAAG,UAAU,EAAQ,QAAQ,GAAI,EAAW,GAC5C,KAGF,EAAQ,KAAK,OAAS,CACpB,yBACA,oBACA,6BACA,mBACA,oBACA,4BACA,8FACA,yFACA,wFACA,wFACA,wFACA,uFACA,uFACA,uFACA,uFACA,uFACA,wFACA,wFACA,wFACA,yFACA,8FACA,KACA,KAAK;AAAA,GAIP,EAAQ,SAAW,SAAU,EAAM,CACjC,GAAM,GAAa,EAAQ,EACrB,EAAa,EAAQ,EACrB,EAAU,EAAe,EAAQ,SAAS,QAEhD,EAAG,UAAU,EAAQ,QAAQ,KAAM,EAAW,GAC9C,KAGF,EAAQ,SAAS,OAAS,CACxB,yBACA,oBACA,qBACA,6BACA,yCACA,uCACA,IACA,oBACA,4BACA,oCACA,6CACA,KACA,KAAK;GCvgBT,GAAM,IAAU,KAEZ,EACA,EAEA,EAKG,YAAiB,EAAc,EAAwF,CAC5H,GAAI,GACJ,GAAI,CAAC,EAAO,KAAM,IAAI,OAAM,2BAE5B,GACE,CAAE,aAAoB,YACnB,CAAE,OAAO,QAAU,aAAe,YAAiB,SACnD,CAAE,OAAO,YAAc,aAAe,YAAiB,aACvD,CAAE,OAAO,cAAgB,aAAe,YAAiB,eACzD,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,mBAAqB,aAAe,YAAiB,oBAC9D,CAAE,OAAO,oBAAsB,aAAe,YAAiB,qBAC/D,CAAE,OAAO,kBAAoB,aAAe,YAAiB,kBAEhE,KAAM,IAAI,OAAM,uCAElB,GAAI,YAAoB,UAEtB,GAAI,EAAM,OAAS,EAAM,MAAM,SAAW,GAAK,EAAM,MAAM,KAAO,GAAK,EAAM,MAAM,KAAO,EAAG,EAAS,AAAG,QAAM,OAC1G,MAAM,IAAI,OAAM,2EAA2E,EAAM,aACjG,CAEL,GAAM,GAAgB,EAAM,cAAmB,EAAM,YAAiB,EAAM,OAAa,EAAM,OAAa,EAAM,MAAS,GAAK,EAC1H,EAAiB,EAAM,eAAoB,EAAM,aAAkB,EAAM,QAAc,EAAM,OAAa,EAAM,MAAS,GAAK,EACpI,GAAI,CAAC,GAAiB,CAAC,EAAgB,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACtE,GAAI,GAAc,EACd,EAAe,EAenB,GAdI,EAAc,IAChB,GAAc,GACd,EAAe,EAAc,EAAiB,GAE5C,EAAe,IACjB,GAAe,GACf,EAAc,EAAe,EAAgB,GAI/C,AAAI,EAAO,OAAO,MAAQ,EAAG,EAAc,EAAO,OAAO,MAChD,EAAO,OAAO,OAAS,GAAG,GAAc,EAAiB,GAAO,OAAO,OAAS,IACzF,AAAI,EAAO,OAAO,OAAS,EAAG,EAAe,EAAO,OAAO,OAClD,EAAO,OAAO,MAAQ,GAAG,GAAe,EAAkB,GAAO,OAAO,MAAQ,IACrF,CAAC,GAAe,CAAC,EAAc,KAAM,IAAI,OAAM,2CACnD,AAAI,EAAC,GAAa,kBAAU,SAAU,GAAiB,kBAAU,UAAW,IAC1E,GAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UAC1H,kBAAU,SAAU,GAAa,GAAS,MAAQ,GAClD,kBAAU,UAAW,GAAc,GAAS,OAAS,IAI3D,GAAM,GAAM,EAAS,WAAW,MAehC,GAdA,AAAI,YAAiB,WACnB,EAAI,aAAa,EAAO,EAAG,GAE3B,AAAI,EAAO,OAAO,MAAQ,MAAO,GAAI,WAAc,YACjD,GAAI,UAAU,EAAe,GAC7B,EAAI,MAAM,GAAI,GACd,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAC3F,EAAI,aAAa,EAAG,EAAG,EAAG,EAAG,EAAG,IAEhC,EAAI,UAAU,EAAO,EAAG,EAAG,EAAe,EAAgB,EAAG,EAAG,iBAAU,MAAO,iBAAU,QAK3F,EAAO,OAAO,QAAS,CAQzB,GAPI,EAAC,GAAM,CAAC,GAAc,EAAS,QAAU,EAAU,OAAW,kBAAU,UAAW,kBAAW,UAChG,GAAa,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,iBAAU,MAAO,iBAAU,QAAU,SAAS,cAAc,UACnI,kBAAW,SAAU,kBAAU,QAAO,GAAU,MAAQ,iBAAU,OAClE,kBAAW,UAAW,kBAAU,SAAQ,GAAU,OAAS,iBAAU,QAEzE,EAAK,AAAG,MAAI,MAAM,WAAa,GAAY,IAAc,CAAE,OAAQ,IAAe,MAEhF,CAAC,EAAI,MAAO,CAAE,OAAQ,KAAM,OAAQ,GACxC,EAAG,QACH,EAAG,UAAU,aAAc,EAAO,OAAO,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACrE,EAAO,OAAO,YAAc,GAAG,EAAG,UAAU,UAAW,EAAO,OAAO,WACrE,EAAO,OAAO,OAAS,GAAG,EAAG,UAAU,OAAQ,EAAO,OAAO,MAC7D,EAAO,OAAO,aAAe,GAAG,EAAG,UAAU,aAAc,EAAO,OAAO,YACzE,EAAO,OAAO,MAAQ,GAAG,EAAG,UAAU,MAAO,EAAO,OAAO,KAC3D,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,SAAS,EAAG,UAAU,WACpC,EAAO,OAAO,OAAO,EAAG,UAAU,SAClC,EAAO,OAAO,YAAY,EAAG,UAAU,cACvC,EAAO,OAAO,aAAa,EAAG,UAAU,eACxC,EAAO,OAAO,UAAU,EAAG,UAAU,YACrC,EAAO,OAAO,WAAa,GAAG,EAAG,UAAU,WAAY,EAAO,OAAO,UACzE,EAAG,MAAM,OAuBT,GAAY,EACR,GAAI,GAAK,MAIf,GAAI,GACJ,GAAI,EAAU,KAAM,CAClB,GAAM,GAAQ,CAAC,EAAU,OAAQ,EAAU,MAAO,GAClD,EAAS,AAAG,WAAS,EAAU,KAAM,EAAO,iBACnC,YAAqB,WAC9B,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAa,aAChD,EAAO,UAAY,SAAW,EAAO,UAAY,UAAW,CAErE,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAc,SACrD,CAEL,GAAM,GAAc,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAa,GAAgB,SAAS,cAAc,UACtI,EAAW,MAAQ,EACnB,EAAW,OAAS,EACpB,GAAM,GAAU,EAAW,WAAW,MACtC,WAAS,UAAU,EAAW,EAAG,GACjC,GAAM,GAAO,iBAAS,aAAa,EAAG,EAAG,EAAa,GACtD,EAAS,AAAG,UAAU,AAAG,UAAQ,WAAW,GAAQ,KAEtD,GAAI,EAAQ,CACV,GAAM,GAAS,EAAO,UACtB,EAAS,EAAO,WAAW,GAC3B,EAAO,UACP,EAAO,WAGX,GAAM,GAAS,EAAO,OAAO,OAAS,EAAY,KAClD,MAAO,CAAE,SAAQ,UC9JnB,GAAI,GACA,GAAO,GAEX,kBAA2B,EAAqC,CAC9D,MAAK,GAKM,EAAO,OAAO,EAAI,gBAAiB,EAAM,UAHlD,GAAQ,KAAM,AAAG,kBAAe,EAAK,EAAO,cAAe,EAAO,aAAa,YAC/E,AAAI,CAAC,GAAS,CAAC,EAAM,SAAa,EAAI,qBAAsB,EAAO,aAAa,WACvE,EAAO,OAAO,EAAI,cAAe,EAAM,WAE3C,EAGT,kBAA8B,EAAkH,CAzBhJ,QA0BE,GAAM,GAAQ,MAAM,SAAN,cAAc,MAAM,KAAM,EAClC,EAAS,MAAM,SAAN,cAAc,MAAM,KAAM,EAEzC,GADI,CAAC,EAAM,QACP,CAAC,GAAS,CAAC,EAAM,OAAO,GAAG,MAAO,MAAO,MAC7C,GAAM,GAAc,AAAG,QAAM,eAAe,EAAM,OAAQ,CAAC,EAAM,OAAO,GAAG,MAAM,GAAI,EAAM,OAAO,GAAG,MAAM,IAAK,IAC1G,EAAO,EAAY,IAAI,KACvB,EAAM,EAAM,QAAQ,GAG1B,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAU,AAAG,UAAQ,EAAK,GAC5B,EACJ,GAAI,EAAQ,MAAM,KAAO,EAAG,CAE1B,GAAM,GAAU,EAAQ,UAClB,CAAC,EAAI,GAAM,AAAG,UAAQ,EAAS,GAC/B,EAAS,EAAG,WAAW,GACvB,EAAM,EAAO,WAAW,GAC9B,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAEX,GAAM,GAAO,AAAG,QAAM,cAAc,EAAK,CAAC,CAAC,EAAG,EAAG,GAAK,KAAO,CAAC,GAAI,CAAC,EAAO,IAG1E,EAAe,EAAK,QAAQ,GAC5B,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,OAEX,GAAe,AAAG,QAAM,eAAe,EAAS,CAAC,EAAO,IAG1D,GAAI,MAAO,WAAa,YAAa,MAAO,GAAa,WAEzD,GAAM,GAAW,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACvH,EAAQ,MAAQ,EAChB,EAAQ,OAAS,EACV,WAAS,KAAM,AAAG,WAAQ,SAAS,EAAc,GACxD,AAAG,UAAQ,GACX,AAAG,UAAQ,GACX,AAAG,UAAQ,GAGX,GAAM,GAAe,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UAC3H,EAAY,MAAQ,EACpB,EAAY,OAAS,EACrB,GAAM,GAAW,EAAY,WAAW,MACxC,EAAS,OAAS,WAClB,KAAM,GAAS,UAAU,EAAS,EAAG,GACrC,GAAM,GAAQ,EAAS,aAAa,EAAG,EAAG,EAAO,GAAQ,KAGnD,EAAY,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAO,GAAU,SAAS,cAAc,UACxH,EAAS,MAAQ,EACjB,EAAS,OAAS,EAClB,GAAM,GAAM,EAAS,WAAW,MAChC,MAAI,GAAM,QAAQ,KAAM,GAAI,UAAU,EAAM,OAAQ,EAAG,GAEvD,EAAI,yBAA2B,SAC/B,EAAI,OAAS,YACb,KAAM,GAAI,UAAU,EAAS,EAAG,GAChC,EAAI,yBAA2B,cAC/B,EAAI,OAAS,OAEb,EAAM,OAAS,EAER,EAGT,kBAA8B,EAAc,EAA+B,EAAqE,CAlGhJ,MAmGE,GAAI,GAAM,MAAO,MACjB,GAAO,GACF,GAAO,KAAM,IAAK,GACvB,GAAM,GAAM,AAAM,GAAQ,EAAO,GAC3B,EAAQ,KAAM,IAAQ,GAG5B,GAFA,AAAG,UAAQ,EAAI,QAEX,GAAc,EAAO,CACvB,GAAM,GAAM,AAAM,GAAQ,EAAY,GAChC,EAAK,EAAI,OACf,AAAG,UAAQ,EAAI,QACf,GAAM,GAAK,EAAI,OACT,EAAS,KAAG,WAAW,QAAd,cAAqB,aAAa,EAAG,EAAG,EAAG,MAAO,EAAG,QAAQ,KAEtE,EAAK,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAG,MAAO,EAAG,QAAU,SAAS,cAAc,UACvH,EAAE,MAAQ,EAAG,MACb,EAAE,OAAS,EAAG,OACd,GAAM,GAAM,EAAE,WAAW,MAEzB,EAAI,yBAA2B,OAC/B,EAAI,UAAU,EAAI,EAAG,EAAG,EAAE,MAAO,EAAE,QACnC,GAAM,GAAQ,EAAI,aAAa,EAAG,EAAG,EAAE,MAAO,EAAE,QAChD,OAAS,GAAI,EAAG,EAAI,EAAE,MAAQ,EAAE,OAAQ,IACtC,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAChI,EAAM,KAAK,EAAI,EAAI,GAAO,KAAM,EAAM,EAAI,EAAI,IAAM,IAAQ,EAAM,KAAK,EAAI,EAAI,GAAO,EAAM,EAAI,EAAI,GAAK,IAAQ,EAAO,EAAI,EAAI,GAElI,EAAI,aAAa,EAAO,EAAG,GAC3B,EAAI,OAAS,EAEf,UAAO,GACA,EAAI,OCnHb,kBAA2B,EAAU,CACnC,AAAI,EAAS,OAAO,MAClB,CAEE,EAAS,OAAO,KAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,SAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,UAEhB,EAAS,OAAO,cAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,UAEhB,EAAS,OAAO,QAEhB,EAAS,OAAO,cACd,KAAM,SAAQ,IAAI,CACpB,EAAS,OAAO,MAAS,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MACzF,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,QAAW,AAAQ,GAAK,EAAS,QAAU,MACrI,EAAS,OAAO,UAAa,GAAS,OAAO,KAAK,QAAU,AAAS,GAAK,EAAS,QAAU,MAC7F,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,WAAc,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MACvJ,EAAS,OAAO,eAAkB,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,iBAAmB,AAAc,GAAK,EAAS,QAAU,MACnK,EAAS,OAAO,SAAY,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACjJ,EAAS,OAAO,SAAY,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,WAAa,AAAQ,GAAK,EAAS,QAAU,MACrJ,EAAS,OAAO,WAAc,GAAS,OAAO,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,aAAe,AAAU,GAAK,EAAS,QAAU,MAC3J,EAAS,OAAO,SAAa,GAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,QAAW,AAAQ,GAAK,EAAS,QAAU,MACzI,EAAS,OAAO,cAAiB,GAAS,OAAO,aAAa,QAAU,AAAa,GAAK,EAAS,QAAU,QAG3G,GAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,MAAM,GAAS,OAAO,KAAO,KAAM,AAAS,IAAK,EAAS,SAC3G,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,QAAQ,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACxJ,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,UAAU,GAAS,OAAO,SAAW,KAAM,AAAS,IAAK,EAAS,SACnH,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,KAAK,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAC9K,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,eAAiB,EAAS,OAAO,KAAK,UAAU,SAAS,kBAAkB,GAAS,OAAO,cAAgB,KAAM,AAAU,IAAK,EAAS,SAC1L,EAAS,OAAO,KAAK,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,KAAK,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SACtK,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,SAAW,EAAS,OAAO,OAAO,UAAU,SAAS,YAAY,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC1K,EAAS,OAAO,OAAO,SAAW,CAAC,EAAS,OAAO,WAAa,EAAS,OAAO,OAAO,UAAU,SAAS,cAAc,GAAS,OAAO,UAAY,KAAM,AAAU,IAAK,EAAS,SAClL,EAAS,OAAO,KAAK,SAAW,EAAS,OAAO,KAAK,YAAY,SAAW,CAAC,EAAS,OAAO,SAAS,GAAS,OAAO,QAAU,KAAM,AAAQ,IAAK,EAAS,SAC5J,EAAS,OAAO,aAAa,SAAW,CAAC,EAAS,OAAO,cAAc,GAAS,OAAO,aAAe,KAAM,AAAa,IAAK,EAAS,UCjD/I,GAAM,IAAgB,AAAC,GAAgD,CACrE,GAAM,GAAU,CAAC,EAAK,IAAQ,KAAK,MAAM,EAAI,GAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IACvE,GAAI,CAAC,EAAK,YAAY,cAAmB,CAAC,EAAK,YAAY,YAAgB,MAAO,CAAE,QAAS,EAAG,SAAU,GAE1G,GAAM,GAAa,CAAC,EAAG,KACjB,EAAW,EAEX,EAAO,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,KAAK,GACzC,EAAa,EAAO,EAAK,KAAK,KAAO,EAAK,KAAK,KAC/C,EAAY,EACd,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,IAAM,GACtF,CAAE,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,EAAI,GAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAAM,GACtF,EAAU,EACZ,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,IAAI,GAAI,EAAK,KAAK,IAAI,GAAK,EAAK,KAAK,IAAI,IACxE,CAAC,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,GAAI,EAAK,KAAK,KAAK,GAAK,EAAK,KAAK,KAAK,IAEzE,EAAU,CACb,GAAU,GAAK,EAAW,IAAM,EAAQ,GAAK,EAAW,GACzD,EAAY,GAAW,GAAK,EAAU,IAAM,EAAQ,GAAK,EAAW,IAElE,EAAW,KAAK,KAAM,EAAQ,IAAM,EAAM,EAAQ,IAAM,GAC5D,SAAW,KAAK,IAAI,EAAU,EAAK,OAAO,GAAK,EAAG,EAAK,OAAO,GAAK,GAG5D,CAAE,QAFQ,GAAQ,CAAC,EAAG,GAAI,GAAY,KAAK,GAAK,GAAM,KAAK,GAEhD,aAGd,GAAqB,CAAC,EAAM,IAI7B,CAEH,GAAM,GAAY,AAAC,GAAM,CACvB,GAAM,GAAS,KAAK,KAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,IAC9D,SAAE,IAAM,EACR,EAAE,IAAM,EACR,EAAE,IAAM,EACD,GAEH,EAAa,CAAC,EAAG,IAAM,CAC3B,GAAM,GAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACb,EAAI,EAAE,GAAK,EAAE,GACnB,MAAO,CAAC,EAAG,EAAG,IAEV,EAAe,CAAC,EAAG,IAAM,CAC7B,GAAM,GAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GAC3B,EAAI,EAAE,GAAK,EAAE,GAAK,EAAE,GAAK,EAAE,GACjC,MAAO,CAAC,EAAG,EAAG,IAGV,EAA6B,AAAC,GAAM,CAExC,GAAM,CAAC,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,EAAK,GAAO,EAClD,EAAY,EAAY,EAC5B,MAAI,GAAM,EACR,AAAI,EAAM,GACR,GAAS,KAAK,KAAK,GACnB,EAAS,KAAK,MAAM,CAAC,EAAK,GAC1B,EAAS,KAAK,MAAM,CAAC,EAAK,IAE1B,GAAS,CAAC,KAAK,GAAK,EACpB,EAAS,CAAC,KAAK,MAAM,EAAK,GAC1B,EAAS,GAGX,GAAS,KAAK,GAAK,EACnB,EAAS,KAAK,MAAM,EAAK,GACzB,EAAS,GAEJ,CAAE,MAAO,EAAI,CAAC,EAAQ,IAAK,EAAI,CAAC,EAAQ,KAAM,EAAI,CAAC,IAItD,EAAmB,AAAC,GAAS,CACjC,GAAM,GAAU,CAAC,EAAI,EAAI,EAAI,IAAO,KAAK,MAAM,EAAK,EAAI,EAAK,GAW7D,MATc,CAGZ,MAAO,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAEjE,IAAK,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,IAE/D,KAAM,EAAQ,EAAK,IAAI,GAAI,EAAK,IAAI,GAAI,EAAK,KAAK,GAAI,EAAK,KAAK,MAM9D,EAAO,EAAK,QAClB,GAAI,CAAC,GAAQ,EAAK,OAAS,IAAK,MAAO,CAAE,MAAO,CAAE,MAAO,EAAG,IAAK,EAAG,KAAM,GAAK,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,KAAM,CAAE,QAAS,EAAG,SAAU,IAElJ,GAAM,GAAO,KAAK,IAAI,EAAK,OAAO,GAAK,EAAU,GAAI,EAAK,OAAO,GAAK,EAAU,IAAM,IAEhF,EAAM,CAAC,EAAK,IAAK,EAAK,KAAM,EAAK,KAAM,EAAK,MAAM,IAAI,AAAC,GAAO,CAElE,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,GAAK,EAAU,GAAK,EACvB,EAAG,KAGC,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KAC5C,EAAS,EAAU,EAAW,EAAI,GAAI,EAAI,KACxC,EAAS,EAAU,EAAa,EAAQ,IAE9C,EAAS,EAAa,EAAQ,GAI9B,GAAM,GAAmF,CACvF,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,GAC7B,EAAO,GAAI,EAAO,GAAI,EAAO,IAEzB,EAAQ,EAA2B,GAInC,EAAO,EAAK,SAAW,IAAM,GAAc,GAAQ,CAAE,QAAS,EAAG,SAAU,GAEjF,MAAO,CAAE,QAAO,SAAQ,SAGb,GAAa,MAAO,EAAgC,IAAmC,CA9IpG,gBAiJE,GAAI,GACA,EACA,EACA,EACA,EACA,EACE,EAAuB,GAC7B,EAAO,MAAQ,WACf,EAAY,IACZ,GAAM,GAAQ,KAAM,AAAS,IAAQ,EAAO,EAAO,QAEnD,GADA,EAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,GACzC,CAAC,EAAM,OAAS,EAAM,MAAM,SAAW,EAAG,MAAO,GACrD,GAAI,CAAC,EAAO,MAAO,GAEnB,OAAS,GAAI,EAAG,EAAI,EAAM,OAAQ,IAAK,CAKrC,GAJA,EAAO,QAAQ,YAIX,CAAC,EAAM,GAAG,OAAS,EAAM,GAAG,MAAM,mBAAuB,CAC3D,EAAI,2BAA4B,EAAM,GAAG,OACzC,SAGF,GAAM,GAAW,GAAmB,EAAM,GAAI,CAAC,EAAM,MAAM,GAAI,EAAM,MAAM,KAG3E,EAAO,QAAQ,kBACf,AAAI,EAAO,OAAO,MAChB,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,AAAQ,GAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAErI,GAAO,MAAQ,cACf,EAAY,IACZ,EAAa,EAAO,OAAO,KAAK,QAAQ,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC3I,EAAO,YAAY,QAAU,KAAK,MAAM,IAAQ,IAElD,EAAO,QAAQ,gBAGf,EAAO,QAAQ,sBACf,AAAI,EAAO,OAAO,MAChB,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,AAAQ,GAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAEtI,GAAO,MAAQ,kBACf,EAAY,IACZ,EAAU,EAAO,OAAO,KAAK,YAAY,QAAU,KAAM,AAAQ,IAAQ,EAAM,GAAG,OAAS,AAAG,SAAO,IAAK,EAAO,OAAQ,EAAG,EAAM,QAAU,GAC5I,EAAO,YAAY,UAAY,KAAK,MAAM,IAAQ,IAEpD,EAAO,QAAQ,oBAGX,EAAO,OAAO,OAChB,EAAC,EAAQ,EAAW,EAAY,EAAc,GAAW,KAAM,SAAQ,IAAI,CAAC,EAAQ,EAAW,EAAY,EAAc,KAG3H,EAAO,QAAQ,gBAIX,CAAC,EAAO,OAAO,KAAK,KAAK,SAAW,SAAM,KAAN,cAAU,cAAV,cAAuB,cAAe,SAAM,KAAN,cAAU,cAAV,cAAuB,eACnG,OAAO,GAAM,GAAG,YAAY,YAC5B,MAAO,GAAM,GAAG,YAAY,cAE9B,GAAM,GAAY,MAAM,GAAG,cAAT,cAAsB,cAAe,MAAM,GAAG,cAAT,cAAsB,cAEzE,KAAK,IAAI,KAAK,IAAI,EAAM,GAAG,YAAY,YAAY,GAAG,GAAK,EAAM,GAAG,YAAY,YAAY,GAAG,IAAK,KAAK,IAAI,EAAM,GAAG,YAAY,aAAa,GAAG,GAAK,EAAM,GAAG,YAAY,aAAa,GAAG,KAAO,EAAM,MAAM,GAC/M,EAGJ,EAAQ,KAAK,IACR,EAAM,GACT,GAAI,EACJ,IAAK,EAAQ,IACb,OAAQ,EAAQ,OAChB,YAAa,EAAQ,YACrB,UAAW,EAAQ,WACnB,QAAS,EACT,KAAM,IAAa,EAAI,KAAK,MAAM,IAAM,EAAW,MAAQ,IAAM,EACjE,WACA,OAAQ,EAAO,OAAO,KAAK,SAAS,OAAS,AAAG,UAAQ,EAAM,GAAG,OAAS,OAG5E,AAAG,UAAQ,EAAM,GAAG,OAEhB,EAAM,GAAG,OAAO,MAAO,GAAM,GAAG,MAEpC,EAAO,QAAQ,YAEjB,SAAO,QAAQ,iBACX,EAAO,OAAO,OACZ,GAAO,YAAY,MAAM,MAAO,GAAO,YAAY,KACnD,EAAO,YAAY,KAAK,MAAO,GAAO,YAAY,IAClD,EAAO,YAAY,QAAQ,MAAO,GAAO,YAAY,OACrD,EAAO,YAAY,SAAS,MAAO,GAAO,YAAY,SAErD,GC1OF,GAAM,IAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CAEnC,GAAM,GAAY,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,aACrD,EAAa,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,cACtD,EAAO,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,QACtD,AAAI,GAAQ,GAAa,GAAe,EAAU,SAAS,EAAI,EAAK,SAAS,GAAO,EAAW,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,cAC3J,AAAI,GAAQ,GAAc,EAAU,SAAS,EAAI,EAAK,SAAS,EAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACjG,GAAQ,GAAe,EAAW,SAAS,EAAI,EAAK,SAAS,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,qBAG5G,GAAM,GAAe,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,gBACxD,EAAgB,EAAI,GAAG,UAAU,KAAK,AAAC,GAAO,EAAE,OAAS,iBAC/D,AAAI,GAAgB,GAAe,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,WAAY,EAAa,SAAS,EAAI,EAAc,SAAS,EAAK,OAAS,YAElJ,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAC9B,GAAI,EAAI,GAAG,MAAQ,EAAI,GAAG,KAAK,OAAS,EAAG,CACzC,GAAM,GAAY,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,GACxD,AAAI,KAAK,IAAI,GAAa,GAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC3D,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,UAAU,EAAY,EAAI,OAAS,YAEtE,AADa,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAElD,AADc,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,KAAK,KAAK,IACxG,IAAK,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,oBACvD,GAAM,GAAY,KAAK,IAAI,IAAK,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,IAAI,IAAM,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,KAAK,KAAK,KACzI,AAAI,EAAY,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,SAAS,KAAK,MAAM,aAC1E,GAAM,GAAY,EAAI,GAAG,KAAK,KAAK,GACnC,AAAI,KAAK,IAAI,GAAa,IAAI,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,QAAQ,EAAY,EAAI,KAAO,WAGnG,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAI,CAAC,EAAI,GAAG,aAAe,CAAC,EAAI,GAAG,YAAY,aAAe,CAAC,EAAI,GAAG,YAAY,aAAc,SAChG,GAAM,GAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAY,EAAI,GAAG,YAAY,YAAY,GAAG,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,GACrF,EAAW,KAAK,IAAI,EAAY,GAEhC,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAa,EAAI,GAAG,YAAY,aAAa,GAAG,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,GACxF,EAAY,KAAK,IAAI,EAAa,GAEpC,EAAS,GAEb,AAAI,AADe,KAAK,IAAI,EAAW,GAAa,KAAK,IAAI,EAAU,GACtD,KACf,GAAS,GACT,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAGpC,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,IAAI,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACrG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,MAAM,GAAS,IAC5D,EAAkB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,kBAC1D,EAAmB,KAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBAE/D,GAAM,GAAmB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,aAAa,GAAG,IAAM,EAAI,GAAG,IAAI,GACtG,EAAkB,KAAK,IAAI,EAAI,GAAG,KAAK,KAAK,GAAK,EAAI,GAAG,YAAY,YAAY,GAAG,IAAM,EAAI,GAAG,IAAI,GAC1G,AAAI,GAAkB,KAAQ,EAAmB,KAAQ,EAAkB,MAAS,EAAmB,OAAO,GAAS,IACnH,GAAkB,KAAQ,EAAmB,MAAM,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,iBACrF,GAAkB,MAAS,EAAmB,OAAO,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,eAGvF,GAAQ,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,mBAEhD,MAAO,IAGI,GAAO,AAAC,GAAmB,CACtC,GAAI,CAAC,EAAK,MAAO,GACjB,GAAM,GAAqD,GAC3D,OAAS,GAAI,EAAG,EAAI,EAAI,OAAQ,IAAK,CACnC,GAAM,GAAqD,GAC3D,OAAW,CAAC,EAAQ,IAAQ,QAAO,QAAQ,EAAI,GAAG,aAChD,AAAI,IAAW,YAAc,MAAM,QAAQ,IAAM,EAAQ,KAAK,CAAE,KAAM,EAAO,cAAe,SAAU,EAAI,KAE5G,GAAI,GAAW,EAAQ,OAAS,EAAG,CACjC,GAAM,GAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACjF,EAAU,EAAQ,OAAO,CAAC,EAAM,IAAO,EAAK,SAAS,GAAK,EAAE,SAAS,GAAK,EAAO,GACvF,EAAS,KAAK,CAAE,KAAM,EAAG,QAAS,GAAG,EAAQ,gBAAgB,EAAQ,aAGzE,MAAO,ICnGT,0IAgDO,GAAM,IAAuB,CAClC,MAAe,2BACf,WAAoB,yBACpB,YAAqB,QACrB,KAAc,6BACd,WAAoB,GACpB,UAAmB,EACnB,UAAmB,EACnB,UAAmB,EACnB,WAAqB,GACrB,WAAqB,GACrB,UAAoB,GACpB,aAAuB,GACvB,SAAmB,GACnB,aAAuB,GACvB,SAAmB,GACnB,UAAoB,GACpB,eAAyB,IAGrB,GAAU,AAAC,GAAU,KAAK,MAAO,EAAQ,IAAO,KAAK,IAE3D,YAAe,EAAK,EAAG,EAAG,EAAI,EAAG,EAAc,CAC7C,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,YACJ,EAAI,IAAI,EAAG,EAAG,EAAa,UAAW,EAAG,EAAI,KAAK,IAClD,EAAI,OAGN,YAAc,EAAK,EAAG,EAAG,EAAO,EAAQ,EAAc,CAEpD,GADA,EAAI,YACA,EAAa,UAAW,CAC1B,GAAM,GAAM,GAAI,EAAI,GAAS,EACvB,EAAM,GAAI,EAAI,GAAU,EAC9B,EAAI,QAAQ,EAAI,EAAI,EAAQ,EAAG,EAAS,EAAG,EAAG,EAAG,EAAI,KAAK,QAE1D,GAAI,UAAY,EAAa,UAC7B,EAAI,OAAO,EAAI,EAAa,UAAW,GACvC,EAAI,OAAO,EAAI,EAAQ,EAAa,UAAW,GAC/C,EAAI,iBAAiB,EAAI,EAAO,EAAG,EAAI,EAAO,EAAI,EAAa,WAC/D,EAAI,OAAO,EAAI,EAAO,EAAI,EAAS,EAAa,WAChD,EAAI,iBAAiB,EAAI,EAAO,EAAI,EAAQ,EAAI,EAAQ,EAAa,UAAW,EAAI,GACpF,EAAI,OAAO,EAAI,EAAa,UAAW,EAAI,GAC3C,EAAI,iBAAiB,EAAG,EAAI,EAAQ,EAAG,EAAI,EAAS,EAAa,WACjE,EAAI,OAAO,EAAG,EAAI,EAAa,WAC/B,EAAI,iBAAiB,EAAG,EAAG,EAAI,EAAa,UAAW,GACvD,EAAI,YAEN,EAAI,SAGN,YAAe,EAAK,EAAsC,GAAI,EAAc,CAC1E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,GAAI,YACJ,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAW,KAAM,GAAQ,CACvB,GAAM,GAAI,EAAG,IAAM,EACnB,EAAI,YAAc,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACvH,EAAI,UAAY,EAAa,UAAY,EAAI,QAAQ,MAAS,EAAI,MAAO,MAAS,EAAI,eAAkB,EAAa,MACrH,EAAI,OAAO,EAAG,GAAI,KAAK,MAAM,EAAG,KAElC,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,YAAgB,EAAK,EAAsC,GAAI,EAAc,CAC3E,GAAI,MAAW,QAAa,EAAO,SAAW,GAC9C,IAAI,CAAC,EAAa,WAAa,EAAO,QAAU,EAAG,CACjD,GAAM,EAAK,EAAQ,GACnB,OAEF,EAAI,OAAO,EAAO,GAAG,GAAI,EAAO,GAAG,IACnC,OAAS,GAAI,EAAG,EAAI,EAAO,OAAS,EAAG,IAAK,CAC1C,GAAM,GAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EACzC,EAAM,GAAO,GAAG,GAAK,EAAO,EAAI,GAAG,IAAM,EAC/C,EAAI,iBAAiB,EAAO,GAAG,GAAI,EAAO,GAAG,GAAI,EAAI,GAEvD,EAAI,iBAAiB,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,GAAI,EAAO,EAAO,OAAS,GAAG,IACzI,EAAI,SACA,EAAa,cACf,GAAI,YACJ,EAAI,SAIR,kBAA8B,EAA6B,EAAwB,EAA2B,CAC5G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,CAAC,EAAK,OACV,EAAI,KAAO,EAAa,KACxB,EAAI,UAAY,EAAa,MAC7B,GAAI,GAAI,EACR,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CACtC,GAAI,GAAmB,GACnB,EAAkB,GAEtB,GADA,CAAC,EAAO,GAAQ,OAAO,QAAQ,EAAO,IACjC,EAAK,OAAS,GAAQ,EAAK,GAAc,OAAS,EAAI,CACzD,GAAM,GAAM,EAAM,GAAe,EAAI,IAAI,EAAM,KAAO,GAChD,EAAQ,GAAG,EAAM,MAAM,MAAQ,EAAK,KAC1C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,aAE/C,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAG,EAAK,EAAI,EAAa,YAC7C,GAAK,IAKX,kBAA2B,EAA6B,EAAqB,EAA2B,CAnKxG,YAoKE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,OAAW,KAAK,GAAQ,CACtB,EAAI,KAAO,EAAa,KACxB,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MACzB,EAAa,WAAW,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAE9E,GAAM,GAAkB,GAKxB,GAJA,EAAO,KAAK,SAAS,KAAK,MAAM,IAAM,EAAE,WACpC,EAAE,aAAa,EAAO,KAAK,GAAG,EAAE,QAAU,MAAM,KAAK,MAAM,IAAM,EAAE,iBACnE,EAAE,KAAK,EAAO,KAAK,QAAQ,EAAE,KAAO,MACpC,EAAE,MAAM,EAAO,KAAK,aAAa,EAAE,QACnC,EAAE,SAAW,EAAE,QAAQ,OAAS,EAAG,CACrC,GAAM,GAAU,EAAE,QAAQ,IAAI,AAAC,GAAM,GAAG,KAAK,MAAM,IAAM,EAAE,WAAW,EAAE,WACxE,AAAI,EAAQ,OAAS,GAAG,GAAQ,OAAS,GACzC,EAAO,KAAK,EAAQ,KAAK,MAE3B,AAAI,EAAE,UAAY,EAAE,SAAS,OAAS,EAAE,SAAS,MAC3C,GAAE,SAAS,MAAM,MAAM,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,MAAM,iBAAc,GAAQ,EAAE,SAAS,MAAM,kBAAe,GAAQ,EAAE,SAAS,MAAM,cACpJ,EAAE,SAAS,KAAK,SAAS,EAAO,KAAK,SAAS,GAAQ,EAAE,SAAS,KAAK,iBAExE,EAAO,SAAW,GAAG,EAAO,KAAK,QACrC,EAAI,UAAY,EAAa,MAC7B,OAAS,GAAI,EAAO,OAAS,EAAG,GAAK,EAAG,IAAK,CAC3C,GAAM,GAAI,KAAK,IAAI,EAAE,IAAI,GAAI,GACvB,EAAI,EAAI,EAAa,WAAa,EAAE,IAAI,GAC9C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,KAErC,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,GAAI,EAAI,EAAG,EAAI,IAGrC,GADA,EAAI,UAAY,EACZ,EAAE,MAAQ,EAAE,KAAK,OAAS,EAAG,CAC/B,GAAI,EAAa,WACf,OAAW,KAAM,GAAE,KAAM,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAAI,GAG3D,GAAI,EAAa,aAAc,CAC7B,EAAI,UAAY,EAChB,OAAS,GAAI,EAAG,EAAI,GAAc,OAAS,EAAG,IAAK,CACjD,GAAM,GAAS,CACb,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,GACtB,GAAc,EAAI,EAAI,IACtB,IAAI,AAAC,GAAU,EAAE,KAAK,IACxB,GAAM,EAAK,EAAQ,GAGrB,GAAI,EAAE,aAAe,EAAE,YAAY,YAAgB,CACjD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAC5F,EAAQ,KAAK,IAAI,EAAE,YAAY,YAAe,GAAG,GAAK,EAAE,YAAY,YAAe,GAAG,IAAM,EAClG,EAAI,QAAQ,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACjH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAE,aAAe,EAAE,YAAY,aAAiB,CAClD,EAAI,YAAc,EAAa,SAAW,2BAA6B,EAAa,MACpF,EAAI,YACJ,GAAM,GAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EAC9F,EAAQ,KAAK,IAAI,EAAE,YAAY,aAAgB,GAAG,GAAK,EAAE,YAAY,aAAgB,GAAG,IAAM,EACpG,EAAI,QAAQ,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAO,EAAO,EAAG,EAAG,EAAI,KAAK,IACnH,EAAI,SACA,EAAa,cACf,GAAI,UAAY,EAAa,SAAW,2BAA6B,EAAa,MAClF,EAAI,QAGR,GAAI,EAAa,UAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,WAAY,SAAE,WAAF,cAAY,OAAZ,cAAkB,UAAW,EAAE,YAAY,aAAkB,EAAE,YAAY,cAAmB,EAAE,YAAY,YAAe,IAAM,EAAE,YAAY,aAAgB,GAAI,CAC5N,EAAI,YAAc,OAClB,EAAI,YAEJ,GAAM,GAAW,CACf,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC3G,EAAE,YAAY,YAAe,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE7G,EAAI,OAAO,EAAE,YAAY,YAAe,GAAG,GAAI,EAAE,YAAY,YAAe,GAAG,IAC/E,EAAI,OAAO,EAAS,GAAI,EAAS,IAEjC,GAAM,GAAY,CAChB,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,GAC5G,EAAE,YAAY,aAAgB,GAAG,GAAM,KAAK,IAAI,EAAE,SAAS,KAAK,SAAW,EAAE,SAAS,KAAK,SAAW,EAAE,IAAI,IAE9G,EAAI,OAAO,EAAE,YAAY,aAAgB,GAAG,GAAI,EAAE,YAAY,aAAgB,GAAG,IACjF,EAAI,OAAO,EAAU,GAAI,EAAU,IAEnC,EAAI,aAOd,kBAA2B,EAA6B,EAAqB,EAA2B,CA3QxG,MA4QE,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IAAK,CAmBtC,GAlBA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,EAAI,UAAY,EAAa,UAC7B,EAAI,KAAO,EAAa,KACpB,EAAa,WAAa,EAAO,GAAG,KAAO,MAAO,GAAG,MAAV,cAAe,UAAW,GAEvE,IAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAE7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAErI,EAAI,UAAY,EAAa,WAE7B,EAAI,SAAS,QAAQ,IAAM,EAAO,GAAG,SAAU,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,MAGnI,EAAa,WACf,OAAS,GAAK,EAAG,EAAK,EAAO,GAAG,UAAU,OAAQ,IAChD,EAAI,UAAY,EAAa,UAAY,EAAO,GAAG,UAAU,GAAI,SAAS,GAAK,QAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,OAAQ,MAAS,EAAK,GAAO,GAAG,UAAU,GAAI,SAAS,IAAM,gBAAmB,EAAa,MACzO,GAAM,EAAK,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAO,GAAG,UAAU,GAAI,SAAS,GAAI,EAAG,GAG5F,GAAI,EAAa,YACf,GAAI,KAAO,EAAa,KACpB,EAAO,GAAG,WACZ,OAAW,KAAM,GAAO,GAAG,UACzB,EAAI,UAAY,EAAa,UAAY,EAAG,SAAS,GAAK,QAAQ,MAAS,EAAI,EAAG,SAAS,OAAQ,MAAS,EAAI,EAAG,SAAS,gBAAmB,EAAa,MAC5J,EAAI,SAAS,GAAG,EAAG,QAAQ,KAAK,MAAM,IAAM,EAAG,UAAW,EAAG,SAAS,GAAK,EAAG,EAAG,SAAS,GAAK,GAIrG,GAAI,EAAa,cAAgB,EAAO,GAAG,UAAW,CACpD,GAAI,GACE,EAAsC,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACnD,EAAO,SAAW,GAAG,GAAM,EAAK,EAAQ,GAE5C,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,WAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,gBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,YAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,GAEpB,EAAO,OAAS,EAChB,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,iBAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,cAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,EAAO,EAAO,GAAG,UAAU,KAAK,AAAC,GAAM,EAAE,OAAS,aAC9C,GAAM,EAAO,KAAK,CAAC,EAAK,SAAS,GAAI,EAAK,SAAS,KACvD,GAAO,EAAK,EAAQ,MAM1B,kBAA2B,EAA6B,EAAqB,EAA2B,CACtG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GAAQ,CAetB,GAdI,EAAa,WACf,GAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,YACX,GAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,OAAQ,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAEnF,EAAI,UAEF,EAAa,YACX,EAAE,WAAa,EAAE,UAAU,OAAS,EACtC,OAAW,KAAM,GAAE,UACjB,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAG,OAAQ,MAAS,EAAI,EAAG,gBAAmB,EAAa,MACxH,GAAM,EAAK,EAAG,GAAI,EAAG,GAAI,EAAG,GAIlC,GAAI,EAAa,WAAY,CAC3B,GAAM,GAAe,CAAC,EAAM,IAAU,CACpC,EAAI,UAAY,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,OAAQ,MAAS,EAAI,EAAK,EAAK,OAAS,GAAG,gBAAmB,EAAa,MAC9J,EAAI,SAAS,EAAO,EAAK,EAAK,OAAS,GAAG,GAAK,EAAG,EAAK,EAAK,OAAS,GAAG,GAAK,IAE/E,EAAI,KAAO,EAAa,KACxB,EAAa,EAAE,YAAY,YAAgB,SAC3C,EAAa,EAAE,YAAY,aAAiB,UAC5C,EAAa,EAAE,YAAY,WAAe,QAC1C,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,MAAU,SACrC,EAAa,EAAE,YAAY,SAAa,QAE1C,GAAI,EAAa,aAAc,CAC7B,GAAM,GAAc,AAAC,GAAS,CAC5B,GAAI,EAAC,EACL,OAAS,GAAI,EAAG,EAAI,EAAK,OAAQ,IAC/B,EAAI,YACJ,EAAI,YAAc,EAAa,SAAW,QAAQ,MAAS,EAAI,EAAK,GAAG,OAAQ,MAAS,EAAI,EAAK,GAAG,gBAAmB,EAAa,MACpI,EAAI,OAAO,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,GAAI,EAAK,EAAI,EAAI,EAAI,EAAI,GAAG,IAC/D,EAAI,OAAO,EAAK,GAAG,GAAI,EAAK,GAAG,IAC/B,EAAI,UAGR,EAAI,UAAY,EAAa,UAC7B,EAAY,EAAE,YAAY,aAC1B,EAAY,EAAE,YAAY,cAC1B,EAAY,EAAE,YAAY,YAC1B,EAAY,EAAE,YAAY,OAC1B,EAAY,EAAE,YAAY,UAMhC,kBAA6B,EAA6B,EAAqB,EAA2B,CACxG,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KACxB,OAAW,KAAK,GACd,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,EAAE,IAAI,GAAI,GAC9C,EAAa,WAAY,CAC3B,GAAM,GAAQ,GAAG,EAAE,SAAS,KAAK,MAAM,IAAM,EAAE,UAC/C,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,KAElF,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAE,IAAI,GAAK,EAAG,EAAI,EAAE,IAAI,GAAK,EAAa,WAAY,EAAE,IAAI,IAElF,EAAI,WAKV,kBAA6B,EAA6B,EAAuB,EAA2B,CAC1G,GAAM,GAAe,EAAU,GAAS,GAExC,GADI,CAAC,GAAU,CAAC,GACZ,CAAE,aAAoB,oBAAoB,OAC9C,GAAM,GAAM,EAAS,WAAW,MAChC,GAAI,EAAC,EACL,GAAI,SAAW,QACf,EAAI,KAAO,EAAa,KAExB,OAAS,GAAI,EAAG,EAAI,EAAO,OAAQ,IACjC,GAAI,EAAa,UAAW,CAI1B,GAHA,EAAI,YAAc,EAAa,MAC/B,EAAI,UAAY,EAAa,MAC7B,GAAK,EAAK,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,EAAO,GAAG,IAAI,GAAI,GAC9E,EAAa,WAAY,CAC3B,GAAM,GAAQ,WAAW,IACzB,AAAI,EAAa,aAAe,EAAa,cAAgB,IAC3D,GAAI,UAAY,EAAa,YAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,KAE1G,EAAI,UAAY,EAAa,WAC7B,EAAI,SAAS,EAAO,EAAO,GAAG,IAAI,GAAK,EAAG,EAAI,EAAO,GAAG,IAAI,GAAK,EAAa,WAAY,EAAO,GAAG,IAAI,IAE1G,EAAI,WAKV,kBAA6B,EAA6B,EAA8B,CAEtF,GADI,CAAC,GAAY,CAAC,GACd,CAAE,aAAoB,qBAAsB,CAAE,aAAqB,oBAAoB,OAC3F,GAAM,GAAS,EAAS,WAAW,MACnC,WAAQ,UAAU,EAAU,EAAG,GAGjC,kBAA0B,EAA6B,EAAgB,EAA2B,CAChG,GAAM,GAAY,IACZ,EAAe,EAAU,GAAS,GACxC,AAAI,CAAC,GAAU,CAAC,GACV,YAAoB,oBAE1B,IAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAK,EAAU,EAAO,KAAM,GAC5B,GAAO,EAAU,EAAO,OAAQ,GAEhC,GAAQ,EAAU,EAAO,QAAS,GAelC,EAAO,YAAY,KAAO,KAAK,MAAM,IAAQ,IClhBxC,YAAc,EAAoB,EAAqB,EAAoB,EAA0B,EAAiD,CAN7J,oCAOE,GAAI,GAAK,EACH,EAAyB,GAC/B,OAAW,KAAQ,GAAO,CACxB,GAAM,GAAiB,CAAE,GAAI,IAAM,OAAM,KAAM,KAAM,MAAO,CAAE,KAAM,KAAM,MAAO,MAAQ,SAAU,GAAI,IAAK,CAAC,EAAG,EAAG,EAAG,IACtH,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,IACtB,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACrC,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAK,IAAI,IACtD,GAAO,KAAO,GAGlB,GAAI,EAAO,KACT,OAAW,KAAQ,GACjB,AAAI,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC3C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IACjE,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,KAAO,GAEpC,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAClD,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC9B,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAC5C,EAAK,IAAI,GAAK,EAAK,IAAI,GAAK,EAAO,KAAK,IAAI,GAAK,EAAO,KAAK,IAAI,IAChE,EAAO,OAAO,GAAO,MAAM,MAAQ,GAI7C,OAAW,KAAW,GACpB,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACnF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,EAAK,GAAI,KAAO,WAAP,QAAiB,KAAK,GACxF,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,MAAO,OAAP,cAAa,IAAI,KAAO,WAAP,QAAiB,KAAK,GAChG,AAAI,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,OAAd,cAAoB,IAAI,KAAO,WAAP,QAAiB,KAAK,GACnG,EAAQ,OAAY,QAAa,EAAQ,OAAY,SAAO,QAAP,cAAc,QAAd,cAAqB,KAAI,MAAO,WAAP,QAAiB,KAAK,IAI/G,GAAM,GAAc,GACd,EAAc,GACd,EAAY,AAAC,GAAQ,CACzB,AAAI,GAAO,EAAI,SAAW,GACxB,GAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,IAC5B,EAAE,KAAK,EAAI,GAAI,EAAI,GAAK,EAAI,MAGhC,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,KAAO,OAAP,cAAa,KACvB,EAAU,QAAO,QAAP,cAAc,OAAd,cAAoB,KAC9B,EAAU,QAAO,QAAP,cAAc,QAAd,cAAqB,KAC/B,GAAM,GAAO,KAAK,IAAI,GAAG,GACnB,EAAO,KAAK,IAAI,GAAG,GACzB,EAAO,IAAM,CAAC,EAAM,EAAM,KAAK,IAAI,GAAG,GAAK,EAAM,KAAK,IAAI,GAAG,GAAK,GAG9D,GAAS,EAAM,SAAW,GAAG,GAAO,OAAS,CAAC,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,GAAI,EAAO,IAAI,GAAK,EAAM,KAEtJ,EAAQ,KAAK,GAEf,MAAO,GC3DT,GAAM,GAAyB,CAAE,KAAM,GAAI,KAAM,GAAI,KAAM,GAAI,QAAS,GAAI,OAAQ,GAAI,QAAS,GAAI,YAAa,GAAI,UAAW,GAE1H,YAAc,EAA2B,CARhD,8CAaE,GAAM,GAAU,KAAK,MAAQ,EAAU,UAQjC,EAAiB,EAAU,IAAO,EAAI,KAAK,IAAI,GAAW,EAKhE,GAHA,EAAe,OAAS,EAAU,OAG9B,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAM,EAAU,KAAK,GAAG,IAC3B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAS,EAAU,KAAK,GAAG,OAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAa,EAAU,KAAK,GAAG,UAClC,IAAI,CAAC,EAAU,IAAO,EACrB,MAAO,EAAS,MAChB,KAAM,EAAS,KACf,SAAU,CACR,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,GAC3K,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,SAAS,GAAK,EAAS,SAAS,IAAM,EAAiB,EAAS,SAAS,IAE7K,YAAa,CACX,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,GACjL,EAAe,KAAK,GAAG,UAAU,GAAO,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,YAAY,GAAK,EAAS,YAAY,IAAM,EAAiB,EAAS,SAAS,OAGvL,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,aAKlE,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAAY,EAAU,KAAK,GAAG,UACjC,IAAI,CAAC,EAAU,IAAM,EACnB,IAAI,CAAC,GAAO,KAAS,IAAiB,GAAK,EAAe,KAAK,GAAG,UAAU,GAAG,IAAK,IAAS,IAC5F,EAAO,OAAO,KAAK,EAAU,KAAK,GAAG,aACrC,EAAc,GACpB,OAAW,KAAO,GAChB,EAAY,GAAO,EAAU,KAAK,GAAG,YAAY,GAC9C,IAAI,CAAC,EAAK,KAAM,EAAI,IAAI,CAAC,GAAO,KAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,YAAY,GAAK,IAAG,IAAK,IAAS,IAE5H,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,MAAK,SAAQ,YAAW,eAK7E,GAAI,CAAC,EAAe,MAAS,EAAU,KAAK,SAAW,EAAe,KAAK,OACzE,EAAe,KAAO,KAAK,MAAM,KAAK,UAAU,EAAU,WAE1D,QAAS,GAAI,EAAG,EAAI,EAAU,KAAK,OAAQ,IAAK,CAC9C,GAAM,GAAO,EAAU,KAAK,GAAG,IAC5B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,IAAI,GAAK,GAAK,GACxE,EAAU,EAAU,KAAK,GAAG,OAC/B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,KAAK,GAAG,OAAO,GAAK,GAAK,GAC3E,EAIF,CAAE,OAAQ,CAAC,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,EAAG,GAAI,MAAO,CAAE,KAAM,EAAG,IAAK,EAAG,MAAO,GAAK,KAAM,CAAE,QAAS,EAAG,SAAU,IAC/G,EAAS,OAAS,KAAU,KAAK,GAAG,WAAlB,cAA4B,OAC9C,EAAS,MAAQ,CACf,KAAQ,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,OAAQ,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,OAAQ,IAAM,EACtI,IAAO,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,MAAO,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,MAAO,IAAM,EACnI,MAAS,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,QAAjC,cAAwC,QAAS,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,QAA5B,cAAmC,QAAS,IAAM,GAE3I,EAAS,KAAO,CAEd,QAAW,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,UAAW,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,UAAW,IAAM,EAC7I,SAAY,IAAiB,GAAM,UAAe,KAAK,GAAG,WAAvB,cAAiC,OAAjC,cAAuC,WAAY,GAAM,UAAU,KAAK,GAAG,WAAlB,cAA4B,OAA5B,cAAkC,WAAY,IAAM,GAElJ,EAAe,KAAK,GAAK,IAAK,EAAU,KAAK,GAAI,WAAU,MAAK,UAKpE,GAAI,CAAC,EAAe,QAAW,EAAU,OAAO,SAAW,EAAe,OAAO,OAC/E,EAAe,OAAS,KAAK,MAAM,KAAK,UAAU,EAAU,aAE5D,QAAS,GAAI,EAAG,EAAI,EAAU,OAAO,OAAQ,IAAK,CAChD,GAAM,GAAO,EAAU,OAAO,GAAG,IAC9B,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,IAAI,GAAK,GAAK,GAC1E,EAAU,EAAU,OAAO,GAAG,OACjC,IAAI,CAAC,EAAG,IAAQ,IAAiB,GAAK,EAAe,OAAO,GAAG,OAAO,GAAK,GAAK,GACnF,EAAe,OAAO,GAAK,IAAK,EAAU,OAAO,GAAI,MAAK,UAK9D,GAAI,EAAU,QAAS,CACrB,GAAM,GAAa,EAAU,QAC7B,GAAI,CAAC,EAAe,SAAY,EAAW,SAAW,EAAe,QAAQ,OAC3E,EAAe,QAAU,KAAK,MAAM,KAAK,UAAU,QAEnD,QAAS,GAAI,EAAG,EAAI,EAAW,OAAQ,IACrC,EAAe,QAAQ,GAAG,IAAO,EAAW,GAAG,IAC5C,IAAI,CAAC,EAAK,IAAQ,IAAiB,GAAK,EAAe,QAAQ,GAAG,IAAI,GAAK,GAAO,GAM3F,MAAI,GAAU,SAAS,GAAe,QAAU,EAAU,SACtD,EAAU,aAAa,GAAe,YAAc,EAAU,aAE3D,EC/HF,GAAM,IAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,kEA0JP,GAAO;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;qBC/JpB,wCA8DO,QAAY,CA6EjB,YAAY,EAA+C,CAb3D,kBACA,kBACA,kBACA,kBACA,kBACA,kBAkDA,aAAU,IAAI,IAAQ,CACpB,GAAI,CAAC,OAAK,IAAqB,OAC/B,GAAM,GAAiB,KAAK,GAAG,SAAS,MAAM,WACxC,EAAkB,OAAK,IAC7B,OAAK,GAAc,GACnB,GAAM,GAAS,EAAiB,EAChC,AAAI,IAAW,GAAG,EAAI,GAAG,EAAK,IAKhC,UAAU,AAAC,GAAyB,CAClC,GAAI,CAAC,OAAK,IAAc,MAAO,MAC/B,GAAI,CAAC,EAAO,MAAO,uBACnB,GAAI,KAAK,GAAG,IAAI,MAAM,SAAW,CAAE,aAAoB,WAAS,MAAO,yBACvE,GAAI,CACF,KAAK,GAAG,mBACF,EAAN,CACA,MAAO,qBAET,MAAO,QAoFT,UAAgB,MAAO,EAAQ,KAAU,CA7R3C,MA8RI,GAAI,KAAK,OAAO,SAAY,KAAK,OAAO,QAAQ,OAAS,GAAM,GAAU,KAAK,GAAG,eAAiB,KAAK,OAAO,QAAU,CACtH,GAAM,GAAY,IAYlB,GAXA,KAAK,MAAQ,UAWT,KAAK,OAAO,SAAW,KAAK,OAAO,QAAQ,OAAS,EAAG,CAUzD,GARI,MAAO,SAAW,aAAe,MAAO,oBAAsB,aAAe,KAAK,OAAO,OAAO,EAAI,6BAGpG,KAAK,GAAG,IAAI,MAAM,YAAc,KAAK,OAAO,UAAY,cAAc,MAAK,OAAO,QAAU,SAC5F,KAAK,GAAG,IAAI,MAAM,SAAY,MAAK,OAAO,UAAY,SAAW,KAAK,OAAO,UAAY,YAAY,MAAK,OAAO,QAAU,cAE3H,KAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,OAAO,SAEvD,KAAK,OAAO,UAAY,OAAQ,CAElC,GADI,KAAK,OAAO,OAAO,EAAI,aAAc,KAAK,OAAO,UACjD,MAAO,SAAK,KAAL,cAAS,eAAiB,YAAa,KAAK,GAAG,aAAa,KAAK,OAAO,cAC9E,MAAM,IAAI,OAAM,qCACrB,GAAM,GAAO,KAAM,MAAK,GAAG,MAAM,SAAS,yBACpC,EAAK,KAAM,MAAK,GAAG,MAAM,SAAS,gCACxC,AAAI,KAAK,OAAO,OAAO,EAAI,mBAAmB,EAAO,OAAS,aAAa,EAAK,gBAAkB,oBAC9F,KAAK,OAAO,OAAS,CAAC,GAAM,EAAI,6CAGtC,AAAI,KAAK,OAAO,UAAY,WAAW,AAAQ,KAC/C,GAAI,CACF,KAAM,MAAK,GAAG,WAAW,KAAK,OAAO,eAC9B,EAAP,CACA,EAAI,6BAA8B,KAAK,OAAO,QAAS,IAK3D,GAFA,KAAK,GAAG,iBAEJ,KAAK,GAAG,eAAiB,SAAW,KAAK,GAAG,eAAiB,UAAW,CAC1E,KAAK,GAAG,IAAI,IAAI,+BAAgC,IAChD,KAAK,GAAG,IAAI,IAAI,oBAAqB,IACrC,KAAK,GAAG,IAAI,IAAI,2BAA4B,IAExC,MAAO,MAAK,OAAO,YAAkB,aAAe,KAAK,OAAO,YAClE,GAAI,kDAAmD,IACvD,KAAK,GAAG,IAAI,IAAI,iCAAkC,IAEpD,GAAM,GAAK,KAAM,MAAK,GAAG,UAAU,kBAAkB,GACrD,AAAI,KAAK,OAAO,OAAO,EAAI,cAAc,EAAG,aAAa,EAAG,qBAAqB,EAAG,aAAa,EAAG,aAEtG,KAAM,MAAK,GAAG,QACd,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,MAWlD,UAAO,AAAC,GAAoB,AAAY,GAAK,GAAU,KAAK,QAI5D,UAAa,KAAO,IAAU,CAC5B,GAAI,KAAK,OAAO,mBAAqB,EAAG,MAAO,GAC/C,GAAM,GAAa,GACb,EAAkB,EAAM,eAAe,CAAC,KAAK,MAAM,EAAM,MAAM,GAAK,GAAa,KAAK,MAAM,EAAM,MAAM,GAAK,KAQ7G,EAAc,EAAQ,WACxB,EAAM,EACV,OAAS,GAAI,EAAG,EAAI,EAAY,OAAS,EAAG,IAAK,GAAO,EAAY,EAAI,EAAI,GAE5E,EAAQ,UACR,GAAM,GAAO,IAAO,MAAK,IAAI,EAAK,OAAK,KAAiB,KAAK,IAAI,EAAK,OAAK,KAAiB,GAC5F,OAAK,GAAgB,GAGrB,GAAM,GAAY,EAAO,KAAK,IAAI,KAAK,OAAO,iBAAkB,OAAK,KAErE,cAAK,GAAiB,EAAO,GAAK,KAAK,OAAO,iBAAmB,EAAI,GAC9D,IAoMT,UAAgB,SAAY,CAC1B,GAAM,GAAY,CAAC,EAAQ,EAAO,6BAA+B,MAAM,QAAQ,YAAe,KAAU,KAAK,AAAC,GAAQ,EAAI,QACtH,EACA,EACJ,OAAQ,KAAK,OAAO,YACb,OAAQ,EAAO,KAAM,GAAiB,IAAO,UAC7C,OAAQ,EAAO,KAAM,GAAiB,IAAO,cACzC,EAAO,KAElB,GAAI,EAAM,CACR,GAAM,GAAS,KAAM,mBAAkB,GACvC,EAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QACrC,EAAO,QAET,MAAO,KAIT,UAAgB,SAAY,GAAI,SAAQ,AAAC,GAAY,CACnD,GAAI,GACA,EAAO,EACX,OAAQ,KAAK,OAAO,YACb,OACH,EAAO,IACP,EAAM,0BAAmC,GACzC,UACG,WACA,OACH,EAAO,KACP,EAAM,0BAAmC,GACzC,cAEA,EAAM,KAGV,GAAM,GAAM,GAAI,OAChB,EAAI,OAAS,SAAY,CACvB,GAAM,GAAU,MAAO,kBAAoB,YAAe,GAAI,iBAAgB,EAAM,GAAQ,SAAS,cAAc,UACnH,EAAO,MAAQ,EAAI,aACnB,EAAO,OAAS,EAAI,cACpB,GAAM,GAAM,EAAO,WAAW,MAC9B,WAAK,UAAU,EAAK,EAAG,GAEvB,GAAM,GAAM,KAAM,MAAK,OAAO,EAAQ,KAAK,QAC3C,EAAQ,IAEV,AAAI,EAAK,EAAI,IAAM,EACd,EAAQ,SAIf,UAAc,SAAY,CACxB,GAAM,GAAO,AAAC,GAAQ,OAAO,KAAK,EAAK,UACnC,EAGJ,GAFI,KAAK,OAAO,SAAW,QAAQ,GAAM,EAAY,KACjD,MAAK,OAAO,SAAW,QAAU,KAAK,OAAO,SAAW,SAAQ,GAAM,EAAY,KAClF,CAAC,EAAK,MAAO,MACjB,GAAI,GACJ,GAAI,MAAU,SAAY,YAAa,CACrC,GAAM,GAAO,AAAG,OAAQ,WAAW,GAC7B,EAAW,EAAK,WAAW,GACjC,KAAK,GAAG,QAAQ,GAEhB,EAAM,KAAM,MAAK,OAAO,EAAU,KAAK,QACvC,KAAK,GAAG,QAAQ,OAEhB,AAAI,MAAK,OAAO,OAAO,EAAI,+BAS7B,MAAO,KA9fP,KAAK,OAAS,EAAU,GAAU,GAAc,IAChD,KAAK,GAAK,EACV,KAAK,KAAO,GACZ,KAAK,QAAc,GACnB,KAAK,MAAQ,OACb,OAAK,GAAc,GACnB,OAAK,GAAsB,IAC3B,OAAK,GAAe,IACpB,OAAK,GAAY,IACjB,OAAK,GAAiB,GACtB,KAAK,YAAc,CAAE,QAAS,EAAG,KAAM,EAAG,MAAO,EAAG,OAAQ,EAAG,OAAQ,EAAG,QAAS,EAAG,MAAO,EAAG,KAAM,GAEtG,KAAK,OAAS,CACZ,KAAM,KACN,QAAS,KACT,UAAW,KACX,cAAe,KACf,QAAS,KACT,SAAU,KACV,IAAK,KACL,OAAQ,KACR,QAAS,KACT,UAAW,KACX,QAAS,KACT,UAAW,KACX,QAAS,KACT,aAAc,MAIhB,KAAK,MAAQ,AAAC,GAAiB,AAAM,GAAQ,EAAO,KAAK,QAEzD,KAAK,kBAA6B,GAClC,KAAK,UAAqB,GAE1B,KAAK,QAAU,AAAQ,KACvB,OAAK,GAAgB,GAoCvB,WAAW,EAA2B,EAAmC,CACvE,MAAO,AAAQ,IAAW,EAAY,GAYxC,aAAa,EAAc,EAAoB,CAC7C,MAAO,AAAa,IAAQ,EAAO,EAAY,KAAK,QAQtD,QAAQ,EAA8B,CAEpC,MAAO,AAAQ,IAAQ,GAUzB,MAAM,EAA8B,EAAkE,EAAY,EAA8E,CAC9L,MAAO,AAAQ,IAAM,EAAe,EAAI,QAOpC,MAAK,EAA+C,CACxD,KAAK,MAAQ,OACb,GAAM,GAAY,IAClB,AAAI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IAEjD,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,YAAY,KAAK,WACxC,KAAK,OAAO,OAAO,EAAI,iBAAiB,KAAK,GAAG,gBAChD,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,QAAQ,UACjD,KAAK,OAAO,OAAO,EAAI,SAAU,KAAK,QAAQ,OAElD,KAAM,QAAK,IAAL,UAAmB,IACrB,KAAK,GAAG,IAAI,MAAM,YAChB,MAAK,OAAO,OAAO,EAAI,iBAAkB,KAAK,QAC9C,KAAK,OAAO,OAAO,EAAI,YAAa,KAAK,GAAG,IAAI,SAIxD,KAAM,AAAO,IAAK,MAEd,OAAK,KACH,MAAK,OAAO,OAAO,EAAI,mBAAoB,KAAK,GAAG,SAAS,MAAM,SAAU,QAAS,KAAK,GAAG,SAAS,MAAM,WAAY,WAC5H,OAAK,GAAY,KAGnB,GAAM,GAAU,KAAK,MAAM,IAAQ,GACnC,AAAI,EAAW,MAAK,YAAY,MAAkB,IAAI,MAAK,YAAY,KAAO,QAgH1E,QAAO,EAAc,EAAwE,CAEjG,MAAO,IAAI,SAAQ,KAAO,IAAY,CACpC,KAAK,MAAQ,SACb,GAAI,GACA,EAGJ,KAAK,OAAS,EAAU,KAAK,OAAQ,GAGrC,KAAK,MAAQ,QACb,GAAM,GAAQ,OAAK,IAAL,UAAa,GAC3B,AAAI,GACF,GAAI,EAAO,GACX,EAAQ,CAAE,WAGZ,GAAM,GAAY,IAGlB,KAAM,QAAK,IAAL,WAGN,KAAM,MAAK,OAmBX,EAAY,IACZ,GAAI,GAAU,AAAM,GAAQ,EAAO,KAAK,QAoBxC,GAnBA,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,QAAQ,cAGT,KAAK,OAAO,aAAa,SAAW,GAAW,EAAQ,QACzD,MAAK,QAAQ,uBACb,KAAK,MAAQ,mBACb,EAAY,IACZ,KAAM,AAAa,IAAQ,GAC3B,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,aAAe,GACjD,EAAQ,QAEV,GAAQ,OAAO,UACf,EAAU,AAAM,GAAQ,EAAQ,OAAQ,KAAK,SAE/C,KAAK,QAAQ,sBAGX,CAAC,GAAW,CAAC,EAAQ,OAAQ,CAC/B,EAAI,qCACJ,EAAQ,CAAE,MAAO,sCACjB,OAGF,EAAY,IACZ,KAAK,OAAO,UAAY,KAAM,QAAK,IAAL,UAAgB,EAAQ,QACjD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACnD,KAAK,YAAY,QAAQ,MAAK,YAAY,OAAS,GACvD,KAAK,YAAY,SACd,KAAK,OAAO,WAAW,KAAK,YAAY,SAC5C,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,GAC9C,KAAK,QAAQ,kBAIb,GAAI,GACA,EACA,EACA,EAGJ,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAK,GAAW,KAAM,EAAQ,QAAU,GACzE,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAK,IAAW,KAAM,EAAQ,QAAU,GACnF,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAI/C,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACnI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC5I,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,AAAc,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GAChJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACzI,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,WAAY,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACzI,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,aAAc,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAClJ,AAAI,KAAK,OAAO,KAAK,UAAU,SAAS,iBAAkB,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAc,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GACtJ,KAAK,OAAO,KAAK,UAAU,SAAS,YAAY,GAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,eACb,AAAI,KAAK,OAAO,MACd,GAAU,KAAK,OAAO,KAAK,QAAU,AAAS,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACjF,KAAK,YAAY,MAAM,MAAO,MAAK,YAAY,MAEnD,MAAK,MAAQ,WACb,EAAY,IACZ,EAAU,KAAK,OAAO,KAAK,QAAU,KAAM,AAAS,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3F,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,KAAO,IAE/C,KAAK,QAAQ,aAGb,KAAK,QAAQ,iBACb,AAAI,KAAK,OAAO,MACd,CAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,AAAQ,GAAQ,EAAQ,OAAQ,KAAK,QAAU,GACrI,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,AAAU,GAAQ,EAAQ,OAAQ,KAAK,QAAU,IACnJ,KAAK,YAAY,QAAQ,MAAO,MAAK,YAAY,QAErD,MAAK,MAAQ,aACb,EAAY,IACZ,AAAI,KAAK,OAAO,OAAO,UAAU,SAAS,WAAY,EAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAQ,IAAQ,EAAQ,OAAQ,KAAK,QAAU,GAC3I,KAAK,OAAO,OAAO,UAAU,SAAS,cAAc,GAAY,KAAK,OAAO,OAAO,QAAU,KAAM,AAAU,IAAQ,EAAQ,OAAQ,KAAK,QAAU,IAC7J,EAAc,KAAK,MAAM,IAAQ,GAC7B,EAAc,GAAG,MAAK,YAAY,OAAS,IAEjD,KAAK,QAAQ,eAGT,KAAK,OAAO,OAAO,EAAC,EAAS,EAAS,EAAS,GAAa,KAAM,SAAQ,IAAI,CAAC,EAAS,EAAS,EAAS,KAG9G,GAAI,GAAwB,GAC5B,AAAI,KAAK,OAAO,QAAQ,SACtB,GAAY,IACZ,EAAa,CAAC,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,GAAU,GAAG,AAAQ,GAAK,IAC5G,AAAK,KAAK,OAAO,MACR,KAAK,YAAY,SAAS,MAAO,MAAK,YAAY,QADnC,KAAK,YAAY,QAAU,KAAK,MAAM,IAAQ,IAIxE,KAAK,YAAY,MAAQ,KAAK,MAAM,IAAQ,GAC5C,KAAK,MAAQ,OACb,KAAK,OAAS,CACZ,KAAM,EACN,KAAM,EACN,KAAM,EACN,QAAS,EACT,OAAQ,EACR,YAAa,KAAK,YAClB,OAAQ,EAAQ,OAChB,UAAW,KAAK,SACZ,UAAU,CAnjBtB,MAmjBwB,MAAO,AAAQ,IAAK,EAAS,EAAS,EAAS,EAAY,oBAAS,SAAT,cAAiB,SAI9F,AAAG,UAAQ,EAAQ,QAGnB,EAAQ,KAAK,eAwFX,QAAO,EAA4E,CACvF,GAAM,GAAK,IAEX,GADI,GAAY,MAAK,OAAS,EAAU,KAAK,OAAQ,IACjD,CAAC,KAAK,OAAO,QAAU,KAAK,OAAO,SAAW,OAAQ,MAAO,CAAE,MAAO,QAC1E,GAAI,GACJ,AAAI,MAAO,oBAAsB,WAAY,EAAM,KAAM,QAAK,IAAL,WACpD,AAAI,MAAO,QAAU,YAAa,EAAM,KAAM,QAAK,IAAL,WAC9C,EAAM,KAAM,QAAK,IAAL,WACjB,GAAM,GAAK,IACX,MAAI,MAAK,OAAO,OAAO,EAAI,SAAU,KAAK,OAAO,OAAQ,KAAK,MAAM,EAAK,GAAK,KAAM,GAC7E,IA9hBT,eACA,eACA,eACA,eACA,eACA,eA6DA,eA6FA,eAuEA,eA2NA,eAkBA,eAiCA", "names": [] } diff --git a/dist/human.esm.js b/dist/human.esm.js index 4e4ea51a..144b9efc 100644 --- a/dist/human.esm.js +++ b/dist/human.esm.js @@ -4,79 +4,79 @@ homepage: author: ' */ -var _3=Object.defineProperty;var nR=e=>_3(e,"__esModule",{value:!0});var Qg=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var R3=(e,t)=>{nR(e);for(var n in t)_3(e,n,{get:t[n],enumerable:!0})};var D3=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Fn=(e,t,n)=>(D3(e,t,"read from private field"),n?n.call(e):t.get(e)),Ir=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Qr=(e,t,n,r)=>(D3(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);function $t(e,t){let n=e.endsWith("/")?"":"/",s=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!s.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${s} Expecting JSON file`);return s}function me(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var at=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function lr(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(s=>{let a=n[s],o=r[s];Array.isArray(a)&&Array.isArray(o)?n[s]=a.concat(...o):t(a)&&t(o)?n[s]=lr(a,o):n[s]=o}),n),{})}var F3={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function M3(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let r=n[0].match(/\(([^()]+)\)/g);e=r?r[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var bh={};R3(bh,{Abs:()=>tv,Acos:()=>nv,Acosh:()=>rv,AdadeltaOptimizer:()=>Fp,AdagradOptimizer:()=>Mp,AdamOptimizer:()=>Op,AdamaxOptimizer:()=>Pp,Add:()=>i2,AddN:()=>sv,All:()=>av,Any:()=>ov,ArgMax:()=>iv,ArgMin:()=>lv,Asin:()=>uv,Asinh:()=>cv,Atan:()=>dv,Atan2:()=>pv,Atanh:()=>hv,AvgPool:()=>fv,AvgPool3D:()=>mv,AvgPool3DGrad:()=>oD,AvgPoolGrad:()=>aD,BackendWasm:()=>d$,BatchMatMul:()=>gv,BatchToSpaceND:()=>yv,Bincount:()=>Av,BroadcastTo:()=>iD,Callback:()=>B8,CallbackList:()=>CS,Cast:()=>l2,Ceil:()=>xv,ClipByValue:()=>bv,Complex:()=>vv,ComplexAbs:()=>wv,Concat:()=>kv,Conv2D:()=>Iv,Conv2DBackpropFilter:()=>Sv,Conv2DBackpropInput:()=>Tv,Conv3D:()=>Nv,Conv3DBackpropFilterV2:()=>lD,Conv3DBackpropInputV2:()=>Cv,Cos:()=>Ev,Cosh:()=>$v,CropAndResize:()=>Rv,Cumsum:()=>_v,CustomCallback:()=>$S,DataStorage:()=>zR,DenseBincount:()=>Dv,DepthToSpace:()=>Fv,DepthwiseConv2dNative:()=>Mv,DepthwiseConv2dNativeBackpropFilter:()=>Ov,DepthwiseConv2dNativeBackpropInput:()=>Pv,Diag:()=>zv,Dilation2D:()=>Lv,Dilation2DBackpropFilter:()=>cD,Dilation2DBackpropInput:()=>uD,ENV:()=>Sr,EarlyStopping:()=>V8,Einsum:()=>Wv,Elu:()=>Vv,EluGrad:()=>dD,Environment:()=>Q3,Equal:()=>Hv,Erf:()=>Uv,Exp:()=>Gv,ExpandDims:()=>jv,Expm1:()=>qv,FFT:()=>Kv,Fill:()=>Xv,FlipLeftRight:()=>Zv,Floor:()=>Yv,FloorDiv:()=>Jv,FromPixels:()=>d2,FusedBatchNorm:()=>Qv,FusedConv2D:()=>p2,FusedDepthwiseConv2D:()=>f2,GPGPUContext:()=>Bm,GatherNd:()=>tw,GatherV2:()=>ew,GraphModel:()=>bT,Greater:()=>nw,GreaterEqual:()=>rw,History:()=>ES,IFFT:()=>sw,Identity:()=>u2,Imag:()=>aw,InputSpec:()=>tn,IsFinite:()=>ow,IsInf:()=>iw,IsNan:()=>lw,KernelBackend:()=>W3,LRN:()=>Aw,LRNGrad:()=>pD,LayerVariable:()=>kS,LayersModel:()=>pa,LeakyRelu:()=>uw,Less:()=>cw,LessEqual:()=>dw,LinSpace:()=>hw,Log:()=>pw,Log1p:()=>fw,LogSoftmax:()=>hD,LogicalAnd:()=>mw,LogicalNot:()=>gw,LogicalOr:()=>yw,MathBackendCPU:()=>$5,MathBackendWebGL:()=>dh,Max:()=>xw,MaxPool:()=>vw,MaxPool3D:()=>ww,MaxPool3DGrad:()=>mD,MaxPoolGrad:()=>fD,MaxPoolWithArgmax:()=>kw,Maximum:()=>bw,Mean:()=>Iw,Min:()=>Sw,Minimum:()=>Tw,MirrorPad:()=>Nw,Mod:()=>Cw,MomentumOptimizer:()=>zp,Multinomial:()=>Ew,Multiply:()=>$w,Neg:()=>_w,NonMaxSuppressionV3:()=>Dw,NonMaxSuppressionV4:()=>Fw,NonMaxSuppressionV5:()=>Mw,NotEqual:()=>Rw,OP_SCOPE_SUFFIX:()=>J7,OneHot:()=>Pw,OnesLike:()=>Ow,Optimizer:()=>Ra,Pack:()=>zw,PadV2:()=>Lw,Pool:()=>gD,Pow:()=>Bw,Prelu:()=>Ww,Prod:()=>Vw,RMSPropOptimizer:()=>Lp,RNN:()=>fa,Range:()=>Uw,Rank:()=>x2,Real:()=>Hw,RealDiv:()=>Bv,Reciprocal:()=>Gw,Reduction:()=>Pn,Relu:()=>jw,Relu6:()=>Zw,Reshape:()=>qw,ResizeBilinear:()=>Xw,ResizeBilinearGrad:()=>AD,ResizeNearestNeighbor:()=>Kw,ResizeNearestNeighborGrad:()=>yD,Reverse:()=>Yw,RotateWithOffset:()=>M7,Round:()=>Jw,Rsqrt:()=>Qw,SGDOptimizer:()=>mc,ScatterNd:()=>e7,Select:()=>t7,Selu:()=>n7,Sequential:()=>pm,Sigmoid:()=>i7,Sign:()=>o7,Sin:()=>s7,Sinh:()=>a7,Slice:()=>r7,Softmax:()=>p7,Softplus:()=>l7,SpaceToBatchND:()=>d7,SparseFillEmptyRows:()=>f7,SparseReshape:()=>m7,SparseSegmentMean:()=>g7,SparseSegmentSum:()=>y7,SparseToDense:()=>A7,SplitV:()=>h7,Sqrt:()=>u7,Square:()=>xD,SquaredDifference:()=>x7,Step:()=>F7,StridedSlice:()=>b7,StringNGrams:()=>v7,StringSplit:()=>w7,StringToHashBucketFast:()=>k7,Sub:()=>I7,Sum:()=>c7,SymbolicTensor:()=>ps,Tan:()=>S7,Tanh:()=>T7,Tensor:()=>Tt,TensorBuffer:()=>up,Tile:()=>c2,TopK:()=>N7,Transform:()=>C7,Transpose:()=>E7,Unique:()=>$7,Unpack:()=>_7,UnsortedSegmentSum:()=>R7,Variable:()=>rc,ZerosLike:()=>D7,_FusedMatMul:()=>h2,abs:()=>Nr,acos:()=>LM,acosh:()=>WM,add:()=>Me,addN:()=>X2,all:()=>HM,any:()=>jM,argMax:()=>Z2,argMin:()=>XM,asin:()=>YM,asinh:()=>QM,atan:()=>tO,atan2:()=>rO,atanh:()=>aO,avgPool:()=>Vk,avgPool3d:()=>mO,backend:()=>_M,backend_util:()=>_4,basicLSTMCell:()=>vO,batchNorm:()=>Ap,batchNorm2d:()=>TO,batchNorm3d:()=>CO,batchNorm4d:()=>$O,batchToSpaceND:()=>Uk,bincount:()=>Hk,booleanMaskAsync:()=>LB,broadcastTo:()=>xp,browser:()=>Hr,buffer:()=>Ys,callbacks:()=>Dre,cast:()=>Pt,ceil:()=>FO,clipByValue:()=>OO,clone:()=>Js,complex:()=>go,concat:()=>an,concat1d:()=>zO,concat2d:()=>lc,concat3d:()=>WO,concat4d:()=>UO,constraints:()=>nS,conv1d:()=>jO,conv2d:()=>bp,conv2dTranspose:()=>XO,conv3d:()=>YO,conv3dTranspose:()=>tP,copyRegisteredKernels:()=>kD,cos:()=>rP,cosh:()=>aP,cosineWindow:()=>cy,cumsum:()=>iP,customGrad:()=>Ns,data:()=>vT,denseBincount:()=>uP,deprecationWarn:()=>Ok,depthToSpace:()=>dP,depthwiseConv2d:()=>ey,deregisterOp:()=>Mre,device_util:()=>K7,diag:()=>fP,dilation2d:()=>gP,disableDeprecationWarnings:()=>bM,dispose:()=>Ve,disposeVariables:()=>vM,div:()=>Qe,divNoNan:()=>wP,dot:()=>IP,dropout:()=>JB,einsum:()=>TP,elu:()=>Kk,enableDebugMode:()=>xM,enableProdMode:()=>AM,enclosingPowerOfTwo:()=>w4,engine:()=>wM,env:()=>ct,equal:()=>qk,erf:()=>EP,exp:()=>wo,expandDims:()=>ea,expm1:()=>DP,eye:()=>Xk,fft:()=>iy,fill:()=>wp,findBackend:()=>q2,findBackendFactory:()=>$M,floor:()=>Zk,floorDiv:()=>zk,forceHalfFloat:()=>wE,fused:()=>k4,gather:()=>Yk,gatherND:()=>XB,gather_util:()=>yk,getBackend:()=>CM,getGradient:()=>m2,getKernel:()=>rp,getKernelsForBackend:()=>Li,gpgpu_util:()=>kC,grad:()=>nz,grads:()=>rz,greater:()=>kp,greaterEqual:()=>Jk,ifft:()=>Ep,imag:()=>ty,image:()=>Ye,inTopKAsync:()=>eW,initializers:()=>uS,input:()=>QS,io:()=>uk,irfft:()=>g4,isFinite:()=>VP,isInf:()=>HP,isNaN:()=>jP,keep:()=>Pk,kernel_impls:()=>M4,layers:()=>bS,leakyRelu:()=>Qk,less:()=>XP,lessEqual:()=>ny,linalg:()=>LV,linspace:()=>YP,loadGraphModel:()=>Et,loadLayersModel:()=>Hte,localResponseNormalization:()=>QP,log:()=>uc,log1p:()=>e4,logSigmoid:()=>uz,logSoftmax:()=>fz,logSumExp:()=>s4,logicalAnd:()=>Sp,logicalNot:()=>a4,logicalOr:()=>o4,logicalXor:()=>Sz,losses:()=>BV,matMul:()=>yt,math:()=>mk,max:()=>_a,maxPool:()=>i4,maxPool3d:()=>Cz,maxPoolWithArgmax:()=>$z,maximum:()=>l4,mean:()=>Tp,memory:()=>kM,meshgrid:()=>Dz,metrics:()=>P8,min:()=>sy,minimum:()=>u4,mirrorPad:()=>Pz,mod:()=>Lz,model:()=>Vte,models:()=>z8,moments:()=>Vz,movingAverage:()=>VB,mul:()=>fe,multiRNNCell:()=>Hz,multinomial:()=>jz,neg:()=>$a,nextFrame:()=>GV,norm:()=>uy,notEqual:()=>c4,oneHot:()=>B2,ones:()=>ko,onesLike:()=>Xz,op:()=>H,outerProduct:()=>Yz,pad:()=>dc,pad1d:()=>eL,pad2d:()=>nL,pad3d:()=>sL,pad4d:()=>oL,pool:()=>dL,pow:()=>hc,prelu:()=>h4,print:()=>lk,prod:()=>mL,profile:()=>IM,rand:()=>yL,randomGamma:()=>vL,randomNormal:()=>kL,randomUniform:()=>p4,range:()=>pc,ready:()=>NM,real:()=>Np,reciprocal:()=>NL,registerBackend:()=>K2,registerCallbackConstructor:()=>Gte,registerGradient:()=>bD,registerKernel:()=>sp,registerOp:()=>Fre,regularizers:()=>L8,relu:()=>Cp,relu6:()=>f4,removeBackend:()=>EM,reshape:()=>ue,reverse:()=>Io,reverse1d:()=>RL,reverse2d:()=>FL,reverse3d:()=>OL,reverse4d:()=>zL,rfft:()=>ly,round:()=>m4,rsqrt:()=>WL,scalar:()=>ut,scatterND:()=>HB,scatter_util:()=>xk,selu:()=>UL,separableConv2d:()=>GL,sequential:()=>Ute,serialization:()=>_k,setBackend:()=>TM,setPlatform:()=>RM,setWasmPath:()=>Eve,setWasmPaths:()=>$ve,setWebGLContext:()=>Dm,setdiff1dAsync:()=>qL,shared:()=>GT,sigmoid:()=>Ts,sign:()=>XL,signal:()=>zV,sin:()=>YL,sinh:()=>QL,slice:()=>Ze,slice1d:()=>tB,slice2d:()=>rB,slice3d:()=>aB,slice4d:()=>iB,slice_util:()=>U2,softmax:()=>uB,softplus:()=>n4,spaceToBatchND:()=>d4,sparse:()=>WV,sparseToDense:()=>qB,spectral:()=>PV,split:()=>ta,sqrt:()=>na,square:()=>ns,squaredDifference:()=>y4,squeeze:()=>Zn,stack:()=>So,step:()=>A4,stridedSlice:()=>vB,string:()=>VV,sub:()=>He,sum:()=>_t,sumOutType:()=>GD,tan:()=>kB,tanh:()=>Q2,tensor:()=>ts,tensor1d:()=>ur,tensor2d:()=>ra,tensor3d:()=>mp,tensor4d:()=>IB,tensor5d:()=>SB,tensor6d:()=>TB,tensor_util:()=>U7,test_util:()=>Dk,tidy:()=>Ue,tile:()=>vp,time:()=>SM,topk:()=>CB,train:()=>UV,transpose:()=>fp,truncatedNormal:()=>$B,unique:()=>RB,unregisterGradient:()=>wD,unregisterKernel:()=>vD,unsortedSegmentSum:()=>FB,unstack:()=>fc,upcastType:()=>cp,util:()=>O7,valueAndGrad:()=>sz,valueAndGrads:()=>az,variable:()=>OB,variableGrads:()=>t4,version:()=>Dve,version_converter:()=>zse,version_core:()=>yM,version_cpu:()=>xoe,version_layers:()=>ex,version_wasm:()=>_ve,version_webgl:()=>mfe,webgl:()=>gfe,webgl_util:()=>YN,where:()=>Gi,whereAsync:()=>b4,zeros:()=>ji,zerosLike:()=>Cr});var rR=Object.create,Qh=Object.defineProperty,sR=Object.getOwnPropertyDescriptor,aR=Object.getOwnPropertyNames,oR=Object.getPrototypeOf,iR=Object.prototype.hasOwnProperty,O3=e=>Qh(e,"__esModule",{value:!0}),co=e=>{if(typeof Qg!="undefined")return Qg(e);throw new Error('Dynamic require of "'+e+'" is not supported')},Ot=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},De=(e,t)=>{O3(e);for(var n in t)Qh(e,n,{get:t[n],enumerable:!0})},lR=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of aR(t))!iR.call(e,r)&&r!=="default"&&Qh(e,r,{get:()=>t[r],enumerable:!(n=sR(t,r))||n.enumerable});return e},Ks=e=>lR(O3(Qh(e!=null?rR(oR(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),P3=Ot({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=r;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(_){}function r(_,N,P){this.low=_|0,this.high=N|0,this.unsigned=!!P}r.prototype.__isLong__,Object.defineProperty(r.prototype,"__isLong__",{value:!0});function s(_){return(_&&_.__isLong__)===!0}r.isLong=s;var a={},o={};function i(_,N){var P,B,j;return N?(_>>>=0,(j=0<=_&&_<256)&&(B=o[_],B)?B:(P=u(_,(_|0)<0?-1:0,!0),j&&(o[_]=P),P)):(_|=0,(j=-128<=_&&_<128)&&(B=a[_],B)?B:(P=u(_,_<0?-1:0,!1),j&&(a[_]=P),P))}r.fromInt=i;function l(_,N){if(isNaN(_))return N?b:x;if(N){if(_<0)return b;if(_>=g)return E}else{if(_<=-y)return F;if(_+1>=y)return I}return _<0?l(-_,N).neg():u(_%m|0,_/m|0,N)}r.fromNumber=l;function u(_,N,P){return new r(_,N,P)}r.fromBits=u;var c=Math.pow;function d(_,N,P){if(_.length===0)throw Error("empty string");if(_==="NaN"||_==="Infinity"||_==="+Infinity"||_==="-Infinity")return x;if(typeof N=="number"?(P=N,N=!1):N=!!N,P=P||10,P<2||360)throw Error("interior hyphen");if(B===0)return d(_.substring(1),N,P).neg();for(var j=l(c(P,8)),X=x,Y=0;Y<_.length;Y+=8){var ee=Math.min(8,_.length-Y),oe=parseInt(_.substring(Y,Y+ee),P);if(ee<8){var se=l(c(P,ee));X=X.mul(se).add(l(oe))}else X=X.mul(j),X=X.add(l(oe))}return X.unsigned=N,X}r.fromString=d;function h(_,N){return typeof _=="number"?l(_,N):typeof _=="string"?d(_,N):u(_.low,_.high,typeof N=="boolean"?N:_.unsigned)}r.fromValue=h;var p=1<<16,f=1<<24,m=p*p,g=m*m,y=g/2,A=i(f),x=i(0);r.ZERO=x;var b=i(0,!0);r.UZERO=b;var v=i(1);r.ONE=v;var w=i(1,!0);r.UONE=w;var S=i(-1);r.NEG_ONE=S;var I=u(4294967295|0,2147483647|0,!1);r.MAX_VALUE=I;var E=u(4294967295|0,4294967295|0,!0);r.MAX_UNSIGNED_VALUE=E;var F=u(0,2147483648|0,!1);r.MIN_VALUE=F;var $=r.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},$.toString=function(N){if(N=N||10,N<2||36>>0,ie=se.toString(N);if(Y=oe,Y.isZero())return ie+ee;for(;ie.length<6;)ie="0"+ie;ee=""+ie+ee}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(F)?64:this.neg().getNumBitsAbs();for(var N=this.high!=0?this.high:this.low,P=31;P>0&&(N&1<=0},$.isOdd=function(){return(this.low&1)==1},$.isEven=function(){return(this.low&1)==0},$.equals=function(N){return s(N)||(N=h(N)),this.unsigned!==N.unsigned&&this.high>>>31==1&&N.high>>>31==1?!1:this.high===N.high&&this.low===N.low},$.eq=$.equals,$.notEquals=function(N){return!this.eq(N)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(N){return this.comp(N)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(N){return this.comp(N)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(N){return this.comp(N)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(N){return this.comp(N)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(N){if(s(N)||(N=h(N)),this.eq(N))return 0;var P=this.isNegative(),B=N.isNegative();return P&&!B?-1:!P&&B?1:this.unsigned?N.high>>>0>this.high>>>0||N.high===this.high&&N.low>>>0>this.low>>>0?-1:1:this.sub(N).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(F)?F:this.not().add(v)},$.neg=$.negate,$.add=function(N){s(N)||(N=h(N));var P=this.high>>>16,B=this.high&65535,j=this.low>>>16,X=this.low&65535,Y=N.high>>>16,ee=N.high&65535,oe=N.low>>>16,se=N.low&65535,ie=0,ne=0,de=0,he=0;return he+=X+se,de+=he>>>16,he&=65535,de+=j+oe,ne+=de>>>16,de&=65535,ne+=B+ee,ie+=ne>>>16,ne&=65535,ie+=P+Y,ie&=65535,u(de<<16|he,ie<<16|ne,this.unsigned)},$.subtract=function(N){return s(N)||(N=h(N)),this.add(N.neg())},$.sub=$.subtract,$.multiply=function(N){if(this.isZero())return x;if(s(N)||(N=h(N)),n){var P=n.mul(this.low,this.high,N.low,N.high);return u(P,n.get_high(),this.unsigned)}if(N.isZero())return x;if(this.eq(F))return N.isOdd()?F:x;if(N.eq(F))return this.isOdd()?F:x;if(this.isNegative())return N.isNegative()?this.neg().mul(N.neg()):this.neg().mul(N).neg();if(N.isNegative())return this.mul(N.neg()).neg();if(this.lt(A)&&N.lt(A))return l(this.toNumber()*N.toNumber(),this.unsigned);var B=this.high>>>16,j=this.high&65535,X=this.low>>>16,Y=this.low&65535,ee=N.high>>>16,oe=N.high&65535,se=N.low>>>16,ie=N.low&65535,ne=0,de=0,he=0,ge=0;return ge+=Y*ie,he+=ge>>>16,ge&=65535,he+=X*ie,de+=he>>>16,he&=65535,he+=Y*se,de+=he>>>16,he&=65535,de+=j*ie,ne+=de>>>16,de&=65535,de+=X*se,ne+=de>>>16,de&=65535,de+=Y*oe,ne+=de>>>16,de&=65535,ne+=B*ie+j*se+X*oe+Y*ee,ne&=65535,u(he<<16|ge,ne<<16|de,this.unsigned)},$.mul=$.multiply,$.divide=function(N){if(s(N)||(N=h(N)),N.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&N.low===-1&&N.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,N.low,N.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var B,j,X;if(this.unsigned){if(N.unsigned||(N=N.toUnsigned()),N.gt(this))return b;if(N.gt(this.shru(1)))return w;X=b}else{if(this.eq(F)){if(N.eq(v)||N.eq(S))return F;if(N.eq(F))return v;var Y=this.shr(1);return B=Y.div(N).shl(1),B.eq(x)?N.isNegative()?v:S:(j=this.sub(N.mul(B)),X=B.add(j.div(N)),X)}else if(N.eq(F))return this.unsigned?b:x;if(this.isNegative())return N.isNegative()?this.neg().div(N.neg()):this.neg().div(N).neg();if(N.isNegative())return this.div(N.neg()).neg();X=x}for(j=this;j.gte(N);){B=Math.max(1,Math.floor(j.toNumber()/N.toNumber()));for(var ee=Math.ceil(Math.log(B)/Math.LN2),oe=ee<=48?1:c(2,ee-48),se=l(B),ie=se.mul(N);ie.isNegative()||ie.gt(j);)B-=oe,se=l(B,this.unsigned),ie=se.mul(N);se.isZero()&&(se=v),X=X.add(se),j=j.sub(ie)}return X},$.div=$.divide,$.modulo=function(N){if(s(N)||(N=h(N)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,N.low,N.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(N).mul(N))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(N){return s(N)||(N=h(N)),u(this.low&N.low,this.high&N.high,this.unsigned)},$.or=function(N){return s(N)||(N=h(N)),u(this.low|N.low,this.high|N.high,this.unsigned)},$.xor=function(N){return s(N)||(N=h(N)),u(this.low^N.low,this.high^N.high,this.unsigned)},$.shiftLeft=function(N){return s(N)&&(N=N.toInt()),(N&=63)===0?this:N<32?u(this.low<>>32-N,this.unsigned):u(0,this.low<>>N|this.high<<32-N,this.high>>N,this.unsigned):u(this.high>>N-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(N){if(s(N)&&(N=N.toInt()),N&=63,N===0)return this;var P=this.high;if(N<32){var B=this.low;return u(B>>>N|P<<32-N,P>>>N,this.unsigned)}else return N===32?u(P,0,this.unsigned):u(P>>>N-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(N){return N?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var N=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,N&255,N>>>8&255,N>>>16&255,N>>>24]},$.toBytesBE=function(){var N=this.high,P=this.low;return[N>>>24,N>>>16&255,N>>>8&255,N&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},r.fromBytes=function(N,P,B){return B?r.fromBytesLE(N,P):r.fromBytesBE(N,P)},r.fromBytesLE=function(N,P){return new r(N[0]|N[1]<<8|N[2]<<16|N[3]<<24,N[4]|N[5]<<8|N[6]<<16|N[7]<<24,P)},r.fromBytesBE=function(N,P){return new r(N[4]<<24|N[5]<<16|N[6]<<8|N[7],N[0]<<24|N[1]<<16|N[2]<<8|N[3],P)}}}),z3=Ot({"(disabled):node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js"(){}}),uR=Ot({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=d.toString();for(var h=0;h>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cR=Ot({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dR=Ot({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),hR=Ot({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pR=Ot({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,y,A=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,p=A[g&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(A[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],p=A[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,A[m]=f^p;d.w=y,d.X=A,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fR=Ot({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),L3=Ot({"(disabled):crypto"(){}}),mR=Ot({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r){var s=this,a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,h=a-1,p;function f(v,w,S){var I=[];w=w==!0?{entropy:!0}:w||{};var E=A(y(w.entropy?[v,b(n)]:v==null?x():v,3),I),F=new m(I),$=function(){for(var _=F.g(o),N=u,P=0;_=d;)_/=2,N/=2,P>>>=1;return(_+P)/N};return $.int32=function(){return F.g(4)|0},$.quick=function(){return F.g(4)/4294967296},$.double=$,A(b(F.S),n),(w.pass||S||function(_,N,P,B){return B&&(B.S&&g(B,F),_.state=function(){return g(F,{})}),P?(r[l]=_,N):_})($,E,"global"in w?w.global:this==r,w.state)}r["seed"+l]=f;function m(v){var w,S=v.length,I=this,E=0,F=I.i=I.j=0,$=I.S=[];for(S||(v=[S++]);E>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),yR=Ot({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),AR=Ot({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),xR=Ot({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),bR=Ot({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,y,A=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,p=A[g&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(A[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],p=A[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,A[m]=f^p;d.w=y,d.X=A,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),vR=Ot({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),wR=Ot({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r,s){var a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,h=a-1,p;function f(v,w,S){var I=[];w=w==!0?{entropy:!0}:w||{};var E=A(y(w.entropy?[v,b(r)]:v==null?x():v,3),I),F=new m(I),$=function(){for(var _=F.g(o),N=u,P=0;_=d;)_/=2,N/=2,P>>>=1;return(_+P)/N};return $.int32=function(){return F.g(4)|0},$.quick=function(){return F.g(4)/4294967296},$.double=$,A(b(F.S),r),(w.pass||S||function(_,N,P,B){return B&&(B.S&&g(B,F),_.state=function(){return g(F,{})}),P?(s[l]=_,N):_})($,E,"global"in w?w.global:this==s,w.state)}function m(v){var w,S=v.length,I=this,E=0,F=I.i=I.j=0,$=I.S=[];for(S||(v=[S++]);E1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(C){if(!(C instanceof Gu))throw C}),process.on("unhandledRejection",Gs),y=function(C){process.exit(C)},c.inspect=function(){return"[Emscripten Module object]"};var B;try{B=IR()}catch(C){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),C}global.Worker=B.Worker}else v?(typeof read!="undefined"&&(E=function(D){return read(D)}),$=function(D){var W;return typeof readbuffer=="function"?new Uint8Array(readbuffer(D)):(W=read(D,"binary"),be(typeof W=="object"),W)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(C){quit(C)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof r!="undefined"&&r&&(S=r),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?(E=function(D,W){return N||(N=co("fs")),P||(P=ju()),D=P.normalize(D),N.readFileSync(D,W?null:"utf8")},$=function(D){var W=E(D,!0);return W.buffer||(W=new Uint8Array(W)),be(W.buffer),W}):(E=function(C){var D=new XMLHttpRequest;return D.open("GET",C,!1),D.send(null),D.responseText},x&&($=function(C){var D=new XMLHttpRequest;return D.open("GET",C,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),F=function(C,D,W){var Q=new XMLHttpRequest;Q.open("GET",C,!0),Q.responseType="arraybuffer",Q.onload=function(){if(Q.status==200||Q.status==0&&Q.response){D(Q.response);return}W()},Q.onerror=W,Q.send(null)}),_=function(C){document.title=C});b&&typeof performance=="undefined"&&(global.performance=SR().performance);var j=c.print||console.log.bind(console),X=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(y=c.quit);var Y=Atomics.load,ee=Atomics.store,oe=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var ie=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Gs("no native wasm support detected");var ne,de,he=!1,ge;function be(C,D){C||Gs("Assertion failed: "+D)}function Ee(C){var D=c["_"+C];return be(D,"Cannot call unknown function "+C+", make sure it is exported"),D}function $e(C,D,W,Q,xe){var ye={string:function(Dn){var Mi=0;if(Dn!=null&&Dn!==0){var $3=(Dn.length<<2)+1;Mi=Ri($3),ft(Dn,Mi,$3)}return Mi},array:function(Dn){var Mi=Ri(Dn.length);return dt(Dn,Mi),Mi}};function Ae(Dn){return D==="string"?We(Dn):D==="boolean"?Boolean(Dn):Dn}var Se=Ee(C),gt=[],pn=0;if(Q)for(var sn=0;sn=Q);){var ye=C[D++];if(!ye)return xe;if(!(ye&128)){xe+=String.fromCharCode(ye);continue}var Ae=C[D++]&63;if((ye&224)==192){xe+=String.fromCharCode((ye&31)<<6|Ae);continue}var Se=C[D++]&63;if((ye&240)==224?ye=(ye&15)<<12|Ae<<6|Se:ye=(ye&7)<<18|Ae<<12|Se<<6|C[D++]&63,ye<65536)xe+=String.fromCharCode(ye);else{var gt=ye-65536;xe+=String.fromCharCode(55296|gt>>10,56320|gt&1023)}}return xe}function We(C,D){return C?qe(o(),C,D):""}function vt(C,D,W,Q){if(!(Q>0))return 0;for(var xe=W,ye=W+Q-1,Ae=0;Ae=55296&&Se<=57343){var gt=C.charCodeAt(++Ae);Se=65536+((Se&1023)<<10)|gt&1023}if(Se<=127){if(W>=ye)break;D[W++]=Se}else if(Se<=2047){if(W+1>=ye)break;D[W++]=192|Se>>6,D[W++]=128|Se&63}else if(Se<=65535){if(W+2>=ye)break;D[W++]=224|Se>>12,D[W++]=128|Se>>6&63,D[W++]=128|Se&63}else{if(W+3>=ye)break;D[W++]=240|Se>>18,D[W++]=128|Se>>12&63,D[W++]=128|Se>>6&63,D[W++]=128|Se&63}}return D[W]=0,W-xe}function ft(C,D,W){return vt(C,o(),D,W)}function mt(C){for(var D=0,W=0;W=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|C.charCodeAt(++W)&1023),Q<=127?++D:Q<=2047?D+=2:Q<=65535?D+=3:D+=4}return D}function dt(C,D){a().set(C,D)}function bt(C,D){return C%D>0&&(C+=D-C%D),C}var Je,jn,Wt,ar,vn,Vr,Rn,br,vr;function wn(C){Je=C,c.HEAP8=jn=new Int8Array(C),c.HEAP16=ar=new Int16Array(C),c.HEAP32=Vr=new Int32Array(C),c.HEAPU8=Wt=new Uint8Array(C),c.HEAPU16=vn=new Uint16Array(C),c.HEAPU32=Rn=new Uint32Array(C),c.HEAPF32=br=new Float32Array(C),c.HEAPF64=vr=new Float64Array(C)}var wr=c.INITIAL_MEMORY||16777216;if(w)ne=c.wasmMemory,Je=c.buffer;else if(c.wasmMemory)ne=c.wasmMemory;else if(ne=new WebAssembly.Memory({initial:wr/65536,maximum:2147483648/65536,shared:!0}),!(ne.buffer instanceof SharedArrayBuffer))throw X("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ne&&(Je=ne.buffer),wr=Je.byteLength,wn(Je);var kr,or=[],ws=[],Us=[],Aa=[],Si=[],ks=!1,_h=!1;w||ws.push({func:function(){jh()}});function E0(){if(!w){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Dh(c.preRun.shift());Ni(or)}}function Mu(){ks=!0,!w&&Ni(ws)}function $0(){w||Ni(Us)}function Rh(){w||(_h=!0)}function qn(){if(!w){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)_0(c.postRun.shift());Ni(Si)}}function Dh(C){or.unshift(C)}function _0(C){Si.unshift(C)}var Hs=0,xa=null,io=null;function R0(C){be(!w,"addRunDependency cannot be used in a pthread worker"),Hs++,c.monitorRunDependencies&&c.monitorRunDependencies(Hs)}function D0(C){if(Hs--,c.monitorRunDependencies&&c.monitorRunDependencies(Hs),Hs==0&&(xa!==null&&(clearInterval(xa),xa=null),io)){var D=io;io=null,D()}}c.preloadedImages={},c.preloadedAudios={};function Gs(C){c.onAbort&&c.onAbort(C),w&&console.error("Pthread aborting at "+new Error().stack),C+="",X(C),he=!0,ge=1,C="abort("+C+"). Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(C);throw h(D),D}function Fh(C,D){return String.prototype.startsWith?C.startsWith(D):C.indexOf(D)===0}var Ti="data:application/octet-stream;base64,";function Mh(C){return Fh(C,Ti)}var F0="file://";function Oh(C){return Fh(C,F0)}var Kn="tfjs-backend-wasm-threaded-simd.wasm";Mh(Kn)||(Kn=I(Kn));function Ph(C){try{if(C==Kn&&se)return new Uint8Array(se);if($)return $(C);throw"both async and sync fetching of the wasm failed"}catch(D){Gs(D)}}function M0(){if(!se&&(A||x)){if(typeof fetch=="function"&&!Oh(Kn))return fetch(Kn,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+Kn+"'";return C.arrayBuffer()}).catch(function(){return Ph(Kn)});if(F)return new Promise(function(C,D){F(Kn,function(W){C(new Uint8Array(W))},D)})}return Promise.resolve().then(function(){return Ph(Kn)})}function O0(){var C={a:Tg};function D(Ae,Se){var gt=Ae.exports;if(c.asm=gt,kr=c.asm.F,de=Se,!w){var pn=Ce.unusedWorkers.length;Ce.unusedWorkers.forEach(function(sn){Ce.loadWasmModuleToWorker(sn,function(){--pn||D0("wasm-instantiate")})})}}w||R0("wasm-instantiate");function W(Ae){D(Ae.instance,Ae.module)}function Q(Ae){return M0().then(function(Se){return WebAssembly.instantiate(Se,C)}).then(Ae,function(Se){X("failed to asynchronously prepare wasm: "+Se),Gs(Se)})}function xe(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!Mh(Kn)&&!Oh(Kn)&&typeof fetch=="function"?fetch(Kn,{credentials:"same-origin"}).then(function(Ae){var Se=WebAssembly.instantiateStreaming(Ae,C);return Se.then(W,function(gt){return X("wasm streaming compile failed: "+gt),X("falling back to ArrayBuffer instantiation"),Q(W)})}):Q(W)}if(c.instantiateWasm)try{var ye=c.instantiateWasm(C,D);return ye}catch(Ae){return X("Module.instantiateWasm callback failed with error: "+Ae),!1}return xe().catch(h),{}}var P0={9816:function(){throw"Canceled!"},9834:function(C,D){setTimeout(function(){I3(C,D)},0)}};function zh(){Ce.initRuntime()}function Ni(C){for(;C.length>0;){var D=C.shift();if(typeof D=="function"){D(c);continue}var W=D.func;typeof W=="number"?D.arg===void 0?kr.get(W)():kr.get(W)(D.arg):W(D.arg===void 0?null:D.arg)}}function Ou(C,D){if(C<=0||C>a().length||C&!0||D<0)return-28;if(D==0)return 0;D>=2147483647&&(D=Infinity);var W=Atomics.load(i(),Di>>2),Q=0;if(W==C){var xe=Atomics.compareExchange(i(),Di>>2,W,0);if(xe==W&&(--D,Q=1,D<=0))return 1}var ye=Atomics.notify(i(),C>>2,D);if(ye>=0)return ye+Q;throw"Atomics.notify returned an unexpected value "+ye}c._emscripten_futex_wake=Ou;function z0(C){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in killThread!";i()[C+12>>2]=0;var D=Ce.pthreads[C];D.worker.terminate(),Ce.freeThreadData(D),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function L0(C){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cancelThread!";var D=Ce.pthreads[C];D.worker.postMessage({cmd:"cancel"})}function B0(C){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cleanupThread!";var D=Ce.pthreads[C];if(D){i()[C+12>>2]=0;var W=D.worker;Ce.returnWorkerToPool(W)}}var Ce={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var C=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),D=0;D>2]=C;var W=C+152;i()[W>>2]=W;for(var Q=uo(512),D=0;D<128;++D)l()[Q/4+D]=0;Atomics.store(l(),C+100>>2,Q),Atomics.store(l(),C+40>>2,C),Yg(C,!x,1),k3(C)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ce.threadExitHandlers.length>0;)Ce.threadExitHandlers.pop()();w&&$i()&&w3()},runExitHandlersAndDeinitThread:function(C,D){Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),Ce.runExitHandlers(),Atomics.store(l(),C+4>>2,D),Atomics.store(l(),C+0>>2,1),Ou(C+0,2147483647),Yg(0,0,0)},threadExit:function(C){var D=$i();D&&(Ce.runExitHandlersAndDeinitThread(D,C),w&&postMessage({cmd:"exit"}))},threadCancel:function(){Ce.runExitHandlersAndDeinitThread($i(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var C in Ce.pthreads){var D=Ce.pthreads[C];D&&D.worker&&Ce.returnWorkerToPool(D.worker)}Ce.pthreads={};for(var W=0;W>2];i()[C.threadInfoStruct+100>>2]=0,Uu(D),Uu(C.threadInfoStruct)}C.threadInfoStruct=0,C.allocatedOwnStack&&C.stackBase&&Uu(C.stackBase),C.stackBase=0,C.worker&&(C.worker.pthread=null)}},returnWorkerToPool:function(C){Ce.runWithoutMainThreadQueuedCalls(function(){delete Ce.pthreads[C.pthread.threadInfoStruct],Ce.unusedWorkers.push(C),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf(C),1),Ce.freeThreadData(C.pthread),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){i()[E3>>2]=0;try{C()}finally{i()[E3>>2]=1}},receiveObjectTransfer:function(C){},loadWasmModuleToWorker:function(C,D){C.onmessage=function(W){var Q=W.data,xe=Q.cmd;if(C.pthread&&(Ce.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=$i()){var ye=Ce.pthreads[Q.targetThread];ye?ye.worker.postMessage(W.data,Q.transferList):console.error('Internal error! Worker sent a message "'+xe+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),Ce.currentProxiedOperationCallerThread=void 0;return}if(xe==="processQueuedMainThreadWork")Xg();else if(xe==="spawnThread")Hh(W.data);else if(xe==="cleanupThread")B0(Q.thread);else if(xe==="killThread")z0(Q.thread);else if(xe==="cancelThread")L0(Q.thread);else if(xe==="loaded")C.loaded=!0,D&&D(C),C.runPthread&&(C.runPthread(),delete C.runPthread);else if(xe==="print")j("Thread "+Q.threadId+": "+Q.text);else if(xe==="printErr")X("Thread "+Q.threadId+": "+Q.text);else if(xe==="alert")alert("Thread "+Q.threadId+": "+Q.text);else if(xe==="exit"){var Ae=C.pthread&&Atomics.load(l(),C.pthread.threadInfoStruct+64>>2);Ae&&Ce.returnWorkerToPool(C)}else if(xe==="exitProcess")try{tR(Q.returnCode)}catch(Se){if(Se instanceof Gu)return;throw Se}else xe==="cancelDone"?Ce.returnWorkerToPool(C):xe==="objectTransfer"?Ce.receiveObjectTransfer(W.data):W.data.target==="setimmediate"?C.postMessage(W.data):X("worker sent an unknown command "+xe);Ce.currentProxiedOperationCallerThread=void 0},C.onerror=function(W){X("pthread sent an error! "+W.filename+":"+W.lineno+": "+W.message)},b&&(C.on("message",function(W){C.onmessage({data:W})}),C.on("error",function(W){C.onerror(W)}),C.on("exit",function(W){})),C.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:ne,wasmModule:de})},allocateUnusedWorker:function(){var C=I("tfjs-backend-wasm-threaded-simd.worker.js");Ce.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return Ce.unusedWorkers.length==0&&(Ce.allocateUnusedWorker(),Ce.loadWasmModuleToWorker(Ce.unusedWorkers[0])),Ce.unusedWorkers.length>0?Ce.unusedWorkers.pop():null},busySpinWait:function(C){for(var D=performance.now()+C;performance.now()>2]=C,C}function q0(C,D){if(w)return ba(1,1,C,D)}function K0(C,D){if(C==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var W=Ce.pthreads[C],Q=W&&W.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function X0(){Gs()}function Z0(C,D,W){var Q=tg(D,W);return P0[C].apply(null,Q)}function Y0(C,D){}function J0(C,D,W){if(C<=0||C>a().length||C&!0)return-28;if(A){if(Atomics.load(i(),C>>2)!=D)return-6;for(var xe=performance.now(),ye=xe+W,Ae=Atomics.exchange(i(),Di>>2,C);;){if(xe=performance.now(),xe>ye)return Ae=Atomics.exchange(i(),Di>>2,0),-73;if(Ae=Atomics.exchange(i(),Di>>2,0),Ae==0)break;if(Xg(),Atomics.load(i(),C>>2)!=D)return-6;Ae=Atomics.exchange(i(),Di>>2,C)}return 0}else{var Q=Atomics.wait(i(),C>>2,D,W);if(Q==="timed-out")return-73;if(Q==="not-equal")return-6;if(Q==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Q}}function Q0(C,D,W){o().copyWithin(C,D,D+W)}function eg(){return b?co("os").cpus().length:navigator.hardwareConcurrency}function ba(C,D){for(var W=arguments.length-2,Q=Hu(),xe=W,ye=Ri(xe*8),Ae=ye>>3,Se=0;Se>=2;W=o()[C++];){var Q=W<105;Q&&D&1&&D++,zu.push(Q?u()[D++>>1]:i()[D]),++D}return zu}function ng(C,D,W){Pu.length=D;for(var Q=W>>3,xe=0;xe>>16),wn(ne.buffer),1}catch(D){}}function ag(C){var D=rg();if(C<=D)return!1;var W=2147483648;if(C>W)return!1;for(var Q=1;Q<=4;Q*=2){var xe=D*(1+.2/Q);xe=Math.min(xe,C+100663296);var ye=Math.min(W,bt(Math.max(C,xe),65536)),Ae=sg(ye);if(Ae)return!0}return!1}var Xe={inEventHandler:0,removeAllEventListeners:function(){for(var C=Xe.eventHandlers.length-1;C>=0;--C)Xe._removeHandler(C);Xe.eventHandlers=[],Xe.deferredCalls=[]},registerRemoveEventListeners:function(){Xe.removeEventListenersRegistered||(Aa.push(Xe.removeAllEventListeners),Xe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,D,W){function Q(Ae,Se){if(Ae.length!=Se.length)return!1;for(var gt in Ae)if(Ae[gt]!=Se[gt])return!1;return!0}for(var xe in Xe.deferredCalls){var ye=Xe.deferredCalls[xe];if(ye.targetFunction==C&&Q(ye.argsList,W))return}Xe.deferredCalls.push({targetFunction:C,precedence:D,argsList:W}),Xe.deferredCalls.sort(function(Ae,Se){return Ae.precedence>2]=W,i()[Ae+4>>2]=Q,i()[Ae+8>>2]=xe,Zg(0,C,637534208,D,Q,Ae),_i(ye)},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return Ce.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function og(C){var D=mt(C)+1,W=uo(D);return ft(C,W,D),W}function ig(C,D,W,Q){var xe=Hu(),ye=Ri(12),Ae=0;D&&(Ae=og(D)),i()[ye>>2]=Ae,i()[ye+4>>2]=W,i()[ye+8>>2]=Q,Zg(0,C,657457152,0,Ae,ye),_i(xe)}function lg(C,D,W,Q){D=D?We(D):"",ig(C,D,W,Q)}function ug(C){return C>2?We(C):C}var cg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function dg(C){C=ug(C);var D=cg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return D}function Lu(C){return dg(C)}function Lh(C,D,W){var Q=Lu(C);if(!Q)return-4;if(Q.canvasSharedPtr&&(i()[Q.canvasSharedPtr>>2]=D,i()[Q.canvasSharedPtr+4>>2]=W),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var xe=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var ye=Q.GLctxObject.GLctx.getParameter(2978);xe=ye[0]===0&&ye[1]===0&&ye[2]===Q.width&&ye[3]===Q.height}Q.width=D,Q.height=W,xe&&Q.GLctxObject.GLctx.viewport(0,0,D,W)}else if(Q.canvasSharedPtr){var Ae=i()[Q.canvasSharedPtr+8>>2];return lg(Ae,C,D,W),1}else return-4;return 0}function Bh(C,D,W){return w?ba(2,1,C,D,W):Lh(C,D,W)}function hg(C,D,W){var Q=Lu(C);return Q?Lh(C,D,W):Bh(C,D,W)}function pg(C){}function fg(C,D){}function mg(C){var D=C.getExtension("ANGLE_instanced_arrays");if(D)return C.vertexAttribDivisor=function(W,Q){D.vertexAttribDivisorANGLE(W,Q)},C.drawArraysInstanced=function(W,Q,xe,ye){D.drawArraysInstancedANGLE(W,Q,xe,ye)},C.drawElementsInstanced=function(W,Q,xe,ye,Ae){D.drawElementsInstancedANGLE(W,Q,xe,ye,Ae)},1}function gg(C){var D=C.getExtension("OES_vertex_array_object");if(D)return C.createVertexArray=function(){return D.createVertexArrayOES()},C.deleteVertexArray=function(W){D.deleteVertexArrayOES(W)},C.bindVertexArray=function(W){D.bindVertexArrayOES(W)},C.isVertexArray=function(W){return D.isVertexArrayOES(W)},1}function yg(C){var D=C.getExtension("WEBGL_draw_buffers");if(D)return C.drawBuffers=function(W,Q){D.drawBuffersWEBGL(W,Q)},1}function Ag(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var ht={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(D){ht.lastError||(ht.lastError=D)},getNewId:function(C){for(var D=ht.counter++,W=C.length;W>2]:-1;xe+=We(i()[W+ye*4>>2],Ae<0?void 0:Ae)}return xe},createContext:function(C,D){var W=C.getContext("webgl",D);if(!W)return 0;var Q=ht.registerContext(W,D);return Q},registerContext:function(C,D){var W=uo(8);i()[W+4>>2]=$i();var Q={handle:W,attributes:D,version:D.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=Q),ht.contexts[W]=Q,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&ht.initExtensions(Q),W},makeContextCurrent:function(C){return ht.currentContext=ht.contexts[C],c.ctx=va=ht.currentContext&&ht.currentContext.GLctx,!(C&&!va)},getContext:function(C){return ht.contexts[C]},deleteContext:function(C){ht.currentContext===ht.contexts[C]&&(ht.currentContext=null),typeof Xe=="object"&&Xe.removeAllHandlersOnTarget(ht.contexts[C].GLctx.canvas),ht.contexts[C]&&ht.contexts[C].GLctx.canvas&&(ht.contexts[C].GLctx.canvas.GLctxObject=void 0),Uu(ht.contexts[C].handle),ht.contexts[C]=null},initExtensions:function(C){if(C||(C=ht.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var D=C.GLctx;mg(D),gg(D),yg(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Ag(D);var W=D.getSupportedExtensions()||[];W.forEach(function(Q){Q.indexOf("lose_context")<0&&Q.indexOf("debug")<0&&D.getExtension(Q)})}},populateUniformTable:function(C){for(var D=ht.programs[C],W=ht.programInfos[C]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Q=W.uniforms,xe=va.getProgramParameter(D,35718),ye=0;ye>2,Q=i()[W+(24>>2)],xe={alpha:!!i()[W+(0>>2)],depth:!!i()[W+(4>>2)],stencil:!!i()[W+(8>>2)],antialias:!!i()[W+(12>>2)],premultipliedAlpha:!!i()[W+(16>>2)],preserveDrawingBuffer:!!i()[W+(20>>2)],powerPreference:xg[Q],failIfMajorPerformanceCaveat:!!i()[W+(28>>2)],majorVersion:i()[W+(32>>2)],minorVersion:i()[W+(36>>2)],enableExtensionsByDefault:i()[W+(40>>2)],explicitSwapControl:i()[W+(44>>2)],proxyContextToMainThread:i()[W+(48>>2)],renderViaOffscreenBackBuffer:i()[W+(52>>2)]},ye=Lu(C);if(!ye||xe.explicitSwapControl)return 0;var Ae=ht.createContext(ye,xe);return Ae}function vg(C,D){return bg(C,D)}var Ci={mappings:{},buffers:[null,[],[]],printChar:function(C,D){var W=Ci.buffers[C];D===0||D===10?((C===1?j:X)(qe(W,0)),W.length=0):W.push(D)},varargs:void 0,get:function(){Ci.varargs+=4;var C=i()[Ci.varargs-4>>2];return C},getStr:function(C){var D=We(C);return D},get64:function(C,D){return C}};function Wh(C){return w?ba(3,1,C):0}function Vh(C,D,W,Q,xe){if(w)return ba(4,1,C,D,W,Q,xe)}function Uh(C,D,W,Q){if(w)return ba(5,1,C,D,W,Q);for(var xe=0,ye=0;ye>2],Se=i()[D+(ye*8+4)>>2],gt=0;gt>2]=xe,0}function wg(C){var D=Ce.threadExitHandlers.pop();C&&D()}function kg(C,D){Ce.threadExitHandlers.push(function(){kr.get(C)(D)})}function Hh(C){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var D=Ce.getNewWorker();if(D.pthread!==void 0)throw"Internal error!";if(!C.pthread_ptr)throw"Internal error, no pthread ptr!";Ce.runningWorkers.push(D);for(var W=uo(128*4),Q=0;Q<128;++Q)i()[W+Q*4>>2]=0;var xe=C.stackBase+C.stackSize,ye=Ce.pthreads[C.pthread_ptr]={worker:D,stackBase:C.stackBase,stackSize:C.stackSize,allocatedOwnStack:C.allocatedOwnStack,threadInfoStruct:C.pthread_ptr},Ae=ye.threadInfoStruct>>2;Atomics.store(l(),Ae+(64>>2),C.detached),Atomics.store(l(),Ae+(100>>2),W),Atomics.store(l(),Ae+(40>>2),ye.threadInfoStruct),Atomics.store(l(),Ae+(80>>2),C.stackSize),Atomics.store(l(),Ae+(76>>2),xe),Atomics.store(l(),Ae+(104>>2),C.stackSize),Atomics.store(l(),Ae+(104+8>>2),xe),Atomics.store(l(),Ae+(104+12>>2),C.detached);var Se=v3(),gt=Se+40;Atomics.store(l(),Ae+(172>>2),gt),D.pthread=ye;var pn={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr,stackBase:C.stackBase,stackSize:C.stackSize};D.runPthread=function(){pn.time=performance.now(),D.postMessage(pn,C.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread)}function Ig(C,D,W,Q){if(typeof SharedArrayBuffer=="undefined")return X("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!C)return X("pthread_create called with a null thread pointer!"),28;var xe=[],ye=0;if(w&&(xe.length===0||ye))return S3(687865856,C,D,W,Q);if(ye)return ye;var Ae=0,Se=0,gt=0;D&&D!=-1?(Ae=i()[D>>2],Ae+=81920,Se=i()[D+8>>2],gt=i()[D+12>>2]!==0):Ae=2097152;var pn=Se==0;pn?Se=C3(16,Ae):(Se-=Ae,be(Se>0));for(var sn=uo(228),ka=0;ka<228>>2;++ka)l()[(sn>>2)+ka]=0;i()[C>>2]=sn,i()[sn+12>>2]=sn;var Fi=sn+152;i()[Fi>>2]=Fi;var Dn={stackBase:Se,stackSize:Ae,allocatedOwnStack:pn,detached:gt,startRoutine:W,pthread_ptr:sn,arg:Q,transferList:xe};return w?(Dn.cmd="spawnThread",postMessage(Dn,xe)):Hh(Dn),0}function Gh(C){if(w)return ba(6,1,C);switch(C){case 30:return 16384;case 85:var D=2147483648;return D/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return j0(28),-1}w||Ce.initMainThreadBlock();var va,Sg=[null,q0,Bh,Wh,Vh,Uh,Gh],Tg={e:H0,r:G0,x:K0,b:X0,y:Z0,j:Y0,c:J0,d:Ou,f:lo,p:Q0,z:eg,u:ng,q:ag,v:hg,i:pg,t:fg,w:vg,m:Wh,n:Vh,g:Uh,o:zh,a:ne||c.wasmMemory,k:wg,l:kg,h:Ig,s:Gh},x3=O0(),jh=c.___wasm_call_ctors=function(){return(jh=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},Ng=c._init=function(){return(Ng=c._init=c.asm.B).apply(null,arguments)},Cg=c._register_tensor=function(){return(Cg=c._register_tensor=c.asm.C).apply(null,arguments)},Eg=c._dispose_data=function(){return(Eg=c._dispose_data=c.asm.D).apply(null,arguments)},$g=c._dispose=function(){return($g=c._dispose=c.asm.E).apply(null,arguments)},_g=c._Abs=function(){return(_g=c._Abs=c.asm.G).apply(null,arguments)},Rg=c._Add=function(){return(Rg=c._Add=c.asm.H).apply(null,arguments)},Dg=c._AddN=function(){return(Dg=c._AddN=c.asm.I).apply(null,arguments)},Fg=c._All=function(){return(Fg=c._All=c.asm.J).apply(null,arguments)},Mg=c._Any=function(){return(Mg=c._Any=c.asm.K).apply(null,arguments)},Og=c._ArgMax=function(){return(Og=c._ArgMax=c.asm.L).apply(null,arguments)},Pg=c._AvgPool=function(){return(Pg=c._AvgPool=c.asm.M).apply(null,arguments)},zg=c._BatchMatMul=function(){return(zg=c._BatchMatMul=c.asm.N).apply(null,arguments)},Lg=c._Ceil=function(){return(Lg=c._Ceil=c.asm.O).apply(null,arguments)},Bg=c._ClipByValue=function(){return(Bg=c._ClipByValue=c.asm.P).apply(null,arguments)},Wg=c._Conv2D=function(){return(Wg=c._Conv2D=c.asm.Q).apply(null,arguments)},Vg=c._Conv2DBackpropInput=function(){return(Vg=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},Ug=c._Cos=function(){return(Ug=c._Cos=c.asm.S).apply(null,arguments)},Hg=c._CropAndResize=function(){return(Hg=c._CropAndResize=c.asm.T).apply(null,arguments)},Gg=c._Cumsum=function(){return(Gg=c._Cumsum=c.asm.U).apply(null,arguments)},jg=c._DepthToSpace=function(){return(jg=c._DepthToSpace=c.asm.V).apply(null,arguments)},qg=c._DepthwiseConv2dNative=function(){return(qg=c._DepthwiseConv2dNative=c.asm.W).apply(null,arguments)},qh=c._Equal=function(){return(qh=c._Equal=c.asm.X).apply(null,arguments)},Kh=c._Exp=function(){return(Kh=c._Exp=c.asm.Y).apply(null,arguments)},Xh=c._FlipLeftRight=function(){return(Xh=c._FlipLeftRight=c.asm.Z).apply(null,arguments)},Bu=c._Floor=function(){return(Bu=c._Floor=c.asm._).apply(null,arguments)},Ei=c._FloorDiv=function(){return(Ei=c._FloorDiv=c.asm.$).apply(null,arguments)},Kg=c._FusedBatchNorm=function(){return(Kg=c._FusedBatchNorm=c.asm.aa).apply(null,arguments)},Wu=c._FusedConv2D=function(){return(Wu=c._FusedConv2D=c.asm.ba).apply(null,arguments)},te=c._FusedDepthwiseConv2D=function(){return(te=c._FusedDepthwiseConv2D=c.asm.ca).apply(null,arguments)},le=c._Gather=function(){return(le=c._Gather=c.asm.da).apply(null,arguments)},we=c._GatherNd=function(){return(we=c._GatherNd=c.asm.ea).apply(null,arguments)},lt=c._Greater=function(){return(lt=c._Greater=c.asm.fa).apply(null,arguments)},Gt=c._GreaterEqual=function(){return(Gt=c._GreaterEqual=c.asm.ga).apply(null,arguments)},Mt=c._LeakyRelu=function(){return(Mt=c._LeakyRelu=c.asm.ha).apply(null,arguments)},et=c._Less=function(){return(et=c._Less=c.asm.ia).apply(null,arguments)},tt=c._LessEqual=function(){return(tt=c._LessEqual=c.asm.ja).apply(null,arguments)},kn=c._Log=function(){return(kn=c._Log=c.asm.ka).apply(null,arguments)},js=c._LogicalAnd=function(){return(js=c._LogicalAnd=c.asm.la).apply(null,arguments)},qs=c._Max=function(){return(qs=c._Max=c.asm.ma).apply(null,arguments)},Zh=c._MaxPool=function(){return(Zh=c._MaxPool=c.asm.na).apply(null,arguments)},Vu=c._Maximum=function(){return(Vu=c._Maximum=c.asm.oa).apply(null,arguments)},ir=c._Mean=function(){return(ir=c._Mean=c.asm.pa).apply(null,arguments)},wa=c._Min=function(){return(wa=c._Min=c.asm.qa).apply(null,arguments)},Yh=c._Minimum=function(){return(Yh=c._Minimum=c.asm.ra).apply(null,arguments)},f_=c._MirrorPad=function(){return(f_=c._MirrorPad=c.asm.sa).apply(null,arguments)},m_=c._Multiply=function(){return(m_=c._Multiply=c.asm.ta).apply(null,arguments)},g_=c._Neg=function(){return(g_=c._Neg=c.asm.ua).apply(null,arguments)},y_=c._NonMaxSuppressionV3=function(){return(y_=c._NonMaxSuppressionV3=c.asm.va).apply(null,arguments)},A_=c._NonMaxSuppressionV4=function(){return(A_=c._NonMaxSuppressionV4=c.asm.wa).apply(null,arguments)},x_=c._NonMaxSuppressionV5=function(){return(x_=c._NonMaxSuppressionV5=c.asm.xa).apply(null,arguments)},b_=c._NotEqual=function(){return(b_=c._NotEqual=c.asm.ya).apply(null,arguments)},v_=c._OneHot=function(){return(v_=c._OneHot=c.asm.za).apply(null,arguments)},w_=c._PadV2=function(){return(w_=c._PadV2=c.asm.Aa).apply(null,arguments)},k_=c._Pow=function(){return(k_=c._Pow=c.asm.Ba).apply(null,arguments)},I_=c._Prelu=function(){return(I_=c._Prelu=c.asm.Ca).apply(null,arguments)},S_=c._Prod=function(){return(S_=c._Prod=c.asm.Da).apply(null,arguments)},T_=c._RealDiv=function(){return(T_=c._RealDiv=c.asm.Ea).apply(null,arguments)},N_=c._Relu=function(){return(N_=c._Relu=c.asm.Fa).apply(null,arguments)},C_=c._Relu6=function(){return(C_=c._Relu6=c.asm.Ga).apply(null,arguments)},E_=c._ResizeBilinear=function(){return(E_=c._ResizeBilinear=c.asm.Ha).apply(null,arguments)},$_=c._Reverse=function(){return($_=c._Reverse=c.asm.Ia).apply(null,arguments)},__=c._RotateWithOffset=function(){return(__=c._RotateWithOffset=c.asm.Ja).apply(null,arguments)},R_=c._Round=function(){return(R_=c._Round=c.asm.Ka).apply(null,arguments)},D_=c._Rsqrt=function(){return(D_=c._Rsqrt=c.asm.La).apply(null,arguments)},F_=c._ScatterNd=function(){return(F_=c._ScatterNd=c.asm.Ma).apply(null,arguments)},M_=c._SelectV2=function(){return(M_=c._SelectV2=c.asm.Na).apply(null,arguments)},O_=c._Sigmoid=function(){return(O_=c._Sigmoid=c.asm.Oa).apply(null,arguments)},P_=c._Sin=function(){return(P_=c._Sin=c.asm.Pa).apply(null,arguments)},z_=c._Softmax=function(){return(z_=c._Softmax=c.asm.Qa).apply(null,arguments)},L_=c._Sqrt=function(){return(L_=c._Sqrt=c.asm.Ra).apply(null,arguments)},B_=c._Square=function(){return(B_=c._Square=c.asm.Sa).apply(null,arguments)},W_=c._SquaredDifference=function(){return(W_=c._SquaredDifference=c.asm.Ta).apply(null,arguments)},V_=c._Step=function(){return(V_=c._Step=c.asm.Ua).apply(null,arguments)},U_=c._StridedSlice=function(){return(U_=c._StridedSlice=c.asm.Va).apply(null,arguments)},H_=c._Sub=function(){return(H_=c._Sub=c.asm.Wa).apply(null,arguments)},G_=c._Sum=function(){return(G_=c._Sum=c.asm.Xa).apply(null,arguments)},j_=c._Tan=function(){return(j_=c._Tan=c.asm.Ya).apply(null,arguments)},q_=c._Tanh=function(){return(q_=c._Tanh=c.asm.Za).apply(null,arguments)},K_=c._Tile=function(){return(K_=c._Tile=c.asm._a).apply(null,arguments)},X_=c._TopK=function(){return(X_=c._TopK=c.asm.$a).apply(null,arguments)},Z_=c._Transform=function(){return(Z_=c._Transform=c.asm.ab).apply(null,arguments)},Y_=c._Transpose=function(){return(Y_=c._Transpose=c.asm.bb).apply(null,arguments)},J_=c.__FusedMatMul=function(){return(J_=c.__FusedMatMul=c.asm.cb).apply(null,arguments)},uo=c._malloc=function(){return(uo=c._malloc=c.asm.db).apply(null,arguments)},Uu=c._free=function(){return(Uu=c._free=c.asm.eb).apply(null,arguments)},b3=c.___errno_location=function(){return(b3=c.___errno_location=c.asm.fb).apply(null,arguments)},v3=c._emscripten_get_global_libc=function(){return(v3=c._emscripten_get_global_libc=c.asm.gb).apply(null,arguments)},$i=c._pthread_self=function(){return($i=c._pthread_self=c.asm.hb).apply(null,arguments)},w3=c.___pthread_tsd_run_dtors=function(){return(w3=c.___pthread_tsd_run_dtors=c.asm.ib).apply(null,arguments)},Xg=c._emscripten_main_thread_process_queued_calls=function(){return(Xg=c._emscripten_main_thread_process_queued_calls=c.asm.jb).apply(null,arguments)},Q_=c._emscripten_current_thread_process_queued_calls=function(){return(Q_=c._emscripten_current_thread_process_queued_calls=c.asm.kb).apply(null,arguments)},k3=c._emscripten_register_main_browser_thread_id=function(){return(k3=c._emscripten_register_main_browser_thread_id=c.asm.lb).apply(null,arguments)},I3=c.__emscripten_do_dispatch_to_thread=function(){return(I3=c.__emscripten_do_dispatch_to_thread=c.asm.mb).apply(null,arguments)},S3=c._emscripten_sync_run_in_main_thread_4=function(){return(S3=c._emscripten_sync_run_in_main_thread_4=c.asm.nb).apply(null,arguments)},T3=c._emscripten_run_in_main_runtime_thread_js=function(){return(T3=c._emscripten_run_in_main_runtime_thread_js=c.asm.ob).apply(null,arguments)},Zg=c.__emscripten_call_on_thread=function(){return(Zg=c.__emscripten_call_on_thread=c.asm.pb).apply(null,arguments)},eR=c._emscripten_tls_init=function(){return(eR=c._emscripten_tls_init=c.asm.qb).apply(null,arguments)},Yg=c.__emscripten_thread_init=function(){return(Yg=c.__emscripten_thread_init=c.asm.rb).apply(null,arguments)},Hu=c.stackSave=function(){return(Hu=c.stackSave=c.asm.sb).apply(null,arguments)},_i=c.stackRestore=function(){return(_i=c.stackRestore=c.asm.tb).apply(null,arguments)},Ri=c.stackAlloc=function(){return(Ri=c.stackAlloc=c.asm.ub).apply(null,arguments)},N3=c._emscripten_stack_set_limits=function(){return(N3=c._emscripten_stack_set_limits=c.asm.vb).apply(null,arguments)},C3=c._memalign=function(){return(C3=c._memalign=c.asm.wb).apply(null,arguments)},E3=c.__emscripten_allow_main_runtime_queued_calls=9808,Di=c.__emscripten_main_thread_futex=11432;c.cwrap=ze,c.PThread=Ce,c.PThread=Ce,c.wasmMemory=ne,c.ExitStatus=Gu;var Jh;function Gu(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}io=function C(){Jh||Jg(),Jh||(io=C)};function Jg(C){if(C=C||m,Hs>0)return;if(w){d(c),Mu(),postMessage({cmd:"loaded"});return}if(E0(),Hs>0)return;function D(){Jh||(Jh=!0,c.calledRun=!0,!he&&(Mu(),$0(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),qn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=Jg;function tR(C,D){if(!(D&&ie&&C===0)){if(!D&&w)throw postMessage({cmd:"exitProcess",returnCode:C}),new Gu(C);ie||(Ce.terminateAllThreads(),ge=C,Rh(),c.onExit&&c.onExit(C),he=!0),y(C,new Gu(C))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return w&&(ie=!1,Ce.initWorker()),Jg(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),NR=Ot({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};var a=typeof s!="undefined"?s:{},o,i;a.ready=new Promise(function(te,le){o=te,i=le});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",h=function(te,le){throw le},p=!1,f=!1,m=!1,g=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!p&&!m&&!f;var y="";function A(te){return a.locateFile?a.locateFile(te,y):y+te}var x,b,v,w,S,I;m?(f?y=ju().dirname(y)+"/":y=__dirname+"/",x=function(le,we){return S||(S=co("fs")),I||(I=ju()),le=I.normalize(le),S.readFileSync(le,we?null:"utf8")},v=function(le){var we=x(le,!0);return we.buffer||(we=new Uint8Array(we)),j(we.buffer),we},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(te){if(!(te instanceof Kg))throw te}),process.on("unhandledRejection",ks),h=function(te){process.exit(te)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(le){return read(le)}),v=function(le){var we;return typeof readbuffer=="function"?new Uint8Array(readbuffer(le)):(we=read(le,"binary"),j(typeof we=="object"),we)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(h=function(te){quit(te)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(te){var le=new XMLHttpRequest;return le.open("GET",te,!1),le.send(null),le.responseText},f&&(v=function(te){var le=new XMLHttpRequest;return le.open("GET",te,!1),le.responseType="arraybuffer",le.send(null),new Uint8Array(le.response)}),b=function(te,le,we){var lt=new XMLHttpRequest;lt.open("GET",te,!0),lt.responseType="arraybuffer",lt.onload=function(){if(lt.status==200||lt.status==0&<.response){le(lt.response);return}we()},lt.onerror=we,lt.send(null)},w=function(te){document.title=te});var E=a.print||console.log.bind(console),F=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(h=a.quit);var $;a.wasmBinary&&($=a.wasmBinary);var _=a.noExitRuntime||!0;typeof WebAssembly!="object"&&ks("no native wasm support detected");var N,P=!1,B;function j(te,le){te||ks("Assertion failed: "+le)}function X(te){var le=a["_"+te];return j(le,"Cannot call unknown function "+te+", make sure it is exported"),le}function Y(te,le,we,lt,Gt){var Mt={string:function(ir){var wa=0;if(ir!=null&&ir!==0){var Yh=(ir.length<<2)+1;wa=Bu(Yh),de(ir,wa,Yh)}return wa},array:function(ir){var wa=Bu(ir.length);return he(ir,wa),wa}};function et(ir){return le==="string"?ie(ir):le==="boolean"?Boolean(ir):ir}var tt=X(te),kn=[],js=0;if(lt)for(var qs=0;qs=lt);)++Gt;if(Gt-le>16&&te.subarray&&oe)return oe.decode(te.subarray(le,Gt));for(var Mt="";le>10,56320|js&1023)}}return Mt}function ie(te,le){return te?se($e,te,le):""}function ne(te,le,we,lt){if(!(lt>0))return 0;for(var Gt=we,Mt=we+lt-1,et=0;et=55296&&tt<=57343){var kn=te.charCodeAt(++et);tt=65536+((tt&1023)<<10)|kn&1023}if(tt<=127){if(we>=Mt)break;le[we++]=tt}else if(tt<=2047){if(we+1>=Mt)break;le[we++]=192|tt>>6,le[we++]=128|tt&63}else if(tt<=65535){if(we+2>=Mt)break;le[we++]=224|tt>>12,le[we++]=128|tt>>6&63,le[we++]=128|tt&63}else{if(we+3>=Mt)break;le[we++]=240|tt>>18,le[we++]=128|tt>>12&63,le[we++]=128|tt>>6&63,le[we++]=128|tt&63}}return le[we]=0,we-Gt}function de(te,le,we){return ne(te,$e,le,we)}function he(te,le){Ee.set(te,le)}function ge(te,le){return te%le>0&&(te+=le-te%le),te}var be,Ee,$e,ze,qe,We,vt,ft,mt;function dt(te){be=te,a.HEAP8=Ee=new Int8Array(te),a.HEAP16=ze=new Int16Array(te),a.HEAP32=We=new Int32Array(te),a.HEAPU8=$e=new Uint8Array(te),a.HEAPU16=qe=new Uint16Array(te),a.HEAPU32=vt=new Uint32Array(te),a.HEAPF32=ft=new Float32Array(te),a.HEAPF64=mt=new Float64Array(te)}var bt=a.INITIAL_MEMORY||16777216,Je,jn=[],Wt=[],ar=[],vn=[],Vr=!1;Wt.push({func:function(){zh()}});function Rn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)wr(a.preRun.shift());xa(jn)}function br(){Vr=!0,xa(Wt)}function vr(){xa(ar)}function wn(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)kr(a.postRun.shift());xa(vn)}function wr(te){jn.unshift(te)}function kr(te){vn.unshift(te)}var or=0,ws=null,Us=null;function Aa(te){or++,a.monitorRunDependencies&&a.monitorRunDependencies(or)}function Si(te){if(or--,a.monitorRunDependencies&&a.monitorRunDependencies(or),or==0&&(ws!==null&&(clearInterval(ws),ws=null),Us)){var le=Us;Us=null,le()}}a.preloadedImages={},a.preloadedAudios={};function ks(te){a.onAbort&&a.onAbort(te),te+="",F(te),P=!0,B=1,te="abort("+te+"). Build with -s ASSERTIONS=1 for more info.";var le=new WebAssembly.RuntimeError(te);throw i(le),le}function _h(te,le){return String.prototype.startsWith?te.startsWith(le):te.indexOf(le)===0}var E0="data:application/octet-stream;base64,";function Mu(te){return _h(te,E0)}var $0="file://";function Rh(te){return _h(te,$0)}var qn="tfjs-backend-wasm.wasm";Mu(qn)||(qn=A(qn));function Dh(te){try{if(te==qn&&$)return new Uint8Array($);if(v)return v(te);throw"both async and sync fetching of the wasm failed"}catch(le){ks(le)}}function _0(){if(!$&&(p||f)){if(typeof fetch=="function"&&!Rh(qn))return fetch(qn,{credentials:"same-origin"}).then(function(te){if(!te.ok)throw"failed to load wasm binary file at '"+qn+"'";return te.arrayBuffer()}).catch(function(){return Dh(qn)});if(b)return new Promise(function(te,le){b(qn,function(we){te(new Uint8Array(we))},le)})}return Promise.resolve().then(function(){return Dh(qn)})}function Hs(){var te={a:O0};function le(et,tt){var kn=et.exports;a.asm=kn,N=a.asm.i,dt(N.buffer),Je=a.asm.o,Si("wasm-instantiate")}Aa("wasm-instantiate");function we(et){le(et.instance)}function lt(et){return _0().then(function(tt){return WebAssembly.instantiate(tt,te)}).then(et,function(tt){F("failed to asynchronously prepare wasm: "+tt),ks(tt)})}function Gt(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!Mu(qn)&&!Rh(qn)&&typeof fetch=="function"?fetch(qn,{credentials:"same-origin"}).then(function(et){var tt=WebAssembly.instantiateStreaming(et,te);return tt.then(we,function(kn){return F("wasm streaming compile failed: "+kn),F("falling back to ArrayBuffer instantiation"),lt(we)})}):lt(we)}if(a.instantiateWasm)try{var Mt=a.instantiateWasm(te,le);return Mt}catch(et){return F("Module.instantiateWasm callback failed with error: "+et),!1}return Gt().catch(i),{}}function xa(te){for(;te.length>0;){var le=te.shift();if(typeof le=="function"){le(a);continue}var we=le.func;typeof we=="number"?le.arg===void 0?Je.get(we)():Je.get(we)(le.arg):we(le.arg===void 0?null:le.arg)}}function io(){ks()}function R0(te,le,we){$e.copyWithin(te,le,le+we)}function D0(){return $e.length}function Gs(te){try{return N.grow(te-be.byteLength+65535>>>16),dt(N.buffer),1}catch(le){}}function Fh(te){var le=D0(),we=2147483648;if(te>we)return!1;for(var lt=1;lt<=4;lt*=2){var Gt=le*(1+.2/lt);Gt=Math.min(Gt,te+100663296);var Mt=Math.min(we,ge(Math.max(te,Gt),65536)),et=Gs(Mt);if(et)return!0}return!1}var Ti={mappings:{},buffers:[null,[],[]],printChar:function(te,le){var we=Ti.buffers[te];le===0||le===10?((te===1?E:F)(se(we,0)),we.length=0):we.push(le)},varargs:void 0,get:function(){Ti.varargs+=4;var te=We[Ti.varargs-4>>2];return te},getStr:function(te){var le=ie(te);return le},get64:function(te,le){return te}};function Mh(te){return 0}function F0(te,le,we,lt,Gt){}function Oh(te,le,we,lt){for(var Gt=0,Mt=0;Mt>2],tt=We[le+(Mt*8+4)>>2],kn=0;kn>2]=Gt,0}function Kn(){return 6}function Ph(te){return We[qh()>>2]=te,te}function M0(te){switch(te){case 30:return 16384;case 85:var le=2147483648;return le/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ph(28),-1}var O0={a:io,d:R0,e:Fh,f:Mh,c:F0,b:Oh,g:Kn,h:M0},P0=Hs(),zh=a.___wasm_call_ctors=function(){return(zh=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},Ni=a._init=function(){return(Ni=a._init=a.asm.k).apply(null,arguments)},Ou=a._register_tensor=function(){return(Ou=a._register_tensor=a.asm.l).apply(null,arguments)},z0=a._dispose_data=function(){return(z0=a._dispose_data=a.asm.m).apply(null,arguments)},L0=a._dispose=function(){return(L0=a._dispose=a.asm.n).apply(null,arguments)},B0=a._Abs=function(){return(B0=a._Abs=a.asm.p).apply(null,arguments)},Ce=a._Add=function(){return(Ce=a._Add=a.asm.q).apply(null,arguments)},W0=a._AddN=function(){return(W0=a._AddN=a.asm.r).apply(null,arguments)},V0=a._All=function(){return(V0=a._All=a.asm.s).apply(null,arguments)},U0=a._Any=function(){return(U0=a._Any=a.asm.t).apply(null,arguments)},H0=a._ArgMax=function(){return(H0=a._ArgMax=a.asm.u).apply(null,arguments)},G0=a._AvgPool=function(){return(G0=a._AvgPool=a.asm.v).apply(null,arguments)},lo=a._BatchMatMul=function(){return(lo=a._BatchMatMul=a.asm.w).apply(null,arguments)},j0=a._Ceil=function(){return(j0=a._Ceil=a.asm.x).apply(null,arguments)},q0=a._ClipByValue=function(){return(q0=a._ClipByValue=a.asm.y).apply(null,arguments)},K0=a._Conv2D=function(){return(K0=a._Conv2D=a.asm.z).apply(null,arguments)},X0=a._Conv2DBackpropInput=function(){return(X0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},Z0=a._Cos=function(){return(Z0=a._Cos=a.asm.B).apply(null,arguments)},Y0=a._CropAndResize=function(){return(Y0=a._CropAndResize=a.asm.C).apply(null,arguments)},J0=a._Cumsum=function(){return(J0=a._Cumsum=a.asm.D).apply(null,arguments)},Q0=a._DepthToSpace=function(){return(Q0=a._DepthToSpace=a.asm.E).apply(null,arguments)},eg=a._DepthwiseConv2dNative=function(){return(eg=a._DepthwiseConv2dNative=a.asm.F).apply(null,arguments)},ba=a._Equal=function(){return(ba=a._Equal=a.asm.G).apply(null,arguments)},Pu=a._Exp=function(){return(Pu=a._Exp=a.asm.H).apply(null,arguments)},zu=a._FlipLeftRight=function(){return(zu=a._FlipLeftRight=a.asm.I).apply(null,arguments)},tg=a._Floor=function(){return(tg=a._Floor=a.asm.J).apply(null,arguments)},ng=a._FloorDiv=function(){return(ng=a._FloorDiv=a.asm.K).apply(null,arguments)},rg=a._FusedBatchNorm=function(){return(rg=a._FusedBatchNorm=a.asm.L).apply(null,arguments)},sg=a._FusedConv2D=function(){return(sg=a._FusedConv2D=a.asm.M).apply(null,arguments)},ag=a._FusedDepthwiseConv2D=function(){return(ag=a._FusedDepthwiseConv2D=a.asm.N).apply(null,arguments)},Xe=a._Gather=function(){return(Xe=a._Gather=a.asm.O).apply(null,arguments)},og=a._GatherNd=function(){return(og=a._GatherNd=a.asm.P).apply(null,arguments)},ig=a._Greater=function(){return(ig=a._Greater=a.asm.Q).apply(null,arguments)},lg=a._GreaterEqual=function(){return(lg=a._GreaterEqual=a.asm.R).apply(null,arguments)},ug=a._LeakyRelu=function(){return(ug=a._LeakyRelu=a.asm.S).apply(null,arguments)},cg=a._Less=function(){return(cg=a._Less=a.asm.T).apply(null,arguments)},dg=a._LessEqual=function(){return(dg=a._LessEqual=a.asm.U).apply(null,arguments)},Lu=a._Log=function(){return(Lu=a._Log=a.asm.V).apply(null,arguments)},Lh=a._LogicalAnd=function(){return(Lh=a._LogicalAnd=a.asm.W).apply(null,arguments)},Bh=a._Max=function(){return(Bh=a._Max=a.asm.X).apply(null,arguments)},hg=a._MaxPool=function(){return(hg=a._MaxPool=a.asm.Y).apply(null,arguments)},pg=a._Maximum=function(){return(pg=a._Maximum=a.asm.Z).apply(null,arguments)},fg=a._Mean=function(){return(fg=a._Mean=a.asm._).apply(null,arguments)},mg=a._Min=function(){return(mg=a._Min=a.asm.$).apply(null,arguments)},gg=a._Minimum=function(){return(gg=a._Minimum=a.asm.aa).apply(null,arguments)},yg=a._MirrorPad=function(){return(yg=a._MirrorPad=a.asm.ba).apply(null,arguments)},Ag=a._Multiply=function(){return(Ag=a._Multiply=a.asm.ca).apply(null,arguments)},ht=a._Neg=function(){return(ht=a._Neg=a.asm.da).apply(null,arguments)},xg=a._NonMaxSuppressionV3=function(){return(xg=a._NonMaxSuppressionV3=a.asm.ea).apply(null,arguments)},bg=a._NonMaxSuppressionV4=function(){return(bg=a._NonMaxSuppressionV4=a.asm.fa).apply(null,arguments)},vg=a._NonMaxSuppressionV5=function(){return(vg=a._NonMaxSuppressionV5=a.asm.ga).apply(null,arguments)},Ci=a._NotEqual=function(){return(Ci=a._NotEqual=a.asm.ha).apply(null,arguments)},Wh=a._OneHot=function(){return(Wh=a._OneHot=a.asm.ia).apply(null,arguments)},Vh=a._PadV2=function(){return(Vh=a._PadV2=a.asm.ja).apply(null,arguments)},Uh=a._Pow=function(){return(Uh=a._Pow=a.asm.ka).apply(null,arguments)},wg=a._Prelu=function(){return(wg=a._Prelu=a.asm.la).apply(null,arguments)},kg=a._Prod=function(){return(kg=a._Prod=a.asm.ma).apply(null,arguments)},Hh=a._RealDiv=function(){return(Hh=a._RealDiv=a.asm.na).apply(null,arguments)},Ig=a._Relu=function(){return(Ig=a._Relu=a.asm.oa).apply(null,arguments)},Gh=a._Relu6=function(){return(Gh=a._Relu6=a.asm.pa).apply(null,arguments)},va=a._ResizeBilinear=function(){return(va=a._ResizeBilinear=a.asm.qa).apply(null,arguments)},Sg=a._Reverse=function(){return(Sg=a._Reverse=a.asm.ra).apply(null,arguments)},Tg=a._RotateWithOffset=function(){return(Tg=a._RotateWithOffset=a.asm.sa).apply(null,arguments)},x3=a._Round=function(){return(x3=a._Round=a.asm.ta).apply(null,arguments)},jh=a._Rsqrt=function(){return(jh=a._Rsqrt=a.asm.ua).apply(null,arguments)},Ng=a._ScatterNd=function(){return(Ng=a._ScatterNd=a.asm.va).apply(null,arguments)},Cg=a._SelectV2=function(){return(Cg=a._SelectV2=a.asm.wa).apply(null,arguments)},Eg=a._Sigmoid=function(){return(Eg=a._Sigmoid=a.asm.xa).apply(null,arguments)},$g=a._Sin=function(){return($g=a._Sin=a.asm.ya).apply(null,arguments)},_g=a._Softmax=function(){return(_g=a._Softmax=a.asm.za).apply(null,arguments)},Rg=a._Sqrt=function(){return(Rg=a._Sqrt=a.asm.Aa).apply(null,arguments)},Dg=a._Square=function(){return(Dg=a._Square=a.asm.Ba).apply(null,arguments)},Fg=a._SquaredDifference=function(){return(Fg=a._SquaredDifference=a.asm.Ca).apply(null,arguments)},Mg=a._Step=function(){return(Mg=a._Step=a.asm.Da).apply(null,arguments)},Og=a._StridedSlice=function(){return(Og=a._StridedSlice=a.asm.Ea).apply(null,arguments)},Pg=a._Sub=function(){return(Pg=a._Sub=a.asm.Fa).apply(null,arguments)},zg=a._Sum=function(){return(zg=a._Sum=a.asm.Ga).apply(null,arguments)},Lg=a._Tan=function(){return(Lg=a._Tan=a.asm.Ha).apply(null,arguments)},Bg=a._Tanh=function(){return(Bg=a._Tanh=a.asm.Ia).apply(null,arguments)},Wg=a._Tile=function(){return(Wg=a._Tile=a.asm.Ja).apply(null,arguments)},Vg=a._TopK=function(){return(Vg=a._TopK=a.asm.Ka).apply(null,arguments)},Ug=a._Transform=function(){return(Ug=a._Transform=a.asm.La).apply(null,arguments)},Hg=a._Transpose=function(){return(Hg=a._Transpose=a.asm.Ma).apply(null,arguments)},Gg=a.__FusedMatMul=function(){return(Gg=a.__FusedMatMul=a.asm.Na).apply(null,arguments)},jg=a._malloc=function(){return(jg=a._malloc=a.asm.Oa).apply(null,arguments)},qg=a._free=function(){return(qg=a._free=a.asm.Pa).apply(null,arguments)},qh=a.___errno_location=function(){return(qh=a.___errno_location=a.asm.Qa).apply(null,arguments)},Kh=a.stackSave=function(){return(Kh=a.stackSave=a.asm.Ra).apply(null,arguments)},Xh=a.stackRestore=function(){return(Xh=a.stackRestore=a.asm.Sa).apply(null,arguments)},Bu=a.stackAlloc=function(){return(Bu=a.stackAlloc=a.asm.Ta).apply(null,arguments)};a.cwrap=ee;var Ei;function Kg(te){this.name="ExitStatus",this.message="Program terminated with exit("+te+")",this.status=te}Us=function te(){Ei||Wu(),Ei||(Us=te)};function Wu(te){if(te=te||c,or>0||(Rn(),or>0))return;function le(){Ei||(Ei=!0,a.calledRun=!0,!P&&(br(),vr(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),wn()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),le()},1)):le()}if(a.run=Wu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Wu(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),CR="3.7.0",ER="3.7.0",$R="3.7.0",_R="3.7.0",RR="3.7.0",DR="3.7.0",FR="3.7.0",MR="3.7.0",OR=1e-7,PR=1e-4,zR=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},W3=class{refCount(e){return Ur("refCount")}incRef(e){return Ur("incRef")}timerAvailable(){return!0}time(e){return Ur("time")}read(e){return Ur("read")}readSync(e){return Ur("readSync")}numDataIds(){return Ur("numDataIds")}disposeData(e,t){return Ur("disposeData")}write(e,t,n){return Ur("write")}move(e,t,n,r,s){return Ur("move")}memory(){return Ur("memory")}floatPrecision(){return Ur("floatPrecision")}epsilon(){return this.floatPrecision()===32?OR:PR}dispose(){return Ur("dispose")}};function Ur(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function V3(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function LR(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,s,a=0;for(;n>0;)a=Math.random()*n|0,n--,r=e[n],s=t[n],e[n]=e[a],t[n]=t[a],e[a]=r,t[a]=s}function qu(e,t,n){return Math.max(e,Math.min(t,n))}function BR(e){return e%2==0?e:e+1}function WR(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function ho(e){L(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function po(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Cn(e)&&!n)for(let r=0;r0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function XR(e,t){let n=1,r=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function Xu(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),L(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),L(e.every(r=>Xn(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function U3(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:Xu(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function H3(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function G3(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function j3(e,t){for(let n=0;nt+=n.length),t}function Ia(e){return typeof e=="string"||e instanceof String}function X3(e){return typeof e=="boolean"}function Z3(e){return typeof e=="number"}function ep(e){return Array.isArray(e)?ep(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Z3(e)?"float32":Ia(e)?"string":X3(e)?"bool":"float32"}function Sa(e){return!!(e&&e.constructor&&e.call&&e.apply)}function tp(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function Y3(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;ol*u)*(r?2:1);for(let l=0;ls*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Y3(0,e,t,n)}function n2(e,t){let n=np(e,t);for(let r=0;rr*s,1);if(t==null||t==="float32")return Pi(e,new Float32Array(n));if(t==="int32")return Pi(e,new Int32Array(n));if(t==="bool")return Pi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function r2(e){e.forEach(t=>{L(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function JR(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s{let[r,s]=n.split(":");this.urlFlags[r]=nD(r,s)})}};function eD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(tD(t,r[0],r[1]),r.join("="))),t}function tD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function nD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ct(){return Sr}var Sr=null;function rD(e){Sr=e}var a2;function ev(){if(a2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");a2=e}return a2}function sD(){let e=ev();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function o2(e,t){let n=sD();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var tv="Abs",nv="Acos",rv="Acosh",i2="Add",sv="AddN",av="All",ov="Any",iv="ArgMax",lv="ArgMin",uv="Asin",cv="Asinh",dv="Atan",hv="Atanh",pv="Atan2",fv="AvgPool",aD="AvgPoolGrad",mv="AvgPool3D",oD="AvgPool3DGrad",gv="BatchMatMul",yv="BatchToSpaceND",Av="Bincount",iD="BroadcastTo",l2="Cast",xv="Ceil",bv="ClipByValue",vv="Complex",wv="ComplexAbs",kv="Concat",Iv="Conv2D",Sv="Conv2DBackpropFilter",Tv="Conv2DBackpropInput",Nv="Conv3D",lD="Conv3DBackpropFilterV2",Cv="Conv3DBackpropInputV2",Ev="Cos",$v="Cosh",_v="Cumsum",Rv="CropAndResize",Dv="DenseBincount",Fv="DepthToSpace",Mv="DepthwiseConv2dNative",Ov="DepthwiseConv2dNativeBackpropFilter",Pv="DepthwiseConv2dNativeBackpropInput",zv="Diag",Lv="Dilation2D",uD="Dilation2DBackpropInput",cD="Dilation2DBackpropFilter",Bv="RealDiv",Wv="Einsum",Vv="Elu",dD="EluGrad",Uv="Erf",Hv="Equal",Gv="Exp",jv="ExpandDims",qv="Expm1",Kv="FFT",Xv="Fill",Zv="FlipLeftRight",Yv="Floor",Jv="FloorDiv",Qv="FusedBatchNorm",ew="GatherV2",tw="GatherNd",nw="Greater",rw="GreaterEqual",u2="Identity",sw="IFFT",aw="Imag",ow="IsFinite",iw="IsInf",lw="IsNan",uw="LeakyRelu",cw="Less",dw="LessEqual",hw="LinSpace",pw="Log",fw="Log1p",mw="LogicalAnd",gw="LogicalNot",yw="LogicalOr",hD="LogSoftmax",Aw="LRN",pD="LRNGrad",xw="Max",bw="Maximum",vw="MaxPool",fD="MaxPoolGrad",ww="MaxPool3D",mD="MaxPool3DGrad",kw="MaxPoolWithArgmax",Iw="Mean",Sw="Min",Tw="Minimum",Nw="MirrorPad",Cw="Mod",Ew="Multinomial",$w="Multiply",_w="Neg",Rw="NotEqual",Dw="NonMaxSuppressionV3",Fw="NonMaxSuppressionV4",Mw="NonMaxSuppressionV5",Ow="OnesLike",Pw="OneHot",zw="Pack",Lw="PadV2",gD="Pool",Bw="Pow",Ww="Prelu",Vw="Prod",Uw="Range",Hw="Real",Gw="Reciprocal",jw="Relu",qw="Reshape",Kw="ResizeNearestNeighbor",yD="ResizeNearestNeighborGrad",Xw="ResizeBilinear",AD="ResizeBilinearGrad",Zw="Relu6",Yw="Reverse",Jw="Round",Qw="Rsqrt",e7="ScatterNd",t7="Select",n7="Selu",r7="Slice",s7="Sin",a7="Sinh",o7="Sign",i7="Sigmoid",l7="Softplus",u7="Sqrt",c7="Sum",d7="SpaceToBatchND",h7="SplitV",p7="Softmax",f7="SparseFillEmptyRows",m7="SparseReshape",g7="SparseSegmentMean",y7="SparseSegmentSum",A7="SparseToDense",x7="SquaredDifference",xD="Square",b7="StridedSlice",v7="StringNGrams",w7="StringSplit",k7="StringToHashBucketFast",I7="Sub",S7="Tan",T7="Tanh",c2="Tile",N7="TopK",C7="Transform",E7="Transpose",$7="Unique",_7="Unpack",R7="UnsortedSegmentSum",D7="ZerosLike",F7="Step",d2="FromPixels",M7="RotateWithOffset",h2="_FusedMatMul",p2="FusedConv2D",f2="FusedDepthwiseConv2D",zi=o2("kernelRegistry",()=>new Map),Zu=o2("gradRegistry",()=>new Map);function rp(e,t){let n=g2(e,t);return zi.get(n)}function m2(e){return Zu.get(e)}function Li(e){let t=zi.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function sp(e){let{kernelName:t,backendName:n}=e,r=g2(t,n);zi.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),zi.set(r,e)}function bD(e){let{kernelName:t}=e;Zu.has(t)&&ct().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Zu.set(t,e)}function vD(e,t){let n=g2(e,t);if(!zi.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);zi.delete(n)}function wD(e){if(!Zu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Zu.delete(e)}function kD(e,t){Li(e).forEach(r=>{let s=Object.assign({},r,{backendName:t});sp(s)})}function g2(e,t){return`${t}_${e}`}var O7={};De(O7,{arraysEqual:()=>Xs,assert:()=>L,assertNonNegativeIntegerDimensions:()=>r2,assertNonNull:()=>ho,assertShapesMatch:()=>Mn,bytesFromStringArray:()=>K3,bytesPerElement:()=>t2,checkConversionForErrors:()=>j3,clamp:()=>qu,computeStrides:()=>Oi,createScalarValue:()=>ED,createShuffledIndices:()=>qR,decodeString:()=>ip,distSquared:()=>UR,encodeString:()=>Qu,fetch:()=>_D,fingerPrint64:()=>CD,flatten:()=>po,getArrayFromDType:()=>G3,getTypedArrayFromDType:()=>H3,hasEncodingLoss:()=>ZR,hexToLong:()=>Yu,indexToLoc:()=>QR,inferDtype:()=>ep,inferFromImplicitShape:()=>XR,isBoolean:()=>X3,isFunction:()=>Sa,isInt:()=>Xn,isNumber:()=>Z3,isPromise:()=>s2,isScalarShape:()=>HR,isString:()=>Ia,isTypedArray:()=>Cn,isValidDtype:()=>q3,locToIndex:()=>JR,makeOnesTypedArray:()=>n2,makeZerosNestedTypedArray:()=>YR,makeZerosTypedArray:()=>np,nearestDivisor:()=>tp,nearestLargerEven:()=>BR,now:()=>Ju,parseAxisParam:()=>Xu,randUniform:()=>VR,repeatedTry:()=>KR,rightPad:()=>Ku,shuffle:()=>V3,shuffleCombo:()=>LR,sizeFromShape:()=>Jt,sizeToSquarishShape:()=>jR,squeezeShape:()=>U3,sum:()=>WR,tanh:()=>GR,toNestedArray:()=>Pi,toTypedArray:()=>op});var P7=Ks(P3()),fo=P7.default||P7;function Yu(e){return fo.fromString(e,!0,16)}var z7=Yu("c3a5c85c97cb3127"),mo=Yu("b492b66fbe98f273"),On=Yu("9ae16a3b2f90404f");function y2(e){return e.xor(e.shru(47))}function L7(e,t,n){let r=e.slice(t,t+n);return fo.fromBytes(Array.from(r),!0,!0)}function St(e,t){return L7(e,t,8)}function B7(e,t){return L7(e,t,4)}function fn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ta(e,t,n=Yu("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function ID(e,t,n,r,s,a){s=s.add(e),a=fn(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(fn(s,44)),[s.add(r),a.add(o)]}function ap(e,t,n,r){return ID(St(e,t),St(e,t+8),St(e,t+16),St(e,t+24),n,r)}function SD(e,t=e.length){if(t>=8){let n=On.add(t*2),r=St(e,0).add(On),s=St(e,t-8),a=fn(s,37).mul(n).add(r),o=fn(r,25).add(s).mul(n);return Ta(a,o,n)}if(t>=4){let n=On.add(t*2),r=B7(e,0);return Ta(r.shl(3).add(t),B7(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return y2(On.mul(a).xor(z7.mul(o))).mul(On)}return On}function TD(e,t=e.length){let n=On.add(t*2),r=St(e,0).mul(mo),s=St(e,8),a=St(e,t-8).mul(n),o=St(e,t-16).mul(On);return Ta(fn(r.add(s),43).add(fn(a,30)).add(o),r.add(fn(s.add(On),18)).add(a),n)}function ND(e,t=e.length){let n=On.add(t*2),r=St(e,0).mul(On),s=St(e,8),a=St(e,t-8).mul(n),o=St(e,t-16).mul(On),i=fn(r.add(s),43).add(fn(a,30)).add(o),l=Ta(i,r.add(fn(s.add(On),18)).add(a),n),u=St(e,16).mul(n),c=St(e,24),d=i.add(St(e,t-32)).mul(n),h=l.add(St(e,t-24)).mul(n);return Ta(fn(u.add(c),43).add(fn(d,30)).add(h),u.add(fn(c.add(r),18)).add(d),n)}function CD(e,t=e.length){let n=fo.fromNumber(81,!0);if(t<=32)return t<=16?SD(e,t):TD(e,t);if(t<=64)return ND(e,t);let r=n,s=n.mul(mo).add(113),a=y2(s.mul(On).add(113)).mul(On),o=[fo.UZERO,fo.UZERO],i=[fo.UZERO,fo.UZERO];r=r.mul(On).add(St(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do r=fn(r.add(s).add(o[0]).add(St(e,l+8)),37).mul(mo),s=fn(s.add(o[1]).add(St(e,l+48)),42).mul(mo),r=r.xor(i[1]),s=s.add(o[0]).add(St(e,l+40)),a=fn(a.add(i[0]),33).mul(mo),o=ap(e,l,o[1].mul(mo),r.add(i[0])),i=ap(e,l+32,a.add(i[1]),s.add(St(e,l+16))),[a,r]=[r,a],l+=64;while(l!==u);let d=mo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=fn(r.add(s).add(o[0]).add(St(e,l+8)),37).mul(d),s=fn(s.add(o[1]).add(St(e,l+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(St(e,l+40))),a=fn(a.add(i[0]),33).mul(d),o=ap(e,l,o[1].mul(d),r.add(i[0])),i=ap(e,l+32,a.add(i[1]),s.add(St(e,l+16))),[a,r]=[r,a],Ta(Ta(o[0],i[0],d).add(y2(s).mul(z7)).add(a),Ta(o[1],i[1],d).add(r),d)}function ED(e,t){return t==="string"?Qu(e):op([e],t)}function $D(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function op(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=po(e)),ct().getBool("DEBUG")&&j3(e,t),$D(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},a,o=Ju();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let l of r)l.dataSync();a=Promise.resolve({kernelMs:Ju()-o})}if(ct().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{DD(c,u.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function DD(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function MD(e,t,n){let r={},s={};for(let l=0;lr[m.id]=!0),p=!0,s[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d=0;s--){let a=t[s],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Xs(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=r(d,u),d.dispose()}}}}var W7=20,ec=3,A2=7;function PD(e,t,n,r){let s=Oi(t),a=zD(e,t,n,s),o=t.length,i=lp(e,t,n,s,a),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` +var x3=Object.defineProperty;var jR=e=>x3(e,"__esModule",{value:!0});var Kg=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var b3=(e,t)=>{jR(e);for(var n in t)x3(e,n,{get:t[n],enumerable:!0})};var v3=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Dn=(e,t,n)=>(v3(e,t,"read from private field"),n?n.call(e):t.get(e)),wr=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},es=(e,t,n,r)=>(v3(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);function Ct(e,t){let n=e.endsWith("/")?"":"/",s=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!s.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${s} Expecting JSON file`);return s}function fe(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var nt=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Fn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(s=>{let a=n[s],o=r[s];Array.isArray(a)&&Array.isArray(o)?n[s]=a.concat(...o):t(a)&&t(o)?n[s]=Fn(a,o):n[s]=o}),n),{})}var w3={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function k3(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let r=n[0].match(/\(([^()]+)\)/g);e=r?r[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Ah={};b3(Ah,{Abs:()=>U3,Acos:()=>H3,Acosh:()=>G3,AdadeltaOptimizer:()=>Dp,AdagradOptimizer:()=>Fp,AdamOptimizer:()=>Mp,AdamaxOptimizer:()=>Op,Add:()=>n2,AddN:()=>j3,All:()=>q3,Any:()=>K3,ArgMax:()=>X3,ArgMin:()=>Z3,Asin:()=>Y3,Asinh:()=>J3,Atan:()=>Q3,Atan2:()=>tv,Atanh:()=>ev,AvgPool:()=>nv,AvgPool3D:()=>rv,AvgPool3DGrad:()=>Z_,AvgPoolGrad:()=>X_,BackendWasm:()=>t$,BatchMatMul:()=>sv,BatchToSpaceND:()=>av,Bincount:()=>ov,BroadcastTo:()=>Y_,Callback:()=>I8,CallbackList:()=>hS,Cast:()=>r2,Ceil:()=>iv,ClipByValue:()=>lv,Complex:()=>uv,ComplexAbs:()=>cv,Concat:()=>dv,Conv2D:()=>hv,Conv2DBackpropFilter:()=>pv,Conv2DBackpropInput:()=>fv,Conv3D:()=>mv,Conv3DBackpropFilterV2:()=>J_,Conv3DBackpropInputV2:()=>gv,Cos:()=>yv,Cosh:()=>Av,CropAndResize:()=>bv,Cumsum:()=>xv,CustomCallback:()=>fS,DataStorage:()=>C_,DenseBincount:()=>vv,DepthToSpace:()=>wv,DepthwiseConv2dNative:()=>kv,DepthwiseConv2dNativeBackpropFilter:()=>Iv,DepthwiseConv2dNativeBackpropInput:()=>Sv,Diag:()=>Tv,Dilation2D:()=>Nv,Dilation2DBackpropFilter:()=>eD,Dilation2DBackpropInput:()=>Q_,ENV:()=>kr,EarlyStopping:()=>T8,Einsum:()=>Ev,Elu:()=>$v,EluGrad:()=>tD,Environment:()=>W3,Equal:()=>_v,Erf:()=>Rv,Exp:()=>Dv,ExpandDims:()=>Fv,Expm1:()=>Mv,FFT:()=>Ov,Fill:()=>Pv,FlipLeftRight:()=>zv,Floor:()=>Lv,FloorDiv:()=>Bv,FromPixels:()=>o2,FusedBatchNorm:()=>Wv,FusedConv2D:()=>l2,FusedDepthwiseConv2D:()=>u2,GPGPUContext:()=>Fm,GatherNd:()=>Uv,GatherV2:()=>Vv,GraphModel:()=>sT,Greater:()=>Hv,GreaterEqual:()=>Gv,History:()=>pS,IFFT:()=>jv,Identity:()=>s2,Imag:()=>qv,InputSpec:()=>Qt,IsFinite:()=>Kv,IsInf:()=>Xv,IsNan:()=>Zv,KernelBackend:()=>E3,LRN:()=>ow,LRNGrad:()=>rD,LayerVariable:()=>iS,LayersModel:()=>fa,LeakyRelu:()=>Yv,Less:()=>Jv,LessEqual:()=>Qv,LinSpace:()=>ew,Log:()=>tw,Log1p:()=>nw,LogSoftmax:()=>nD,LogicalAnd:()=>rw,LogicalNot:()=>sw,LogicalOr:()=>aw,MathBackendCPU:()=>A5,MathBackendWebGL:()=>uh,Max:()=>iw,MaxPool:()=>uw,MaxPool3D:()=>cw,MaxPool3DGrad:()=>aD,MaxPoolGrad:()=>sD,MaxPoolWithArgmax:()=>dw,Maximum:()=>lw,Mean:()=>hw,Min:()=>pw,Minimum:()=>fw,MirrorPad:()=>mw,Mod:()=>gw,MomentumOptimizer:()=>Pp,Multinomial:()=>yw,Multiply:()=>Aw,Neg:()=>xw,NonMaxSuppressionV3:()=>vw,NonMaxSuppressionV4:()=>ww,NonMaxSuppressionV5:()=>kw,NotEqual:()=>bw,OP_SCOPE_SUFFIX:()=>B7,OneHot:()=>Sw,OnesLike:()=>Iw,Optimizer:()=>Da,Pack:()=>Tw,PadV2:()=>Nw,Pool:()=>oD,Pow:()=>Cw,Prelu:()=>Ew,Prod:()=>$w,RMSPropOptimizer:()=>zp,RNN:()=>ma,Range:()=>Rw,Rank:()=>f2,Real:()=>_w,RealDiv:()=>Cv,Reciprocal:()=>Dw,Reduction:()=>Pn,Relu:()=>Fw,Relu6:()=>zw,Reshape:()=>Mw,ResizeBilinear:()=>Pw,ResizeBilinearGrad:()=>lD,ResizeNearestNeighbor:()=>Ow,ResizeNearestNeighborGrad:()=>iD,Reverse:()=>Lw,RotateWithOffset:()=>k7,Round:()=>Bw,Rsqrt:()=>Ww,SGDOptimizer:()=>fc,ScatterNd:()=>Vw,Select:()=>Uw,Selu:()=>Hw,Sequential:()=>im,Sigmoid:()=>Xw,Sign:()=>Kw,Sin:()=>jw,Sinh:()=>qw,Slice:()=>Gw,Softmax:()=>t7,Softplus:()=>Zw,SpaceToBatchND:()=>Qw,SparseFillEmptyRows:()=>n7,SparseReshape:()=>r7,SparseSegmentMean:()=>s7,SparseSegmentSum:()=>a7,SparseToDense:()=>o7,SplitV:()=>e7,Sqrt:()=>Yw,Square:()=>uD,SquaredDifference:()=>i7,Step:()=>w7,StridedSlice:()=>l7,StringNGrams:()=>u7,StringSplit:()=>c7,StringToHashBucketFast:()=>d7,Sub:()=>h7,Sum:()=>Jw,SymbolicTensor:()=>hs,Tan:()=>p7,Tanh:()=>f7,Tensor:()=>It,TensorBuffer:()=>lp,Tile:()=>a2,TopK:()=>m7,Transform:()=>g7,Transpose:()=>y7,Unique:()=>A7,Unpack:()=>x7,UnsortedSegmentSum:()=>b7,Variable:()=>nc,ZerosLike:()=>v7,_FusedMatMul:()=>i2,abs:()=>Sr,acos:()=>EM,acosh:()=>RM,add:()=>Me,addN:()=>G2,all:()=>FM,any:()=>OM,argMax:()=>j2,argMin:()=>LM,asin:()=>WM,asinh:()=>UM,atan:()=>GM,atan2:()=>qM,atanh:()=>XM,avgPool:()=>_k,avgPool3d:()=>aO,backend:()=>vM,backend_util:()=>v4,basicLSTMCell:()=>dO,batchNorm:()=>yp,batchNorm2d:()=>gO,batchNorm3d:()=>AO,batchNorm4d:()=>bO,batchToSpaceND:()=>Dk,bincount:()=>Fk,booleanMaskAsync:()=>EB,broadcastTo:()=>Ap,browser:()=>Br,buffer:()=>Js,callbacks:()=>qre,cast:()=>Mt,ceil:()=>IO,clipByValue:()=>TO,clone:()=>Qs,complex:()=>go,concat:()=>rn,concat1d:()=>CO,concat2d:()=>ic,concat3d:()=>RO,concat4d:()=>DO,constraints:()=>BI,conv1d:()=>OO,conv2d:()=>xp,conv2dTranspose:()=>LO,conv3d:()=>WO,conv3dTranspose:()=>GO,copyRegisteredKernels:()=>pD,cos:()=>qO,cosh:()=>XO,cosineWindow:()=>o1,cumsum:()=>YO,customGrad:()=>Ss,data:()=>aT,denseBincount:()=>QO,deprecationWarn:()=>Tk,depthToSpace:()=>tP,depthwiseConv2d:()=>Z2,deregisterOp:()=>Xre,device_util:()=>O7,diag:()=>sP,dilation2d:()=>oP,disableDeprecationWarnings:()=>cM,dispose:()=>We,disposeVariables:()=>dM,div:()=>Je,divNoNan:()=>hP,dot:()=>fP,dropout:()=>VB,einsum:()=>gP,elu:()=>zk,enableDebugMode:()=>uM,enableProdMode:()=>lM,enclosingPowerOfTwo:()=>h4,engine:()=>hM,env:()=>ct,equal:()=>Pk,erf:()=>xP,exp:()=>wo,expandDims:()=>ta,expm1:()=>kP,eye:()=>Lk,fft:()=>r1,fill:()=>vp,findBackend:()=>U2,findBackendFactory:()=>bM,floor:()=>Bk,floorDiv:()=>Ck,forceHalfFloat:()=>uE,fused:()=>p4,gather:()=>Wk,gatherND:()=>LB,gather_util:()=>ik,getBackend:()=>AM,getGradient:()=>c2,getKernel:()=>np,getKernelsForBackend:()=>zi,gpgpu_util:()=>uC,grad:()=>jP,grads:()=>qP,greater:()=>wp,greaterEqual:()=>Vk,ifft:()=>Cp,imag:()=>Y2,image:()=>Ze,inTopKAsync:()=>HB,initializers:()=>qI,input:()=>PS,io:()=>Q7,irfft:()=>o4,isFinite:()=>_P,isInf:()=>FP,isNaN:()=>OP,keep:()=>Nk,kernel_impls:()=>S4,layers:()=>sS,leakyRelu:()=>Uk,less:()=>LP,lessEqual:()=>J2,linalg:()=>EV,linspace:()=>WP,loadGraphModel:()=>Nt,loadLayersModel:()=>sne,localResponseNormalization:()=>UP,log:()=>lc,log1p:()=>Hk,logSigmoid:()=>QP,logSoftmax:()=>sz,logSumExp:()=>Kk,logicalAnd:()=>Ip,logicalNot:()=>Xk,logicalOr:()=>Zk,logicalXor:()=>mz,losses:()=>$V,matMul:()=>gt,math:()=>ak,max:()=>_a,maxPool:()=>Yk,maxPool3d:()=>Az,maxPoolWithArgmax:()=>bz,maximum:()=>Jk,mean:()=>Sp,memory:()=>pM,meshgrid:()=>kz,metrics:()=>v8,min:()=>e1,minimum:()=>Qk,mirrorPad:()=>Nz,mod:()=>Ez,model:()=>nne,models:()=>w8,moments:()=>_z,movingAverage:()=>_B,mul:()=>pe,multiRNNCell:()=>Fz,multinomial:()=>Oz,neg:()=>Ra,nextFrame:()=>MV,norm:()=>a1,notEqual:()=>e4,oneHot:()=>O2,ones:()=>ko,onesLike:()=>Lz,op:()=>H,outerProduct:()=>Wz,pad:()=>cc,pad1d:()=>Hz,pad2d:()=>jz,pad3d:()=>Kz,pad4d:()=>Zz,pool:()=>tL,pow:()=>dc,prelu:()=>n4,print:()=>J7,prod:()=>aL,profile:()=>fM,rand:()=>iL,randomGamma:()=>dL,randomNormal:()=>pL,randomUniform:()=>r4,range:()=>hc,ready:()=>yM,real:()=>Tp,reciprocal:()=>yL,registerBackend:()=>H2,registerCallbackConstructor:()=>ane,registerGradient:()=>cD,registerKernel:()=>rp,registerOp:()=>Kre,regularizers:()=>k8,relu:()=>Np,relu6:()=>s4,removeBackend:()=>xM,reshape:()=>le,reverse:()=>Io,reverse1d:()=>wL,reverse2d:()=>IL,reverse3d:()=>TL,reverse4d:()=>CL,rfft:()=>s1,round:()=>a4,rsqrt:()=>RL,scalar:()=>ut,scatterND:()=>FB,scatter_util:()=>uk,selu:()=>DL,separableConv2d:()=>ML,sequential:()=>rne,serialization:()=>vk,setBackend:()=>gM,setPlatform:()=>wM,setWasmPath:()=>Kve,setWasmPaths:()=>Xve,setWebGLContext:()=>Nm,setdiff1dAsync:()=>PL,shared:()=>ET,sigmoid:()=>Is,sign:()=>LL,signal:()=>CV,sin:()=>WL,sinh:()=>UL,slice:()=>Xe,slice1d:()=>GL,slice2d:()=>qL,slice3d:()=>XL,slice4d:()=>YL,slice_util:()=>L2,softmax:()=>QL,softplus:()=>jk,spaceToBatchND:()=>t4,sparse:()=>RV,sparseToDense:()=>PB,spectral:()=>NV,split:()=>na,sqrt:()=>ra,square:()=>rs,squaredDifference:()=>i4,squeeze:()=>Xn,stack:()=>So,step:()=>l4,stridedSlice:()=>dB,string:()=>_V,sub:()=>Ue,sum:()=>Et,sumOutType:()=>MD,tan:()=>pB,tanh:()=>X2,tensor:()=>ns,tensor1d:()=>ur,tensor2d:()=>sa,tensor3d:()=>fp,tensor4d:()=>fB,tensor5d:()=>mB,tensor6d:()=>gB,tensor_util:()=>R7,test_util:()=>kk,tidy:()=>Ve,tile:()=>bp,time:()=>mM,topk:()=>AB,train:()=>DV,transpose:()=>pp,truncatedNormal:()=>bB,unique:()=>wB,unregisterGradient:()=>hD,unregisterKernel:()=>dD,unsortedSegmentSum:()=>IB,unstack:()=>pc,upcastType:()=>up,util:()=>I7,valueAndGrad:()=>KP,valueAndGrads:()=>XP,variable:()=>TB,variableGrads:()=>Gk,version:()=>Jve,version_converter:()=>Jse,version_core:()=>iM,version_cpu:()=>Doe,version_layers:()=>VA,version_wasm:()=>Zve,version_webgl:()=>Efe,webgl:()=>$fe,webgl_util:()=>ON,where:()=>Hi,whereAsync:()=>c4,zeros:()=>Gi,zerosLike:()=>Tr});var qR=Object.create,Yh=Object.defineProperty,KR=Object.getOwnPropertyDescriptor,XR=Object.getOwnPropertyNames,ZR=Object.getPrototypeOf,YR=Object.prototype.hasOwnProperty,I3=e=>Yh(e,"__esModule",{value:!0}),co=e=>{if(typeof Kg!="undefined")return Kg(e);throw new Error('Dynamic require of "'+e+'" is not supported')},Ft=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},_e=(e,t)=>{I3(e);for(var n in t)Yh(e,n,{get:t[n],enumerable:!0})},JR=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of XR(t))!YR.call(e,r)&&r!=="default"&&Yh(e,r,{get:()=>t[r],enumerable:!(n=KR(t,r))||n.enumerable});return e},Xs=e=>JR(I3(Yh(e!=null?qR(ZR(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),S3=Ft({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=r;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function r(R,N,M){this.low=R|0,this.high=N|0,this.unsigned=!!M}r.prototype.__isLong__,Object.defineProperty(r.prototype,"__isLong__",{value:!0});function s(R){return(R&&R.__isLong__)===!0}r.isLong=s;var a={},o={};function i(R,N){var M,B,q;return N?(R>>>=0,(q=0<=R&&R<256)&&(B=o[R],B)?B:(M=u(R,(R|0)<0?-1:0,!0),q&&(o[R]=M),M)):(R|=0,(q=-128<=R&&R<128)&&(B=a[R],B)?B:(M=u(R,R<0?-1:0,!1),q&&(a[R]=M),M))}r.fromInt=i;function l(R,N){if(isNaN(R))return N?b:x;if(N){if(R<0)return b;if(R>=g)return E}else{if(R<=-y)return D;if(R+1>=y)return S}return R<0?l(-R,N).neg():u(R%m|0,R/m|0,N)}r.fromNumber=l;function u(R,N,M){return new r(R,N,M)}r.fromBits=u;var c=Math.pow;function d(R,N,M){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return x;if(typeof N=="number"?(M=N,N=!1):N=!!N,M=M||10,M<2||360)throw Error("interior hyphen");if(B===0)return d(R.substring(1),N,M).neg();for(var q=l(c(M,8)),X=x,J=0;J>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},$.toString=function(N){if(N=N||10,N<2||36>>0,oe=se.toString(N);if(J=ae,J.isZero())return oe+ee;for(;oe.length<6;)oe="0"+oe;ee=""+oe+ee}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(D)?64:this.neg().getNumBitsAbs();for(var N=this.high!=0?this.high:this.low,M=31;M>0&&(N&1<=0},$.isOdd=function(){return(this.low&1)==1},$.isEven=function(){return(this.low&1)==0},$.equals=function(N){return s(N)||(N=h(N)),this.unsigned!==N.unsigned&&this.high>>>31==1&&N.high>>>31==1?!1:this.high===N.high&&this.low===N.low},$.eq=$.equals,$.notEquals=function(N){return!this.eq(N)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(N){return this.comp(N)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(N){return this.comp(N)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(N){return this.comp(N)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(N){return this.comp(N)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(N){if(s(N)||(N=h(N)),this.eq(N))return 0;var M=this.isNegative(),B=N.isNegative();return M&&!B?-1:!M&&B?1:this.unsigned?N.high>>>0>this.high>>>0||N.high===this.high&&N.low>>>0>this.low>>>0?-1:1:this.sub(N).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(D)?D:this.not().add(v)},$.neg=$.negate,$.add=function(N){s(N)||(N=h(N));var M=this.high>>>16,B=this.high&65535,q=this.low>>>16,X=this.low&65535,J=N.high>>>16,ee=N.high&65535,ae=N.low>>>16,se=N.low&65535,oe=0,ne=0,ce=0,he=0;return he+=X+se,ce+=he>>>16,he&=65535,ce+=q+ae,ne+=ce>>>16,ce&=65535,ne+=B+ee,oe+=ne>>>16,ne&=65535,oe+=M+J,oe&=65535,u(ce<<16|he,oe<<16|ne,this.unsigned)},$.subtract=function(N){return s(N)||(N=h(N)),this.add(N.neg())},$.sub=$.subtract,$.multiply=function(N){if(this.isZero())return x;if(s(N)||(N=h(N)),n){var M=n.mul(this.low,this.high,N.low,N.high);return u(M,n.get_high(),this.unsigned)}if(N.isZero())return x;if(this.eq(D))return N.isOdd()?D:x;if(N.eq(D))return this.isOdd()?D:x;if(this.isNegative())return N.isNegative()?this.neg().mul(N.neg()):this.neg().mul(N).neg();if(N.isNegative())return this.mul(N.neg()).neg();if(this.lt(A)&&N.lt(A))return l(this.toNumber()*N.toNumber(),this.unsigned);var B=this.high>>>16,q=this.high&65535,X=this.low>>>16,J=this.low&65535,ee=N.high>>>16,ae=N.high&65535,se=N.low>>>16,oe=N.low&65535,ne=0,ce=0,he=0,me=0;return me+=J*oe,he+=me>>>16,me&=65535,he+=X*oe,ce+=he>>>16,he&=65535,he+=J*se,ce+=he>>>16,he&=65535,ce+=q*oe,ne+=ce>>>16,ce&=65535,ce+=X*se,ne+=ce>>>16,ce&=65535,ce+=J*ae,ne+=ce>>>16,ce&=65535,ne+=B*oe+q*se+X*ae+J*ee,ne&=65535,u(he<<16|me,ne<<16|ce,this.unsigned)},$.mul=$.multiply,$.divide=function(N){if(s(N)||(N=h(N)),N.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&N.low===-1&&N.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,N.low,N.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var B,q,X;if(this.unsigned){if(N.unsigned||(N=N.toUnsigned()),N.gt(this))return b;if(N.gt(this.shru(1)))return I;X=b}else{if(this.eq(D)){if(N.eq(v)||N.eq(w))return D;if(N.eq(D))return v;var J=this.shr(1);return B=J.div(N).shl(1),B.eq(x)?N.isNegative()?v:w:(q=this.sub(N.mul(B)),X=B.add(q.div(N)),X)}else if(N.eq(D))return this.unsigned?b:x;if(this.isNegative())return N.isNegative()?this.neg().div(N.neg()):this.neg().div(N).neg();if(N.isNegative())return this.div(N.neg()).neg();X=x}for(q=this;q.gte(N);){B=Math.max(1,Math.floor(q.toNumber()/N.toNumber()));for(var ee=Math.ceil(Math.log(B)/Math.LN2),ae=ee<=48?1:c(2,ee-48),se=l(B),oe=se.mul(N);oe.isNegative()||oe.gt(q);)B-=ae,se=l(B,this.unsigned),oe=se.mul(N);se.isZero()&&(se=v),X=X.add(se),q=q.sub(oe)}return X},$.div=$.divide,$.modulo=function(N){if(s(N)||(N=h(N)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,N.low,N.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(N).mul(N))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(N){return s(N)||(N=h(N)),u(this.low&N.low,this.high&N.high,this.unsigned)},$.or=function(N){return s(N)||(N=h(N)),u(this.low|N.low,this.high|N.high,this.unsigned)},$.xor=function(N){return s(N)||(N=h(N)),u(this.low^N.low,this.high^N.high,this.unsigned)},$.shiftLeft=function(N){return s(N)&&(N=N.toInt()),(N&=63)===0?this:N<32?u(this.low<>>32-N,this.unsigned):u(0,this.low<>>N|this.high<<32-N,this.high>>N,this.unsigned):u(this.high>>N-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(N){if(s(N)&&(N=N.toInt()),N&=63,N===0)return this;var M=this.high;if(N<32){var B=this.low;return u(B>>>N|M<<32-N,M>>>N,this.unsigned)}else return N===32?u(M,0,this.unsigned):u(M>>>N-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(N){return N?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var N=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,N&255,N>>>8&255,N>>>16&255,N>>>24]},$.toBytesBE=function(){var N=this.high,M=this.low;return[N>>>24,N>>>16&255,N>>>8&255,N&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},r.fromBytes=function(N,M,B){return B?r.fromBytesLE(N,M):r.fromBytesBE(N,M)},r.fromBytesLE=function(N,M){return new r(N[0]|N[1]<<8|N[2]<<16|N[3]<<24,N[4]|N[5]<<8|N[6]<<16|N[7]<<24,M)},r.fromBytesBE=function(N,M){return new r(N[4]<<24|N[5]<<16|N[6]<<8|N[7],N[0]<<24|N[1]<<16|N[2]<<8|N[3],M)}}}),T3=Ft({"(disabled):node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js"(){}}),QR=Ft({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(u){var c=this,d=l();c.next=function(){var h=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=h-(c.c=h|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),h=c&&c.state,p=d.next;return p.int32=function(){return d.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,h&&(typeof h=="object"&&o(h,d),p.state=function(){return o(d,{})}),p}function l(){var u=4022871197,c=function(d){d=d.toString();for(var h=0;h>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),e_=Ft({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),t_=Ft({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),n_=Ft({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),r_=Ft({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,y,A=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,p=A[g&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(A[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],p=A[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,A[m]=f^p;d.w=y,d.X=A,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),s_=Ft({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),N3=Ft({"(disabled):crypto"(){}}),a_=Ft({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r){var s=this,a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,h=a-1,p;function f(v,I,w){var S=[];I=I==!0?{entropy:!0}:I||{};var E=A(y(I.entropy?[v,b(n)]:v==null?x():v,3),S),D=new m(S),$=function(){for(var R=D.g(o),N=u,M=0;R=d;)R/=2,N/=2,M>>>=1;return(R+M)/N};return $.int32=function(){return D.g(4)|0},$.quick=function(){return D.g(4)/4294967296},$.double=$,A(b(D.S),n),(I.pass||w||function(R,N,M,B){return B&&(B.S&&g(B,D),R.state=function(){return g(D,{})}),M?(r[l]=R,N):R})($,E,"global"in I?I.global:this==r,I.state)}r["seed"+l]=f;function m(v){var I,w=v.length,S=this,E=0,D=S.i=S.j=0,$=S.S=[];for(w||(v=[w++]);E>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),i_=Ft({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var h=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^h^h>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),l_=Ft({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(h^h<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),u_=Ft({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.x,h=u.i,p,f,m;return p=d[h],p^=p>>>7,f=p^p<<24,p=d[h+1&7],f^=p^p>>>10,p=d[h+3&7],f^=p^p>>>3,p=d[h+4&7],f^=p^p<<7,p=d[h+7&7],p=p^p<<13,f^=p^p<<9,d[h]=f,u.i=h+1&7,f};function c(d,h){var p,f,m=[];if(h===(h|0))f=m[0]=h;else for(h=""+h,p=0;p0;--p)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.x&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),c_=Ft({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(l){var u=this;u.next=function(){var d=u.w,h=u.X,p=u.i,f,m;return u.w=d=d+1640531527|0,m=h[p+34&127],f=h[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=h[p]=m^f,u.i=p,m+(d^d>>>16)|0};function c(d,h){var p,f,m,g,y,A=[],x=128;for(h===(h|0)?(f=h,h=null):(h=h+"\0",f=0,x=Math.max(x,h.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,p=A[g&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(A[(h&&h.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=A[m+34&127],p=A[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,A[m]=f^p;d.w=y,d.X=A,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,h=function(){return(c.next()>>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(d.X&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),d_=Ft({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(l){var u=this,c="";u.next=function(){var h=u.b,p=u.c,f=u.d,m=u.a;return h=h<<25^h>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-h|0,u.b=h=h<<20^h>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-h|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d>>0)/4294967296};return h.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},h.int32=c.next,h.quick=h,d&&(typeof d=="object"&&o(d,c),h.state=function(){return o(c,{})}),h}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),h_=Ft({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r,s){var a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,h=a-1,p;function f(v,I,w){var S=[];I=I==!0?{entropy:!0}:I||{};var E=A(y(I.entropy?[v,b(r)]:v==null?x():v,3),S),D=new m(S),$=function(){for(var R=D.g(o),N=u,M=0;R=d;)R/=2,N/=2,M>>>=1;return(R+M)/N};return $.int32=function(){return D.g(4)|0},$.quick=function(){return D.g(4)/4294967296},$.double=$,A(b(D.S),r),(I.pass||w||function(R,N,M,B){return B&&(B.S&&g(B,D),R.state=function(){return g(D,{})}),M?(s[l]=R,N):R})($,E,"global"in I?I.global:this==s,I.state)}function m(v){var I,w=v.length,S=this,E=0,D=S.i=S.j=0,$=S.S=[];for(w||(v=[w++]);E1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(C){if(!(C instanceof Hu))throw C}),process.on("unhandledRejection",js),y=function(C){process.exit(C)},c.inspect=function(){return"[Emscripten Module object]"};var B;try{B=f_()}catch(C){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),C}global.Worker=B.Worker}else v?(typeof read!="undefined"&&(E=function(F){return read(F)}),$=function(F){var W;return typeof readbuffer=="function"?new Uint8Array(readbuffer(F)):(W=read(F,"binary"),be(typeof W=="object"),W)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(y=function(C){quit(C)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||x)&&(x?w=self.location.href:typeof document!="undefined"&&document.currentScript&&(w=document.currentScript.src),typeof r!="undefined"&&r&&(w=r),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",b?(E=function(F,W){return N||(N=co("fs")),M||(M=Gu()),F=M.normalize(F),N.readFileSync(F,W?null:"utf8")},$=function(F){var W=E(F,!0);return W.buffer||(W=new Uint8Array(W)),be(W.buffer),W}):(E=function(C){var F=new XMLHttpRequest;return F.open("GET",C,!1),F.send(null),F.responseText},x&&($=function(C){var F=new XMLHttpRequest;return F.open("GET",C,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),D=function(C,F,W){var Q=new XMLHttpRequest;Q.open("GET",C,!0),Q.responseType="arraybuffer",Q.onload=function(){if(Q.status==200||Q.status==0&&Q.response){F(Q.response);return}W()},Q.onerror=W,Q.send(null)}),R=function(C){document.title=C});b&&typeof performance=="undefined"&&(global.performance=m_().performance);var q=c.print||console.log.bind(console),X=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(y=c.quit);var J=Atomics.load,ee=Atomics.store,ae=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var oe=c.noExitRuntime||!0;typeof WebAssembly!="object"&&js("no native wasm support detected");var ne,ce,he=!1,me;function be(C,F){C||js("Assertion failed: "+F)}function Ee(C){var F=c["_"+C];return be(F,"Cannot call unknown function "+C+", make sure it is exported"),F}function $e(C,F,W,Q,Ae){var ge={string:function(_n){var Fi=0;if(_n!=null&&_n!==0){var A3=(_n.length<<2)+1;Fi=Ri(A3),pt(_n,Fi,A3)}return Fi},array:function(_n){var Fi=Ri(_n.length);return dt(_n,Fi),Fi}};function ye(_n){return F==="string"?Be(_n):F==="boolean"?Boolean(_n):_n}var Se=Ee(C),mt=[],hn=0;if(Q)for(var nn=0;nn=Q);){var ge=C[F++];if(!ge)return Ae;if(!(ge&128)){Ae+=String.fromCharCode(ge);continue}var ye=C[F++]&63;if((ge&224)==192){Ae+=String.fromCharCode((ge&31)<<6|ye);continue}var Se=C[F++]&63;if((ge&240)==224?ge=(ge&15)<<12|ye<<6|Se:ge=(ge&7)<<18|ye<<12|Se<<6|C[F++]&63,ge<65536)Ae+=String.fromCharCode(ge);else{var mt=ge-65536;Ae+=String.fromCharCode(55296|mt>>10,56320|mt&1023)}}return Ae}function Be(C,F){return C?je(o(),C,F):""}function bt(C,F,W,Q){if(!(Q>0))return 0;for(var Ae=W,ge=W+Q-1,ye=0;ye=55296&&Se<=57343){var mt=C.charCodeAt(++ye);Se=65536+((Se&1023)<<10)|mt&1023}if(Se<=127){if(W>=ge)break;F[W++]=Se}else if(Se<=2047){if(W+1>=ge)break;F[W++]=192|Se>>6,F[W++]=128|Se&63}else if(Se<=65535){if(W+2>=ge)break;F[W++]=224|Se>>12,F[W++]=128|Se>>6&63,F[W++]=128|Se&63}else{if(W+3>=ge)break;F[W++]=240|Se>>18,F[W++]=128|Se>>12&63,F[W++]=128|Se>>6&63,F[W++]=128|Se&63}}return F[W]=0,W-Ae}function pt(C,F,W){return bt(C,o(),F,W)}function ft(C){for(var F=0,W=0;W=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|C.charCodeAt(++W)&1023),Q<=127?++F:Q<=2047?F+=2:Q<=65535?F+=3:F+=4}return F}function dt(C,F){a().set(C,F)}function xt(C,F){return C%F>0&&(C+=F-C%F),C}var Ye,Gn,Bt,or,bn,zr,Rn,Ar,xr;function vn(C){Ye=C,c.HEAP8=Gn=new Int8Array(C),c.HEAP16=or=new Int16Array(C),c.HEAP32=zr=new Int32Array(C),c.HEAPU8=Bt=new Uint8Array(C),c.HEAPU16=bn=new Uint16Array(C),c.HEAPU32=Rn=new Uint32Array(C),c.HEAPF32=Ar=new Float32Array(C),c.HEAPF64=xr=new Float64Array(C)}var br=c.INITIAL_MEMORY||16777216;if(I)ne=c.wasmMemory,Ye=c.buffer;else if(c.wasmMemory)ne=c.wasmMemory;else if(ne=new WebAssembly.Memory({initial:br/65536,maximum:2147483648/65536,shared:!0}),!(ne.buffer instanceof SharedArrayBuffer))throw X("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ne&&(Ye=ne.buffer),br=Ye.byteLength,vn(Ye);var vr,ir=[],bs=[],Hs=[],xa=[],Ii=[],vs=!1,Eh=!1;I||bs.push({func:function(){Hh()}});function k0(){if(!I){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Rh(c.preRun.shift());Ti(ir)}}function Fu(){vs=!0,!I&&Ti(bs)}function I0(){I||Ti(Hs)}function $h(){I||(Eh=!0)}function jn(){if(!I){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)S0(c.postRun.shift());Ti(Ii)}}function Rh(C){ir.unshift(C)}function S0(C){Ii.unshift(C)}var Gs=0,ba=null,io=null;function T0(C){be(!I,"addRunDependency cannot be used in a pthread worker"),Gs++,c.monitorRunDependencies&&c.monitorRunDependencies(Gs)}function N0(C){if(Gs--,c.monitorRunDependencies&&c.monitorRunDependencies(Gs),Gs==0&&(ba!==null&&(clearInterval(ba),ba=null),io)){var F=io;io=null,F()}}c.preloadedImages={},c.preloadedAudios={};function js(C){c.onAbort&&c.onAbort(C),I&&console.error("Pthread aborting at "+new Error().stack),C+="",X(C),he=!0,me=1,C="abort("+C+"). Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(C);throw h(F),F}function _h(C,F){return String.prototype.startsWith?C.startsWith(F):C.indexOf(F)===0}var Si="data:application/octet-stream;base64,";function Dh(C){return _h(C,Si)}var C0="file://";function Fh(C){return _h(C,C0)}var qn="tfjs-backend-wasm-threaded-simd.wasm";Dh(qn)||(qn=S(qn));function Mh(C){try{if(C==qn&&se)return new Uint8Array(se);if($)return $(C);throw"both async and sync fetching of the wasm failed"}catch(F){js(F)}}function E0(){if(!se&&(A||x)){if(typeof fetch=="function"&&!Fh(qn))return fetch(qn,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+qn+"'";return C.arrayBuffer()}).catch(function(){return Mh(qn)});if(D)return new Promise(function(C,F){D(qn,function(W){C(new Uint8Array(W))},F)})}return Promise.resolve().then(function(){return Mh(qn)})}function $0(){var C={a:bg};function F(ye,Se){var mt=ye.exports;if(c.asm=mt,vr=c.asm.F,ce=Se,!I){var hn=Ce.unusedWorkers.length;Ce.unusedWorkers.forEach(function(nn){Ce.loadWasmModuleToWorker(nn,function(){--hn||N0("wasm-instantiate")})})}}I||T0("wasm-instantiate");function W(ye){F(ye.instance,ye.module)}function Q(ye){return E0().then(function(Se){return WebAssembly.instantiate(Se,C)}).then(ye,function(Se){X("failed to asynchronously prepare wasm: "+Se),js(Se)})}function Ae(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!Dh(qn)&&!Fh(qn)&&typeof fetch=="function"?fetch(qn,{credentials:"same-origin"}).then(function(ye){var Se=WebAssembly.instantiateStreaming(ye,C);return Se.then(W,function(mt){return X("wasm streaming compile failed: "+mt),X("falling back to ArrayBuffer instantiation"),Q(W)})}):Q(W)}if(c.instantiateWasm)try{var ge=c.instantiateWasm(C,F);return ge}catch(ye){return X("Module.instantiateWasm callback failed with error: "+ye),!1}return Ae().catch(h),{}}var R0={9832:function(){throw"Canceled!"},9850:function(C,F){setTimeout(function(){h3(C,F)},0)}};function Oh(){Ce.initRuntime()}function Ti(C){for(;C.length>0;){var F=C.shift();if(typeof F=="function"){F(c);continue}var W=F.func;typeof W=="number"?F.arg===void 0?vr.get(W)():vr.get(W)(F.arg):W(F.arg===void 0?null:F.arg)}}function Mu(C,F){if(C<=0||C>a().length||C&!0||F<0)return-28;if(F==0)return 0;F>=2147483647&&(F=1/0);var W=Atomics.load(i(),_i>>2),Q=0;if(W==C){var Ae=Atomics.compareExchange(i(),_i>>2,W,0);if(Ae==W&&(--F,Q=1,F<=0))return 1}var ge=Atomics.notify(i(),C>>2,F);if(ge>=0)return ge+Q;throw"Atomics.notify returned an unexpected value "+ge}c._emscripten_futex_wake=Mu;function _0(C){if(I)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in killThread!";i()[C+12>>2]=0;var F=Ce.pthreads[C];F.worker.terminate(),Ce.freeThreadData(F),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function D0(C){if(I)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cancelThread!";var F=Ce.pthreads[C];F.worker.postMessage({cmd:"cancel"})}function F0(C){if(I)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cleanupThread!";var F=Ce.pthreads[C];if(F){i()[C+12>>2]=0;var W=F.worker;Ce.returnWorkerToPool(W)}}var Ce={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var C=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),F=0;F>2]=C;var W=C+152;i()[W>>2]=W;for(var Q=uo(512),F=0;F<128;++F)l()[Q/4+F]=0;Atomics.store(l(),C+100>>2,Q),Atomics.store(l(),C+40>>2,C),jg(C,!x,1),d3(C)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ce.threadExitHandlers.length>0;)Ce.threadExitHandlers.pop()();I&&Ei()&&c3()},runExitHandlersAndDeinitThread:function(C,F){Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),Ce.runExitHandlers(),Atomics.store(l(),C+4>>2,F),Atomics.store(l(),C+0>>2,1),Mu(C+0,2147483647),jg(0,0,0)},threadExit:function(C){var F=Ei();F&&(Ce.runExitHandlersAndDeinitThread(F,C),I&&postMessage({cmd:"exit"}))},threadCancel:function(){Ce.runExitHandlersAndDeinitThread(Ei(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var C in Ce.pthreads){var F=Ce.pthreads[C];F&&F.worker&&Ce.returnWorkerToPool(F.worker)}Ce.pthreads={};for(var W=0;W>2];i()[C.threadInfoStruct+100>>2]=0,Vu(F),Vu(C.threadInfoStruct)}C.threadInfoStruct=0,C.allocatedOwnStack&&C.stackBase&&Vu(C.stackBase),C.stackBase=0,C.worker&&(C.worker.pthread=null)}},returnWorkerToPool:function(C){Ce.runWithoutMainThreadQueuedCalls(function(){delete Ce.pthreads[C.pthread.threadInfoStruct],Ce.unusedWorkers.push(C),Ce.runningWorkers.splice(Ce.runningWorkers.indexOf(C),1),Ce.freeThreadData(C.pthread),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){i()[y3>>2]=0;try{C()}finally{i()[y3>>2]=1}},receiveObjectTransfer:function(C){},loadWasmModuleToWorker:function(C,F){C.onmessage=function(W){var Q=W.data,Ae=Q.cmd;if(C.pthread&&(Ce.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=Ei()){var ge=Ce.pthreads[Q.targetThread];ge?ge.worker.postMessage(W.data,Q.transferList):console.error('Internal error! Worker sent a message "'+Ae+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),Ce.currentProxiedOperationCallerThread=void 0;return}if(Ae==="processQueuedMainThreadWork")Hg();else if(Ae==="spawnThread")Vh(W.data);else if(Ae==="cleanupThread")F0(Q.thread);else if(Ae==="killThread")_0(Q.thread);else if(Ae==="cancelThread")D0(Q.thread);else if(Ae==="loaded")C.loaded=!0,F&&F(C),C.runPthread&&(C.runPthread(),delete C.runPthread);else if(Ae==="print")q("Thread "+Q.threadId+": "+Q.text);else if(Ae==="printErr")X("Thread "+Q.threadId+": "+Q.text);else if(Ae==="alert")alert("Thread "+Q.threadId+": "+Q.text);else if(Ae==="exit"){var ye=C.pthread&&Atomics.load(l(),C.pthread.threadInfoStruct+64>>2);ye&&Ce.returnWorkerToPool(C)}else if(Ae==="exitProcess")try{GR(Q.returnCode)}catch(Se){if(Se instanceof Hu)return;throw Se}else Ae==="cancelDone"?Ce.returnWorkerToPool(C):Ae==="objectTransfer"?Ce.receiveObjectTransfer(W.data):W.data.target==="setimmediate"?C.postMessage(W.data):X("worker sent an unknown command "+Ae);Ce.currentProxiedOperationCallerThread=void 0},C.onerror=function(W){X("pthread sent an error! "+W.filename+":"+W.lineno+": "+W.message)},b&&(C.on("message",function(W){C.onmessage({data:W})}),C.on("error",function(W){C.onerror(W)}),C.on("exit",function(W){})),C.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:ne,wasmModule:ce})},allocateUnusedWorker:function(){var C=S("tfjs-backend-wasm-threaded-simd.worker.js");Ce.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return Ce.unusedWorkers.length==0&&(Ce.allocateUnusedWorker(),Ce.loadWasmModuleToWorker(Ce.unusedWorkers[0])),Ce.unusedWorkers.length>0?Ce.unusedWorkers.pop():null},busySpinWait:function(C){for(var F=performance.now()+C;performance.now()>2]=C,C}function W0(C,F){if(I)return va(1,1,C,F)}function V0(C,F){if(C==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(I)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var W=Ce.pthreads[C],Q=W&&W.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function U0(){js()}function H0(C,F,W){var Q=X0(F,W);return R0[C].apply(null,Q)}function G0(C,F){}function j0(C,F,W){if(C<=0||C>a().length||C&!0)return-28;if(A){if(Atomics.load(i(),C>>2)!=F)return-6;for(var Ae=performance.now(),ge=Ae+W,ye=Atomics.exchange(i(),_i>>2,C);;){if(Ae=performance.now(),Ae>ge)return ye=Atomics.exchange(i(),_i>>2,0),-73;if(ye=Atomics.exchange(i(),_i>>2,0),ye==0)break;if(Hg(),Atomics.load(i(),C>>2)!=F)return-6;ye=Atomics.exchange(i(),_i>>2,C)}return 0}else{var Q=Atomics.wait(i(),C>>2,F,W);if(Q==="timed-out")return-73;if(Q==="not-equal")return-6;if(Q==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Q}}function q0(C,F,W){o().copyWithin(C,F,F+W)}function K0(){return b?co("os").cpus().length:navigator.hardwareConcurrency}function va(C,F){for(var W=arguments.length-2,Q=Uu(),Ae=W,ge=Ri(Ae*8),ye=ge>>3,Se=0;Se>=2;W=o()[C++];){var Q=W<105;Q&&F&1&&F++,Pu.push(Q?u()[F++>>1]:i()[F]),++F}return Pu}function Z0(C,F,W){Ou.length=F;for(var Q=W>>3,Ae=0;Ae>>16),vn(ne.buffer),1}catch(F){}}function Q0(C){var F=Y0();if(C<=F)return!1;var W=2147483648;if(C>W)return!1;for(var Q=1;Q<=4;Q*=2){var Ae=F*(1+.2/Q);Ae=Math.min(Ae,C+100663296);var ge=Math.min(W,xt(Math.max(C,Ae),65536)),ye=J0(ge);if(ye)return!0}return!1}var Ke={inEventHandler:0,removeAllEventListeners:function(){for(var C=Ke.eventHandlers.length-1;C>=0;--C)Ke._removeHandler(C);Ke.eventHandlers=[],Ke.deferredCalls=[]},registerRemoveEventListeners:function(){Ke.removeEventListenersRegistered||(xa.push(Ke.removeAllEventListeners),Ke.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,F,W){function Q(ye,Se){if(ye.length!=Se.length)return!1;for(var mt in ye)if(ye[mt]!=Se[mt])return!1;return!0}for(var Ae in Ke.deferredCalls){var ge=Ke.deferredCalls[Ae];if(ge.targetFunction==C&&Q(ge.argsList,W))return}Ke.deferredCalls.push({targetFunction:C,precedence:F,argsList:W}),Ke.deferredCalls.sort(function(ye,Se){return ye.precedence>2]=W,i()[ye+4>>2]=Q,i()[ye+8>>2]=Ae,Gg(0,C,637534208,F,Q,ye),$i(ge)},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return Ce.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function eg(C){var F=ft(C)+1,W=uo(F);return pt(C,W,F),W}function tg(C,F,W,Q){var Ae=Uu(),ge=Ri(12),ye=0;F&&(ye=eg(F)),i()[ge>>2]=ye,i()[ge+4>>2]=W,i()[ge+8>>2]=Q,Gg(0,C,657457152,0,ye,ge),$i(Ae)}function ng(C,F,W,Q){F=F?Be(F):"",tg(C,F,W,Q)}function rg(C){return C>2?Be(C):C}var sg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function ag(C){C=rg(C);var F=sg[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return F}function zu(C){return ag(C)}function Ph(C,F,W){var Q=zu(C);if(!Q)return-4;if(Q.canvasSharedPtr&&(i()[Q.canvasSharedPtr>>2]=F,i()[Q.canvasSharedPtr+4>>2]=W),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var Ae=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var ge=Q.GLctxObject.GLctx.getParameter(2978);Ae=ge[0]===0&&ge[1]===0&&ge[2]===Q.width&&ge[3]===Q.height}Q.width=F,Q.height=W,Ae&&Q.GLctxObject.GLctx.viewport(0,0,F,W)}else if(Q.canvasSharedPtr){var ye=i()[Q.canvasSharedPtr+8>>2];return ng(ye,C,F,W),1}else return-4;return 0}function zh(C,F,W){return I?va(2,1,C,F,W):Ph(C,F,W)}function og(C,F,W){var Q=zu(C);return Q?Ph(C,F,W):zh(C,F,W)}function ig(C){}function lg(C,F){}function ug(C){var F=C.getExtension("ANGLE_instanced_arrays");if(F)return C.vertexAttribDivisor=function(W,Q){F.vertexAttribDivisorANGLE(W,Q)},C.drawArraysInstanced=function(W,Q,Ae,ge){F.drawArraysInstancedANGLE(W,Q,Ae,ge)},C.drawElementsInstanced=function(W,Q,Ae,ge,ye){F.drawElementsInstancedANGLE(W,Q,Ae,ge,ye)},1}function cg(C){var F=C.getExtension("OES_vertex_array_object");if(F)return C.createVertexArray=function(){return F.createVertexArrayOES()},C.deleteVertexArray=function(W){F.deleteVertexArrayOES(W)},C.bindVertexArray=function(W){F.bindVertexArrayOES(W)},C.isVertexArray=function(W){return F.isVertexArrayOES(W)},1}function dg(C){var F=C.getExtension("WEBGL_draw_buffers");if(F)return C.drawBuffers=function(W,Q){F.drawBuffersWEBGL(W,Q)},1}function hg(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var ht={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(F){ht.lastError||(ht.lastError=F)},getNewId:function(C){for(var F=ht.counter++,W=C.length;W>2]:-1;Ae+=Be(i()[W+ge*4>>2],ye<0?void 0:ye)}return Ae},createContext:function(C,F){var W=C.getContext("webgl",F);if(!W)return 0;var Q=ht.registerContext(W,F);return Q},registerContext:function(C,F){var W=uo(8);i()[W+4>>2]=Ei();var Q={handle:W,attributes:F,version:F.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=Q),ht.contexts[W]=Q,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&ht.initExtensions(Q),W},makeContextCurrent:function(C){return ht.currentContext=ht.contexts[C],c.ctx=wa=ht.currentContext&&ht.currentContext.GLctx,!(C&&!wa)},getContext:function(C){return ht.contexts[C]},deleteContext:function(C){ht.currentContext===ht.contexts[C]&&(ht.currentContext=null),typeof Ke=="object"&&Ke.removeAllHandlersOnTarget(ht.contexts[C].GLctx.canvas),ht.contexts[C]&&ht.contexts[C].GLctx.canvas&&(ht.contexts[C].GLctx.canvas.GLctxObject=void 0),Vu(ht.contexts[C].handle),ht.contexts[C]=null},initExtensions:function(C){if(C||(C=ht.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var F=C.GLctx;ug(F),cg(F),dg(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),hg(F);var W=F.getSupportedExtensions()||[];W.forEach(function(Q){Q.indexOf("lose_context")<0&&Q.indexOf("debug")<0&&F.getExtension(Q)})}},populateUniformTable:function(C){for(var F=ht.programs[C],W=ht.programInfos[C]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Q=W.uniforms,Ae=wa.getProgramParameter(F,35718),ge=0;ge>2,Q=i()[W+(24>>2)],Ae={alpha:!!i()[W+(0>>2)],depth:!!i()[W+(4>>2)],stencil:!!i()[W+(8>>2)],antialias:!!i()[W+(12>>2)],premultipliedAlpha:!!i()[W+(16>>2)],preserveDrawingBuffer:!!i()[W+(20>>2)],powerPreference:pg[Q],failIfMajorPerformanceCaveat:!!i()[W+(28>>2)],majorVersion:i()[W+(32>>2)],minorVersion:i()[W+(36>>2)],enableExtensionsByDefault:i()[W+(40>>2)],explicitSwapControl:i()[W+(44>>2)],proxyContextToMainThread:i()[W+(48>>2)],renderViaOffscreenBackBuffer:i()[W+(52>>2)]},ge=zu(C);if(!ge||Ae.explicitSwapControl)return 0;var ye=ht.createContext(ge,Ae);return ye}function mg(C,F){return fg(C,F)}var Ni={mappings:{},buffers:[null,[],[]],printChar:function(C,F){var W=Ni.buffers[C];F===0||F===10?((C===1?q:X)(je(W,0)),W.length=0):W.push(F)},varargs:void 0,get:function(){Ni.varargs+=4;var C=i()[Ni.varargs-4>>2];return C},getStr:function(C){var F=Be(C);return F},get64:function(C,F){return C}};function Lh(C){return I?va(3,1,C):0}function Bh(C,F,W,Q,Ae){if(I)return va(4,1,C,F,W,Q,Ae)}function Wh(C,F,W,Q){if(I)return va(5,1,C,F,W,Q);for(var Ae=0,ge=0;ge>2],Se=i()[F+(ge*8+4)>>2],mt=0;mt>2]=Ae,0}function gg(C){var F=Ce.threadExitHandlers.pop();C&&F()}function yg(C,F){Ce.threadExitHandlers.push(function(){vr.get(C)(F)})}function Vh(C){if(I)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var F=Ce.getNewWorker();if(F.pthread!==void 0)throw"Internal error!";if(!C.pthread_ptr)throw"Internal error, no pthread ptr!";Ce.runningWorkers.push(F);for(var W=uo(128*4),Q=0;Q<128;++Q)i()[W+Q*4>>2]=0;var Ae=C.stackBase+C.stackSize,ge=Ce.pthreads[C.pthread_ptr]={worker:F,stackBase:C.stackBase,stackSize:C.stackSize,allocatedOwnStack:C.allocatedOwnStack,threadInfoStruct:C.pthread_ptr},ye=ge.threadInfoStruct>>2;Atomics.store(l(),ye+(64>>2),C.detached),Atomics.store(l(),ye+(100>>2),W),Atomics.store(l(),ye+(40>>2),ge.threadInfoStruct),Atomics.store(l(),ye+(80>>2),C.stackSize),Atomics.store(l(),ye+(76>>2),Ae),Atomics.store(l(),ye+(104>>2),C.stackSize),Atomics.store(l(),ye+(104+8>>2),Ae),Atomics.store(l(),ye+(104+12>>2),C.detached);var Se=u3(),mt=Se+40;Atomics.store(l(),ye+(172>>2),mt),F.pthread=ge;var hn={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr,stackBase:C.stackBase,stackSize:C.stackSize};F.runPthread=function(){hn.time=performance.now(),F.postMessage(hn,C.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread)}function Ag(C,F,W,Q){if(typeof SharedArrayBuffer=="undefined")return X("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!C)return X("pthread_create called with a null thread pointer!"),28;var Ae=[],ge=0;if(I&&(Ae.length===0||ge))return p3(687865856,C,F,W,Q);if(ge)return ge;var ye=0,Se=0,mt=0;F&&F!=-1?(ye=i()[F>>2],ye+=81920,Se=i()[F+8>>2],mt=i()[F+12>>2]!==0):ye=2097152;var hn=Se==0;hn?Se=g3(16,ye):(Se-=ye,be(Se>0));for(var nn=uo(228),Ia=0;Ia<228>>2;++Ia)l()[(nn>>2)+Ia]=0;i()[C>>2]=nn,i()[nn+12>>2]=nn;var Di=nn+152;i()[Di>>2]=Di;var _n={stackBase:Se,stackSize:ye,allocatedOwnStack:hn,detached:mt,startRoutine:W,pthread_ptr:nn,arg:Q,transferList:Ae};return I?(_n.cmd="spawnThread",postMessage(_n,Ae)):Vh(_n),0}function Uh(C){if(I)return va(6,1,C);switch(C){case 30:return 16384;case 85:var F=2147483648;return F/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return B0(28),-1}I||Ce.initMainThreadBlock();var wa,xg=[null,W0,zh,Lh,Bh,Wh,Uh],bg={e:z0,r:L0,x:V0,b:U0,y:H0,j:G0,c:j0,d:Mu,f:lo,p:q0,z:K0,u:Z0,q:Q0,v:og,i:ig,t:lg,w:mg,m:Lh,n:Bh,g:Wh,o:Oh,a:ne||c.wasmMemory,k:gg,l:yg,h:Ag,s:Uh},i3=$0(),Hh=c.___wasm_call_ctors=function(){return(Hh=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},vg=c._init=function(){return(vg=c._init=c.asm.B).apply(null,arguments)},wg=c._register_tensor=function(){return(wg=c._register_tensor=c.asm.C).apply(null,arguments)},kg=c._dispose_data=function(){return(kg=c._dispose_data=c.asm.D).apply(null,arguments)},Ig=c._dispose=function(){return(Ig=c._dispose=c.asm.E).apply(null,arguments)},Sg=c._Abs=function(){return(Sg=c._Abs=c.asm.G).apply(null,arguments)},Tg=c._Add=function(){return(Tg=c._Add=c.asm.H).apply(null,arguments)},Ng=c._AddN=function(){return(Ng=c._AddN=c.asm.I).apply(null,arguments)},Cg=c._All=function(){return(Cg=c._All=c.asm.J).apply(null,arguments)},Eg=c._Any=function(){return(Eg=c._Any=c.asm.K).apply(null,arguments)},$g=c._ArgMax=function(){return($g=c._ArgMax=c.asm.L).apply(null,arguments)},Rg=c._AvgPool=function(){return(Rg=c._AvgPool=c.asm.M).apply(null,arguments)},_g=c._BatchMatMul=function(){return(_g=c._BatchMatMul=c.asm.N).apply(null,arguments)},Dg=c._Ceil=function(){return(Dg=c._Ceil=c.asm.O).apply(null,arguments)},Fg=c._ClipByValue=function(){return(Fg=c._ClipByValue=c.asm.P).apply(null,arguments)},Mg=c._Conv2D=function(){return(Mg=c._Conv2D=c.asm.Q).apply(null,arguments)},Og=c._Conv2DBackpropInput=function(){return(Og=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},Pg=c._Cos=function(){return(Pg=c._Cos=c.asm.S).apply(null,arguments)},zg=c._Cosh=function(){return(zg=c._Cosh=c.asm.T).apply(null,arguments)},Lg=c._CropAndResize=function(){return(Lg=c._CropAndResize=c.asm.U).apply(null,arguments)},Bg=c._Cumsum=function(){return(Bg=c._Cumsum=c.asm.V).apply(null,arguments)},Wg=c._DepthToSpace=function(){return(Wg=c._DepthToSpace=c.asm.W).apply(null,arguments)},Vg=c._DepthwiseConv2dNative=function(){return(Vg=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Gh=c._Equal=function(){return(Gh=c._Equal=c.asm.Y).apply(null,arguments)},jh=c._Exp=function(){return(jh=c._Exp=c.asm.Z).apply(null,arguments)},qh=c._FlipLeftRight=function(){return(qh=c._FlipLeftRight=c.asm._).apply(null,arguments)},Lu=c._Floor=function(){return(Lu=c._Floor=c.asm.$).apply(null,arguments)},Ci=c._FloorDiv=function(){return(Ci=c._FloorDiv=c.asm.aa).apply(null,arguments)},Ug=c._FusedBatchNorm=function(){return(Ug=c._FusedBatchNorm=c.asm.ba).apply(null,arguments)},Bu=c._FusedConv2D=function(){return(Bu=c._FusedConv2D=c.asm.ca).apply(null,arguments)},te=c._FusedDepthwiseConv2D=function(){return(te=c._FusedDepthwiseConv2D=c.asm.da).apply(null,arguments)},ie=c._Gather=function(){return(ie=c._Gather=c.asm.ea).apply(null,arguments)},we=c._GatherNd=function(){return(we=c._GatherNd=c.asm.fa).apply(null,arguments)},lt=c._Greater=function(){return(lt=c._Greater=c.asm.ga).apply(null,arguments)},Ht=c._GreaterEqual=function(){return(Ht=c._GreaterEqual=c.asm.ha).apply(null,arguments)},Dt=c._LeakyRelu=function(){return(Dt=c._LeakyRelu=c.asm.ia).apply(null,arguments)},Qe=c._Less=function(){return(Qe=c._Less=c.asm.ja).apply(null,arguments)},et=c._LessEqual=function(){return(et=c._LessEqual=c.asm.ka).apply(null,arguments)},wn=c._Log=function(){return(wn=c._Log=c.asm.la).apply(null,arguments)},qs=c._LogicalAnd=function(){return(qs=c._LogicalAnd=c.asm.ma).apply(null,arguments)},Ks=c._Max=function(){return(Ks=c._Max=c.asm.na).apply(null,arguments)},Kh=c._MaxPool=function(){return(Kh=c._MaxPool=c.asm.oa).apply(null,arguments)},Wu=c._Maximum=function(){return(Wu=c._Maximum=c.asm.pa).apply(null,arguments)},lr=c._Mean=function(){return(lr=c._Mean=c.asm.qa).apply(null,arguments)},ka=c._Min=function(){return(ka=c._Min=c.asm.ra).apply(null,arguments)},Xh=c._Minimum=function(){return(Xh=c._Minimum=c.asm.sa).apply(null,arguments)},sR=c._MirrorPad=function(){return(sR=c._MirrorPad=c.asm.ta).apply(null,arguments)},aR=c._Multiply=function(){return(aR=c._Multiply=c.asm.ua).apply(null,arguments)},oR=c._Neg=function(){return(oR=c._Neg=c.asm.va).apply(null,arguments)},iR=c._NonMaxSuppressionV3=function(){return(iR=c._NonMaxSuppressionV3=c.asm.wa).apply(null,arguments)},lR=c._NonMaxSuppressionV4=function(){return(lR=c._NonMaxSuppressionV4=c.asm.xa).apply(null,arguments)},uR=c._NonMaxSuppressionV5=function(){return(uR=c._NonMaxSuppressionV5=c.asm.ya).apply(null,arguments)},cR=c._NotEqual=function(){return(cR=c._NotEqual=c.asm.za).apply(null,arguments)},dR=c._OneHot=function(){return(dR=c._OneHot=c.asm.Aa).apply(null,arguments)},hR=c._PadV2=function(){return(hR=c._PadV2=c.asm.Ba).apply(null,arguments)},pR=c._Pow=function(){return(pR=c._Pow=c.asm.Ca).apply(null,arguments)},fR=c._Prelu=function(){return(fR=c._Prelu=c.asm.Da).apply(null,arguments)},mR=c._Prod=function(){return(mR=c._Prod=c.asm.Ea).apply(null,arguments)},gR=c._RealDiv=function(){return(gR=c._RealDiv=c.asm.Fa).apply(null,arguments)},yR=c._Relu=function(){return(yR=c._Relu=c.asm.Ga).apply(null,arguments)},AR=c._Relu6=function(){return(AR=c._Relu6=c.asm.Ha).apply(null,arguments)},xR=c._ResizeBilinear=function(){return(xR=c._ResizeBilinear=c.asm.Ia).apply(null,arguments)},bR=c._Reverse=function(){return(bR=c._Reverse=c.asm.Ja).apply(null,arguments)},vR=c._RotateWithOffset=function(){return(vR=c._RotateWithOffset=c.asm.Ka).apply(null,arguments)},wR=c._Round=function(){return(wR=c._Round=c.asm.La).apply(null,arguments)},kR=c._Rsqrt=function(){return(kR=c._Rsqrt=c.asm.Ma).apply(null,arguments)},IR=c._ScatterNd=function(){return(IR=c._ScatterNd=c.asm.Na).apply(null,arguments)},SR=c._SelectV2=function(){return(SR=c._SelectV2=c.asm.Oa).apply(null,arguments)},TR=c._Sigmoid=function(){return(TR=c._Sigmoid=c.asm.Pa).apply(null,arguments)},NR=c._Sin=function(){return(NR=c._Sin=c.asm.Qa).apply(null,arguments)},CR=c._Softmax=function(){return(CR=c._Softmax=c.asm.Ra).apply(null,arguments)},ER=c._Sqrt=function(){return(ER=c._Sqrt=c.asm.Sa).apply(null,arguments)},$R=c._Square=function(){return($R=c._Square=c.asm.Ta).apply(null,arguments)},RR=c._SquaredDifference=function(){return(RR=c._SquaredDifference=c.asm.Ua).apply(null,arguments)},_R=c._Step=function(){return(_R=c._Step=c.asm.Va).apply(null,arguments)},DR=c._StridedSlice=function(){return(DR=c._StridedSlice=c.asm.Wa).apply(null,arguments)},FR=c._Sub=function(){return(FR=c._Sub=c.asm.Xa).apply(null,arguments)},MR=c._Sum=function(){return(MR=c._Sum=c.asm.Ya).apply(null,arguments)},OR=c._Tan=function(){return(OR=c._Tan=c.asm.Za).apply(null,arguments)},PR=c._Tanh=function(){return(PR=c._Tanh=c.asm._a).apply(null,arguments)},zR=c._Tile=function(){return(zR=c._Tile=c.asm.$a).apply(null,arguments)},LR=c._TopK=function(){return(LR=c._TopK=c.asm.ab).apply(null,arguments)},BR=c._Transform=function(){return(BR=c._Transform=c.asm.bb).apply(null,arguments)},WR=c._Transpose=function(){return(WR=c._Transpose=c.asm.cb).apply(null,arguments)},VR=c.__FusedMatMul=function(){return(VR=c.__FusedMatMul=c.asm.db).apply(null,arguments)},uo=c._malloc=function(){return(uo=c._malloc=c.asm.eb).apply(null,arguments)},Vu=c._free=function(){return(Vu=c._free=c.asm.fb).apply(null,arguments)},l3=c.___errno_location=function(){return(l3=c.___errno_location=c.asm.gb).apply(null,arguments)},u3=c._emscripten_get_global_libc=function(){return(u3=c._emscripten_get_global_libc=c.asm.hb).apply(null,arguments)},Ei=c._pthread_self=function(){return(Ei=c._pthread_self=c.asm.ib).apply(null,arguments)},c3=c.___pthread_tsd_run_dtors=function(){return(c3=c.___pthread_tsd_run_dtors=c.asm.jb).apply(null,arguments)},Hg=c._emscripten_main_thread_process_queued_calls=function(){return(Hg=c._emscripten_main_thread_process_queued_calls=c.asm.kb).apply(null,arguments)},UR=c._emscripten_current_thread_process_queued_calls=function(){return(UR=c._emscripten_current_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},d3=c._emscripten_register_main_browser_thread_id=function(){return(d3=c._emscripten_register_main_browser_thread_id=c.asm.mb).apply(null,arguments)},h3=c.__emscripten_do_dispatch_to_thread=function(){return(h3=c.__emscripten_do_dispatch_to_thread=c.asm.nb).apply(null,arguments)},p3=c._emscripten_sync_run_in_main_thread_4=function(){return(p3=c._emscripten_sync_run_in_main_thread_4=c.asm.ob).apply(null,arguments)},f3=c._emscripten_run_in_main_runtime_thread_js=function(){return(f3=c._emscripten_run_in_main_runtime_thread_js=c.asm.pb).apply(null,arguments)},Gg=c.__emscripten_call_on_thread=function(){return(Gg=c.__emscripten_call_on_thread=c.asm.qb).apply(null,arguments)},HR=c._emscripten_tls_init=function(){return(HR=c._emscripten_tls_init=c.asm.rb).apply(null,arguments)},jg=c.__emscripten_thread_init=function(){return(jg=c.__emscripten_thread_init=c.asm.sb).apply(null,arguments)},Uu=c.stackSave=function(){return(Uu=c.stackSave=c.asm.tb).apply(null,arguments)},$i=c.stackRestore=function(){return($i=c.stackRestore=c.asm.ub).apply(null,arguments)},Ri=c.stackAlloc=function(){return(Ri=c.stackAlloc=c.asm.vb).apply(null,arguments)},m3=c._emscripten_stack_set_limits=function(){return(m3=c._emscripten_stack_set_limits=c.asm.wb).apply(null,arguments)},g3=c._memalign=function(){return(g3=c._memalign=c.asm.xb).apply(null,arguments)},y3=c.__emscripten_allow_main_runtime_queued_calls=9824,_i=c.__emscripten_main_thread_futex=11448;c.cwrap=Pe,c.PThread=Ce,c.PThread=Ce,c.wasmMemory=ne,c.ExitStatus=Hu;var Zh;function Hu(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}io=function C(){Zh||qg(),Zh||(io=C)};function qg(C){if(C=C||m,Gs>0)return;if(I){d(c),Fu(),postMessage({cmd:"loaded"});return}if(k0(),Gs>0)return;function F(){Zh||(Zh=!0,c.calledRun=!0,!he&&(Fu(),I0(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),jn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),F()},1)):F()}c.run=qg;function GR(C,F){if(!(F&&oe&&C===0)){if(!F&&I)throw postMessage({cmd:"exitProcess",returnCode:C}),new Hu(C);oe||(Ce.terminateAllThreads(),me=C,$h(),c.onExit&&c.onExit(C),he=!0),y(C,new Hu(C))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return I&&(oe=!1,Ce.initWorker()),qg(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),y_=Ft({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.8.0_@tensorflow+tfjs-core@3.8.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};var a=typeof s!="undefined"?s:{},o,i;a.ready=new Promise(function(te,ie){o=te,i=ie});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",h=function(te,ie){throw ie},p=!1,f=!1,m=!1,g=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!p&&!m&&!f;var y="";function A(te){return a.locateFile?a.locateFile(te,y):y+te}var x,b,v,I,w,S;m?(f?y=Gu().dirname(y)+"/":y=__dirname+"/",x=function(ie,we){return w||(w=co("fs")),S||(S=Gu()),ie=S.normalize(ie),w.readFileSync(ie,we?null:"utf8")},v=function(ie){var we=x(ie,!0);return we.buffer||(we=new Uint8Array(we)),q(we.buffer),we},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(te){if(!(te instanceof Ug))throw te}),process.on("unhandledRejection",vs),h=function(te){process.exit(te)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(ie){return read(ie)}),v=function(ie){var we;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ie)):(we=read(ie,"binary"),q(typeof we=="object"),we)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(h=function(te){quit(te)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(te){var ie=new XMLHttpRequest;return ie.open("GET",te,!1),ie.send(null),ie.responseText},f&&(v=function(te){var ie=new XMLHttpRequest;return ie.open("GET",te,!1),ie.responseType="arraybuffer",ie.send(null),new Uint8Array(ie.response)}),b=function(te,ie,we){var lt=new XMLHttpRequest;lt.open("GET",te,!0),lt.responseType="arraybuffer",lt.onload=function(){if(lt.status==200||lt.status==0&<.response){ie(lt.response);return}we()},lt.onerror=we,lt.send(null)},I=function(te){document.title=te});var E=a.print||console.log.bind(console),D=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(h=a.quit);var $;a.wasmBinary&&($=a.wasmBinary);var R=a.noExitRuntime||!0;typeof WebAssembly!="object"&&vs("no native wasm support detected");var N,M=!1,B;function q(te,ie){te||vs("Assertion failed: "+ie)}function X(te){var ie=a["_"+te];return q(ie,"Cannot call unknown function "+te+", make sure it is exported"),ie}function J(te,ie,we,lt,Ht){var Dt={string:function(lr){var ka=0;if(lr!=null&&lr!==0){var Xh=(lr.length<<2)+1;ka=Lu(Xh),ce(lr,ka,Xh)}return ka},array:function(lr){var ka=Lu(lr.length);return he(lr,ka),ka}};function Qe(lr){return ie==="string"?oe(lr):ie==="boolean"?Boolean(lr):lr}var et=X(te),wn=[],qs=0;if(lt)for(var Ks=0;Ks=lt);)++Ht;if(Ht-ie>16&&te.subarray&&ae)return ae.decode(te.subarray(ie,Ht));for(var Dt="";ie>10,56320|qs&1023)}}return Dt}function oe(te,ie){return te?se($e,te,ie):""}function ne(te,ie,we,lt){if(!(lt>0))return 0;for(var Ht=we,Dt=we+lt-1,Qe=0;Qe=55296&&et<=57343){var wn=te.charCodeAt(++Qe);et=65536+((et&1023)<<10)|wn&1023}if(et<=127){if(we>=Dt)break;ie[we++]=et}else if(et<=2047){if(we+1>=Dt)break;ie[we++]=192|et>>6,ie[we++]=128|et&63}else if(et<=65535){if(we+2>=Dt)break;ie[we++]=224|et>>12,ie[we++]=128|et>>6&63,ie[we++]=128|et&63}else{if(we+3>=Dt)break;ie[we++]=240|et>>18,ie[we++]=128|et>>12&63,ie[we++]=128|et>>6&63,ie[we++]=128|et&63}}return ie[we]=0,we-Ht}function ce(te,ie,we){return ne(te,$e,ie,we)}function he(te,ie){Ee.set(te,ie)}function me(te,ie){return te%ie>0&&(te+=ie-te%ie),te}var be,Ee,$e,Pe,je,Be,bt,pt,ft;function dt(te){be=te,a.HEAP8=Ee=new Int8Array(te),a.HEAP16=Pe=new Int16Array(te),a.HEAP32=Be=new Int32Array(te),a.HEAPU8=$e=new Uint8Array(te),a.HEAPU16=je=new Uint16Array(te),a.HEAPU32=bt=new Uint32Array(te),a.HEAPF32=pt=new Float32Array(te),a.HEAPF64=ft=new Float64Array(te)}var xt=a.INITIAL_MEMORY||16777216,Ye,Gn=[],Bt=[],or=[],bn=[],zr=!1;Bt.push({func:function(){Oh()}});function Rn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)br(a.preRun.shift());ba(Gn)}function Ar(){zr=!0,ba(Bt)}function xr(){ba(or)}function vn(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)vr(a.postRun.shift());ba(bn)}function br(te){Gn.unshift(te)}function vr(te){bn.unshift(te)}var ir=0,bs=null,Hs=null;function xa(te){ir++,a.monitorRunDependencies&&a.monitorRunDependencies(ir)}function Ii(te){if(ir--,a.monitorRunDependencies&&a.monitorRunDependencies(ir),ir==0&&(bs!==null&&(clearInterval(bs),bs=null),Hs)){var ie=Hs;Hs=null,ie()}}a.preloadedImages={},a.preloadedAudios={};function vs(te){a.onAbort&&a.onAbort(te),te+="",D(te),M=!0,B=1,te="abort("+te+"). Build with -s ASSERTIONS=1 for more info.";var ie=new WebAssembly.RuntimeError(te);throw i(ie),ie}function Eh(te,ie){return String.prototype.startsWith?te.startsWith(ie):te.indexOf(ie)===0}var k0="data:application/octet-stream;base64,";function Fu(te){return Eh(te,k0)}var I0="file://";function $h(te){return Eh(te,I0)}var jn="tfjs-backend-wasm.wasm";Fu(jn)||(jn=A(jn));function Rh(te){try{if(te==jn&&$)return new Uint8Array($);if(v)return v(te);throw"both async and sync fetching of the wasm failed"}catch(ie){vs(ie)}}function S0(){if(!$&&(p||f)){if(typeof fetch=="function"&&!$h(jn))return fetch(jn,{credentials:"same-origin"}).then(function(te){if(!te.ok)throw"failed to load wasm binary file at '"+jn+"'";return te.arrayBuffer()}).catch(function(){return Rh(jn)});if(b)return new Promise(function(te,ie){b(jn,function(we){te(new Uint8Array(we))},ie)})}return Promise.resolve().then(function(){return Rh(jn)})}function Gs(){var te={a:$0};function ie(Qe,et){var wn=Qe.exports;a.asm=wn,N=a.asm.i,dt(N.buffer),Ye=a.asm.o,Ii("wasm-instantiate")}xa("wasm-instantiate");function we(Qe){ie(Qe.instance)}function lt(Qe){return S0().then(function(et){return WebAssembly.instantiate(et,te)}).then(Qe,function(et){D("failed to asynchronously prepare wasm: "+et),vs(et)})}function Ht(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!Fu(jn)&&!$h(jn)&&typeof fetch=="function"?fetch(jn,{credentials:"same-origin"}).then(function(Qe){var et=WebAssembly.instantiateStreaming(Qe,te);return et.then(we,function(wn){return D("wasm streaming compile failed: "+wn),D("falling back to ArrayBuffer instantiation"),lt(we)})}):lt(we)}if(a.instantiateWasm)try{var Dt=a.instantiateWasm(te,ie);return Dt}catch(Qe){return D("Module.instantiateWasm callback failed with error: "+Qe),!1}return Ht().catch(i),{}}function ba(te){for(;te.length>0;){var ie=te.shift();if(typeof ie=="function"){ie(a);continue}var we=ie.func;typeof we=="number"?ie.arg===void 0?Ye.get(we)():Ye.get(we)(ie.arg):we(ie.arg===void 0?null:ie.arg)}}function io(){vs()}function T0(te,ie,we){$e.copyWithin(te,ie,ie+we)}function N0(){return $e.length}function js(te){try{return N.grow(te-be.byteLength+65535>>>16),dt(N.buffer),1}catch(ie){}}function _h(te){var ie=N0(),we=2147483648;if(te>we)return!1;for(var lt=1;lt<=4;lt*=2){var Ht=ie*(1+.2/lt);Ht=Math.min(Ht,te+100663296);var Dt=Math.min(we,me(Math.max(te,Ht),65536)),Qe=js(Dt);if(Qe)return!0}return!1}var Si={mappings:{},buffers:[null,[],[]],printChar:function(te,ie){var we=Si.buffers[te];ie===0||ie===10?((te===1?E:D)(se(we,0)),we.length=0):we.push(ie)},varargs:void 0,get:function(){Si.varargs+=4;var te=Be[Si.varargs-4>>2];return te},getStr:function(te){var ie=oe(te);return ie},get64:function(te,ie){return te}};function Dh(te){return 0}function C0(te,ie,we,lt,Ht){}function Fh(te,ie,we,lt){for(var Ht=0,Dt=0;Dt>2],et=Be[ie+(Dt*8+4)>>2],wn=0;wn>2]=Ht,0}function qn(){return 6}function Mh(te){return Be[Gh()>>2]=te,te}function E0(te){switch(te){case 30:return 16384;case 85:var ie=2147483648;return ie/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Mh(28),-1}var $0={a:io,d:T0,e:_h,f:Dh,c:C0,b:Fh,g:qn,h:E0},R0=Gs(),Oh=a.___wasm_call_ctors=function(){return(Oh=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},Ti=a._init=function(){return(Ti=a._init=a.asm.k).apply(null,arguments)},Mu=a._register_tensor=function(){return(Mu=a._register_tensor=a.asm.l).apply(null,arguments)},_0=a._dispose_data=function(){return(_0=a._dispose_data=a.asm.m).apply(null,arguments)},D0=a._dispose=function(){return(D0=a._dispose=a.asm.n).apply(null,arguments)},F0=a._Abs=function(){return(F0=a._Abs=a.asm.p).apply(null,arguments)},Ce=a._Add=function(){return(Ce=a._Add=a.asm.q).apply(null,arguments)},M0=a._AddN=function(){return(M0=a._AddN=a.asm.r).apply(null,arguments)},O0=a._All=function(){return(O0=a._All=a.asm.s).apply(null,arguments)},P0=a._Any=function(){return(P0=a._Any=a.asm.t).apply(null,arguments)},z0=a._ArgMax=function(){return(z0=a._ArgMax=a.asm.u).apply(null,arguments)},L0=a._AvgPool=function(){return(L0=a._AvgPool=a.asm.v).apply(null,arguments)},lo=a._BatchMatMul=function(){return(lo=a._BatchMatMul=a.asm.w).apply(null,arguments)},B0=a._Ceil=function(){return(B0=a._Ceil=a.asm.x).apply(null,arguments)},W0=a._ClipByValue=function(){return(W0=a._ClipByValue=a.asm.y).apply(null,arguments)},V0=a._Conv2D=function(){return(V0=a._Conv2D=a.asm.z).apply(null,arguments)},U0=a._Conv2DBackpropInput=function(){return(U0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},H0=a._Cos=function(){return(H0=a._Cos=a.asm.B).apply(null,arguments)},G0=a._Cosh=function(){return(G0=a._Cosh=a.asm.C).apply(null,arguments)},j0=a._CropAndResize=function(){return(j0=a._CropAndResize=a.asm.D).apply(null,arguments)},q0=a._Cumsum=function(){return(q0=a._Cumsum=a.asm.E).apply(null,arguments)},K0=a._DepthToSpace=function(){return(K0=a._DepthToSpace=a.asm.F).apply(null,arguments)},va=a._DepthwiseConv2dNative=function(){return(va=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},Ou=a._Equal=function(){return(Ou=a._Equal=a.asm.H).apply(null,arguments)},Pu=a._Exp=function(){return(Pu=a._Exp=a.asm.I).apply(null,arguments)},X0=a._FlipLeftRight=function(){return(X0=a._FlipLeftRight=a.asm.J).apply(null,arguments)},Z0=a._Floor=function(){return(Z0=a._Floor=a.asm.K).apply(null,arguments)},Y0=a._FloorDiv=function(){return(Y0=a._FloorDiv=a.asm.L).apply(null,arguments)},J0=a._FusedBatchNorm=function(){return(J0=a._FusedBatchNorm=a.asm.M).apply(null,arguments)},Q0=a._FusedConv2D=function(){return(Q0=a._FusedConv2D=a.asm.N).apply(null,arguments)},Ke=a._FusedDepthwiseConv2D=function(){return(Ke=a._FusedDepthwiseConv2D=a.asm.O).apply(null,arguments)},eg=a._Gather=function(){return(eg=a._Gather=a.asm.P).apply(null,arguments)},tg=a._GatherNd=function(){return(tg=a._GatherNd=a.asm.Q).apply(null,arguments)},ng=a._Greater=function(){return(ng=a._Greater=a.asm.R).apply(null,arguments)},rg=a._GreaterEqual=function(){return(rg=a._GreaterEqual=a.asm.S).apply(null,arguments)},sg=a._LeakyRelu=function(){return(sg=a._LeakyRelu=a.asm.T).apply(null,arguments)},ag=a._Less=function(){return(ag=a._Less=a.asm.U).apply(null,arguments)},zu=a._LessEqual=function(){return(zu=a._LessEqual=a.asm.V).apply(null,arguments)},Ph=a._Log=function(){return(Ph=a._Log=a.asm.W).apply(null,arguments)},zh=a._LogicalAnd=function(){return(zh=a._LogicalAnd=a.asm.X).apply(null,arguments)},og=a._Max=function(){return(og=a._Max=a.asm.Y).apply(null,arguments)},ig=a._MaxPool=function(){return(ig=a._MaxPool=a.asm.Z).apply(null,arguments)},lg=a._Maximum=function(){return(lg=a._Maximum=a.asm._).apply(null,arguments)},ug=a._Mean=function(){return(ug=a._Mean=a.asm.$).apply(null,arguments)},cg=a._Min=function(){return(cg=a._Min=a.asm.aa).apply(null,arguments)},dg=a._Minimum=function(){return(dg=a._Minimum=a.asm.ba).apply(null,arguments)},hg=a._MirrorPad=function(){return(hg=a._MirrorPad=a.asm.ca).apply(null,arguments)},ht=a._Multiply=function(){return(ht=a._Multiply=a.asm.da).apply(null,arguments)},pg=a._Neg=function(){return(pg=a._Neg=a.asm.ea).apply(null,arguments)},fg=a._NonMaxSuppressionV3=function(){return(fg=a._NonMaxSuppressionV3=a.asm.fa).apply(null,arguments)},mg=a._NonMaxSuppressionV4=function(){return(mg=a._NonMaxSuppressionV4=a.asm.ga).apply(null,arguments)},Ni=a._NonMaxSuppressionV5=function(){return(Ni=a._NonMaxSuppressionV5=a.asm.ha).apply(null,arguments)},Lh=a._NotEqual=function(){return(Lh=a._NotEqual=a.asm.ia).apply(null,arguments)},Bh=a._OneHot=function(){return(Bh=a._OneHot=a.asm.ja).apply(null,arguments)},Wh=a._PadV2=function(){return(Wh=a._PadV2=a.asm.ka).apply(null,arguments)},gg=a._Pow=function(){return(gg=a._Pow=a.asm.la).apply(null,arguments)},yg=a._Prelu=function(){return(yg=a._Prelu=a.asm.ma).apply(null,arguments)},Vh=a._Prod=function(){return(Vh=a._Prod=a.asm.na).apply(null,arguments)},Ag=a._RealDiv=function(){return(Ag=a._RealDiv=a.asm.oa).apply(null,arguments)},Uh=a._Relu=function(){return(Uh=a._Relu=a.asm.pa).apply(null,arguments)},wa=a._Relu6=function(){return(wa=a._Relu6=a.asm.qa).apply(null,arguments)},xg=a._ResizeBilinear=function(){return(xg=a._ResizeBilinear=a.asm.ra).apply(null,arguments)},bg=a._Reverse=function(){return(bg=a._Reverse=a.asm.sa).apply(null,arguments)},i3=a._RotateWithOffset=function(){return(i3=a._RotateWithOffset=a.asm.ta).apply(null,arguments)},Hh=a._Round=function(){return(Hh=a._Round=a.asm.ua).apply(null,arguments)},vg=a._Rsqrt=function(){return(vg=a._Rsqrt=a.asm.va).apply(null,arguments)},wg=a._ScatterNd=function(){return(wg=a._ScatterNd=a.asm.wa).apply(null,arguments)},kg=a._SelectV2=function(){return(kg=a._SelectV2=a.asm.xa).apply(null,arguments)},Ig=a._Sigmoid=function(){return(Ig=a._Sigmoid=a.asm.ya).apply(null,arguments)},Sg=a._Sin=function(){return(Sg=a._Sin=a.asm.za).apply(null,arguments)},Tg=a._Softmax=function(){return(Tg=a._Softmax=a.asm.Aa).apply(null,arguments)},Ng=a._Sqrt=function(){return(Ng=a._Sqrt=a.asm.Ba).apply(null,arguments)},Cg=a._Square=function(){return(Cg=a._Square=a.asm.Ca).apply(null,arguments)},Eg=a._SquaredDifference=function(){return(Eg=a._SquaredDifference=a.asm.Da).apply(null,arguments)},$g=a._Step=function(){return($g=a._Step=a.asm.Ea).apply(null,arguments)},Rg=a._StridedSlice=function(){return(Rg=a._StridedSlice=a.asm.Fa).apply(null,arguments)},_g=a._Sub=function(){return(_g=a._Sub=a.asm.Ga).apply(null,arguments)},Dg=a._Sum=function(){return(Dg=a._Sum=a.asm.Ha).apply(null,arguments)},Fg=a._Tan=function(){return(Fg=a._Tan=a.asm.Ia).apply(null,arguments)},Mg=a._Tanh=function(){return(Mg=a._Tanh=a.asm.Ja).apply(null,arguments)},Og=a._Tile=function(){return(Og=a._Tile=a.asm.Ka).apply(null,arguments)},Pg=a._TopK=function(){return(Pg=a._TopK=a.asm.La).apply(null,arguments)},zg=a._Transform=function(){return(zg=a._Transform=a.asm.Ma).apply(null,arguments)},Lg=a._Transpose=function(){return(Lg=a._Transpose=a.asm.Na).apply(null,arguments)},Bg=a.__FusedMatMul=function(){return(Bg=a.__FusedMatMul=a.asm.Oa).apply(null,arguments)},Wg=a._malloc=function(){return(Wg=a._malloc=a.asm.Pa).apply(null,arguments)},Vg=a._free=function(){return(Vg=a._free=a.asm.Qa).apply(null,arguments)},Gh=a.___errno_location=function(){return(Gh=a.___errno_location=a.asm.Ra).apply(null,arguments)},jh=a.stackSave=function(){return(jh=a.stackSave=a.asm.Sa).apply(null,arguments)},qh=a.stackRestore=function(){return(qh=a.stackRestore=a.asm.Ta).apply(null,arguments)},Lu=a.stackAlloc=function(){return(Lu=a.stackAlloc=a.asm.Ua).apply(null,arguments)};a.cwrap=ee;var Ci;function Ug(te){this.name="ExitStatus",this.message="Program terminated with exit("+te+")",this.status=te}Hs=function te(){Ci||Bu(),Ci||(Hs=te)};function Bu(te){if(te=te||c,ir>0||(Rn(),ir>0))return;function ie(){Ci||(Ci=!0,a.calledRun=!0,!M&&(Ar(),xr(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),vn()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ie()},1)):ie()}if(a.run=Bu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Bu(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),A_="3.8.0",x_="3.8.0",b_="3.8.0",v_="3.8.0",w_="3.8.0",k_="3.8.0",I_="3.8.0",S_="3.8.0",T_=1e-7,N_=1e-4,C_=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},E3=class{refCount(e){return Lr("refCount")}incRef(e){return Lr("incRef")}timerAvailable(){return!0}time(e){return Lr("time")}read(e){return Lr("read")}readSync(e){return Lr("readSync")}numDataIds(){return Lr("numDataIds")}disposeData(e,t){return Lr("disposeData")}write(e,t,n){return Lr("write")}move(e,t,n,r,s){return Lr("move")}memory(){return Lr("memory")}floatPrecision(){return Lr("floatPrecision")}epsilon(){return this.floatPrecision()===32?T_:N_}dispose(){return Lr("dispose")}};function Lr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function $3(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Jh(e,t,n)}function E_(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r=0;for(;n>0;)r=Math.random()*n|0,n--,Jh(e,n,r),Jh(t,n,r)}function ju(e,t,n){return Math.max(e,Math.min(t,n))}function $_(e){return e%2==0?e:e+1}function Jh(e,t,n){let r=e[t];e[t]=e[n],e[n]=r}function R_(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function ho(e){L(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function po(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Nn(e)&&!n)for(let r=0;r0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function L_(e,t){let n=1,r=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function Ku(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),L(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),L(e.every(r=>Kn(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function R3(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:Ku(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function _3(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function D3(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function F3(e,t){for(let n=0;nt+=n.length),t}function Sa(e){return typeof e=="string"||e instanceof String}function P3(e){return typeof e=="boolean"}function z3(e){return typeof e=="number"}function Qh(e){return Array.isArray(e)?Qh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":z3(e)?"float32":Sa(e)?"string":P3(e)?"bool":"float32"}function Ta(e){return!!(e&&e.constructor&&e.call&&e.apply)}function ep(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function L3(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;ol*u)*(r?2:1);for(let l=0;ls*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return L3(0,e,t,n)}function Yg(e,t){let n=tp(e,t);for(let r=0;rr*s,1);if(t==null||t==="float32")return Oi(e,new Float32Array(n));if(t==="int32")return Oi(e,new Int32Array(n));if(t==="bool")return Oi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Jg(e){e.forEach(t=>{L(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function V_(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s{let[r,s]=n.split(":");this.urlFlags[r]=j_(r,s)})}};function H_(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(G_(t,r[0],r[1]),r.join("="))),t}function G_(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function j_(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ct(){return kr}var kr=null;function q_(e){kr=e}var e2;function V3(){if(e2==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");e2=e}return e2}function K_(){let e=V3();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function t2(e,t){let n=K_();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var U3="Abs",H3="Acos",G3="Acosh",n2="Add",j3="AddN",q3="All",K3="Any",X3="ArgMax",Z3="ArgMin",Y3="Asin",J3="Asinh",Q3="Atan",ev="Atanh",tv="Atan2",nv="AvgPool",X_="AvgPoolGrad",rv="AvgPool3D",Z_="AvgPool3DGrad",sv="BatchMatMul",av="BatchToSpaceND",ov="Bincount",Y_="BroadcastTo",r2="Cast",iv="Ceil",lv="ClipByValue",uv="Complex",cv="ComplexAbs",dv="Concat",hv="Conv2D",pv="Conv2DBackpropFilter",fv="Conv2DBackpropInput",mv="Conv3D",J_="Conv3DBackpropFilterV2",gv="Conv3DBackpropInputV2",yv="Cos",Av="Cosh",xv="Cumsum",bv="CropAndResize",vv="DenseBincount",wv="DepthToSpace",kv="DepthwiseConv2dNative",Iv="DepthwiseConv2dNativeBackpropFilter",Sv="DepthwiseConv2dNativeBackpropInput",Tv="Diag",Nv="Dilation2D",Q_="Dilation2DBackpropInput",eD="Dilation2DBackpropFilter",Cv="RealDiv",Ev="Einsum",$v="Elu",tD="EluGrad",Rv="Erf",_v="Equal",Dv="Exp",Fv="ExpandDims",Mv="Expm1",Ov="FFT",Pv="Fill",zv="FlipLeftRight",Lv="Floor",Bv="FloorDiv",Wv="FusedBatchNorm",Vv="GatherV2",Uv="GatherNd",Hv="Greater",Gv="GreaterEqual",s2="Identity",jv="IFFT",qv="Imag",Kv="IsFinite",Xv="IsInf",Zv="IsNan",Yv="LeakyRelu",Jv="Less",Qv="LessEqual",ew="LinSpace",tw="Log",nw="Log1p",rw="LogicalAnd",sw="LogicalNot",aw="LogicalOr",nD="LogSoftmax",ow="LRN",rD="LRNGrad",iw="Max",lw="Maximum",uw="MaxPool",sD="MaxPoolGrad",cw="MaxPool3D",aD="MaxPool3DGrad",dw="MaxPoolWithArgmax",hw="Mean",pw="Min",fw="Minimum",mw="MirrorPad",gw="Mod",yw="Multinomial",Aw="Multiply",xw="Neg",bw="NotEqual",vw="NonMaxSuppressionV3",ww="NonMaxSuppressionV4",kw="NonMaxSuppressionV5",Iw="OnesLike",Sw="OneHot",Tw="Pack",Nw="PadV2",oD="Pool",Cw="Pow",Ew="Prelu",$w="Prod",Rw="Range",_w="Real",Dw="Reciprocal",Fw="Relu",Mw="Reshape",Ow="ResizeNearestNeighbor",iD="ResizeNearestNeighborGrad",Pw="ResizeBilinear",lD="ResizeBilinearGrad",zw="Relu6",Lw="Reverse",Bw="Round",Ww="Rsqrt",Vw="ScatterNd",Uw="Select",Hw="Selu",Gw="Slice",jw="Sin",qw="Sinh",Kw="Sign",Xw="Sigmoid",Zw="Softplus",Yw="Sqrt",Jw="Sum",Qw="SpaceToBatchND",e7="SplitV",t7="Softmax",n7="SparseFillEmptyRows",r7="SparseReshape",s7="SparseSegmentMean",a7="SparseSegmentSum",o7="SparseToDense",i7="SquaredDifference",uD="Square",l7="StridedSlice",u7="StringNGrams",c7="StringSplit",d7="StringToHashBucketFast",h7="Sub",p7="Tan",f7="Tanh",a2="Tile",m7="TopK",g7="Transform",y7="Transpose",A7="Unique",x7="Unpack",b7="UnsortedSegmentSum",v7="ZerosLike",w7="Step",o2="FromPixels",k7="RotateWithOffset",i2="_FusedMatMul",l2="FusedConv2D",u2="FusedDepthwiseConv2D",Pi=t2("kernelRegistry",()=>new Map),Xu=t2("gradRegistry",()=>new Map);function np(e,t){let n=d2(e,t);return Pi.get(n)}function c2(e){return Xu.get(e)}function zi(e){let t=Pi.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function rp(e){let{kernelName:t,backendName:n}=e,r=d2(t,n);Pi.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Pi.set(r,e)}function cD(e){let{kernelName:t}=e;Xu.has(t)&&ct().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Xu.set(t,e)}function dD(e,t){let n=d2(e,t);if(!Pi.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Pi.delete(n)}function hD(e){if(!Xu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Xu.delete(e)}function pD(e,t){zi(e).forEach(r=>{let s=Object.assign({},r,{backendName:t});rp(s)})}function d2(e,t){return`${t}_${e}`}var I7={};_e(I7,{arraysEqual:()=>Zs,assert:()=>L,assertNonNegativeIntegerDimensions:()=>Jg,assertNonNull:()=>ho,assertShapesMatch:()=>Mn,bytesFromStringArray:()=>O3,bytesPerElement:()=>Zg,checkConversionForErrors:()=>F3,clamp:()=>ju,computeStrides:()=>Mi,createScalarValue:()=>xD,createShuffledIndices:()=>P_,decodeString:()=>op,distSquared:()=>D_,encodeString:()=>Ju,fetch:()=>vD,fingerPrint64:()=>AD,flatten:()=>po,getArrayFromDType:()=>D3,getTypedArrayFromDType:()=>_3,hasEncodingLoss:()=>B_,hexToLong:()=>Zu,indexToLoc:()=>U_,inferDtype:()=>Qh,inferFromImplicitShape:()=>L_,isBoolean:()=>P3,isFunction:()=>Ta,isInt:()=>Kn,isNumber:()=>z3,isPromise:()=>Qg,isScalarShape:()=>F_,isString:()=>Sa,isTypedArray:()=>Nn,isValidDtype:()=>M3,locToIndex:()=>V_,makeOnesTypedArray:()=>Yg,makeZerosNestedTypedArray:()=>W_,makeZerosTypedArray:()=>tp,nearestDivisor:()=>ep,nearestLargerEven:()=>$_,now:()=>Yu,parseAxisParam:()=>Ku,randUniform:()=>__,repeatedTry:()=>z_,rightPad:()=>qu,shuffle:()=>$3,shuffleCombo:()=>E_,sizeFromShape:()=>Yt,sizeToSquarishShape:()=>O_,squeezeShape:()=>R3,sum:()=>R_,swap:()=>Jh,tanh:()=>M_,toNestedArray:()=>Oi,toTypedArray:()=>ap});var S7=Xs(S3()),fo=S7.default||S7;function Zu(e){return fo.fromString(e,!0,16)}var T7=Zu("c3a5c85c97cb3127"),mo=Zu("b492b66fbe98f273"),On=Zu("9ae16a3b2f90404f");function h2(e){return e.xor(e.shru(47))}function N7(e,t,n){let r=e.slice(t,t+n);return fo.fromBytes(Array.from(r),!0,!0)}function kt(e,t){return N7(e,t,8)}function C7(e,t){return N7(e,t,4)}function pn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Na(e,t,n=Zu("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function fD(e,t,n,r,s,a){s=s.add(e),a=pn(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(pn(s,44)),[s.add(r),a.add(o)]}function sp(e,t,n,r){return fD(kt(e,t),kt(e,t+8),kt(e,t+16),kt(e,t+24),n,r)}function mD(e,t=e.length){if(t>=8){let n=On.add(t*2),r=kt(e,0).add(On),s=kt(e,t-8),a=pn(s,37).mul(n).add(r),o=pn(r,25).add(s).mul(n);return Na(a,o,n)}if(t>=4){let n=On.add(t*2),r=C7(e,0);return Na(r.shl(3).add(t),C7(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return h2(On.mul(a).xor(T7.mul(o))).mul(On)}return On}function gD(e,t=e.length){let n=On.add(t*2),r=kt(e,0).mul(mo),s=kt(e,8),a=kt(e,t-8).mul(n),o=kt(e,t-16).mul(On);return Na(pn(r.add(s),43).add(pn(a,30)).add(o),r.add(pn(s.add(On),18)).add(a),n)}function yD(e,t=e.length){let n=On.add(t*2),r=kt(e,0).mul(On),s=kt(e,8),a=kt(e,t-8).mul(n),o=kt(e,t-16).mul(On),i=pn(r.add(s),43).add(pn(a,30)).add(o),l=Na(i,r.add(pn(s.add(On),18)).add(a),n),u=kt(e,16).mul(n),c=kt(e,24),d=i.add(kt(e,t-32)).mul(n),h=l.add(kt(e,t-24)).mul(n);return Na(pn(u.add(c),43).add(pn(d,30)).add(h),u.add(pn(c.add(r),18)).add(d),n)}function AD(e,t=e.length){let n=fo.fromNumber(81,!0);if(t<=32)return t<=16?mD(e,t):gD(e,t);if(t<=64)return yD(e,t);let r=n,s=n.mul(mo).add(113),a=h2(s.mul(On).add(113)).mul(On),o=[fo.UZERO,fo.UZERO],i=[fo.UZERO,fo.UZERO];r=r.mul(On).add(kt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do r=pn(r.add(s).add(o[0]).add(kt(e,l+8)),37).mul(mo),s=pn(s.add(o[1]).add(kt(e,l+48)),42).mul(mo),r=r.xor(i[1]),s=s.add(o[0]).add(kt(e,l+40)),a=pn(a.add(i[0]),33).mul(mo),o=sp(e,l,o[1].mul(mo),r.add(i[0])),i=sp(e,l+32,a.add(i[1]),s.add(kt(e,l+16))),[a,r]=[r,a],l+=64;while(l!==u);let d=mo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=pn(r.add(s).add(o[0]).add(kt(e,l+8)),37).mul(d),s=pn(s.add(o[1]).add(kt(e,l+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(kt(e,l+40))),a=pn(a.add(i[0]),33).mul(d),o=sp(e,l,o[1].mul(d),r.add(i[0])),i=sp(e,l+32,a.add(i[1]),s.add(kt(e,l+16))),[a,r]=[r,a],Na(Na(o[0],i[0],d).add(h2(s).mul(T7)).add(a),Na(o[1],i[1],d).add(r),d)}function xD(e,t){return t==="string"?Ju(e):ap([e],t)}function bD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function ap(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=po(e)),ct().getBool("DEBUG")&&F3(e,t),bD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},a,o=Yu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let l of r)l.dataSync();a=Promise.resolve({kernelMs:Yu()-o})}if(ct().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{kD(c,u.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function kD(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function SD(e,t,n){let r={},s={};for(let l=0;lr[m.id]=!0),p=!0,s[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d=0;s--){let a=t[s],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Zs(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=r(d,u),d.dispose()}}}}var E7=20,Qu=3,p2=7;function ND(e,t,n,r){let s=Mi(t),a=CD(e,t,n,s),o=t.length,i=ip(e,t,n,s,a),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` `)),l.join(` -`)}function zD(e,t,n,r){let s=Jt(t),a=r[r.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?nc(e):e;if(i>1)for(let u=0;uW7){let g=ec*o,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((i-ec)*o,i*o));return n==="complex64"&&(y=nc(y),A=nc(A)),["["+y.map((x,b)=>tc(x,s[b],n)).join(", ")+", ..., "+A.map((x,b)=>tc(x,s[i-ec+b],n)).join(", ")+"]"]}let m=n==="complex64"?nc(e):Array.from(e);return["["+m.map((g,y)=>tc(g,s[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),d=r[0]*o,h=[];if(i>W7){for(let m=0;m1)for(let u=0;uE7){let g=Qu*o,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((i-Qu)*o,i*o));return n==="complex64"&&(y=tc(y),A=tc(A)),["["+y.map((x,b)=>ec(x,s[b],n)).join(", ")+", ..., "+A.map((x,b)=>ec(x,s[i-Qu+b],n)).join(", ")+"]"]}let m=n==="complex64"?tc(e):Array.from(e);return["["+m.map((g,y)=>ec(g,s[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),d=r[0]*o,h=[];if(i>E7){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||G3(t,this.size),this.strides=Oi(e)}set(e,...t){t.length===0&&(t=[0]),L(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;rip(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Is().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>ip(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Is().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Is().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Bi.print(this,e)}clone(){return this.throwIfDisposed(),Bi.clone(this)}toString(e=!1){let t=this.dataSync();return PD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Bi.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Is().makeVariable(this,e,t,n)}};Object.defineProperty(Tt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function UD(){return o2("Tensor",()=>Tt)}UD();var rc=class extends Tt{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Xs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Is().disposeTensor(this),this.dataId=e.dataId,Is().incRef(this,null)}dispose(){Is().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(rc,Symbol.hasInstance,{value:e=>e instanceof Tt&&e.assign!=null&&e.assign instanceof Function});var U7={};De(U7,{assertTypesMatch:()=>H7,getTensorsInContainer:()=>I2,isTensorInList:()=>jD,makeTypesMatch:()=>Vt});var x2;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(x2||(x2={}));var b2;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(b2||(b2={}));var v2;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(v2||(v2={}));var w2;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(w2||(w2={}));var k2;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(k2||(k2={}));var HD={float32:w2,int32:b2,bool:v2,complex64:k2};function cp(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return HD[e][t]}function GD(e){return cp(e,"int32")}function Vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=cp(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function H7(e,t){L(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function jD(e,t){return t.some(n=>n.id===e.id)}function I2(e){let t=[],n=new Set;return G7(e,t,n),t}function G7(e,t,n){if(e==null)return;if(e instanceof Tt){t.push(e);return}if(!qD(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),G7(a,t,n))}}function qD(e){return Array.isArray(e)||typeof e=="object"}function S2(e){return e.kernelName!=null}var j7=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},T2=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new j7}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Li(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof W3)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return T2.nextTensorId++}nextVariableId(){return T2.nextVariableId++}clone(e){let t=U.runKernel(u2,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return U.runKernel(l2,i,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(!(rp(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=S2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(S2(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=rp(p,this.backendName);L(g!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:w,dtype:S}=b;return this.makeTensorFromDataId(v,w,S)});if(r){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=S2(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),r&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=m2(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(L(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=s.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&Ia(e[0])&&(s=e.map(i=>Qu(i)));let a=r.write(s,t,n),o=new Tt(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),l=K3(s);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new Tt(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new rc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*t2(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof rc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*t2(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=m2(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=np(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),r(l.length>1?l:l[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=I2(e),n=new Set(t.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(L(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));L(s instanceof Tt,()=>"The result y returned by f() must be a tensor.");let a=MD(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?KD(s.shape):n,OD(o,a,l=>this.tidy(l),XD);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return L(Sa(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{L(t.every(o=>o instanceof Tt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),L(n.value instanceof Tt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),L(Sa(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];L(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),L(u.every(d=>d instanceof Tt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Ju(),n=await this.backend.time(e);return n.wallMs=Ju()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new j7;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},N2=T2;N2.nextTensorId=0;N2.nextVariableId=0;function KD(e){let t=n2(Jt(e),"float32");return U.makeTensor(t,e,"float32")}function q7(){let e=ev();if(e._tfengine==null){let t=new Q3(e);e._tfengine=new N2(t)}return rD(e._tfengine.ENV),BD(()=>e._tfengine),e._tfengine}var U=q7();function XD(e,t){let n={a:e,b:t};return U.runKernel(i2,n)}var K7={};De(K7,{isBrowser:()=>X7,isMobile:()=>YD});function ZD(){return typeof navigator!="undefined"&&navigator!=null}function YD(e){if(e||ZD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function X7(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var es=ct();es.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});es.registerFlag("IS_BROWSER",()=>X7());es.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");es.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));es.registerFlag("PROD",()=>!1);es.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>es.getBool("DEBUG"));es.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);es.registerFlag("IS_TEST",()=>!1);es.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);es.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ss(e,t){let n=e;if(Cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||Cn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&ct().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Z7(e,r,[]),r}function Z7(e,t,n){if(n=n||[],!Array.isArray(e)&&!Cn(e)){L(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}L(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),L(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s=0&&(s=r),Y7(r,s,t,n),e==null||!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Ss(e,s);!Cn(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?op(e,s):po(e,[],!0);return U.makeTensor(i,a,s)}function sc(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>O(a,`${t}[${o}]`,n,r))}var J7="__op";function H(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+J7;let s=(...a)=>{U.startScope(n);try{let o=r(...a);return s2(o)&&console.error("Cannot return a Promise inside of tidy."),U.endScope(o),o}catch(o){throw U.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function JD(e,t){let n=O(e,"real","complex"),r=O(t,"imag","complex");Mn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return U.runKernel(vv,s)}var go=H({complex_:JD});function Na(e,t,n,r){if(r==null&&(r=ep(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){r2(t);let s=Jt(t),a=Jt(n);L(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?op(e,r):po(e,[],!0),U.makeTensor(e,t,r)}function ts(e,t,n){let r=Ss(e,n);return Na(e,t,r,n)}var C2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},dp=4;async function QD(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let h=await l.bytes(),p=h.reduce((g,y)=>g+y.length,0)+dp*h.length,f=new Uint8Array(p),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var E2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function ek(e){return E2?Buffer.byteLength(e):new Blob([e]).size}function tF(e){if(E2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function tk(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function ac(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:ek(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:ek(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function rF(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)==0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function sF(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function aF(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function oF(){let e=rF(),t=sF(),n=aF();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(s)}}var jt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return jt.instance==null&&(jt.instance=new jt),jt.instance}static registerSaveRouter(e){jt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){jt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return jt.getHandlers(e,"save")}static getLoadHandlers(e,t){return jt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?jt.getInstance().loadRouters:jt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},iF=e=>jt.registerSaveRouter(e),lF=e=>jt.registerLoadRouter(e),uF=e=>jt.getSaveHandlers(e),cF=(e,t)=>jt.getLoadHandlers(e,t),_2="tensorflowjs",R2=1,yo="models_store",Ca="model_info_store";function nk(){if(!ct().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function D2(e){let t=e.result;t.createObjectStore(yo,{keyPath:"modelPath"}),t.createObjectStore(Ca,{keyPath:"modelPath"})}var Ao=class{constructor(e){if(this.indexedDB=nk(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(_2,R2);s.onupgradeneeded=()=>D2(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction(yo,"readonly"),l=o.objectStore(yo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),r(l.error)),o.oncomplete=()=>a.close()}else{let o=ac(t),i=a.transaction(Ca,"readwrite"),l=i.objectStore(Ca),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(yo,"readwrite");let h=c.objectStore(yo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Ca);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(h.error)),f.onerror=m=>(a.close(),r(h.error))}},u.onerror=d=>(a.close(),r(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Ao.URL_SCHEME="indexeddb://";var rk=e=>ct().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ao.URL_SCHEME)?dF(e.slice(Ao.URL_SCHEME.length)):null;jt.registerSaveRouter(rk);jt.registerLoadRouter(rk);function dF(e){return new Ao(e)}function hF(e){return e.startsWith(Ao.URL_SCHEME)?e.slice(Ao.URL_SCHEME.length):e}var pF=class{constructor(){this.indexedDB=nk()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(_2,R2);n.onupgradeneeded=()=>D2(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(Ca,"readonly"),o=s.objectStore(Ca).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=hF(e),new Promise((t,n)=>{let r=this.indexedDB.open(_2,R2);r.onupgradeneeded=()=>D2(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(Ca,"readwrite"),o=a.objectStore(Ca),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=s.transaction(yo,"readwrite");let h=l.objectStore(yo).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),s.close(),n(i.error))}},i.onerror=u=>(s.close(),n(i.error)),a.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},Zs="/",Wi="tensorflowjs_models",sk="info",fF="model_topology",mF="weight_specs",gF="weight_data",yF="model_metadata";function ak(e){return{info:[Wi,e,sk].join(Zs),topology:[Wi,e,fF].join(Zs),weightSpecs:[Wi,e,mF].join(Zs),weightData:[Wi,e,gF].join(Zs),modelMetadata:[Wi,e,yF].join(Zs)}}function AF(e){let t=e.split(Zs);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Zs)}function xF(e){return e.startsWith(xo.URL_SCHEME)?e.slice(xo.URL_SCHEME.length):e}var xo=class{constructor(e){if(!ct().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=ak(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=ac(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,tF(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=nF(a),t}};xo.URL_SCHEME="localstorage://";var ok=e=>ct().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(xo.URL_SCHEME)?bF(e.slice(xo.URL_SCHEME.length)):null;jt.registerSaveRouter(ok);jt.registerLoadRouter(ok);function bF(e){return new xo(e)}var vF=class{constructor(){L(ct().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),L(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Wi+Zs,n=Zs+sk;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(Vi)&&(e=e.slice(0,e.indexOf(Vi))),L(e.length>0,()=>"scheme must not be an empty string.");let n=Tr.getInstance();L(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function hp(e){if(e.indexOf(Vi)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Tr.getSchemes().join(",")}`);return{scheme:e.split(Vi)[0],path:e.split(Vi)[1]}}async function ik(e,t,n=!1){L(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=jt.getLoadHandlers(e);L(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),L(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=jt.getSaveHandlers(t);L(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),L(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=hp(e).scheme,l=hp(e).path,u=i===hp(e).scheme,c=await s.load();n&&u&&await Tr.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await Tr.getManager(i).removeModel(l),d.modelArtifactsInfo}async function wF(){let e=Tr.getSchemes(),t={};for(let n of e){let r=await Tr.getManager(n).listModels();for(let s in r){let a=n+Vi+s;t[a]=r[s]}}return t}async function kF(e){let t=hp(e);return Tr.getManager(t.scheme).removeModel(t.path)}async function IF(e,t){return ik(e,t,!1)}async function SF(e,t){return ik(e,t,!0)}var TF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ct().get("IS_BROWSER")){ct().setPlatform("browser",new TF);try{Tr.registerManager(xo.URL_SCHEME,new vF)}catch(e){}try{Tr.registerManager(Ao.URL_SCHEME,new pF)}catch(e){}}var NF={importFetch:()=>z3()},F2,CF=class{constructor(){this.util=co("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ct().global.fetch!=null?ct().global.fetch(e,t):(F2==null&&(F2=NF.importFetch()),F2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ct().get("IS_NODE")&&ct().setPlatform("node",new CF);function Ys(e,t="float32",n){return t=t||"float32",r2(e),new up(e,t,n)}function EF(e,t){let n=O(e,"x","cast");if(!q3(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return U.runKernel(l2,r,s)}var Pt=H({cast_:EF});function $F(e){let n={x:O(e,"x","clone","string_or_numeric")};return U.runKernel(u2,n)}var Js=H({clone_:$F});function lk(e,t=!1){console.log(e.toString(t))}q7();var _F={buffer:Ys,cast:Pt,clone:Js,print:lk};WD(_F);var uk={};De(uk,{browserFiles:()=>zF,browserHTTPRequest:()=>UF,concatenateArrayBuffers:()=>$2,copyModel:()=>IF,decodeWeights:()=>Q7,encodeWeights:()=>QD,fromMemory:()=>GF,getLoadHandlers:()=>cF,getModelArtifactsInfoForJSON:()=>ac,getSaveHandlers:()=>uF,http:()=>z2,isHTTPScheme:()=>P2,listModels:()=>wF,loadWeights:()=>LF,moveModel:()=>SF,registerLoadRouter:()=>lF,registerSaveRouter:()=>iF,removeModel:()=>kF,weightsLoaderFactory:()=>pk,withSaveHandler:()=>jF});var RF="model",DF=".json",FF=".weights.bin";function ck(e){return new Promise(t=>setTimeout(t)).then(e)}var M2=class{constructor(e){if(!ct().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(M2.URL_SCHEME)&&(e=e.slice(M2.URL_SCHEME.length)),(e==null||e.length===0)&&(e=RF),this.modelTopologyFileName=e+DF,this.weightDataFileName=e+FF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await ck(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await ck(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ac(e)}}}},pp=M2;pp.URL_SCHEME="downloads://";var MF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=JSON.parse(a.target.result),i=o.modelTopology;if(i==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:i});let l=o.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],d=[],h=[];l.forEach(p=>{p.paths.forEach(f=>{d.push(f),h.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=g=>{let y=g.target.result,A=d.indexOf(f);if(h[A]=y,h.indexOf(null)===-1){let x={modelTopology:i,weightSpecs:c,weightData:$2(h),format:o.format,generatedBy:o.generatedBy,convertedBy:o.convertedBy};o.signature!=null&&(x.signature=o.signature),o.userDefinedMetadata!=null&&(x.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(x.modelInitializer=o.modelInitializer),n(x)}},m.onerror=g=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},s.onerror=a=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(a=>tk(a.name)),s={};for(let a of e)a.paths.forEach(o=>{let i=tk(o);if(n.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(n.push(i),r.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);s[o]=t[r.indexOf(i)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return s}},OF=e=>ct().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pp.URL_SCHEME)?PF(e.slice(pp.URL_SCHEME.length)):null;jt.registerSaveRouter(OF);function PF(e="model"){return new pp(e)}function zF(e){return new MF(e)}function dk(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=l=>(l.then(u=>{let c=n+ ++s/e.length*(r-n);return t(c),u}),l);function o(l){L(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){L(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),L(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),L(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function hk(e,t){t==null&&(t={});let n=t.fetchFunc==null?ct().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await dk(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await dk(i,t.onProgress,l,u)}async function LF(e,t="",n,r){return pk(o=>hk(o,{requestInit:r}))(e,t,n)}function pk(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=C2[y]*Jt(g.shape),x=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};r!=null?r.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=A})}),!o.every(p=>p)){let p=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=s.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),w=Q7(v,[b.manifestEntry]);for(let S in w)d[S]=w[S]}),h+=f}),d}}var BF="application/octet-stream",WF="application/json",O2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(L(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ct().platform.fetch,L(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&L(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:WF}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:BF}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:ac(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,o=t.format,i=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let d={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:s,convertedBy:a,format:o};i!=null&&(d.signature=i),l!=null&&(d.userDefinedMetadata=l);let h=t.modelInitializer;return h&&(d.modelInitializer=h),d}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=VF(t),s=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(s+c+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await hk(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,$2(l)]}};O2.URL_SCHEME_REGEX=/^https?:\/\//;function VF(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function P2(e){return e.match(O2.URL_SCHEME_REGEX)!=null}var fk=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>P2(r)):n=P2(e),n)return z2(e,t)}return null};jt.registerSaveRouter(fk);jt.registerLoadRouter(fk);function z2(e,t){return new O2(e,t)}function UF(e,t){return z2(e,t)}var L2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},HF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function GF(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new L2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new L2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new L2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function jF(e){return new HF(e)}var mk={};De(mk,{confusionMatrix:()=>YF});function qF(e,t,n=!1,r=!1){let s=O(e,"a","matMul"),a=O(t,"b","matMul");[s,a]=Vt(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return U.runKernel(gv,o,i)}var yt=H({matMul_:qF});function KF(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:O(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return U.runKernel(Pw,a,o)}var B2=H({oneHot_:KF});function XF(e,t){let n=O(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),L(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{L(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return U.runKernel(E7,r,s)}var fp=H({transpose_:XF});function ZF(e,t,n){let r=O(e,"labels","confusionMatrix"),s=O(t,"predictions","confusionMatrix");L(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),L(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),L(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),L(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),L(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=B2(Pt(r,"int32"),n),o=B2(Pt(s,"int32"),n),i=fp(a),l=yt(i,o);return Pt(l,"int32")}var YF=H({confusionMatrix_:ZF}),Hr={};De(Hr,{fromPixels:()=>sM,fromPixelsAsync:()=>nM,toPixels:()=>rM});function mp(e,t,n){if(ho(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Ss(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Na(e,t,r,n)}var Ui;function gk(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState element.")}if(rp(d2,U.backendName)!=null){let f={pixels:e},m={numChannels:t};return U.runKernel(d2,f,m)}let[u,c]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:r||n?d=e.data:(a||s||i)&&(Ui==null&&(Ui=document.createElement("canvas").getContext("2d")),Ui.canvas.width=u,Ui.canvas.height=c,Ui.drawImage(e,0,0,u,c),d=Ui.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(s*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=s,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,s,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var sM=H({fromPixels_:gk}),yk={};De(yk,{prepareAndValidate:()=>Ak});function Ak(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Jt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;dd/u),1].slice(0,a);return[l,o,u,c]}var xk={};De(xk,{calculateShapes:()=>bk,validateInput:()=>V2,validateUpdateShape:()=>W2});function W2(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;daM,computeFlatOffset:()=>iM,computeOutShape:()=>vk,getNormalizedAxes:()=>Sk,isSliceContinous:()=>oM,maskToAxes:()=>gp,parseSliceParams:()=>lM,sliceInfo:()=>uM,startForAxis:()=>Ek,startIndicesWithElidedDims:()=>Tk,stopForAxis:()=>$k,stopIndicesWithElidedDims:()=>Nk,stridesForAxis:()=>Ck,stridesWithElidedDims:()=>wk});function aM(e,t,n){let r=e.shape.length;L(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),L(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function gp(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function vk(e,t,n){let r=[];for(let s=0;s0){let p=t[0],f=n+1;c=Tk(o,p,f,r,e),d=Nk(i,p,f,s,e),h=wk(a,p,f,e)}else for(let p=0;p-1)a[i]=0;else{let l=kk(t,n,i),u=r[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=kk(t,n,i),u=r[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),o=qu(0,o,l-1),o}function $k(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),i>0?o=qu(0,o,l):o=qu(-1,o,l-1),o}function oM(e,t,n){let r=n.length;for(let s=0;s1){r=s;break}for(let s=r+1;s0||n[s]!==e[s])return!1;return!0}function iM(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{L(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.lengtho>=0?o:(L(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function uM(e,t,n,r,s,a,o,i,l){let u=t.slice(),c=n.slice(),d=r;r==null&&(d=new Array(u.length));let h=gp(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=gp(i),m=e.slice();f.forEach(S=>{u[S]=0,c[S]=1,m.splice(S,0,1)});let{begin:g,end:y,strides:A}=Sk(m,h,p,u,c,d,s,a,o);u=g,c=y,d=A;let x=gp(l);x.forEach(S=>{c[S]=u[S]+1,d[S]=1});let b=vk(u,c,d),v=b.filter((S,I)=>x.indexOf(I)===-1);return{nonStrided:d.every(S=>S===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var _k={};De(_k,{Serializable:()=>Rk,SerializationMap:()=>bo,registerClass:()=>Ea});var Rk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},bo=class{constructor(){this.classNameMap={}}static getMap(){return bo.instance==null&&(bo.instance=new bo),bo.instance}static register(e){bo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ea(e){L(e.className!=null,()=>"Class being registered does not have the static className property defined."),L(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),L(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),bo.register(e)}var Dk={};De(Dk,{TEST_EPSILON_FLOAT16:()=>Fk,encodeStrings:()=>Mk,expectArrayBuffersEqual:()=>gM,expectArraysClose:()=>dM,expectArraysEqual:()=>pM,expectNumbersClose:()=>fM,expectPromiseToFail:()=>hM,expectValuesInRange:()=>mM,testEpsilon:()=>H2});var cM=.001,Fk=.1;function dM(e,t,n){return n==null&&(n=H2()),G2(e,t,(r,s)=>j2(r,s,n))}function H2(){return U.backend.floatPrecision()===32?cM:Fk}function G2(e,t,n){let r=!0;if((Cn(e)||Cn(t))&&(r=!1),Cn(e)&&Cn(t)&&(r=!0),r){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Ss(e),i=Ss(t);if(!Xs(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let s=Cn(e)?e:po(e),a=Cn(t)?t:po(t);if(s.length!==a.length)throw new Error(`Arrays have different lengths actual: ${s.length} vs expected: ${a.length}. +`;return h[h.length-1]=" "+h[h.length-1]+"]"+(a?"":f),h}function tc(e){let t=[];for(let n=0;n`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||D3(t,this.size),this.strides=Mi(e)}set(e,...t){t.length===0&&(t=[0]),L(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;rop(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=ws().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>op(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await ws().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(ws().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Li.print(this,e)}clone(){return this.throwIfDisposed(),Li.clone(this)}toString(e=!1){let t=this.dataSync();return ND(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Li.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),ws().makeVariable(this,e,t,n)}};Object.defineProperty(It,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function DD(){return t2("Tensor",()=>It)}DD();var nc=class extends It{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Zs(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);ws().disposeTensor(this),this.dataId=e.dataId,ws().incRef(this,null)}dispose(){ws().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(nc,Symbol.hasInstance,{value:e=>e instanceof It&&e.assign!=null&&e.assign instanceof Function});var R7={};_e(R7,{assertTypesMatch:()=>_7,getTensorsInContainer:()=>x2,isTensorInList:()=>OD,makeTypesMatch:()=>Wt});var f2;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(f2||(f2={}));var m2;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(m2||(m2={}));var g2;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(g2||(g2={}));var y2;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(y2||(y2={}));var A2;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(A2||(A2={}));var FD={float32:y2,int32:m2,bool:g2,complex64:A2};function up(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return FD[e][t]}function MD(e){return up(e,"int32")}function Wt(e,t){if(e.dtype===t.dtype)return[e,t];let n=up(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function _7(e,t){L(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function OD(e,t){return t.some(n=>n.id===e.id)}function x2(e){let t=[],n=new Set;return D7(e,t,n),t}function D7(e,t,n){if(e==null)return;if(e instanceof It){t.push(e);return}if(!PD(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),D7(a,t,n))}}function PD(e){return Array.isArray(e)||typeof e=="object"}function b2(e){return e.kernelName!=null}var F7=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},v2=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new F7}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){zi(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof E3)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return v2.nextTensorId++}nextVariableId(){return v2.nextVariableId++}clone(e){let t=U.runKernel(s2,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return U.runKernel(r2,i,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(np(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=b2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(b2(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=np(p,this.backendName);L(g!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:I,dtype:w}=b;return this.makeTensorFromDataId(v,I,w)});if(r){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=b2(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),r&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=c2(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(L(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=s.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&Sa(e[0])&&(s=e.map(i=>Ju(i)));let a=r.write(s,t,n),o=new It(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),l=O3(s);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new It(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new nc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Zg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof nc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Zg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=c2(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=tp(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),r(l.length>1?l:l[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=x2(e),n=new Set(t.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(L(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));L(s instanceof It,()=>"The result y returned by f() must be a tensor.");let a=SD(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?zD(s.shape):n,TD(o,a,l=>this.tidy(l),LD);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return L(Ta(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{L(t.every(o=>o instanceof It),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),L(n.value instanceof It,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),L(Ta(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];L(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),L(u.every(d=>d instanceof It),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Yu(),n=await this.backend.time(e);return n.wallMs=Yu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new F7;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},w2=v2;w2.nextTensorId=0;w2.nextVariableId=0;function zD(e){let t=Yg(Yt(e),"float32");return U.makeTensor(t,e,"float32")}function M7(){let e=V3();if(e._tfengine==null){let t=new W3(e);e._tfengine=new w2(t)}return q_(e._tfengine.ENV),$D(()=>e._tfengine),e._tfengine}var U=M7();function LD(e,t){let n={a:e,b:t};return U.runKernel(n2,n)}var O7={};_e(O7,{isBrowser:()=>P7,isMobile:()=>WD});function BD(){return typeof navigator!="undefined"&&navigator!=null}function WD(e){if(e||BD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function P7(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ts=ct();ts.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ts.registerFlag("IS_BROWSER",()=>P7());ts.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ts.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ts.registerFlag("PROD",()=>!1);ts.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ts.getBool("DEBUG"));ts.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ts.registerFlag("IS_TEST",()=>!1);ts.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ts.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function ks(e,t){let n=e;if(Nn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||Nn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&ct().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&z7(e,r,[]),r}function z7(e,t,n){if(n=n||[],!Array.isArray(e)&&!Nn(e)){L(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}L(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),L(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s=0&&(s=r),L7(r,s,t,n),e==null||!Nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=ks(e,s);!Nn(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?ap(e,s):po(e,[],!0);return U.makeTensor(i,a,s)}function rc(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>P(a,`${t}[${o}]`,n,r))}var B7="__op";function H(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+B7;let s=(...a)=>{U.startScope(n);try{let o=r(...a);return Qg(o)&&console.error("Cannot return a Promise inside of tidy."),U.endScope(o),o}catch(o){throw U.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function VD(e,t){let n=P(e,"real","complex"),r=P(t,"imag","complex");Mn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return U.runKernel(uv,s)}var go=H({complex_:VD});function Ca(e,t,n,r){if(r==null&&(r=Qh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Nn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Jg(t);let s=Yt(t),a=Yt(n);L(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Nn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?ap(e,r):po(e,[],!0),U.makeTensor(e,t,r)}function ns(e,t,n){let r=ks(e,n);return Ca(e,t,r,n)}var k2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},cp=4;async function UD(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let h=await l.bytes(),p=h.reduce((g,y)=>g+y.length,0)+cp*h.length,f=new Uint8Array(p),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var I2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function V7(e){return I2?Buffer.byteLength(e):new Blob([e]).size}function GD(e){if(I2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function U7(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function H7(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function T2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[r,s]=await t(e.weightsManifest);n.weightSpecs=r,n.weightData=s}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function sc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:V7(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:V7(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function qD(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)==0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function KD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function XD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function ZD(){let e=qD(),t=KD(),n=XD();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(s)}}var Gt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Gt.instance==null&&(Gt.instance=new Gt),Gt.instance}static registerSaveRouter(e){Gt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Gt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Gt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Gt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Gt.getInstance().loadRouters:Gt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},YD=e=>Gt.registerSaveRouter(e),JD=e=>Gt.registerLoadRouter(e),QD=e=>Gt.getSaveHandlers(e),eF=(e,t)=>Gt.getLoadHandlers(e,t),N2="tensorflowjs",C2=1,yo="models_store",Ea="model_info_store";function G7(){if(!ct().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function E2(e){let t=e.result;t.createObjectStore(yo,{keyPath:"modelPath"}),t.createObjectStore(Ea,{keyPath:"modelPath"})}var Ao=class{constructor(e){if(this.indexedDB=G7(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(N2,C2);s.onupgradeneeded=()=>E2(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction(yo,"readonly"),l=o.objectStore(yo).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),r(l.error)),o.oncomplete=()=>a.close()}else{let o=sc(t),i=a.transaction(Ea,"readwrite"),l=i.objectStore(Ea),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(yo,"readwrite");let h=c.objectStore(yo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Ea);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(h.error)),f.onerror=m=>(a.close(),r(h.error))}},u.onerror=d=>(a.close(),r(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Ao.URL_SCHEME="indexeddb://";var j7=e=>ct().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ao.URL_SCHEME)?tF(e.slice(Ao.URL_SCHEME.length)):null;Gt.registerSaveRouter(j7);Gt.registerLoadRouter(j7);function tF(e){return new Ao(e)}function nF(e){return e.startsWith(Ao.URL_SCHEME)?e.slice(Ao.URL_SCHEME.length):e}var rF=class{constructor(){this.indexedDB=G7()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(N2,C2);n.onupgradeneeded=()=>E2(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(Ea,"readonly"),o=s.objectStore(Ea).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=nF(e),new Promise((t,n)=>{let r=this.indexedDB.open(N2,C2);r.onupgradeneeded=()=>E2(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(Ea,"readwrite"),o=a.objectStore(Ea),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=s.transaction(yo,"readwrite");let h=l.objectStore(yo).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),s.close(),n(i.error))}},i.onerror=u=>(s.close(),n(i.error)),a.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},Ys="/",Bi="tensorflowjs_models",q7="info",sF="model_topology",aF="weight_specs",oF="weight_data",iF="model_metadata";function K7(e){return{info:[Bi,e,q7].join(Ys),topology:[Bi,e,sF].join(Ys),weightSpecs:[Bi,e,aF].join(Ys),weightData:[Bi,e,oF].join(Ys),modelMetadata:[Bi,e,iF].join(Ys)}}function X7(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function lF(e){let t=e.split(Ys);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ys)}function uF(e){return e.startsWith(xo.URL_SCHEME)?e.slice(xo.URL_SCHEME.length):e}var xo=class{constructor(e){if(!ct().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=K7(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=sc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,GD(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw X7(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=jD(a),t}};xo.URL_SCHEME="localstorage://";var Z7=e=>ct().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(xo.URL_SCHEME)?cF(e.slice(xo.URL_SCHEME.length)):null;Gt.registerSaveRouter(Z7);Gt.registerLoadRouter(Z7);function cF(e){return new xo(e)}var dF=class{constructor(){L(ct().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),L(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Bi+Ys,n=Ys+q7;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(Wi)&&(e=e.slice(0,e.indexOf(Wi))),L(e.length>0,()=>"scheme must not be an empty string.");let n=Ir.getInstance();L(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function dp(e){if(e.indexOf(Wi)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ir.getSchemes().join(",")}`);return{scheme:e.split(Wi)[0],path:e.split(Wi)[1]}}async function Y7(e,t,n=!1){L(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Gt.getLoadHandlers(e);L(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),L(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=Gt.getSaveHandlers(t);L(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),L(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=dp(e).scheme,l=dp(e).path,u=i===dp(e).scheme,c=await s.load();n&&u&&await Ir.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await Ir.getManager(i).removeModel(l),d.modelArtifactsInfo}async function hF(){let e=Ir.getSchemes(),t={};for(let n of e){let r=await Ir.getManager(n).listModels();for(let s in r){let a=n+Wi+s;t[a]=r[s]}}return t}async function pF(e){let t=dp(e);return Ir.getManager(t.scheme).removeModel(t.path)}async function fF(e,t){return Y7(e,t,!1)}async function mF(e,t){return Y7(e,t,!0)}var gF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ct().get("IS_BROWSER")){ct().setPlatform("browser",new gF);try{Ir.registerManager(xo.URL_SCHEME,new dF)}catch(e){}try{Ir.registerManager(Ao.URL_SCHEME,new rF)}catch(e){}}var yF={importFetch:()=>T3()},$2,AF=class{constructor(){this.util=co("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ct().global.fetch!=null?ct().global.fetch(e,t):($2==null&&($2=yF.importFetch()),$2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ct().get("IS_NODE")&&ct().setPlatform("node",new AF);function Js(e,t="float32",n){return t=t||"float32",Jg(e),new lp(e,t,n)}function xF(e,t){let n=P(e,"x","cast");if(!M3(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return U.runKernel(r2,r,s)}var Mt=H({cast_:xF});function bF(e){let n={x:P(e,"x","clone","string_or_numeric")};return U.runKernel(s2,n)}var Qs=H({clone_:bF});function J7(e,t=!1){console.log(e.toString(t))}M7();var vF={buffer:Js,cast:Mt,clone:Qs,print:J7};RD(vF);var Q7={};_e(Q7,{browserFiles:()=>CF,browserHTTPRequest:()=>DF,concatenateArrayBuffers:()=>S2,copyModel:()=>fF,decodeWeights:()=>W7,encodeWeights:()=>UD,fromMemory:()=>MF,getLoadHandlers:()=>eF,getModelArtifactsForJSON:()=>T2,getModelArtifactsInfoForJSON:()=>sc,getSaveHandlers:()=>QD,http:()=>F2,isHTTPScheme:()=>D2,listModels:()=>hF,loadWeights:()=>EF,moveModel:()=>mF,registerLoadRouter:()=>JD,registerSaveRouter:()=>YD,removeModel:()=>pF,weightsLoaderFactory:()=>rk,withSaveHandler:()=>OF});var wF="model",kF=".json",IF=".weights.bin";function ek(e){return new Promise(t=>setTimeout(t)).then(e)}var R2=class{constructor(e){if(!ct().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(R2.URL_SCHEME)&&(e=e.slice(R2.URL_SCHEME.length)),(e==null||e.length===0)&&(e=wF),this.modelJsonFileName=e+kF,this.weightDataFileName=e+IF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r=H7(e,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=s,await ek(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await ek(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:sc(e)}}}},hp=R2;hp.URL_SCHEME="downloads://";var SF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=r=>{let s=JSON.parse(r.target.result),a=s.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=T2(s,l=>this.loadWeights(l));e(i)},n.onerror=r=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let r=this.checkManifestAndWeightFiles(e),s=n.map(a=>this.loadWeightsFile(a,r[a]));return Promise.all(s).then(a=>[t,S2(a)])}loadWeightsFile(e,t){return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=a.target.result;n(o)},s.onerror=a=>r(`Failed to weights data from file of path '${e}'.`),s.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(s=>U7(s.name)),r={};for(let s of e)s.paths.forEach(a=>{let o=U7(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return r}},TF=e=>ct().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hp.URL_SCHEME)?NF(e.slice(hp.URL_SCHEME.length)):null;Gt.registerSaveRouter(TF);function NF(e="model"){return new hp(e)}function CF(e){return new SF(e)}function tk(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=l=>(l.then(u=>{let c=n+ ++s/e.length*(r-n);return t(c),u}),l);function o(l){L(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){L(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),L(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),L(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function nk(e,t){t==null&&(t={});let n=t.fetchFunc==null?ct().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await tk(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await tk(i,t.onProgress,l,u)}async function EF(e,t="",n,r){return rk(o=>nk(o,{requestInit:r}))(e,t,n)}function rk(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=k2[y]*Yt(g.shape),x=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};r!=null?r.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=A})}),!o.every(p=>p)){let p=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. +Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=s.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),I=W7(v,[b.manifestEntry]);for(let w in I)d[w]=I[w]}),h+=f}),d}}var $F="application/octet-stream",RF="application/json",_2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(L(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ct().platform.fetch,L(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&L(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r=H7(e,n);t.body.append("model.json",new Blob([JSON.stringify(r)],{type:RF}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:$F}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:sc(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(s){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,r=t.weightsManifest;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return T2(t,s=>this.loadWeights(s))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=_F(t),s=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(s+c+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await nk(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,S2(l)]}};_2.URL_SCHEME_REGEX=/^https?:\/\//;function _F(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function D2(e){return e.match(_2.URL_SCHEME_REGEX)!=null}var sk=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>D2(r)):n=D2(e),n)return F2(e,t)}return null};Gt.registerSaveRouter(sk);Gt.registerLoadRouter(sk);function F2(e,t){return new _2(e,t)}function DF(e,t){return F2(e,t)}var M2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},FF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function MF(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new M2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new M2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new M2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function OF(e){return new FF(e)}var ak={};_e(ak,{confusionMatrix:()=>WF});function PF(e,t,n=!1,r=!1){let s=P(e,"a","matMul"),a=P(t,"b","matMul");[s,a]=Wt(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return U.runKernel(sv,o,i)}var gt=H({matMul_:PF});function zF(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:P(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return U.runKernel(Sw,a,o)}var O2=H({oneHot_:zF});function LF(e,t){let n=P(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),L(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{L(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return U.runKernel(y7,r,s)}var pp=H({transpose_:LF});function BF(e,t,n){let r=P(e,"labels","confusionMatrix"),s=P(t,"predictions","confusionMatrix");L(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),L(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),L(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),L(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),L(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=O2(Mt(r,"int32"),n),o=O2(Mt(s,"int32"),n),i=pp(a),l=gt(i,o);return Mt(l,"int32")}var WF=H({confusionMatrix_:BF}),Br={};_e(Br,{fromPixels:()=>KF,fromPixelsAsync:()=>jF,toPixels:()=>qF});function fp(e,t,n){if(ho(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=ks(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Ca(e,t,r,n)}var Vi;function ok(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState element.")}if(np(o2,U.backendName)!=null){let f={pixels:e},m={numChannels:t};return U.runKernel(o2,f,m)}let[u,c]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:r||n?d=e.data:(a||s||i)&&(Vi==null&&(Vi=document.createElement("canvas").getContext("2d")),Vi.canvas.width=u,Vi.canvas.height=c,Vi.drawImage(e,0,0,u,c),d=Vi.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(s*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=s,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,s,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var KF=H({fromPixels_:ok}),ik={};_e(ik,{prepareAndValidate:()=>lk});function lk(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Yt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;dd/u),1].slice(0,a);return[l,o,u,c]}var uk={};_e(uk,{calculateShapes:()=>ck,validateInput:()=>z2,validateUpdateShape:()=>P2});function P2(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;dXF,computeFlatOffset:()=>YF,computeOutShape:()=>dk,getNormalizedAxes:()=>mk,isSliceContinous:()=>ZF,maskToAxes:()=>mp,parseSliceParams:()=>JF,sliceInfo:()=>QF,startForAxis:()=>xk,startIndicesWithElidedDims:()=>gk,stopForAxis:()=>bk,stopIndicesWithElidedDims:()=>yk,stridesForAxis:()=>Ak,stridesWithElidedDims:()=>hk});function XF(e,t,n){let r=e.shape.length;L(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),L(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function mp(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function dk(e,t,n){let r=[];for(let s=0;s0){let p=t[0],f=n+1;c=gk(o,p,f,r,e),d=yk(i,p,f,s,e),h=hk(a,p,f,e)}else for(let p=0;p-1)a[i]=0;else{let l=pk(t,n,i),u=r[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=pk(t,n,i),u=r[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),o=ju(0,o,l-1),o}function bk(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),i>0?o=ju(0,o,l):o=ju(-1,o,l-1),o}function ZF(e,t,n){let r=n.length;for(let s=0;s1){r=s;break}for(let s=r+1;s0||n[s]!==e[s])return!1;return!0}function YF(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{L(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.lengtho>=0?o:(L(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function QF(e,t,n,r,s,a,o,i,l){let u=t.slice(),c=n.slice(),d=r;r==null&&(d=new Array(u.length));let h=mp(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=mp(i),m=e.slice();f.forEach(w=>{u[w]=0,c[w]=1,m.splice(w,0,1)});let{begin:g,end:y,strides:A}=mk(m,h,p,u,c,d,s,a,o);u=g,c=y,d=A;let x=mp(l);x.forEach(w=>{c[w]=u[w]+1,d[w]=1});let b=dk(u,c,d),v=b.filter((w,S)=>x.indexOf(S)===-1);return{nonStrided:d.every(w=>w===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var vk={};_e(vk,{Serializable:()=>wk,SerializationMap:()=>bo,registerClass:()=>$a});var wk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},bo=class{constructor(){this.classNameMap={}}static getMap(){return bo.instance==null&&(bo.instance=new bo),bo.instance}static register(e){bo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function $a(e){L(e.className!=null,()=>"Class being registered does not have the static className property defined."),L(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),L(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),bo.register(e)}var kk={};_e(kk,{TEST_EPSILON_FLOAT16:()=>Ik,encodeStrings:()=>Sk,expectArrayBuffersEqual:()=>oM,expectArraysClose:()=>tM,expectArraysEqual:()=>rM,expectNumbersClose:()=>sM,expectPromiseToFail:()=>nM,expectValuesInRange:()=>aM,testEpsilon:()=>B2});var eM=.001,Ik=.1;function tM(e,t,n){return n==null&&(n=B2()),W2(e,t,(r,s)=>V2(r,s,n))}function B2(){return U.backend.floatPrecision()===32?eM:Ik}function W2(e,t,n){let r=!0;if((Nn(e)||Nn(t))&&(r=!1),Nn(e)&&Nn(t)&&(r=!0),r){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=ks(e),i=ks(t);if(!Zs(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let s=Nn(e)?e:po(e),a=Nn(t)?t:po(t);if(s.length!==a.length)throw new Error(`Arrays have different lengths actual: ${s.length} vs expected: ${a.length}. Actual: ${s}. Expected: ${a}.`);for(let o=0;ot.fail(),()=>t())}function pM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ia(e)||Ia(e[0])||Ia(t)||Ia(t[0])?G2(e,n,(r,s)=>r==s):G2(e,t,(r,s)=>j2(r,s,0))}function fM(e,t,n){if(n==null&&(n=H2()),!j2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function j2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function mM(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function gM(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Mk(e){for(let t=0;tn.dispose())}function Pk(e){return U.keep(e)}function SM(e){return U.time(e)}function TM(e){return U.setBackend(e)}function NM(){return U.ready()}function CM(){return U.backendName}function EM(e){U.removeBackend(e)}function q2(e){return U.findBackend(e)}function $M(e){return U.findBackendFactory(e)}function K2(e,t,n=1){return U.registerBackend(e,t,n)}function _M(){return U.backend}function RM(e,t){ct().setPlatform(e,t)}function DM(e,t){let n=O(e,"a","add"),r=O(t,"b","add");[n,r]=Vt(n,r);let s={a:n,b:r};return U.runKernel(i2,s)}var Me=H({add_:DM});function FM(e,t){let n=O(e,"a","floorDiv"),r=O(t,"b","floorDiv");[n,r]=Vt(n,r);let s={a:n,b:r};return U.runKernel(Jv,s)}var zk=H({floorDiv_:FM});function MM(e,t){let n=O(e,"a","div"),r=O(t,"b","div");if([n,r]=Vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return zk(n,r);let s={a:n,b:r},a={};return U.runKernel(Bv,s,a)}var Qe=H({div_:MM});function OM(e,t){let n=O(e,"a","mul"),r=O(t,"b","mul");[n,r]=Vt(n,r);let s={a:n,b:r};return U.runKernel($w,s)}var fe=H({mul_:OM});function PM(e){let t=O(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return U.runKernel(wv,n)}else{let n={x:t};return U.runKernel(tv,n)}}var Nr=H({abs_:PM});function zM(e){let n={x:O(e,"x","acos")};return U.runKernel(nv,n)}var LM=H({acos_:zM});function BM(e){let n={x:O(e,"x","acosh")};return U.runKernel(rv,n)}var WM=H({acosh_:BM});function VM(e){L(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),L(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>O(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!Xs(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return U.runKernel(sv,r)}var X2=H({addN_:VM});function UM(e,t=null,n=!1){let s={x:O(e,"x","all","bool")},a={axis:t,keepDims:n};return U.runKernel(av,s,a)}var HM=H({all_:UM});function GM(e,t=null,n=!1){let s={x:O(e,"x","any","bool")},a={axis:t,keepDims:n};return U.runKernel(ov,s,a)}var jM=H({any_:GM});function qM(e,t=0){let r={x:O(e,"x","argMax")},s={axis:t};return U.runKernel(iv,r,s)}var Z2=H({argMax_:qM});function KM(e,t=0){let r={x:O(e,"x","argMin")},s={axis:t};return U.runKernel(lv,r,s)}var XM=H({argMin_:KM});function ZM(e){let n={x:O(e,"x","asin")};return U.runKernel(uv,n)}var YM=H({asin_:ZM});function JM(e){let n={x:O(e,"x","asinh")};return U.runKernel(cv,n)}var QM=H({asinh_:JM});function eO(e){let n={x:O(e,"x","atan")};return U.runKernel(dv,n)}var tO=H({atan_:eO});function nO(e,t){let n=O(e,"a","atan2"),r=O(t,"b","atan2");[n,r]=Vt(n,r);let s={a:n,b:r};return U.runKernel(pv,s)}var rO=H({atan2_:nO});function sO(e){let n={x:O(e,"x","atanh")};return U.runKernel(hv,n)}var aO=H({atanh_:sO});function oO(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],l=Wk(s);return oc(e,i,n,a,r,null,null,l)}function Lk(e,t,n,r,s,a,o="channelsLast"){let[i,l]=yp(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return oc(e,u,n,r,s,a,!1,o)}function iO(e,t,n,r,s,a,o="NDHWC"){let[i,l,u]=J2(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Bk(e,c,n,r,s,!1,d,a)}function oc(e,t,n,r,s,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,g]=yp(n),[y,A]=yp(r),x=Hi(h,y),b=Hi(p,A),{padInfo:v,outHeight:w,outWidth:S}=cO(s,u,c,m,g,x,b,a,i),I=o?f*d:f,E;return i==="channelsFirst"?E=[l,I,w,S]:i==="channelsLast"&&(E=[l,w,S,I]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:w,outWidth:S,outChannels:I,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:E,filterShape:t}}function Bk(e,t,n,r,s,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,g]=t,[y,A,x]=J2(n),[b,v,w]=J2(r),S=Hi(p,b),I=Hi(f,v),E=Hi(m,w),{padInfo:F,outDepth:$,outHeight:_,outWidth:N}=dO(s,u,c,d,y,A,x,S,I,E,i),P=a?g*h:g,B;return o==="channelsFirst"?B=[l,P,$,_,N]:o==="channelsLast"&&(B=[l,$,_,N,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:$,outHeight:_,outWidth:N,outChannels:P,padInfo:F,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:I,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:v,dilationWidth:w,inShape:e,outShape:B,filterShape:t}}function lO(e,t,n,r,s){r==null&&(r=Y2(e,t,n));let a=e[0],o=e[1],i=vo((a-t+2*r)/n+1,s),l=vo((o-t+2*r)/n+1,s);return[i,l]}function uO(e,t,n,r,s,a){s==null&&(s=Y2(e,t,r));let o=e[0],i=e[1],l=e[2],u=vo((o-t+2*s)/r+1,a),c=vo((i-t+2*s)/r+1,a),d=vo((l-t+2*s)/r+1,a);return[u,c,d,n]}function Y2(e,t,n,r=1){let s=Hi(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function yp(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function J2(e){return typeof e=="number"?[e,e,e]:e}function Hi(e,t){return t<=1?e:e+(e-1)*(t-1)}function cO(e,t,n,r,s,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=lO([t,n],a,r,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/r),d=Math.ceil(n/s);let h=Math.max(0,(c-1)*r+a-t),p=Math.max(0,(d-1)*s+o-n),f=Math.floor(h/2),m=h-f,g=Math.floor(p/2),y=p-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=vo((t-a+h+p)/r+1,i),d=vo((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function dO(e,t,n,r,s,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=uO([t,n,r,1],i,1,s,e,c);h=g[0],p=g[1],f=g[2]}else if(e==="same"){h=Math.ceil(t/s),p=Math.ceil(n/a),f=Math.ceil(r/o);let m=(h-1)*s+i-t,g=(p-1)*a+l-n,y=(f-1)*o+u-r,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),v=g-b,w=Math.floor(y/2),S=y-w;d={top:b,bottom:v,left:w,right:S,front:A,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/s),p=Math.ceil((n-l+1)/a),f=Math.ceil((r-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function vo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ic(e){let[t,n,r]=yp(e);return t===1&&n===1&&r===1}function Qs(e,t){return ic(e)||ic(t)}function Wk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function hO(e,t){let r={x:O(e,"x","reshape","string_or_numeric")},s={shape:t};return U.runKernel(qw,r,s)}var ue=H({reshape_:hO});function pO(e,t,n,r,s){let a=O(e,"x","avgPool","float32"),o=1;L(Qs(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=ue(a,[1,a.shape[0],a.shape[1],a.shape[2]])),L(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),s!=null&&L(Xn(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=U.runKernel(fv,u,c);return d=Pt(d,a.dtype),l?ue(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Vk=H({avgPool_:pO});function fO(e,t,n,r,s,a="NDHWC"){let o=O(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=ue(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),L(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),L(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&L(Xn(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=U.runKernel(mv,u,c);return d=Pt(d,i.dtype),l?ue(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var mO=H({avgPool3d_:fO});function gO(e,t=0){L(e.length>=1,()=>"Pass at least one tensor to concat");let n=sc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${a.dtype}. `)}),n.length===1)return Js(n[0]);let r=n,s={axis:t};return U.runKernel(kv,r,s)}var an=H({concat_:gO});function yO(e){let n={x:O(e,"x","sigmoid")};return U.runKernel(i7,n)}var Ts=H({sigmoid_:yO});function AO(e,t,n){let r=O(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return U.runKernel(r7,s,a)}var Ze=H({slice_:AO});function xO(e){let n={x:O(e,"x","tanh")};return U.runKernel(T7,n)}var Q2=H({tanh_:xO});function bO(e,t,n,r,s,a){let o=O(e,"forgetBias","basicLSTMCell"),i=O(t,"lstmKernel","basicLSTMCell"),l=O(n,"lstmBias","basicLSTMCell"),u=O(r,"data","basicLSTMCell"),c=O(s,"c","basicLSTMCell"),d=O(a,"h","basicLSTMCell"),h=an([u,d],1),p=yt(h,i),f=Me(p,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=Ze(f,[0,0],y),x=Ze(f,[0,g],y),b=Ze(f,[0,g*2],y),v=Ze(f,[0,g*3],y),w=Me(fe(Ts(A),Q2(x)),fe(c,Ts(Me(o,b)))),S=fe(Q2(w),Ts(v));return[w,S]}var vO=H({basicLSTMCell_:bO});function wO(e,t,n){let r=O(e,"x","batchToSpaceND"),s=t.reduce((i,l)=>i*l);L(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),L(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),L(r.shape[0]%s==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return U.runKernel(yv,a,o)}var Uk=H({batchToSpaceND_:wO});function kO(e){let t;return e.rank===0||e.rank===1?t=ue(e,[1,1,1,e.size]):e.rank===2?t=ue(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=ue(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function IO(e,t,n,r,s,a){a==null&&(a=.001);let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;r!=null&&(c=O(r,"offset","batchNorm")),L(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),L(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),L(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:kO(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=U.runKernel(Qv,h,p);return ue(f,o.shape)}var Ap=H({batchNorm_:IO});function SO(e,t,n,r,s,a){let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;return r!=null&&(c=O(r,"offset","batchNorm")),L(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),L(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),L(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&L(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ap(o,i,l,c,u,a)}var TO=H({batchNorm2d_:SO});function NO(e,t,n,r,s,a){let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;return r!=null&&(c=O(r,"offset","batchNorm")),L(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),L(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),L(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&L(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ap(o,i,l,c,u,a)}var CO=H({batchNorm3d_:NO});function EO(e,t,n,r,s,a){let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;return r!=null&&(c=O(r,"offset","batchNorm")),L(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),L(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),L(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&L(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ap(o,i,l,c,u,a)}var $O=H({batchNorm4d_:EO});function _O(e,t,n){let r=O(e,"x","bincount"),s=O(t,"weights","bincount");L(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),L(n>=0,()=>`size must be non-negative, but got ${n}.`),L(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return U.runKernel(Av,a,o)}var Hk=H({bincount_:_O});function RO(e,t){let n=O(e,"broadcastTo","x"),r=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(s[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Js(n);let i={x:n},l={reps:a};return U.runKernel(c2,i,l)}var xp=H({broadcastTo_:RO});function DO(e){let n={x:O(e,"x","ceil")};return U.runKernel(xv,n)}var FO=H({ceil_:DO});function MO(e,t,n){let r=O(e,"x","clipByValue");L(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return U.runKernel(bv,s,a)}var OO=H({clipByValue_:MO});function PO(e){return an(e,0)}var zO=H({concat1d_:PO});function LO(e,t){return an(e,t)}var lc=H({concat2d_:LO});function BO(e,t){return an(e,t)}var WO=H({concat3d_:BO});function VO(e,t){return an(e,t)}var UO=H({concat4d_:VO});function HO(e,t,n,r,s="NHWC",a=[1,1],o){let i=O(e,"x","conv2d"),l=O(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=ue(i,[1,i.shape[0],i.shape[1],i.shape[2]])),L(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),L(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&L(Xn(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d=s==="NHWC"?u.shape[3]:u.shape[1];L(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),L(Qs(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=U.runKernel(Iv,h,p);return c?ue(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var bp=H({conv2d_:HO});function GO(e,t,n,r,s="NWC",a=1,o){let i=O(e,"x","conv1d"),l=O(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=ue(i,[1,i.shape[0],i.shape[1]])),L(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),L(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&L(Xn(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),L(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),L(Qs(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),L(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=ue(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=ue(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=bp(h,d,[1,n],r,"NHWC",[1,a],o);return c?ue(g,[g.shape[2],g.shape[3]]):ue(g,[g.shape[0],g.shape[2],g.shape[3]])}var jO=H({conv1d_:GO});function qO(e,t,n,r,s,a="NHWC",o){L(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=ue(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),L(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),L(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),L(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];L(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),L(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&L(Xn(s),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let h={dy:l,filter:n},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=U.runKernel(Tv,h,p);return u?ue(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Gk=H({conv2DBackpropInput_:qO});function KO(e,t,n,r,s,a){let o=O(e,"x","conv2dTranspose"),i=O(t,"filter","conv2dTranspose");return Gk(n,o,i,r,s,"NHWC",a)}var XO=H({conv2dTranspose_:KO});function ZO(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=O(e,"x","conv3d"),i=O(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=ue(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),L(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),L(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),L(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),L(Qs(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),L(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},h=U.runKernel(Nv,c,d);return u?ue(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var YO=H({conv3d_:ZO});function JO(e,t,n,r,s){L(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=ue(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];L(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),L(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),L(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),L(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),L(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},h=U.runKernel(Cv,c,d);return i?ue(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var QO=H({conv3DBackpropInput_:JO});function eP(e,t,n,r,s){let a=O(e,"x","conv3dTranspose"),o=O(t,"filter","conv3dTranspose");return QO(n,a,o,r,s)}var tP=H({conv3dTranspose_:eP});function nP(e){let n={x:O(e,"x","cos")};return U.runKernel(Ev,n)}var rP=H({cos_:nP});function sP(e){let n={x:O(e,"x","cosh")};return U.runKernel($v,n)}var aP=H({cosh_:sP});function oP(e,t=0,n=!1,r=!1){let a={x:O(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return U.runKernel(_v,a,o)}var iP=H({cumsum_:oP});function lP(e,t,n,r=!1){let s=O(e,"x","denseBincount"),a=O(t,"weights","denseBincount");L(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),L(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),L(n>=0,()=>`size must be non-negative, but got ${n}.`),L(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return U.runKernel(Dv,o,i)}var uP=H({denseBincount_:lP});function cP(e,t,n="NHWC"){let r=O(e,"x","depthToSpace"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];L(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying +Expected: ${a}.`)}}function nM(e,t){e().then(()=>t.fail(),()=>t())}function rM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Sa(e)||Sa(e[0])||Sa(t)||Sa(t[0])?W2(e,n,(r,s)=>r==s):W2(e,t,(r,s)=>V2(r,s,0))}function sM(e,t,n){if(n==null&&(n=B2()),!V2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function V2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function aM(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function oM(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Sk(e){for(let t=0;tn.dispose())}function Nk(e){return U.keep(e)}function mM(e){return U.time(e)}function gM(e){return U.setBackend(e)}function yM(){return U.ready()}function AM(){return U.backendName}function xM(e){U.removeBackend(e)}function U2(e){return U.findBackend(e)}function bM(e){return U.findBackendFactory(e)}function H2(e,t,n=1){return U.registerBackend(e,t,n)}function vM(){return U.backend}function wM(e,t){ct().setPlatform(e,t)}function kM(e,t){let n=P(e,"a","add"),r=P(t,"b","add");[n,r]=Wt(n,r);let s={a:n,b:r};return U.runKernel(n2,s)}var Me=H({add_:kM});function IM(e,t){let n=P(e,"a","floorDiv"),r=P(t,"b","floorDiv");[n,r]=Wt(n,r);let s={a:n,b:r};return U.runKernel(Bv,s)}var Ck=H({floorDiv_:IM});function SM(e,t){let n=P(e,"a","div"),r=P(t,"b","div");if([n,r]=Wt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Ck(n,r);let s={a:n,b:r},a={};return U.runKernel(Cv,s,a)}var Je=H({div_:SM});function TM(e,t){let n=P(e,"a","mul"),r=P(t,"b","mul");[n,r]=Wt(n,r);let s={a:n,b:r};return U.runKernel(Aw,s)}var pe=H({mul_:TM});function NM(e){let t=P(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return U.runKernel(cv,n)}else{let n={x:t};return U.runKernel(U3,n)}}var Sr=H({abs_:NM});function CM(e){let n={x:P(e,"x","acos")};return U.runKernel(H3,n)}var EM=H({acos_:CM});function $M(e){let n={x:P(e,"x","acosh")};return U.runKernel(G3,n)}var RM=H({acosh_:$M});function _M(e){L(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),L(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>P(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!Zs(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return U.runKernel(j3,r)}var G2=H({addN_:_M});function DM(e,t=null,n=!1){let s={x:P(e,"x","all","bool")},a={axis:t,keepDims:n};return U.runKernel(q3,s,a)}var FM=H({all_:DM});function MM(e,t=null,n=!1){let s={x:P(e,"x","any","bool")},a={axis:t,keepDims:n};return U.runKernel(K3,s,a)}var OM=H({any_:MM});function PM(e,t=0){let r={x:P(e,"x","argMax")},s={axis:t};return U.runKernel(X3,r,s)}var j2=H({argMax_:PM});function zM(e,t=0){let r={x:P(e,"x","argMin")},s={axis:t};return U.runKernel(Z3,r,s)}var LM=H({argMin_:zM});function BM(e){let n={x:P(e,"x","asin")};return U.runKernel(Y3,n)}var WM=H({asin_:BM});function VM(e){let n={x:P(e,"x","asinh")};return U.runKernel(J3,n)}var UM=H({asinh_:VM});function HM(e){let n={x:P(e,"x","atan")};return U.runKernel(Q3,n)}var GM=H({atan_:HM});function jM(e,t){let n=P(e,"a","atan2"),r=P(t,"b","atan2");[n,r]=Wt(n,r);let s={a:n,b:r};return U.runKernel(tv,s)}var qM=H({atan2_:jM});function KM(e){let n={x:P(e,"x","atanh")};return U.runKernel(ev,n)}var XM=H({atanh_:KM});function ZM(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],l=Rk(s);return ac(e,i,n,a,r,null,null,l)}function Ek(e,t,n,r,s,a,o="channelsLast"){let[i,l]=gp(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ac(e,u,n,r,s,a,!1,o)}function YM(e,t,n,r,s,a,o="NDHWC"){let[i,l,u]=K2(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return $k(e,c,n,r,s,!1,d,a)}function ac(e,t,n,r,s,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,g]=gp(n),[y,A]=gp(r),x=Ui(h,y),b=Ui(p,A),{padInfo:v,outHeight:I,outWidth:w}=eO(s,u,c,m,g,x,b,a,i),S=o?f*d:f,E;return i==="channelsFirst"?E=[l,S,I,w]:i==="channelsLast"&&(E=[l,I,w,S]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:I,outWidth:w,outChannels:S,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:E,filterShape:t}}function $k(e,t,n,r,s,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,g]=t,[y,A,x]=K2(n),[b,v,I]=K2(r),w=Ui(p,b),S=Ui(f,v),E=Ui(m,I),{padInfo:D,outDepth:$,outHeight:R,outWidth:N}=tO(s,u,c,d,y,A,x,w,S,E,i),M=a?g*h:g,B;return o==="channelsFirst"?B=[l,M,$,R,N]:o==="channelsLast"&&(B=[l,$,R,N,M]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:$,outHeight:R,outWidth:N,outChannels:M,padInfo:D,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:w,effectiveFilterHeight:S,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:v,dilationWidth:I,inShape:e,outShape:B,filterShape:t}}function JM(e,t,n,r,s){r==null&&(r=q2(e,t,n));let a=e[0],o=e[1],i=vo((a-t+2*r)/n+1,s),l=vo((o-t+2*r)/n+1,s);return[i,l]}function QM(e,t,n,r,s,a){s==null&&(s=q2(e,t,r));let o=e[0],i=e[1],l=e[2],u=vo((o-t+2*s)/r+1,a),c=vo((i-t+2*s)/r+1,a),d=vo((l-t+2*s)/r+1,a);return[u,c,d,n]}function q2(e,t,n,r=1){let s=Ui(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function gp(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function K2(e){return typeof e=="number"?[e,e,e]:e}function Ui(e,t){return t<=1?e:e+(e-1)*(t-1)}function eO(e,t,n,r,s,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=JM([t,n],a,r,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/r),d=Math.ceil(n/s);let h=Math.max(0,(c-1)*r+a-t),p=Math.max(0,(d-1)*s+o-n),f=Math.floor(h/2),m=h-f,g=Math.floor(p/2),y=p-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=vo((t-a+h+p)/r+1,i),d=vo((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function tO(e,t,n,r,s,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=QM([t,n,r,1],i,1,s,e,c);h=g[0],p=g[1],f=g[2]}else if(e==="same"){h=Math.ceil(t/s),p=Math.ceil(n/a),f=Math.ceil(r/o);let m=(h-1)*s+i-t,g=(p-1)*a+l-n,y=(f-1)*o+u-r,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),v=g-b,I=Math.floor(y/2),w=y-I;d={top:b,bottom:v,left:I,right:w,front:A,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/s),p=Math.ceil((n-l+1)/a),f=Math.ceil((r-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function vo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function oc(e){let[t,n,r]=gp(e);return t===1&&n===1&&r===1}function ea(e,t){return oc(e)||oc(t)}function Rk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function nO(e,t){let r={x:P(e,"x","reshape","string_or_numeric")},s={shape:t};return U.runKernel(Mw,r,s)}var le=H({reshape_:nO});function rO(e,t,n,r,s){let a=P(e,"x","avgPool","float32"),o=1;L(ea(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=le(a,[1,a.shape[0],a.shape[1],a.shape[2]])),L(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),s!=null&&L(Kn(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=U.runKernel(nv,u,c);return d=Mt(d,a.dtype),l?le(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var _k=H({avgPool_:rO});function sO(e,t,n,r,s,a="NDHWC"){let o=P(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=le(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),L(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),L(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&L(Kn(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=U.runKernel(rv,u,c);return d=Mt(d,i.dtype),l?le(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var aO=H({avgPool3d_:sO});function oO(e,t=0){L(e.length>=1,()=>"Pass at least one tensor to concat");let n=rc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${a.dtype}. `)}),n.length===1)return Qs(n[0]);let r=n,s={axis:t};return U.runKernel(dv,r,s)}var rn=H({concat_:oO});function iO(e){let n={x:P(e,"x","sigmoid")};return U.runKernel(Xw,n)}var Is=H({sigmoid_:iO});function lO(e,t,n){let r=P(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return U.runKernel(Gw,s,a)}var Xe=H({slice_:lO});function uO(e){let n={x:P(e,"x","tanh")};return U.runKernel(f7,n)}var X2=H({tanh_:uO});function cO(e,t,n,r,s,a){let o=P(e,"forgetBias","basicLSTMCell"),i=P(t,"lstmKernel","basicLSTMCell"),l=P(n,"lstmBias","basicLSTMCell"),u=P(r,"data","basicLSTMCell"),c=P(s,"c","basicLSTMCell"),d=P(a,"h","basicLSTMCell"),h=rn([u,d],1),p=gt(h,i),f=Me(p,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=Xe(f,[0,0],y),x=Xe(f,[0,g],y),b=Xe(f,[0,g*2],y),v=Xe(f,[0,g*3],y),I=Me(pe(Is(A),X2(x)),pe(c,Is(Me(o,b)))),w=pe(X2(I),Is(v));return[I,w]}var dO=H({basicLSTMCell_:cO});function hO(e,t,n){let r=P(e,"x","batchToSpaceND"),s=t.reduce((i,l)=>i*l);L(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),L(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),L(r.shape[0]%s==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return U.runKernel(av,a,o)}var Dk=H({batchToSpaceND_:hO});function pO(e){let t;return e.rank===0||e.rank===1?t=le(e,[1,1,1,e.size]):e.rank===2?t=le(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=le(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function fO(e,t,n,r,s,a){a==null&&(a=.001);let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),u;s!=null&&(u=P(s,"scale","batchNorm"));let c;r!=null&&(c=P(r,"offset","batchNorm")),L(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),L(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),L(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:pO(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=U.runKernel(Wv,h,p);return le(f,o.shape)}var yp=H({batchNorm_:fO});function mO(e,t,n,r,s,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),u;s!=null&&(u=P(s,"scale","batchNorm"));let c;return r!=null&&(c=P(r,"offset","batchNorm")),L(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),L(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),L(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&L(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),yp(o,i,l,c,u,a)}var gO=H({batchNorm2d_:mO});function yO(e,t,n,r,s,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),u;s!=null&&(u=P(s,"scale","batchNorm"));let c;return r!=null&&(c=P(r,"offset","batchNorm")),L(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),L(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),L(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&L(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),yp(o,i,l,c,u,a)}var AO=H({batchNorm3d_:yO});function xO(e,t,n,r,s,a){let o=P(e,"x","batchNorm"),i=P(t,"mean","batchNorm"),l=P(n,"variance","batchNorm"),u;s!=null&&(u=P(s,"scale","batchNorm"));let c;return r!=null&&(c=P(r,"offset","batchNorm")),L(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),L(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),L(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&L(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&L(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),yp(o,i,l,c,u,a)}var bO=H({batchNorm4d_:xO});function vO(e,t,n){let r=P(e,"x","bincount"),s=P(t,"weights","bincount");L(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),L(n>=0,()=>`size must be non-negative, but got ${n}.`),L(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return U.runKernel(ov,a,o)}var Fk=H({bincount_:vO});function wO(e,t){let n=P(e,"broadcastTo","x"),r=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(s[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Qs(n);let i={x:n},l={reps:a};return U.runKernel(a2,i,l)}var Ap=H({broadcastTo_:wO});function kO(e){let n={x:P(e,"x","ceil")};return U.runKernel(iv,n)}var IO=H({ceil_:kO});function SO(e,t,n){let r=P(e,"x","clipByValue");L(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return U.runKernel(lv,s,a)}var TO=H({clipByValue_:SO});function NO(e){return rn(e,0)}var CO=H({concat1d_:NO});function EO(e,t){return rn(e,t)}var ic=H({concat2d_:EO});function $O(e,t){return rn(e,t)}var RO=H({concat3d_:$O});function _O(e,t){return rn(e,t)}var DO=H({concat4d_:_O});function FO(e,t,n,r,s="NHWC",a=[1,1],o){let i=P(e,"x","conv2d"),l=P(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=le(i,[1,i.shape[0],i.shape[1],i.shape[2]])),L(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),L(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&L(Kn(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d=s==="NHWC"?u.shape[3]:u.shape[1];L(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),L(ea(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=U.runKernel(hv,h,p);return c?le(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var xp=H({conv2d_:FO});function MO(e,t,n,r,s="NWC",a=1,o){let i=P(e,"x","conv1d"),l=P(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=le(i,[1,i.shape[0],i.shape[1]])),L(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),L(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&L(Kn(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),L(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),L(ea(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),L(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=le(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=le(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=xp(h,d,[1,n],r,"NHWC",[1,a],o);return c?le(g,[g.shape[2],g.shape[3]]):le(g,[g.shape[0],g.shape[2],g.shape[3]])}var OO=H({conv1d_:MO});function PO(e,t,n,r,s,a="NHWC",o){L(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=le(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),L(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),L(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),L(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];L(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),L(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&L(Kn(s),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let h={dy:l,filter:n},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=U.runKernel(fv,h,p);return u?le(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Mk=H({conv2DBackpropInput_:PO});function zO(e,t,n,r,s,a){let o=P(e,"x","conv2dTranspose"),i=P(t,"filter","conv2dTranspose");return Mk(n,o,i,r,s,"NHWC",a)}var LO=H({conv2dTranspose_:zO});function BO(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=P(e,"x","conv3d"),i=P(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=le(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),L(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),L(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),L(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),L(ea(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),L(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},h=U.runKernel(mv,c,d);return u?le(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var WO=H({conv3d_:BO});function VO(e,t,n,r,s){L(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=le(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];L(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),L(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),L(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),L(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),L(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},h=U.runKernel(gv,c,d);return i?le(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var UO=H({conv3DBackpropInput_:VO});function HO(e,t,n,r,s){let a=P(e,"x","conv3dTranspose"),o=P(t,"filter","conv3dTranspose");return UO(n,a,o,r,s)}var GO=H({conv3dTranspose_:HO});function jO(e){let n={x:P(e,"x","cos")};return U.runKernel(yv,n)}var qO=H({cos_:jO});function KO(e){let n={x:P(e,"x","cosh")};return U.runKernel(Av,n)}var XO=H({cosh_:KO});function ZO(e,t=0,n=!1,r=!1){let a={x:P(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return U.runKernel(xv,a,o)}var YO=H({cumsum_:ZO});function JO(e,t,n,r=!1){let s=P(e,"x","denseBincount"),a=P(t,"weights","denseBincount");L(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),L(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),L(n>=0,()=>`size must be non-negative, but got ${n}.`),L(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return U.runKernel(vv,o,i)}var QO=H({denseBincount_:JO});function eP(e,t,n="NHWC"){let r=P(e,"x","depthToSpace"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];L(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${r.shape}`),L(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape - ${r.shape}`),L(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},l={blockSize:t,dataFormat:n};return U.runKernel(Fv,i,l)}var dP=H({depthToSpace_:cP});function hP(e,t,n,r,s="NHWC",a=[1,1],o){let i=O(e,"x","depthwiseConv2d"),l=O(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=ue(i,[1,i.shape[0],i.shape[1],i.shape[2]])),L(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),L(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),L(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&L(Xn(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:u,filter:l},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},p=U.runKernel(Mv,d,h);return c?ue(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ey=H({depthwiseConv2d_:hP});function pP(e){let n={x:O(e,"x","diag")};return U.runKernel(zv,n)}var fP=H({diag_:pP});function mP(e,t,n,r,s=[1,1],a="NHWC"){let o=O(e,"x","dilation2d"),i=O(t,"filter","dilation2d");L(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),L(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),L(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=ue(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:r,dilations:s},h=U.runKernel(Lv,c,d);return u?ue(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var gP=H({dilation2d_:mP});function yP(e,t){let n=e.length,r=[];for(let s=0;s1&&o===1&&r.unshift(a)}return r}function jk(e,t){let n=[];for(let r=0;r1)&&n.unshift(a)}return n}function In(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(L(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=ue(n,[1,-1]),i=ue(r,[-1,1]),l=yt(o,i);return ue(l,[])}else if(n.rank===1&&r.rank===2){let o=ue(n,[1,-1]),i=ue(r,[r.shape[0],r.shape[1]]),l=yt(o,i);return ue(l,[l.size])}else if(n.rank===2&&r.rank===1){let o=ue(r,[-1,1]),i=yt(n,o);return ue(i,[i.size])}else{let o=ue(r,[r.shape[0],r.shape[1]]);return yt(n,o)}}var IP=H({dot_:kP});function SP(e,...t){let n=t.map((s,a)=>O(s,`tensors${a}`,"einsum")),r={equation:e};return U.runKernel(Wv,n,r)}var TP=H({einsum_:SP});function NP(e){let n={x:O(e,"x","elu")};return U.runKernel(Vv,n)}var Kk=H({elu_:NP});function CP(e){let t=O(e,"x","erf");L(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Pt(t,"float32"));let n={x:t};return U.runKernel(Uv,n)}var EP=H({erf_:CP});function $P(e){let n={x:O(e,"x","exp")};return U.runKernel(Gv,n)}var wo=H({exp_:$P});function _P(e,t=0){let n=O(e,"x","expandDims","string_or_numeric");L(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return U.runKernel(jv,r,s)}var ea=H({expandDims_:_P});function RP(e){let n={x:O(e,"x","expm1")};return U.runKernel(qv,n)}var DP=H({expm1_:RP});function FP(e,t){let n=O(e,"x","tile","string_or_numeric");L(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return U.runKernel(c2,r,s)}var vp=H({tile_:FP});function MP(e,t,n,r="float32"){t==null&&(t=e);let s=Ys([e,t],r),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${a.rank}.`),L(Xn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=ue(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:r,beta:s},c=U.runKernel(Aw,l,u);return i?ue(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var QP=H({localResponseNormalization_:JP});function ez(e){let n={x:O(e,"x","log")};return U.runKernel(pw,n)}var uc=H({log_:ez});function tz(e){let n={x:O(e,"x","log1p")};return U.runKernel(fw,n)}var e4=H({log1p_:tz});function nz(e){return L(Sa(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=O(t,"x","tf.grad","string_or_numeric"),s=n!=null?O(n,"dy","tf.grad"):null;return U.tidy(()=>{let{value:a,grads:o}=U.gradients(()=>e(r),[r],s);return s!=null&&Mn(a.shape,s.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Ip(o),o[0]})}}function rz(e){return L(Sa(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{L(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=sc(t,"args","tf.grads","string_or_numeric"),s=n!=null?O(n,"dy","tf.grads"):null;return U.tidy(()=>{let{value:a,grads:o}=U.gradients(()=>e(...r),r,s);return s!=null&&Mn(a.shape,s.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ip(o),o})}}function sz(e){return L(Sa(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{L(t instanceof Tt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),L(n==null||n instanceof Tt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:s}=U.gradients(()=>e(t),[t],n);return Ip(r),{grad:r[0],value:s}}}function az(e){return L(Sa(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{L(Array.isArray(t)&&t.every(s=>s instanceof Tt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),L(n==null||n instanceof Tt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=U.gradients(()=>e(...t),t,n);return n!=null&&Mn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Ip(r.grads),r}}function t4(e,t){L(Sa(e),()=>"The f passed in variableGrads(f) must be a function"),L(t==null||Array.isArray(t)&&t.every(u=>u instanceof rc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in U.registeredVariables)t.push(U.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,s=t.length;t=t.filter(u=>u.trainable),L(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=U.gradients(e,t,null,a);L(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),L(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:o,grads:l}}function Ns(e){return U.customGrad(e)}function Ip(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that - the f you passed encloses all operations that lead from x to y.`)}function oz(e){let n={x:O(e,"x","neg")};return U.runKernel(_w,n)}var $a=H({neg_:oz});function iz(e){let n={x:O(e,"x","softplus")};return U.runKernel(l7,n)}var n4=H({softplus_:iz});function lz(e){let t=O(e,"x","logSigmoid");return Ns(r=>({value:$a(n4($a(r))),gradFunc:o=>fe(o,Ts($a(r)))}))(t)}var uz=H({logSigmoid_:lz});function cz(e,t=null,n=!1){let s={x:O(e,"x","max")},a={reductionIndices:t,keepDims:n};return U.runKernel(xw,s,a)}var _a=H({max_:cz});function dz(e,t){let n=O(e,"a","sub"),r=O(t,"b","sub");[n,r]=Vt(n,r);let s={a:n,b:r};return U.runKernel(I7,s)}var He=H({sub_:dz});function hz(e,t=null,n=!1){let r=O(e,"x","sum");r.dtype==="bool"&&(r=Pt(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return U.runKernel(c7,s,a)}var _t=H({sum_:hz});function pz(e,t=-1){let n=O(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Ns((s,a)=>{let o=!0,i=_a(s,t,!0),l=He(s,i),u=He(Pt(l,"float32"),uc(_t(wo(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=wo(p);return He(d,fe(_t(d,t,f),m))}}})(n)}var fz=H({logSoftmax_:pz});function ry(e,t){for(let n=0;ne[a]);return[n,s]}function cc(e,t){let n=t.map(r=>1);return r4(e,n,t)}function gz(e,t,n){L(ry(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function yz(e,t){if(ry(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Az(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function xz(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),L(Qs(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),s!=null&&L(Xn(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=U.runKernel(vw,u,c);return l?ue(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var i4=H({maxPool_:Tz});function Nz(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=O(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=ue(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),L(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),L(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&L(Xn(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=U.runKernel(ww,u,c);return l?ue(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Cz=H({maxPool3d_:Nz});function Ez(e,t,n,r,s=!1){let o={x:O(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},l=U.runKernel(kw,o,i);return{result:l[0],indexes:l[1]}}var $z=H({maxPoolWithArgmax_:Ez});function _z(e,t){let n=O(e,"a","maximum"),r=O(t,"b","maximum");[n,r]=Vt(n,r),n.dtype==="bool"&&(n=Pt(n,"int32"),r=Pt(r,"int32")),In(n.shape,r.shape);let s={a:n,b:r};return U.runKernel(bw,s)}var l4=H({maximum_:_z});function Rz(e,t=null,n=!1){let s={x:O(e,"x","mean")},a={axis:t,keepDims:n};return U.runKernel(Iw,s,a)}var Tp=H({mean_:Rz});function ji(e,t="float32"){if(t==="complex64"){let r=ji(e,"float32"),s=ji(e,"float32");return go(r,s)}let n=np(Jt(e),t);return U.makeTensor(n,e,t)}function ko(e,t="float32"){if(t==="complex64"){let r=ko(e,"float32"),s=ji(e,"float32");return go(r,s)}let n=n2(Jt(e),t);return U.makeTensor(n,e,t)}function Dz(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=O(e,"x","meshgrid",e instanceof Tt?e.dtype:"float32");if(t===void 0)return[r];let s=O(t,"y","meshgrid",t instanceof Tt?t.dtype:"float32"),a=Jt(r.shape),o=Jt(s.shape);return n==="xy"?(r=ue(r,[1,-1]),s=ue(s,[-1,1]),[yt(ko([o,1],r.dtype),r),yt(s,ko([1,a],s.dtype))]):(r=ue(r,[-1,1]),s=ue(s,[1,-1]),[yt(r,ko([1,o],r.dtype)),yt(ko([a,1],s.dtype),s)])}function Fz(e,t=null,n=!1){let s={x:O(e,"x","min")},a={axis:t,keepDims:n};return U.runKernel(Sw,s,a)}var sy=H({min_:Fz});function Mz(e,t){let n=O(e,"a","minimum"),r=O(t,"b","minimum");[n,r]=Vt(n,r),n.dtype==="bool"&&(n=Pt(n,"int32"),r=Pt(r,"int32")),In(n.shape,r.shape);let s={a:n,b:r};return U.runKernel(Tw,s)}var u4=H({minimum_:Mz});function Oz(e,t,n){L(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=O(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");L(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),L(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return U.runKernel(Nw,o,a)}var Pz=H({mirrorPad_:Oz});function zz(e,t){let n=O(e,"a","mod"),r=O(t,"b","mod");[n,r]=Vt(n,r);let s={a:n,b:r};return U.runKernel(Cw,s)}var Lz=H({mod_:zz});function Bz(e){let t=O(e,"x","square"),n={};return U.runKernel("Square",{x:t},n)}var ns=H({square_:Bz});function Wz(e,t=null,n=!1){e=O(e,"x","moments");let r=Xu(t,e.shape),s=Tp(e,r,n),a=s.shape;n||(a=cc(s.shape,r));let o=ns(He(Pt(e,"float32"),ue(s,a))),i=Tp(o,r,n);return{mean:s,variance:i}}var Vz=H({moments_:Wz});function Uz(e,t,n,r){let s=O(t,"data","multiRNNCell"),a=sc(n,"c","multiRNNCell"),o=sc(r,"h","multiRNNCell"),i=s,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?ue(s,[1,-1]):s},u={numSamples:t,seed:n,normalized:r},c=U.runKernel(Ew,l,u);return o===1?ue(c,[c.size]):c}var jz=H({multinomial_:Gz});function qz(e,t){let n=O(e,"a","notEqual","string_or_numeric"),r=O(t,"b","notEqual","string_or_numeric");[n,r]=Vt(n,r),In(n.shape,r.shape);let s={a:n,b:r};return U.runKernel(Rw,s)}var c4=H({notEqual_:qz});function Kz(e){let n={x:O(e,"x","onesLike")};return U.runKernel(Ow,n)}var Xz=H({onesLike_:Kz});function Zz(e,t){let n=O(e,"v1","outerProduct"),r=O(t,"v2","outerProduct");L(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=ue(n,[-1,1]),a=ue(r,[1,-1]);return yt(s,a)}var Yz=H({outerProduct_:Zz});function Jz(e,t,n=0){let r=O(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return U.runKernel(Lw,a,s)}var dc=H({pad_:Jz});function Qz(e,t,n=0){return L(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),dc(e,[t],n)}var eL=H({pad1d_:Qz});function tL(e,t,n=0){return L(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),dc(e,t,n)}var nL=H({pad2d_:tL});function rL(e,t,n=0){return L(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),dc(e,t,n)}var sL=H({pad3d_:rL});function aL(e,t,n=0){return L(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),dc(e,t,n)}var oL=H({pad4d_:aL});function iL(e,t,n){let r=O(e,"x","spaceToBatchND");L(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),L(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),L(r.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return U.runKernel(d7,s,a)}var d4=H({spaceToBatchND_:iL});function lL(e,t,n,r,s,a){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let o=O(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=ue(o,[1,o.shape[0],o.shape[1],o.shape[2]])),L(Qs(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let u=Lk(i.shape,t,a,s,r),c=[u.dilationHeight,u.dilationWidth],d;r==="same"?d=cL([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=uL([u.inHeight,u.inWidth],c,d),m=h?r:"valid",g=h?i:d4(i,c,p),A=(n==="avg"?()=>Vk(g,t,a,m):()=>i4(g,t,a,m))(),x=h?A:Uk(A,c,f);return l?ue(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function uL(e,t,n){let r=n.map(c=>c[0]),s=n.map(c=>c[1]),a=e.concat(r,s),o=t.map((c,d)=>(c-a[d]%c)%c),i=s.map((c,d)=>c+o[d]),l=t.map((c,d)=>[r[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function cL(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var dL=H({pool_:lL});function hL(e,t){let n=O(e,"base","pow"),r=O(t,"exp","pow");[n,r]=Vt(n,r);let s={a:n,b:r};return U.runKernel(Bw,s)}var hc=H({pow_:hL});function pL(e,t){let n=O(e,"x","prelu"),r=O(t,"alpha","prelu"),s={x:n,alpha:r};return U.runKernel(Ww,s)}var h4=H({prelu_:pL});function fL(e,t=null,n=!1){let r=O(e,"x","prod");r.dtype==="bool"&&(r=Pt(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return U.runKernel(Vw,s,a)}var mL=H({prod_:fL});function gL(e,t,n){let r=Jt(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},AL=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=ay.alea(s.toString()),this.randn=new oy(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),sthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=ay.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function bL(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new AL(t,n,r,s),o=Ys(e,r);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Io(t,0)}var RL=H({reverse1d_:_L});function DL(e,t){let n=O(e,"x","reverse");return L(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Io(n,t)}var FL=H({reverse2d_:DL});function ML(e,t){let n=O(e,"x","reverse");return L(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Io(n,t)}var OL=H({reverse3d_:ML});function PL(e,t){let n=O(e,"x","reverse");return L(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Io(n,t)}var zL=H({reverse4d_:PL});function LL(e){let n={x:O(e,"x","round")};return U.runKernel(Jw,n)}var m4=H({round_:LL});function BL(e){let n={x:O(e,"x","rsqrt")};return U.runKernel(Qw,n)}var WL=H({rsqrt_:BL});function ut(e,t){if((Cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Na(e,[],[],t)}function VL(e){let n={x:O(e,"x","selu")};return U.runKernel(n7,n)}var UL=H({selu_:VL});function HL(e,t,n,r,s,a=[1,1],o="NHWC"){let i=O(e,"x","separableConv2d"),l=O(t,"depthwiseFilter","separableConv2d"),u=O(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=ue(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");L(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),L(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),L(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),L(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),L(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];L(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=ey(c,l,r,s,o,a),g=bp(f,u,1,"valid",o);return d?ue(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var GL=H({separableConv2d_:HL});async function jL(e,t){let n=O(e,"x","setdiff1d"),r=O(t,"y","setdiff1d");L(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),L(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),L(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ze(r,[t],[n])}var tB=H({slice1d_:eB});function nB(e,t,n){let r=O(e,"x","slice2d");return L(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ze(r,t,n)}var rB=H({slice2d_:nB});function sB(e,t,n){let r=O(e,"x","slice3d");return L(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ze(r,t,n)}var aB=H({slice3d_:sB});function oB(e,t,n){let r=O(e,"x","slice4d");return L(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ze(r,t,n)}var iB=H({slice4d_:oB});function lB(e,t=-1){let n=O(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return U.runKernel(p7,r,s)}var uB=H({softmax_:lB});function cB(e){L(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return U.runKernel(Kv,t)}var iy=H({fft_:cB});function dB(e){L(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return U.runKernel(sw,t)}var Ep=H({ifft_:dB});function hB(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=ue(e,[n,t]);r=Ep(s)}else{let s=[n,2*(t-1)],a=ue(Np(e),[n,t]),o=ue(ty(e),[n,t]),i=Io(Ze(a,[0,1],[n,t-2]),1),l=fe(Io(Ze(o,[0,1],[n,t-2]),1),ut(-1)),u=an([a,i],1),c=an([o,l],1),d=ue(go(u,c),[s[0],s[1]]);r=Ep(d)}if(r=Np(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=ue(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var g4=H({irfft_:hB});function pB(e,t,n=0){let s={x:O(e,"x","split")},a={numOrSizeSplits:t,axis:n};return U.runKernel(h7,s,a)}var ta=H({split_:pB});function fB(e,t){L(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=Ze(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=an([e,ji(f)],e.shape.length-1),n=t}else s=e;let a=Cr(s),o=ue(go(s,a),[r,n]),i=iy(o),l=Math.floor(n/2)+1,u=Np(i),c=ty(i),d=ta(u,[l,n-l],u.shape.length-1),h=ta(c,[l,n-l],c.shape.length-1),p=s.shape.slice();return p[s.shape.length-1]=l,ue(go(d[0],h[0]),p)}var ly=H({rfft_:fB});function mB(e){let n={x:O(e,"x","sqrt")};return U.runKernel(u7,n)}var na=H({sqrt_:mB});function gB(e,t){let n=O(e,"a","squaredDifference"),r=O(t,"b","squaredDifference");[n,r]=Vt(n,r),In(n.shape,r.shape);let s={a:n,b:r},a={};return U.runKernel(x7,s,a)}var y4=H({squaredDifference_:gB});function yB(e,t){let n=O(e,"x","squeeze");return ue(n,U3(n.shape,t).newShape)}var Zn=H({squeeze_:yB});function AB(e,t=0){let n=sc(e,"tensors","stack","string_or_numeric");L(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&L(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return U.runKernel(zw,r,s)}var So=H({stack_:AB});function xB(e,t=0){let r={x:O(e,"x","step")},s={alpha:t};return U.runKernel(F7,r,s)}var A4=H({step_:xB});function bB(e,t,n,r,s=0,a=0,o=0,i=0,l=0){let c={x:O(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return U.runKernel(b7,c,d)}var vB=H({stridedSlice_:bB});function wB(e){let n={x:O(e,"x","tan")};return U.runKernel(S7,n)}var kB=H({tan_:wB});function ur(e,t){ho(e);let n=Ss(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Na(e,null,n,t)}function ra(e,t,n){if(ho(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Ss(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Na(e,t,r,n)}function IB(e,t,n){if(ho(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Ss(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Na(e,t,r,n)}function SB(e,t,n){if(ho(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Ss(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Na(e,t,r,n)}function TB(e,t,n){if(ho(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Ss(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Na(e,t,r,n)}function NB(e,t=1,n=!0){let r=O(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,l]=U.runKernel(N7,a,o);return{values:i,indices:l}}var CB=H({topk_:NB});function EB(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new oy(t,n,r,!0,s),o=Ys(e,r);for(let i=0;i0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=U.runKernel($7,r,s);return{values:a,indices:o}}var RB=H({unique_:_B});function DB(e,t,n){let r=O(e,"x","unsortedSegmentSum"),s=O(t,"segmentIds","unsortedSegmentSum","int32");L(Xn(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return U.runKernel(R7,a,o)}var FB=H({unsortedSegmentSum_:DB});function MB(e,t=0){let n=O(e,"x","unstack","string_or_numeric");L(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return U.runKernel(_7,r,s)}var fc=H({unstack_:MB});function OB(e,t=!0,n,r){return U.makeVariable(e,t,n,r)}function x4(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),Mn(i.slice(a,a+o),s.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m"Shape mismatch in v and x");let l=ut(1),u=He(l,i),c=fe(He(o,a),u);if(s){L(r!=null,()=>"When using zeroDebias: true, step is required.");let d=O(r,"step","movingAverage");c=Qe(c,He(l,hc(i,d)))}return Me(a,c)}var VB=H({movingAverage_:WB});function UB(e,t,n){let r=O(e,"indices","scatterND","int32"),s=O(t,"updates","scatterND");V2(s,r,n);let a={indices:r,updates:s},o={shape:n};return U.runKernel(e7,a,o)}var HB=H({scatterND_:UB});function GB(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function jB(e,t,n,r=0){let s=O(e,"sparseIndices","sparseToDense","int32"),a=O(t,"sparseValues","sparseToDense"),o=O(r,"defaultValue","sparseToDense",a.dtype);GB(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},l={outputShape:n};return U.runKernel(A7,i,l)}var qB=H({sparseToDense_:jB});function KB(e,t){let n=O(t,"indices","gatherND","int32"),s={params:O(e,"x","gatherND","string_or_numeric"),indices:n};return U.runKernel(tw,s)}var XB=H({gatherND_:KB});function ZB(e,t){if(t==null)return e.shape.slice();if(Xs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),L(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Tt?s.clone():s;let a=ZB(s,n),o=1-t,i=Qe(Zk(Me(p4(a,0,1,"float32",r),o)),o);return fe(s,i)}var JB=H({dropout_:YB});function w4(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function cy(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),L(r.rank-1===s.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${s.rank}`),Mn(r.shape.slice(0,r.shape.length-1),s.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=r.shape[r.shape.length-1];L(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await r.data(),i=await s.data(),[l,u]=[o.length/a,a],c=H3("bool",l);for(let d=0;dg.value-m.value),c[d]=0;for(let m=0;msW,depthwiseConv2d:()=>cW,matMul:()=>hW});function tW(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=ue(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=ue(t,[1,t.shape[0],t.shape[1],t.shape[2]])),L(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),L(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),L(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];L(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),L(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&L(Xn(s),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:i,dy:l},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return U.runKernel(Sv,d,h)}var nW=H({conv2DBackpropFilter_:tW});function $p(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return fe(e,A4(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function _p(e,t){let n=t,r=jk(e.shape,t.shape);return r.length>0&&(n=_t(n,r)),ue(n,e.shape)}function Rp(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Cp(e);if(t==="elu")return Kk(e);if(t==="relu6")return f4(e);if(t==="prelu")return h4(e,n);if(t==="leakyrelu")return Qk(e,r);if(t==="sigmoid")return Ts(e);throw new Error(`Unknown fused activation ${t}.`)}var Dp=(e,t)=>!(e>0)||t==="linear";function rW({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Dp(U.state.gradientDepth,l)===!1){let v=bp(e,t,n,r,s,a,o);return i!=null&&(v=Me(v,i)),Rp(v,l,u,c)}let d=O(e,"x","conv2d"),h=O(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=ue(d,[1,d.shape[0],d.shape[1],d.shape[2]])),L(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),L(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&L(Xn(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),L(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),L(Qs(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),L(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=oc(p.shape,h.shape,n,a,r,o),g;i!=null&&(g=O(i,"bias","fused conv2d"),[g]=Vt(g,d),In(m.outShape,g.shape));let y;u!=null&&(y=O(u,"prelu weights","fused conv2d"));let A=(v,w)=>{let[S,I,E,F]=w,$=$p(v,E,l);L(ic(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let _=Gk(I.shape,$,S,n,r),N=nW(I,$,S.shape,n,r),P=[_,N];if(F!=null){let B=_p(F,$);P.push(B)}return P},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Ns((w,S,I)=>{let E=U.runKernel(p2,x,b);return I([S,w,E]),f&&(E=ue(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):Ns((w,S,I,E)=>{let F=U.runKernel(p2,x,b);return E([S,w,F,I]),f&&(F=ue(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(p,h,g)}var sW=H({fusedConv2d_:rW});function aW(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=ue(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=ue(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return U.runKernel(Ov,u,c)}var oW=H({depthwiseConv2dNativeBackpropFilter_:aW});function iW(e,t,n,r,s,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=ue(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=U.runKernel(Pv,u,c);return l?ue(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var lW=H({depthwiseConv2dNativeBackpropInput_:iW});function uW({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Dp(U.state.gradientDepth,l)===!1){let v=ey(e,t,n,r,s,a,o);return i!=null&&(v=Me(v,i)),Rp(v,l,u,c)}let d=O(e,"x","depthwiseConv2d"),h=O(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=ue(d,[1,d.shape[0],d.shape[1],d.shape[2]])),L(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),L(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),L(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),L(Qs(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&L(Xn(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${r}.`);let m=oc(p.shape,h.shape,n,a,r,o,!0),g;i!=null&&(g=O(i,"bias","fused conv2d"),[g]=Vt(g,d),In(m.outShape,g.shape));let y;u!=null&&(y=O(u,"prelu weights","fused depthwiseConv2d"));let A=(v,w)=>{L(ic(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,I,E,F]=w,$=$p(v,E,l),_=lW(I.shape,$,S,n,r,a,o),N=oW(I,$,S.shape,n,r,a,o);if(F!=null){let P=_p(g,$);return[_,N,P]}return[_,N]},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Ns((w,S,I)=>{let E=U.runKernel(f2,x,b);return I([S,w,E]),f&&(E=ue(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):Ns((w,S,I,E)=>{let F=U.runKernel(f2,x,b);return E([S,w,F,I]),f&&(F=ue(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(p,h,g)}var cW=H({fusedDepthwiseConv2d_:uW});function dW({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Dp(U.state.gradientDepth,a)===!1){let F=yt(e,t,n,r);return s!=null&&(F=Me(F,s)),Rp(F,a,o,i)}let l=O(e,"a","fused matMul"),u=O(t,"b","fused matMul");[l,u]=Vt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=r?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Jt(f),y=Jt(m);L(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),L(Xs(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),L(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let A=l.shape.slice(0,-2).concat([h,p]),x=n?ue(l,[g,c,h]):ue(l,[g,h,c]),b=r?ue(u,[y,p,d]):ue(u,[y,d,p]),v;s!=null&&(v=O(s,"bias","fused matMul"),[v]=Vt(v,l),In(A,v.shape));let w;o!=null&&(w=O(o,"prelu weights","fused matMul"));let S=(F,$)=>{let[_,N,P,B]=$,j=$p(ue(F,P.shape),P,a),X,Y;if(!n&&!r?(X=yt(j,N,!1,!0),Y=yt(_,j,!0,!1)):!n&&r?(X=yt(j,N,!1,!1),Y=yt(j,_,!0,!1)):n&&!r?(X=yt(N,j,!1,!0),Y=yt(_,j,!1,!1)):(X=yt(N,j,!0,!0),Y=yt(j,_,!0,!0)),s!=null){let ee=_p(B,j);return[X,Y,ee]}else return[X,Y]},I={a:x,b,bias:v,preluActivationWeights:w},E={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?Ns(($,_,N)=>{let P=U.runKernel(h2,I,E);return N([$,_,P]),{value:ue(P,A),gradFunc:S}})(x,b):Ns(($,_,N,P)=>{let B=U.runKernel(h2,I,E);return P([$,_,B,N]),{value:ue(B,A),gradFunc:S}})(x,b,v)}var hW=H({fusedMatMul_:dW});function pW(e){return cy(e,.54,.46)}var fW=H({hammingWindow_:pW});function mW(e){return cy(e,.5,.5)}var I4=H({hannWindow_:mW});function gW(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Ze(e,a,t)),a+=n;if(r)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),L(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),L(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),L(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),L(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),L(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let c={image:o,boxes:i,boxInd:l},d={method:s,extrapolationValue:a,cropSize:r};return U.runKernel(Rv,c,d)}var bW=H({cropAndResize_:xW});function vW(e){let t=O(e,"image","flipLeftRight","float32");L(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return U.runKernel(Zv,n,{})}var wW=H({flipLeftRight_:vW});function kW(e,t,n=0,r=.5){let s=O(e,"image","rotateWithOffset","float32");L(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return U.runKernel(M7,a,o)}var IW=H({rotateWithOffset_:kW});function qi(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),L(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),L(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),L(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),L(t.rank===1,()=>"scores must be a 1D tensor"),L(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),L(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function SW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=O(e,"boxes","nonMaxSuppression"),o=O(t,"scores","nonMaxSuppression"),i=qi(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return U.runKernel(Dw,{boxes:a,scores:o},l)}var TW=H({nonMaxSuppression_:SW});function NW(e,t,n){let r=CW(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function CW(e,t,n){return $W(e,t,n||EW)}function EW(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function T4(e,t,n,r,s){return dy(e,t,n,r,s,0)}function N4(e,t,n,r,s,a){return dy(e,t,n,r,s,0,!1,a,!0)}function C4(e,t,n,r,s,a){return dy(e,t,n,r,s,a,!0)}function dy(e,t,n,r,s,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;gs&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(E4);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y=x;--v){let w=_W(e,A,d[v]);if(w>=r){b=!0;break}if(g.score=g.score*RW(r,c,w),g.score<=s)break}g.suppressBeginIndex=d.length,b||(g.score===y?(d.push(A),h.push(g.score)):g.score>s&&NW(u,g,E4))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function _W(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(s[0],s[2]),c=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),h=Math.max(s[1],s[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,d),A=Math.min(l,h),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(p+f-x)}function RW(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function E4(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function DW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=O(e,"boxes","nonMaxSuppressionAsync"),o=O(t,"scores","nonMaxSuppressionAsync"),i=qi(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=T4(u,c,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),ur(d,"int32")}var FW=DW;function MW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=O(e,"boxes","nonMaxSuppression"),i=O(t,"scores","nonMaxSuppression"),l=qi(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=U.runKernel(Mw,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var OW=H({nonMaxSuppressionWithScore_:MW});async function PW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=O(e,"boxes","nonMaxSuppressionAsync"),i=O(t,"scores","nonMaxSuppressionAsync"),l=qi(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=C4(c,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:ur(h,"int32"),selectedScores:ur(p)}}var zW=PW;function LW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=O(e,"boxes","nonMaxSuppression"),i=O(t,"scores","nonMaxSuppression"),l=qi(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=U.runKernel(Fw,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var BW=H({nonMaxSuppressionPadded_:LW});async function WW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=O(e,"boxes","nonMaxSuppressionAsync"),i=O(t,"scores","nonMaxSuppressionAsync"),l=qi(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=N4(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:ur(f,"int32"),validOutputs:ut(m,"int32")}}var VW=WW;function UW(e,t,n=!1,r=!1){let s=O(e,"images","resizeBilinear");L(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),L(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),L(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=ue(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=U.runKernel(Xw,i,l);return o?ue(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var HW=H({resizeBilinear_:UW});function GW(e,t,n=!1,r=!1){let s=O(e,"images","resizeNearestNeighbor");L(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),L(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),L(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),L(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=ue(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=U.runKernel(Kw,i,l);return o?ue(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var jW=H({resizeNearestNeighbor_:GW});function qW(e,t="binary",n=!1,r=.5){let s=O(e,"image","threshold"),a=.2989,o=.587,i=.114,l=s.shape[0]*s.shape[1],u=fe(ur([r]),255),c,d,h,p;if(L(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),L(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),L(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),L(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[c,d,h]=ta(s,[1,1,1],-1);let g=fe(c,a),y=fe(d,o),A=fe(h,i);p=Me(Me(g,y),A)}else p=e;if(t==="otsu"){let g=Hk(Pt(m4(p),"int32"),ts([]),256);u=KW(g,l)}let f=n?ny(p,u):kp(p,u);return Pt(fe(f,255),"int32")}function KW(e,t){let n=ur([-1]),r=ur([0]),s=ur([0]),a,o,i,l,u,c;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),L(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),L(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return U.runKernel(C7,l,u)}var YW=H({transform_:ZW});function JW(e,t,n){L(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),L(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=O(e,"a","bandPart");L(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=ue(pc(0,a,1,"int32"),[-1,1]),l=pc(0,o,1,"int32"),u=He(i,l),c=Sp(ny(u,ut(+t,"int32")),Jk(u,ut(-n,"int32"))),d=ji([a,o],r.dtype);return ue(So(fc(ue(r,[-1,a,o])).map(h=>Gi(c,h,d))),s)}var QW=H({bandPart_:JW});function eV(e){let t;if(Array.isArray(e)){t=!1,L(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=ta(e,e.shape[0],0).map(s=>Zn(s,[0]));L(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s{let a=r[s];if(s>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return $4(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=fc(ue(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(l=>{let[u,c]=$4(l,t);s.push(u),a.push(c)});let o=ue(So(s,0),e.shape),i=ue(So(a,0),e.shape);return[o,i]}}function $4(e,t=!1){return U.tidy(()=>{L(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=Xk(n),a=Js(e),o=ra([[1]],[1,1]),i=Js(o),l=n>=r?r:n;for(let u=0;u{let p=Ze(a,[u,u],[n-u,1]),f=uy(p),m=Ze(a,[u,u],[1,1]),g=Gi(kp(m,0),ra([[-1]]),ra([[1]])),y=He(m,fe(g,f)),A=Qe(p,y);A.shape[0]===1?i=Js(o):i=an([o,Ze(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=$a(Qe(yt(g,y),f)),b=Ze(a,[u,0],[n-u,r]),v=fe(x,i),w=fp(i);if(u===0)a=He(b,yt(v,yt(w,b)));else{let E=He(b,yt(v,yt(w,b)));a=an([Ze(a,[0,0],[u,r]),E],0)}let S=fp(v),I=Ze(s,[0,u],[n,s.shape[1]-u]);if(u===0)s=He(I,yt(yt(I,i),S));else{let E=He(I,yt(yt(I,i),S));s=an([Ze(s,[0,0],[n,u]),E],1)}return[i,a,s]}),Ve([c,d,h])}return!t&&n>r&&(s=Ze(s,[0,0],[n,r]),a=Ze(a,[0,0],[r,r])),[s,a]})}var rV=H({qr_:nV}),Pn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Pn||(Pn={}));function sV(e,t,n=Pn.SUM_BY_NONZERO_WEIGHTS){let r=O(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=O(t,"weights","computeWeightedLoss"));let a=s==null?r:fe(r,s);if(n===Pn.NONE)return a;if(n===Pn.SUM)return _t(a);if(n===Pn.MEAN){if(s==null)return Tp(a);{let o=r.size/s.size,i=Qe(_t(a),_t(s));return o>1?Qe(i,ut(o)):i}}if(n===Pn.SUM_BY_NONZERO_WEIGHTS){if(s==null)return Qe(_t(a),ut(r.size));{let o=fe(s,ko(r.shape)),i=Pt(_t(c4(o,ut(0))),"float32");return Qe(_t(a),i)}}throw Error(`Unknown reduction: ${n}`)}var sa=H({computeWeightedLoss_:sV});function aV(e,t,n,r=Pn.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","absoluteDifference"),a=O(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=O(n,"weights","absoluteDifference")),Mn(s.shape,a.shape,"Error in absoluteDifference: ");let i=Nr(He(s,a));return sa(i,o,r)}var oV=H({absoluteDifference_:aV});function iV(e,t,n,r,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"labels","cosineDistance"),o=O(t,"predictions","cosineDistance"),i=null;r!=null&&(i=O(r,"weights","cosineDistance")),Mn(a.shape,o.shape,"Error in cosineDistance: ");let l=ut(1),u=He(l,_t(fe(a,o),n,!0));return sa(u,i,s)}var lV=H({cosineDistance_:iV});function uV(e,t,n,r=Pn.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","hingeLoss"),a=O(t,"predictions","hingeLoss"),o=null;n!=null&&(o=O(n,"weights","hingeLoss")),Mn(s.shape,a.shape,"Error in hingeLoss: ");let i=ut(1);s=He(fe(ut(2),s),i);let l=Cp(He(i,fe(s,a)));return sa(l,o,r)}var cV=H({hingeLoss_:uV});function dV(e,t,n,r=1,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"labels","huberLoss"),o=O(t,"predictions","huberLoss"),i=null;n!=null&&(i=O(n,"weights","huberLoss")),Mn(a.shape,o.shape,"Error in huberLoss: ");let l=ut(r),u=Nr(He(o,a)),c=u4(u,l),d=He(u,c),h=Me(fe(ut(.5),ns(c)),fe(l,d));return sa(h,i,s)}var hV=H({huberLoss_:dV});function pV(e,t,n,r=1e-7,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"labels","logLoss"),o=O(t,"predictions","logLoss"),i=null;n!=null&&(i=O(n,"weights","logLoss")),Mn(a.shape,o.shape,"Error in logLoss: ");let l=ut(1),u=ut(r),c=$a(fe(a,uc(Me(o,u)))),d=fe(He(l,a),uc(Me(He(l,o),u))),h=He(c,d);return sa(h,i,s)}var fV=H({logLoss_:pV});function mV(e,t,n,r=Pn.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","meanSquaredError"),a=O(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=O(n,"weights","meanSquaredError")),Mn(s.shape,a.shape,"Error in meanSquaredError: ");let i=y4(s,a);return sa(i,o,r)}var gV=H({meanSquaredError_:mV});function yV(e,t){let n=O(e,"labels","sigmoidCrossEntropyWithLogits"),r=O(t,"logits","sigmoidCrossEntropyWithLogits");Mn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=Cp(r),a=fe(r,n),o=e4(wo($a(Nr(r))));return Me(He(s,a),o)}function AV(e,t,n,r=0,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"multiClassLabels","sigmoidCrossEntropy"),o=O(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=O(n,"weights","sigmoidCrossEntropy")),Mn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=ut(r),c=ut(1),d=ut(.5);a=Me(fe(a,He(c,u)),fe(d,u))}let l=yV(a,o);return sa(l,i,s)}var xV=H({sigmoidCrossEntropy_:AV});function bV(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Ns((s,a,o)=>{let l=s4(a,[n],!0),u=He(Pt(a,"float32"),l);o([s,u]);let c=$a(fe(u,s));return{value:_t(c,[n]),gradFunc:(p,f)=>{let[m,g]=f,y=cc(p.shape,[n]);return[fe(ue(p,y),He(Pt(m,"float32"),wo(g))),fe(ue(p,y),He(wo(g),Pt(m,"float32")))]}}})(e,t)}function vV(e,t,n,r=0,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"onehotLabels","softmaxCrossEntropy"),o=O(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=O(n,"weights","softmaxCrossEntropy")),Mn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let u=ut(r),c=ut(1),d=ut(a.shape[1]);a=Me(fe(a,He(c,u)),Qe(u,d))}let l=bV(a,o);return sa(l,i,s)}var wV=H({softmaxCrossEntropy_:vV});function kV(e,t,n,r){let s=O(e,"indices","sparseFillEmptyRows"),a=O(t,"values","sparseFillEmptyRows"),o=O(n,"denseShape","sparseFillEmptyRows"),i=O(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape - ${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:s,values:a,denseShape:o,defaultValue:i},u=U.runKernel(f7,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var IV=H({sparseFillEmptyRows_:kV});function SV(e,t,n){let r=O(e,"inputIndices","sparseReshape"),s=O(t,"inputShape","sparseReshape"),a=O(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=U.runKernel(m7,o);return{outputIndices:i[0],outputShape:i[1]}}var TV=H({sparseReshape_:SV});function NV(e,t,n){let r=O(e,"data","sparseSegmentMean"),s=O(t,"indices","sparseSegmentMean"),a=O(n,"segmentIds","sparseSegmentMean");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${r.shape}`),L(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},l={blockSize:t,dataFormat:n};return U.runKernel(wv,i,l)}var tP=H({depthToSpace_:eP});function nP(e,t,n,r,s="NHWC",a=[1,1],o){let i=P(e,"x","depthwiseConv2d"),l=P(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=le(i,[1,i.shape[0],i.shape[1],i.shape[2]])),L(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),L(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),L(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&L(Kn(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:u,filter:l},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},p=U.runKernel(kv,d,h);return c?le(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Z2=H({depthwiseConv2d_:nP});function rP(e){let n={x:P(e,"x","diag")};return U.runKernel(Tv,n)}var sP=H({diag_:rP});function aP(e,t,n,r,s=[1,1],a="NHWC"){let o=P(e,"x","dilation2d"),i=P(t,"filter","dilation2d");L(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),L(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),L(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=le(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:r,dilations:s},h=U.runKernel(Nv,c,d);return u?le(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var oP=H({dilation2d_:aP});function iP(e,t){let n=e.length,r=[];for(let s=0;s1&&o===1&&r.unshift(a)}return r}function Ok(e,t){let n=[];for(let r=0;r1)&&n.unshift(a)}return n}function kn(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(L(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=le(n,[1,-1]),i=le(r,[-1,1]),l=gt(o,i);return le(l,[])}else if(n.rank===1&&r.rank===2){let o=le(n,[1,-1]),i=le(r,[r.shape[0],r.shape[1]]),l=gt(o,i);return le(l,[l.size])}else if(n.rank===2&&r.rank===1){let o=le(r,[-1,1]),i=gt(n,o);return le(i,[i.size])}else{let o=le(r,[r.shape[0],r.shape[1]]);return gt(n,o)}}var fP=H({dot_:pP});function mP(e,...t){let n=t.map((s,a)=>P(s,`tensors${a}`,"einsum")),r={equation:e};return U.runKernel(Ev,n,r)}var gP=H({einsum_:mP});function yP(e){let n={x:P(e,"x","elu")};return U.runKernel($v,n)}var zk=H({elu_:yP});function AP(e){let t=P(e,"x","erf");L(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=Mt(t,"float32"));let n={x:t};return U.runKernel(Rv,n)}var xP=H({erf_:AP});function bP(e){let n={x:P(e,"x","exp")};return U.runKernel(Dv,n)}var wo=H({exp_:bP});function vP(e,t=0){let n=P(e,"x","expandDims","string_or_numeric");L(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return U.runKernel(Fv,r,s)}var ta=H({expandDims_:vP});function wP(e){let n={x:P(e,"x","expm1")};return U.runKernel(Mv,n)}var kP=H({expm1_:wP});function IP(e,t){let n=P(e,"x","tile","string_or_numeric");L(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return U.runKernel(a2,r,s)}var bp=H({tile_:IP});function SP(e,t,n,r="float32"){t==null&&(t=e);let s=Js([e,t],r),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${a.rank}.`),L(Kn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=le(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:r,beta:s},c=U.runKernel(ow,l,u);return i?le(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var UP=H({localResponseNormalization_:VP});function HP(e){let n={x:P(e,"x","log")};return U.runKernel(tw,n)}var lc=H({log_:HP});function GP(e){let n={x:P(e,"x","log1p")};return U.runKernel(nw,n)}var Hk=H({log1p_:GP});function jP(e){return L(Ta(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=P(t,"x","tf.grad","string_or_numeric"),s=n!=null?P(n,"dy","tf.grad"):null;return U.tidy(()=>{let{value:a,grads:o}=U.gradients(()=>e(r),[r],s);return s!=null&&Mn(a.shape,s.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),kp(o),o[0]})}}function qP(e){return L(Ta(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{L(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=rc(t,"args","tf.grads","string_or_numeric"),s=n!=null?P(n,"dy","tf.grads"):null;return U.tidy(()=>{let{value:a,grads:o}=U.gradients(()=>e(...r),r,s);return s!=null&&Mn(a.shape,s.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),kp(o),o})}}function KP(e){return L(Ta(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{L(t instanceof It,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),L(n==null||n instanceof It,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:s}=U.gradients(()=>e(t),[t],n);return kp(r),{grad:r[0],value:s}}}function XP(e){return L(Ta(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{L(Array.isArray(t)&&t.every(s=>s instanceof It),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),L(n==null||n instanceof It,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=U.gradients(()=>e(...t),t,n);return n!=null&&Mn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),kp(r.grads),r}}function Gk(e,t){L(Ta(e),()=>"The f passed in variableGrads(f) must be a function"),L(t==null||Array.isArray(t)&&t.every(u=>u instanceof nc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in U.registeredVariables)t.push(U.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,s=t.length;t=t.filter(u=>u.trainable),L(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=U.gradients(e,t,null,a);L(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),L(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:o,grads:l}}function Ss(e){return U.customGrad(e)}function kp(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that + the f you passed encloses all operations that lead from x to y.`)}function ZP(e){let n={x:P(e,"x","neg")};return U.runKernel(xw,n)}var Ra=H({neg_:ZP});function YP(e){let n={x:P(e,"x","softplus")};return U.runKernel(Zw,n)}var jk=H({softplus_:YP});function JP(e){let t=P(e,"x","logSigmoid");return Ss(r=>({value:Ra(jk(Ra(r))),gradFunc:o=>pe(o,Is(Ra(r)))}))(t)}var QP=H({logSigmoid_:JP});function ez(e,t=null,n=!1){let s={x:P(e,"x","max")},a={reductionIndices:t,keepDims:n};return U.runKernel(iw,s,a)}var _a=H({max_:ez});function tz(e,t){let n=P(e,"a","sub"),r=P(t,"b","sub");[n,r]=Wt(n,r);let s={a:n,b:r};return U.runKernel(h7,s)}var Ue=H({sub_:tz});function nz(e,t=null,n=!1){let r=P(e,"x","sum");r.dtype==="bool"&&(r=Mt(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return U.runKernel(Jw,s,a)}var Et=H({sum_:nz});function rz(e,t=-1){let n=P(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Ss((s,a)=>{let o=!0,i=_a(s,t,!0),l=Ue(s,i),u=Ue(Mt(l,"float32"),lc(Et(wo(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=wo(p);return Ue(d,pe(Et(d,t,f),m))}}})(n)}var sz=H({logSoftmax_:rz});function Q2(e,t){for(let n=0;ne[a]);return[n,s]}function uc(e,t){let n=t.map(r=>1);return qk(e,n,t)}function oz(e,t,n){L(Q2(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function iz(e,t){if(Q2(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function lz(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function uz(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),L(ea(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),s!=null&&L(Kn(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=U.runKernel(uw,u,c);return l?le(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Yk=H({maxPool_:gz});function yz(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=P(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=le(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),L(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),L(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&L(Kn(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=U.runKernel(cw,u,c);return l?le(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Az=H({maxPool3d_:yz});function xz(e,t,n,r,s=!1){let o={x:P(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},l=U.runKernel(dw,o,i);return{result:l[0],indexes:l[1]}}var bz=H({maxPoolWithArgmax_:xz});function vz(e,t){let n=P(e,"a","maximum"),r=P(t,"b","maximum");[n,r]=Wt(n,r),n.dtype==="bool"&&(n=Mt(n,"int32"),r=Mt(r,"int32")),kn(n.shape,r.shape);let s={a:n,b:r};return U.runKernel(lw,s)}var Jk=H({maximum_:vz});function wz(e,t=null,n=!1){let s={x:P(e,"x","mean")},a={axis:t,keepDims:n};return U.runKernel(hw,s,a)}var Sp=H({mean_:wz});function Gi(e,t="float32"){if(t==="complex64"){let r=Gi(e,"float32"),s=Gi(e,"float32");return go(r,s)}let n=tp(Yt(e),t);return U.makeTensor(n,e,t)}function ko(e,t="float32"){if(t==="complex64"){let r=ko(e,"float32"),s=Gi(e,"float32");return go(r,s)}let n=Yg(Yt(e),t);return U.makeTensor(n,e,t)}function kz(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=P(e,"x","meshgrid",e instanceof It?e.dtype:"float32");if(t===void 0)return[r];let s=P(t,"y","meshgrid",t instanceof It?t.dtype:"float32"),a=Yt(r.shape),o=Yt(s.shape);return n==="xy"?(r=le(r,[1,-1]),s=le(s,[-1,1]),[gt(ko([o,1],r.dtype),r),gt(s,ko([1,a],s.dtype))]):(r=le(r,[-1,1]),s=le(s,[1,-1]),[gt(r,ko([1,o],r.dtype)),gt(ko([a,1],s.dtype),s)])}function Iz(e,t=null,n=!1){let s={x:P(e,"x","min")},a={axis:t,keepDims:n};return U.runKernel(pw,s,a)}var e1=H({min_:Iz});function Sz(e,t){let n=P(e,"a","minimum"),r=P(t,"b","minimum");[n,r]=Wt(n,r),n.dtype==="bool"&&(n=Mt(n,"int32"),r=Mt(r,"int32")),kn(n.shape,r.shape);let s={a:n,b:r};return U.runKernel(fw,s)}var Qk=H({minimum_:Sz});function Tz(e,t,n){L(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=P(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");L(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),L(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return U.runKernel(mw,o,a)}var Nz=H({mirrorPad_:Tz});function Cz(e,t){let n=P(e,"a","mod"),r=P(t,"b","mod");[n,r]=Wt(n,r);let s={a:n,b:r};return U.runKernel(gw,s)}var Ez=H({mod_:Cz});function $z(e){let t=P(e,"x","square"),n={};return U.runKernel("Square",{x:t},n)}var rs=H({square_:$z});function Rz(e,t=null,n=!1){e=P(e,"x","moments");let r=Ku(t,e.shape),s=Sp(e,r,n),a=s.shape;n||(a=uc(s.shape,r));let o=rs(Ue(Mt(e,"float32"),le(s,a))),i=Sp(o,r,n);return{mean:s,variance:i}}var _z=H({moments_:Rz});function Dz(e,t,n,r){let s=P(t,"data","multiRNNCell"),a=rc(n,"c","multiRNNCell"),o=rc(r,"h","multiRNNCell"),i=s,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?le(s,[1,-1]):s},u={numSamples:t,seed:n,normalized:r},c=U.runKernel(yw,l,u);return o===1?le(c,[c.size]):c}var Oz=H({multinomial_:Mz});function Pz(e,t){let n=P(e,"a","notEqual","string_or_numeric"),r=P(t,"b","notEqual","string_or_numeric");[n,r]=Wt(n,r),kn(n.shape,r.shape);let s={a:n,b:r};return U.runKernel(bw,s)}var e4=H({notEqual_:Pz});function zz(e){let n={x:P(e,"x","onesLike")};return U.runKernel(Iw,n)}var Lz=H({onesLike_:zz});function Bz(e,t){let n=P(e,"v1","outerProduct"),r=P(t,"v2","outerProduct");L(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=le(n,[-1,1]),a=le(r,[1,-1]);return gt(s,a)}var Wz=H({outerProduct_:Bz});function Vz(e,t,n=0){let r=P(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return U.runKernel(Nw,a,s)}var cc=H({pad_:Vz});function Uz(e,t,n=0){return L(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),cc(e,[t],n)}var Hz=H({pad1d_:Uz});function Gz(e,t,n=0){return L(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cc(e,t,n)}var jz=H({pad2d_:Gz});function qz(e,t,n=0){return L(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cc(e,t,n)}var Kz=H({pad3d_:qz});function Xz(e,t,n=0){return L(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cc(e,t,n)}var Zz=H({pad4d_:Xz});function Yz(e,t,n){let r=P(e,"x","spaceToBatchND");L(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),L(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),L(r.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return U.runKernel(Qw,s,a)}var t4=H({spaceToBatchND_:Yz});function Jz(e,t,n,r,s,a){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let o=P(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=le(o,[1,o.shape[0],o.shape[1],o.shape[2]])),L(ea(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let u=Ek(i.shape,t,a,s,r),c=[u.dilationHeight,u.dilationWidth],d;r==="same"?d=eL([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=Qz([u.inHeight,u.inWidth],c,d),m=h?r:"valid",g=h?i:t4(i,c,p),A=(n==="avg"?()=>_k(g,t,a,m):()=>Yk(g,t,a,m))(),x=h?A:Dk(A,c,f);return l?le(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function Qz(e,t,n){let r=n.map(c=>c[0]),s=n.map(c=>c[1]),a=e.concat(r,s),o=t.map((c,d)=>(c-a[d]%c)%c),i=s.map((c,d)=>c+o[d]),l=t.map((c,d)=>[r[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function eL(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var tL=H({pool_:Jz});function nL(e,t){let n=P(e,"base","pow"),r=P(t,"exp","pow");[n,r]=Wt(n,r);let s={a:n,b:r};return U.runKernel(Cw,s)}var dc=H({pow_:nL});function rL(e,t){let n=P(e,"x","prelu"),r=P(t,"alpha","prelu"),s={x:n,alpha:r};return U.runKernel(Ew,s)}var n4=H({prelu_:rL});function sL(e,t=null,n=!1){let r=P(e,"x","prod");r.dtype==="bool"&&(r=Mt(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return U.runKernel($w,s,a)}var aL=H({prod_:sL});function oL(e,t,n){let r=Yt(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},lL=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=t1.alea(s.toString()),this.randn=new n1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),sthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=t1.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function cL(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new lL(t,n,r,s),o=Js(e,r);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Io(t,0)}var wL=H({reverse1d_:vL});function kL(e,t){let n=P(e,"x","reverse");return L(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Io(n,t)}var IL=H({reverse2d_:kL});function SL(e,t){let n=P(e,"x","reverse");return L(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Io(n,t)}var TL=H({reverse3d_:SL});function NL(e,t){let n=P(e,"x","reverse");return L(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Io(n,t)}var CL=H({reverse4d_:NL});function EL(e){let n={x:P(e,"x","round")};return U.runKernel(Bw,n)}var a4=H({round_:EL});function $L(e){let n={x:P(e,"x","rsqrt")};return U.runKernel(Ww,n)}var RL=H({rsqrt_:$L});function ut(e,t){if((Nn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Nn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Ca(e,[],[],t)}function _L(e){let n={x:P(e,"x","selu")};return U.runKernel(Hw,n)}var DL=H({selu_:_L});function FL(e,t,n,r,s,a=[1,1],o="NHWC"){let i=P(e,"x","separableConv2d"),l=P(t,"depthwiseFilter","separableConv2d"),u=P(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=le(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");L(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),L(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),L(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),L(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),L(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];L(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=Z2(c,l,r,s,o,a),g=xp(f,u,1,"valid",o);return d?le(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var ML=H({separableConv2d_:FL});async function OL(e,t){let n=P(e,"x","setdiff1d"),r=P(t,"y","setdiff1d");L(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),L(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),L(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Xe(r,[t],[n])}var GL=H({slice1d_:HL});function jL(e,t,n){let r=P(e,"x","slice2d");return L(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Xe(r,t,n)}var qL=H({slice2d_:jL});function KL(e,t,n){let r=P(e,"x","slice3d");return L(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Xe(r,t,n)}var XL=H({slice3d_:KL});function ZL(e,t,n){let r=P(e,"x","slice4d");return L(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Xe(r,t,n)}var YL=H({slice4d_:ZL});function JL(e,t=-1){let n=P(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return U.runKernel(t7,r,s)}var QL=H({softmax_:JL});function eB(e){L(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return U.runKernel(Ov,t)}var r1=H({fft_:eB});function tB(e){L(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return U.runKernel(jv,t)}var Cp=H({ifft_:tB});function nB(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=le(e,[n,t]);r=Cp(s)}else{let s=[n,2*(t-1)],a=le(Tp(e),[n,t]),o=le(Y2(e),[n,t]),i=Io(Xe(a,[0,1],[n,t-2]),1),l=pe(Io(Xe(o,[0,1],[n,t-2]),1),ut(-1)),u=rn([a,i],1),c=rn([o,l],1),d=le(go(u,c),[s[0],s[1]]);r=Cp(d)}if(r=Tp(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=le(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var o4=H({irfft_:nB});function rB(e,t,n=0){let s={x:P(e,"x","split")},a={numOrSizeSplits:t,axis:n};return U.runKernel(e7,s,a)}var na=H({split_:rB});function sB(e,t){L(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=Xe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=rn([e,Gi(f)],e.shape.length-1),n=t}else s=e;let a=Tr(s),o=le(go(s,a),[r,n]),i=r1(o),l=Math.floor(n/2)+1,u=Tp(i),c=Y2(i),d=na(u,[l,n-l],u.shape.length-1),h=na(c,[l,n-l],c.shape.length-1),p=s.shape.slice();return p[s.shape.length-1]=l,le(go(d[0],h[0]),p)}var s1=H({rfft_:sB});function aB(e){let n={x:P(e,"x","sqrt")};return U.runKernel(Yw,n)}var ra=H({sqrt_:aB});function oB(e,t){let n=P(e,"a","squaredDifference"),r=P(t,"b","squaredDifference");[n,r]=Wt(n,r),kn(n.shape,r.shape);let s={a:n,b:r},a={};return U.runKernel(i7,s,a)}var i4=H({squaredDifference_:oB});function iB(e,t){let n=P(e,"x","squeeze");return le(n,R3(n.shape,t).newShape)}var Xn=H({squeeze_:iB});function lB(e,t=0){let n=rc(e,"tensors","stack","string_or_numeric");L(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&L(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return U.runKernel(Tw,r,s)}var So=H({stack_:lB});function uB(e,t=0){let r={x:P(e,"x","step")},s={alpha:t};return U.runKernel(w7,r,s)}var l4=H({step_:uB});function cB(e,t,n,r,s=0,a=0,o=0,i=0,l=0){let c={x:P(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return U.runKernel(l7,c,d)}var dB=H({stridedSlice_:cB});function hB(e){let n={x:P(e,"x","tan")};return U.runKernel(p7,n)}var pB=H({tan_:hB});function ur(e,t){ho(e);let n=ks(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Ca(e,null,n,t)}function sa(e,t,n){if(ho(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=ks(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Ca(e,t,r,n)}function fB(e,t,n){if(ho(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=ks(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Ca(e,t,r,n)}function mB(e,t,n){if(ho(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=ks(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Ca(e,t,r,n)}function gB(e,t,n){if(ho(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=ks(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,Ca(e,t,r,n)}function yB(e,t=1,n=!0){let r=P(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,l]=U.runKernel(m7,a,o);return{values:i,indices:l}}var AB=H({topk_:yB});function xB(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new n1(t,n,r,!0,s),o=Js(e,r);for(let i=0;i0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=U.runKernel(A7,r,s);return{values:a,indices:o}}var wB=H({unique_:vB});function kB(e,t,n){let r=P(e,"x","unsortedSegmentSum"),s=P(t,"segmentIds","unsortedSegmentSum","int32");L(Kn(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return U.runKernel(b7,a,o)}var IB=H({unsortedSegmentSum_:kB});function SB(e,t=0){let n=P(e,"x","unstack","string_or_numeric");L(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return U.runKernel(x7,r,s)}var pc=H({unstack_:SB});function TB(e,t=!0,n,r){return U.makeVariable(e,t,n,r)}function u4(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),Mn(i.slice(a,a+o),s.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m"Shape mismatch in v and x");let l=ut(1),u=Ue(l,i),c=pe(Ue(o,a),u);if(s){L(r!=null,()=>"When using zeroDebias: true, step is required.");let d=P(r,"step","movingAverage");c=Je(c,Ue(l,dc(i,d)))}return Me(a,c)}var _B=H({movingAverage_:RB});function DB(e,t,n){let r=P(e,"indices","scatterND","int32"),s=P(t,"updates","scatterND");z2(s,r,n);let a={indices:r,updates:s},o={shape:n};return U.runKernel(Vw,a,o)}var FB=H({scatterND_:DB});function MB(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function OB(e,t,n,r=0){let s=P(e,"sparseIndices","sparseToDense","int32"),a=P(t,"sparseValues","sparseToDense"),o=P(r,"defaultValue","sparseToDense",a.dtype);MB(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},l={outputShape:n};return U.runKernel(o7,i,l)}var PB=H({sparseToDense_:OB});function zB(e,t){let n=P(t,"indices","gatherND","int32"),s={params:P(e,"x","gatherND","string_or_numeric"),indices:n};return U.runKernel(Uv,s)}var LB=H({gatherND_:zB});function BB(e,t){if(t==null)return e.shape.slice();if(Zs(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),L(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof It?s.clone():s;let a=BB(s,n),o=1-t,i=Je(Bk(Me(r4(a,0,1,"float32",r),o)),o);return pe(s,i)}var VB=H({dropout_:WB});function h4(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function o1(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),L(r.rank-1===s.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${s.rank}`),Mn(r.shape.slice(0,r.shape.length-1),s.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=r.shape[r.shape.length-1];L(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await r.data(),i=await s.data(),[l,u]=[o.length/a,a],c=_3("bool",l);for(let d=0;dg.value-m.value),c[d]=0;for(let m=0;mKB,depthwiseConv2d:()=>eW,matMul:()=>nW});function GB(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=le(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=le(t,[1,t.shape[0],t.shape[1],t.shape[2]])),L(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),L(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),L(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];L(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),L(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&L(Kn(s),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:i,dy:l},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return U.runKernel(pv,d,h)}var jB=H({conv2DBackpropFilter_:GB});function Ep(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return pe(e,l4(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function $p(e,t){let n=t,r=Ok(e.shape,t.shape);return r.length>0&&(n=Et(n,r)),le(n,e.shape)}function Rp(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Np(e);if(t==="elu")return zk(e);if(t==="relu6")return s4(e);if(t==="prelu")return n4(e,n);if(t==="leakyrelu")return Uk(e,r);if(t==="sigmoid")return Is(e);throw new Error(`Unknown fused activation ${t}.`)}var _p=(e,t)=>!(e>0)||t==="linear";function qB({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",_p(U.state.gradientDepth,l)===!1){let v=xp(e,t,n,r,s,a,o);return i!=null&&(v=Me(v,i)),Rp(v,l,u,c)}let d=P(e,"x","conv2d"),h=P(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=le(d,[1,d.shape[0],d.shape[1],d.shape[2]])),L(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),L(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&L(Kn(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),L(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),L(ea(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),L(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=ac(p.shape,h.shape,n,a,r,o),g;i!=null&&(g=P(i,"bias","fused conv2d"),[g]=Wt(g,d),kn(m.outShape,g.shape));let y;u!=null&&(y=P(u,"prelu weights","fused conv2d"));let A=(v,I)=>{let[w,S,E,D]=I,$=Ep(v,E,l);L(oc(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=Mk(S.shape,$,w,n,r),N=jB(S,$,w.shape,n,r),M=[R,N];if(D!=null){let B=$p(D,$);M.push(B)}return M},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Ss((I,w,S)=>{let E=U.runKernel(l2,x,b);return S([w,I,E]),f&&(E=le(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):Ss((I,w,S,E)=>{let D=U.runKernel(l2,x,b);return E([w,I,D,S]),f&&(D=le(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(p,h,g)}var KB=H({fusedConv2d_:qB});function XB(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=le(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=le(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return U.runKernel(Iv,u,c)}var ZB=H({depthwiseConv2dNativeBackpropFilter_:XB});function YB(e,t,n,r,s,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=le(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=U.runKernel(Sv,u,c);return l?le(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var JB=H({depthwiseConv2dNativeBackpropInput_:YB});function QB({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(_p(U.state.gradientDepth,l)===!1){let v=Z2(e,t,n,r,s,a,o);return i!=null&&(v=Me(v,i)),Rp(v,l,u,c)}let d=P(e,"x","depthwiseConv2d"),h=P(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=le(d,[1,d.shape[0],d.shape[1],d.shape[2]])),L(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),L(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),L(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),L(ea(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&L(Kn(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${r}.`);let m=ac(p.shape,h.shape,n,a,r,o,!0),g;i!=null&&(g=P(i,"bias","fused conv2d"),[g]=Wt(g,d),kn(m.outShape,g.shape));let y;u!=null&&(y=P(u,"prelu weights","fused depthwiseConv2d"));let A=(v,I)=>{L(oc(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[w,S,E,D]=I,$=Ep(v,E,l),R=JB(S.shape,$,w,n,r,a,o),N=ZB(S,$,w.shape,n,r,a,o);if(D!=null){let M=$p(g,$);return[R,N,M]}return[R,N]},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Ss((I,w,S)=>{let E=U.runKernel(u2,x,b);return S([w,I,E]),f&&(E=le(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):Ss((I,w,S,E)=>{let D=U.runKernel(u2,x,b);return E([w,I,D,S]),f&&(D=le(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(p,h,g)}var eW=H({fusedDepthwiseConv2d_:QB});function tW({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(_p(U.state.gradientDepth,a)===!1){let D=gt(e,t,n,r);return s!=null&&(D=Me(D,s)),Rp(D,a,o,i)}let l=P(e,"a","fused matMul"),u=P(t,"b","fused matMul");[l,u]=Wt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=r?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Yt(f),y=Yt(m);L(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),L(Zs(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),L(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let A=l.shape.slice(0,-2).concat([h,p]),x=n?le(l,[g,c,h]):le(l,[g,h,c]),b=r?le(u,[y,p,d]):le(u,[y,d,p]),v;s!=null&&(v=P(s,"bias","fused matMul"),[v]=Wt(v,l),kn(A,v.shape));let I;o!=null&&(I=P(o,"prelu weights","fused matMul"));let w=(D,$)=>{let[R,N,M,B]=$,q=Ep(le(D,M.shape),M,a),X,J;if(!n&&!r?(X=gt(q,N,!1,!0),J=gt(R,q,!0,!1)):!n&&r?(X=gt(q,N,!1,!1),J=gt(q,R,!0,!1)):n&&!r?(X=gt(N,q,!1,!0),J=gt(R,q,!1,!1)):(X=gt(N,q,!0,!0),J=gt(q,R,!0,!0)),s!=null){let ee=$p(B,q);return[X,J,ee]}else return[X,J]},S={a:x,b,bias:v,preluActivationWeights:I},E={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?Ss(($,R,N)=>{let M=U.runKernel(i2,S,E);return N([$,R,M]),{value:le(M,A),gradFunc:w}})(x,b):Ss(($,R,N,M)=>{let B=U.runKernel(i2,S,E);return M([$,R,B,N]),{value:le(B,A),gradFunc:w}})(x,b,v)}var nW=H({fusedMatMul_:tW});function rW(e){return o1(e,.54,.46)}var sW=H({hammingWindow_:rW});function aW(e){return o1(e,.5,.5)}var f4=H({hannWindow_:aW});function oW(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Xe(e,a,t)),a+=n;if(r)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),L(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),L(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),L(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),L(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),L(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let c={image:o,boxes:i,boxInd:l},d={method:s,extrapolationValue:a,cropSize:r};return U.runKernel(bv,c,d)}var cW=H({cropAndResize_:uW});function dW(e){let t=P(e,"image","flipLeftRight","float32");L(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return U.runKernel(zv,n,{})}var hW=H({flipLeftRight_:dW});function pW(e,t,n=0,r=.5){let s=P(e,"image","rotateWithOffset","float32");L(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return U.runKernel(k7,a,o)}var fW=H({rotateWithOffset_:pW});function ji(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),L(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),L(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),L(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),L(t.rank===1,()=>"scores must be a 1D tensor"),L(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),L(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function mW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=P(e,"boxes","nonMaxSuppression"),o=P(t,"scores","nonMaxSuppression"),i=ji(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return U.runKernel(vw,{boxes:a,scores:o},l)}var gW=H({nonMaxSuppression_:mW});function yW(e,t,n){let r=AW(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function AW(e,t,n){return bW(e,t,n||xW)}function xW(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function g4(e,t,n,r,s){return i1(e,t,n,r,s,0)}function y4(e,t,n,r,s,a){return i1(e,t,n,r,s,0,!1,a,!0)}function A4(e,t,n,r,s,a){return i1(e,t,n,r,s,a,!0)}function i1(e,t,n,r,s,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;gs&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(x4);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y=x;--v){let I=vW(e,A,d[v]);if(I>=r){b=!0;break}if(g.score=g.score*wW(r,c,I),g.score<=s)break}g.suppressBeginIndex=d.length,b||(g.score===y?(d.push(A),h.push(g.score)):g.score>s&&yW(u,g,x4))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function vW(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(s[0],s[2]),c=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),h=Math.max(s[1],s[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,d),A=Math.min(l,h),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(p+f-x)}function wW(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function x4(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function kW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=P(e,"boxes","nonMaxSuppressionAsync"),o=P(t,"scores","nonMaxSuppressionAsync"),i=ji(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=g4(u,c,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),ur(d,"int32")}var IW=kW;function SW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=P(e,"boxes","nonMaxSuppression"),i=P(t,"scores","nonMaxSuppression"),l=ji(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=U.runKernel(kw,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var TW=H({nonMaxSuppressionWithScore_:SW});async function NW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=P(e,"boxes","nonMaxSuppressionAsync"),i=P(t,"scores","nonMaxSuppressionAsync"),l=ji(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=A4(c,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:ur(h,"int32"),selectedScores:ur(p)}}var CW=NW;function EW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=P(e,"boxes","nonMaxSuppression"),i=P(t,"scores","nonMaxSuppression"),l=ji(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=U.runKernel(ww,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var $W=H({nonMaxSuppressionPadded_:EW});async function RW(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=P(e,"boxes","nonMaxSuppressionAsync"),i=P(t,"scores","nonMaxSuppressionAsync"),l=ji(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=y4(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:ur(f,"int32"),validOutputs:ut(m,"int32")}}var _W=RW;function DW(e,t,n=!1,r=!1){let s=P(e,"images","resizeBilinear");L(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),L(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),L(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=le(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=U.runKernel(Pw,i,l);return o?le(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var FW=H({resizeBilinear_:DW});function MW(e,t,n=!1,r=!1){let s=P(e,"images","resizeNearestNeighbor");L(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),L(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),L(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),L(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=le(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=U.runKernel(Ow,i,l);return o?le(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var OW=H({resizeNearestNeighbor_:MW});function PW(e,t="binary",n=!1,r=.5){let s=P(e,"image","threshold"),a=.2989,o=.587,i=.114,l=s.shape[0]*s.shape[1],u=pe(ur([r]),255),c,d,h,p;if(L(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),L(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),L(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),L(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[c,d,h]=na(s,[1,1,1],-1);let g=pe(c,a),y=pe(d,o),A=pe(h,i);p=Me(Me(g,y),A)}else p=e;if(t==="otsu"){let g=Fk(Mt(a4(p),"int32"),ns([]),256);u=zW(g,l)}let f=n?J2(p,u):wp(p,u);return Mt(pe(f,255),"int32")}function zW(e,t){let n=ur([-1]),r=ur([0]),s=ur([0]),a,o,i,l,u,c;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),L(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),L(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return U.runKernel(g7,l,u)}var WW=H({transform_:BW});function VW(e,t,n){L(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),L(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=P(e,"a","bandPart");L(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=le(hc(0,a,1,"int32"),[-1,1]),l=hc(0,o,1,"int32"),u=Ue(i,l),c=Ip(J2(u,ut(+t,"int32")),Vk(u,ut(-n,"int32"))),d=Gi([a,o],r.dtype);return le(So(pc(le(r,[-1,a,o])).map(h=>Hi(c,h,d))),s)}var UW=H({bandPart_:VW});function HW(e){let t;if(Array.isArray(e)){t=!1,L(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=na(e,e.shape[0],0).map(s=>Xn(s,[0]));L(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s{let a=r[s];if(s>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return b4(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=pc(le(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(l=>{let[u,c]=b4(l,t);s.push(u),a.push(c)});let o=le(So(s,0),e.shape),i=le(So(a,0),e.shape);return[o,i]}}function b4(e,t=!1){return U.tidy(()=>{L(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=Lk(n),a=Qs(e),o=sa([[1]],[1,1]),i=Qs(o),l=n>=r?r:n;for(let u=0;u{let p=Xe(a,[u,u],[n-u,1]),f=a1(p),m=Xe(a,[u,u],[1,1]),g=Hi(wp(m,0),sa([[-1]]),sa([[1]])),y=Ue(m,pe(g,f)),A=Je(p,y);A.shape[0]===1?i=Qs(o):i=rn([o,Xe(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=Ra(Je(gt(g,y),f)),b=Xe(a,[u,0],[n-u,r]),v=pe(x,i),I=pp(i);if(u===0)a=Ue(b,gt(v,gt(I,b)));else{let E=Ue(b,gt(v,gt(I,b)));a=rn([Xe(a,[0,0],[u,r]),E],0)}let w=pp(v),S=Xe(s,[0,u],[n,s.shape[1]-u]);if(u===0)s=Ue(S,gt(gt(S,i),w));else{let E=Ue(S,gt(gt(S,i),w));s=rn([Xe(s,[0,0],[n,u]),E],1)}return[i,a,s]}),We([c,d,h])}return!t&&n>r&&(s=Xe(s,[0,0],[n,r]),a=Xe(a,[0,0],[r,r])),[s,a]})}var qW=H({qr_:jW}),Pn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Pn||(Pn={}));function KW(e,t,n=Pn.SUM_BY_NONZERO_WEIGHTS){let r=P(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=P(t,"weights","computeWeightedLoss"));let a=s==null?r:pe(r,s);if(n===Pn.NONE)return a;if(n===Pn.SUM)return Et(a);if(n===Pn.MEAN){if(s==null)return Sp(a);{let o=r.size/s.size,i=Je(Et(a),Et(s));return o>1?Je(i,ut(o)):i}}if(n===Pn.SUM_BY_NONZERO_WEIGHTS){if(s==null)return Je(Et(a),ut(r.size));{let o=pe(s,ko(r.shape)),i=Mt(Et(e4(o,ut(0))),"float32");return Je(Et(a),i)}}throw Error(`Unknown reduction: ${n}`)}var aa=H({computeWeightedLoss_:KW});function XW(e,t,n,r=Pn.SUM_BY_NONZERO_WEIGHTS){let s=P(e,"labels","absoluteDifference"),a=P(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=P(n,"weights","absoluteDifference")),Mn(s.shape,a.shape,"Error in absoluteDifference: ");let i=Sr(Ue(s,a));return aa(i,o,r)}var ZW=H({absoluteDifference_:XW});function YW(e,t,n,r,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","cosineDistance"),o=P(t,"predictions","cosineDistance"),i=null;r!=null&&(i=P(r,"weights","cosineDistance")),Mn(a.shape,o.shape,"Error in cosineDistance: ");let l=ut(1),u=Ue(l,Et(pe(a,o),n,!0));return aa(u,i,s)}var JW=H({cosineDistance_:YW});function QW(e,t,n,r=Pn.SUM_BY_NONZERO_WEIGHTS){let s=P(e,"labels","hingeLoss"),a=P(t,"predictions","hingeLoss"),o=null;n!=null&&(o=P(n,"weights","hingeLoss")),Mn(s.shape,a.shape,"Error in hingeLoss: ");let i=ut(1);s=Ue(pe(ut(2),s),i);let l=Np(Ue(i,pe(s,a)));return aa(l,o,r)}var eV=H({hingeLoss_:QW});function tV(e,t,n,r=1,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","huberLoss"),o=P(t,"predictions","huberLoss"),i=null;n!=null&&(i=P(n,"weights","huberLoss")),Mn(a.shape,o.shape,"Error in huberLoss: ");let l=ut(r),u=Sr(Ue(o,a)),c=Qk(u,l),d=Ue(u,c),h=Me(pe(ut(.5),rs(c)),pe(l,d));return aa(h,i,s)}var nV=H({huberLoss_:tV});function rV(e,t,n,r=1e-7,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"labels","logLoss"),o=P(t,"predictions","logLoss"),i=null;n!=null&&(i=P(n,"weights","logLoss")),Mn(a.shape,o.shape,"Error in logLoss: ");let l=ut(1),u=ut(r),c=Ra(pe(a,lc(Me(o,u)))),d=pe(Ue(l,a),lc(Me(Ue(l,o),u))),h=Ue(c,d);return aa(h,i,s)}var sV=H({logLoss_:rV});function aV(e,t,n,r=Pn.SUM_BY_NONZERO_WEIGHTS){let s=P(e,"labels","meanSquaredError"),a=P(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=P(n,"weights","meanSquaredError")),Mn(s.shape,a.shape,"Error in meanSquaredError: ");let i=i4(s,a);return aa(i,o,r)}var oV=H({meanSquaredError_:aV});function iV(e,t){let n=P(e,"labels","sigmoidCrossEntropyWithLogits"),r=P(t,"logits","sigmoidCrossEntropyWithLogits");Mn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=Np(r),a=pe(r,n),o=Hk(wo(Ra(Sr(r))));return Me(Ue(s,a),o)}function lV(e,t,n,r=0,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"multiClassLabels","sigmoidCrossEntropy"),o=P(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=P(n,"weights","sigmoidCrossEntropy")),Mn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=ut(r),c=ut(1),d=ut(.5);a=Me(pe(a,Ue(c,u)),pe(d,u))}let l=iV(a,o);return aa(l,i,s)}var uV=H({sigmoidCrossEntropy_:lV});function cV(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Ss((s,a,o)=>{let l=Kk(a,[n],!0),u=Ue(Mt(a,"float32"),l);o([s,u]);let c=Ra(pe(u,s));return{value:Et(c,[n]),gradFunc:(p,f)=>{let[m,g]=f,y=uc(p.shape,[n]);return[pe(le(p,y),Ue(Mt(m,"float32"),wo(g))),pe(le(p,y),Ue(wo(g),Mt(m,"float32")))]}}})(e,t)}function dV(e,t,n,r=0,s=Pn.SUM_BY_NONZERO_WEIGHTS){let a=P(e,"onehotLabels","softmaxCrossEntropy"),o=P(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=P(n,"weights","softmaxCrossEntropy")),Mn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let u=ut(r),c=ut(1),d=ut(a.shape[1]);a=Me(pe(a,Ue(c,u)),Je(u,d))}let l=cV(a,o);return aa(l,i,s)}var hV=H({softmaxCrossEntropy_:dV});function pV(e,t,n,r){let s=P(e,"indices","sparseFillEmptyRows"),a=P(t,"values","sparseFillEmptyRows"),o=P(n,"denseShape","sparseFillEmptyRows"),i=P(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape + ${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:s,values:a,denseShape:o,defaultValue:i},u=U.runKernel(n7,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var fV=H({sparseFillEmptyRows_:pV});function mV(e,t,n){let r=P(e,"inputIndices","sparseReshape"),s=P(t,"inputShape","sparseReshape"),a=P(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=U.runKernel(r7,o);return{outputIndices:i[0],outputShape:i[1]}}var gV=H({sparseReshape_:mV});function yV(e,t,n){let r=P(e,"data","sparseSegmentMean"),s=P(t,"indices","sparseSegmentMean"),a=P(n,"segmentIds","sparseSegmentMean");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return U.runKernel(g7,o)}var CV=H({sparseSegmentMean_:NV});function EV(e,t,n){let r=O(e,"data","sparseSegmentSum"),s=O(t,"indices","sparseSegmentSum"),a=O(n,"segmentIds","sparseSegmentSum");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return U.runKernel(s7,o)}var AV=H({sparseSegmentMean_:yV});function xV(e,t,n){let r=P(e,"data","sparseSegmentSum"),s=P(t,"indices","sparseSegmentSum"),a=P(n,"segmentIds","sparseSegmentSum");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return U.runKernel(y7,o)}var $V=H({sparseSegmentSum_:EV});function _V(e,t,n,r,s,a,o,i){let l=O(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=O(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=U.runKernel(v7,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var RV=H({stringNGrams_:_V});function DV(e,t,n=!0){let r=O(e,"input","stringSplit","string"),s=O(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=U.runKernel(w7,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var FV=H({stringSplit_:DV});function MV(e,t){let n=O(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return U.runKernel(k7,s,r)}var OV=H({stringToHashBucketFast_:MV}),PV={fft:iy,ifft:Ep,rfft:ly,irfft:g4},zV={hammingWindow:fW,hannWindow:I4,frame:S4,stft:AW},Ye={flipLeftRight:wW,resizeNearestNeighbor:jW,resizeBilinear:HW,rotateWithOffset:IW,cropAndResize:bW,nonMaxSuppression:TW,nonMaxSuppressionAsync:FW,nonMaxSuppressionWithScore:OW,nonMaxSuppressionWithScoreAsync:zW,nonMaxSuppressionPadded:BW,nonMaxSuppressionPaddedAsync:VW,threshold:XW,transform:YW},LV={bandPart:QW,gramSchmidt:tV,qr:rV},BV={absoluteDifference:oV,computeWeightedLoss:sa,cosineDistance:lV,hingeLoss:cV,huberLoss:hV,logLoss:fV,meanSquaredError:gV,sigmoidCrossEntropy:xV,softmaxCrossEntropy:wV},WV={sparseFillEmptyRows:IV,sparseReshape:TV,sparseSegmentMean:CV,sparseSegmentSum:$V},VV={stringNGrams:RV,stringSplit:FV,stringToHashBucketFast:OV},Ra=class extends Rk{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ve(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return t4(e,t)}dispose(){this.iterations_!=null&&Ve(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ut(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ra,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Fp=class extends Ra{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=U.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:Ue(()=>Cr(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:Ue(()=>Cr(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,l=this.accumulatedUpdates[r].variable;Ue(()=>{let u=Me(fe(i,this.rho),fe(ns(o),1-this.rho)),c=fe(Qe(na(Me(l,this.epsilon)),na(Me(i,this.epsilon))),o),d=Me(fe(l,this.rho),fe(ns(c),1-this.rho));i.assign(u),l.assign(d);let h=Me(fe(c,-this.learningRate),s);s.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ve(this.accumulatedGrads.map(e=>e.variable)),Ve(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Fp.className="Adadelta";Ea(Fp);var Mp=class extends Ra{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:Ue(()=>wp(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;Ue(()=>{let i=Me(o,ns(a));o.assign(i);let l=Me(fe(Qe(a,na(Me(i,U.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ve(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Mp.className="Adagrad";Ea(Mp);var Op=class extends Ra{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Ue(()=>{this.accBeta1=ut(t).variable(),this.accBeta2=ut(n).variable()}),r==null&&(this.epsilon=U.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Ue(()=>{let n=He(1,this.accBeta1),r=He(1,this.accBeta2);t.forEach((s,a)=>{let o=U.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ue(()=>Cr(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:Ue(()=>Cr(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=Me(fe(u,this.beta1),fe(l,1-this.beta1)),h=Me(fe(c,this.beta2),fe(ns(l),1-this.beta2)),p=Qe(d,n),f=Qe(h,r);u.assign(d),c.assign(h);let m=Me(fe(Qe(p,Me(na(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(fe(this.accBeta1,this.beta1)),this.accBeta2.assign(fe(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ve(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ve(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Ue(()=>{this.accBeta1.assign(hc(this.beta1,this.iterations_+1)),this.accBeta2.assign(hc(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Op.className="Adam";Ea(Op);var Pp=class extends Ra{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Ue(()=>{this.iteration=ut(0).variable(),this.accBeta1=ut(t).variable()}),r==null&&(this.epsilon=U.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Ue(()=>{let n=He(1,this.accBeta1),r=Qe(-this.learningRate,Me(fe(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=U.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Cr(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Cr(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=Me(fe(u,this.beta1),fe(l,1-this.beta1)),h=fe(c,this.beta2),p=Nr(l),f=l4(h,p);u.assign(d),c.assign(f);let m=Me(fe(Qe(r,n),Qe(d,Me(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(Me(this.iteration,1)),this.accBeta1.assign(fe(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ve(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ve(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Pp.className="Adamax";Ea(Pp);var mc=class extends Ra{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=U.registeredVariables[n];Ue(()=>{let o=Me(fe(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Pk(ut(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};mc.className="SGD";Ea(mc);var zp=class extends mc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ut(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:Ue(()=>Cr(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&Ue(()=>{let i,l=Me(fe(this.m,a),o);this.useNesterov?i=Me(fe(this.c,Me(o,fe(l,this.m))),s):i=Me(fe(this.c,l),s),a.assign(l),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ve(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};zp.className="Momentum";Ea(zp);var Lp=class extends Ra{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=U.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:Ue(()=>Cr(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:Ue(()=>Cr(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:Ue(()=>Cr(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,l=this.accumulatedMoments[r].variable;Ue(()=>{let u=Me(fe(i,this.decay),fe(ns(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[r].variable,d=Me(fe(c,this.decay),fe(o,1-this.decay)),h=Qe(fe(o,this.learningRate),na(He(u,Me(ns(d),this.epsilon)))),p=Me(fe(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=He(s,p);s.assign(f)}else{let c=Me(fe(i,this.decay),fe(ns(o),1-this.decay)),d=Me(fe(l,this.momentum),Qe(fe(o,this.learningRate),na(Me(c,this.epsilon))));i.assign(c),l.assign(d);let h=He(s,d);s.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ve(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ve(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ve(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Lp.className="RMSProp";Ea(Lp);var To=class{static sgd(e){return new mc(e)}static momentum(e,t,n=!1){return new zp(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new Lp(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new Op(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Fp(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new Pp(e,t,n,r,s)}static adagrad(e,t=.1){return new Mp(e,t)}},UV={sgd:To.sgd,momentum:To.momentum,adadelta:To.adadelta,adagrad:To.adagrad,rmsprop:To.rmsprop,adamax:To.adamax,adam:To.adam},HV=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function GV(){return new Promise(e=>HV(()=>e()))}var _4={};De(_4,{ERF_A1:()=>sU,ERF_A2:()=>aU,ERF_A3:()=>oU,ERF_A4:()=>iU,ERF_A5:()=>lU,ERF_P:()=>rU,PARALLELIZE_THRESHOLD:()=>hy,SELU_SCALE:()=>nU,SELU_SCALEALPHA:()=>tU,applyActivation:()=>Rp,assertAndGetBroadcastShape:()=>In,assertAxesAreInnerMostDims:()=>gz,assertParamsConsistent:()=>jV,assignToTypedArray:()=>gU,axesAreInnerMostDims:()=>ry,calculateShapes:()=>bk,checkEinsumDimSizes:()=>wU,combineLocations:()=>r4,complexWithEvenIndex:()=>pU,complexWithOddIndex:()=>fU,computeConv2DInfo:()=>oc,computeConv3DInfo:()=>Bk,computeDefaultPad:()=>Y2,computeDilation2DInfo:()=>oO,computeOptimalWindowSize:()=>KV,computeOutAndReduceShapes:()=>mz,computeOutShape:()=>qV,computePool2DInfo:()=>Lk,computePool3DInfo:()=>iO,convertConv2DDataFormat:()=>Wk,decodeEinsumEquation:()=>bU,eitherStridesOrDilationsAreOne:()=>Qs,expandShapeToKeepDim:()=>cc,exponent:()=>AU,exponents:()=>yU,fromStringArrayToUint8:()=>_U,fromUint8ToStringArray:()=>$U,getAxesPermutation:()=>yz,getBroadcastDims:()=>yP,getComplexWithIndex:()=>mU,getEinsumComputePath:()=>kU,getEinsumPermutation:()=>vU,getFusedBiasGradient:()=>_p,getFusedDyActivation:()=>$p,getImageCenter:()=>XV,getInnerMostAxes:()=>xz,getPermuted:()=>YV,getReductionAxes:()=>jk,getReshaped:()=>ZV,getReshapedPermuted:()=>JV,getSliceBeginCoords:()=>QV,getSliceSize:()=>eU,getUndoAxesPermutation:()=>Az,isIdentityPermutation:()=>IU,log:()=>cU,mergeRealAndImagArrays:()=>dU,prepareAndValidate:()=>Ak,prepareSplitSize:()=>TU,segment_util:()=>F4,shouldFuse:()=>Dp,slice_util:()=>U2,splitRealAndImagArrays:()=>hU,tupleValuesAreOne:()=>ic,upcastType:()=>cp,validateInput:()=>V2,validateUpdateShape:()=>W2,warn:()=>uU});function jV(e,t){let n=e[0].length;e.forEach((s,a)=>{L(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),L(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function qV(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||o%2==1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function JV(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a/g,R4=",",D4="...";function bU(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(xU,"").length)/py.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${py}").`);let[r,s]=e.split(py);L(r.indexOf(D4)===-1,()=>`The ellipsis notation ("${D4}") is not supported yet.`);let a=r.split(R4),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;hf.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;hs!==-1),{permutationIndices:n,expandDims:r}}function wU(e,t,n){let r=new Array(e);for(let s=0;s`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function kU(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;ot===n)}function SU(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);L(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}L(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var F4={};De(F4,{collectGatherOpShapeInfo:()=>EU,computeOutShape:()=>CU,segOpComputeOptimalWindowSize:()=>NU});function NU(e,t){let n=!1,r;for(e<=hy?(r=e,n=!0):r=tp(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=tp(e,r+1);return r}function CU(e,t,n){let r=[],s=e.length;for(let a=0;as))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${a}).`);if(nip(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function _U(e){return e.map(t=>Qu(t))}var M4={};De(M4,{nonMaxSuppressionV3Impl:()=>T4,nonMaxSuppressionV4Impl:()=>N4,nonMaxSuppressionV5Impl:()=>C4,whereImpl:()=>x4});var RU=1e-7,DU=1e-4,fy=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Bp=class{refCount(e){return Gr("refCount")}incRef(e){return Gr("incRef")}timerAvailable(){return!0}time(e){return Gr("time")}read(e){return Gr("read")}readSync(e){return Gr("readSync")}numDataIds(){return Gr("numDataIds")}disposeData(e,t){return Gr("disposeData")}write(e,t,n){return Gr("write")}move(e,t,n,r,s){return Gr("move")}memory(){return Gr("memory")}floatPrecision(){return Gr("floatPrecision")}epsilon(){return this.floatPrecision()===32?RU:DU}dispose(){return Gr("dispose")}};function Gr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function O4(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function FU(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,s,a=0;for(;n>0;)a=Math.random()*n|0,n--,r=e[n],s=t[n],e[n]=e[a],t[n]=t[a],e[a]=r,t[a]=s}function gc(e,t,n){return Math.max(e,Math.min(t,n))}function MU(e){return e%2==0?e:e+1}function OU(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function Wp(e){z(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function yc(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||ss(e)&&!n)for(let r=0;r0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function HU(e,t){let n=1,r=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function jr(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),z(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),z(e.every(r=>mn(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function P4(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:jr(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function GU(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function z4(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function L4(e,t){for(let n=0;nt+=n.length),t}function Vp(e){return typeof e=="string"||e instanceof String}function V4(e){return typeof e=="boolean"}function U4(e){return typeof e=="number"}function Up(e){return Array.isArray(e)?Up(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":U4(e)?"float32":Vp(e)?"string":V4(e)?"bool":"float32"}function Hp(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Gp(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function H4(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;ol*u)*(r?2:1);for(let l=0;ls*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return H4(0,e,t,n)}function gy(e,t){let n=jp(e,t);for(let r=0;rr*s,1);if(t==null||t==="float32")return Xi(e,new Float32Array(n));if(t==="int32")return Xi(e,new Int32Array(n));if(t==="bool")return Xi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function yy(e){e.forEach(t=>{z(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function KU(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s{let[r,s]=n.split(":");this.urlFlags[r]=QU(r,s)})}};function YU(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(JU(t,r[0],r[1]),r.join("="))),t}function JU(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function QU(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ae(){return j4}var j4=null;function eH(e){j4=e}var xy;function q4(){if(xy==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");xy=e}return xy}function tH(){let e=q4();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function by(e,t){let n=tH();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var xc="Abs",bc="Acos",vc="Acosh",Fa="Add",Zi="AddN",wc="All",kc="Any",Yi="ArgMax",qp="ArgMin",Ic="Asin",Sc="Asinh",Tc="Atan",Nc="Atanh",Cc="Atan2",Ji="AvgPool",vy="AvgPoolGrad",Kp="AvgPool3D",wy="AvgPool3DGrad",Qi="BatchMatMul",Xp="BatchToSpaceND",ky="Bincount",nH="BroadcastTo",el="Cast",No="Ceil",Co="ClipByValue",Iy="Complex",Zp="ComplexAbs",Ec="Concat",tl="Conv2D",Sy="Conv2DBackpropFilter",nl="Conv2DBackpropInput",Yp="Conv3D",Ty="Conv3DBackpropFilterV2",Ny="Conv3DBackpropInputV2",rl="Cos",$c="Cosh",sl="Cumsum",_c="CropAndResize",Cy="DenseBincount",Rc="DepthToSpace",al="DepthwiseConv2dNative",Ey="DepthwiseConv2dNativeBackpropFilter",$y="DepthwiseConv2dNativeBackpropInput",_y="Diag",Jp="Dilation2D",Ry="Dilation2DBackpropInput",Dy="Dilation2DBackpropFilter",ol="RealDiv",Fy="Einsum",Dc="Elu",My="EluGrad",Fc="Erf",il="Equal",Eo="Exp",Mc="ExpandDims",ll="Expm1",Oy="FFT",Qp="Fill",Oc="FlipLeftRight",$o="Floor",ul="FloorDiv",cl="FusedBatchNorm",Pc="GatherV2",zc="GatherNd",dl="Greater",_o="GreaterEqual",hl="Identity",Py="IFFT",zy="Imag",Lc="IsFinite",Bc="IsInf",Wc="IsNan",pl="LeakyRelu",fl="Less",ml="LessEqual",Ly="LinSpace",Ro="Log",Vc="Log1p",Uc="LogicalAnd",ef="LogicalNot",tf="LogicalOr",rH="LogSoftmax",nf="LRN",By="LRNGrad",gl="Max",Do="Maximum",yl="MaxPool",Wy="MaxPoolGrad",rf="MaxPool3D",Vy="MaxPool3DGrad",Uy="MaxPoolWithArgmax",Al="Mean",xl="Min",Fo="Minimum",bl="MirrorPad",Hc="Mod",Hy="Multinomial",Mo="Multiply",Gc="Neg",vl="NotEqual",jc="NonMaxSuppressionV3",qc="NonMaxSuppressionV4",Kc="NonMaxSuppressionV5",Xc="OnesLike",wl="OneHot",Zc="Pack",kl="PadV2",Il="Pow",Sl="Prelu",Yc="Prod",sf="Range",Gy="Real",Jc="Reciprocal",Tl="Relu",Qc="Reshape",af="ResizeNearestNeighbor",jy="ResizeNearestNeighborGrad",Nl="ResizeBilinear",qy="ResizeBilinearGrad",Cl="Relu6",El="Reverse",$l="Round",Oo="Rsqrt",ed="ScatterNd",td="Select",nd="Selu",rd="Slice",_l="Sin",sd="Sinh",ad="Sign",Rl="Sigmoid",od="Softplus",Dl="Sqrt",Fl="Sum",of="SpaceToBatchND",id="SplitV",Ml="Softmax",Ky="SparseFillEmptyRows",Xy="SparseReshape",Zy="SparseSegmentMean",Yy="SparseSegmentSum",Jy="SparseToDense",Po="SquaredDifference",lf="Square",ld="StridedSlice",Qy="StringNGrams",eA="StringSplit",tA="StringToHashBucketFast",zo="Sub",Ol="Tan",Pl="Tanh",Lo="Tile",ud="TopK",cd="Transform",zl="Transpose",nA="Unique",dd="Unpack",uf="UnsortedSegmentSum",hd="ZerosLike",Bo="Step",rA="FromPixels",pd="RotateWithOffset",Ll="_FusedMatMul",Bl="FusedConv2D",Wl="FusedDepthwiseConv2D",cf=by("kernelRegistry",()=>new Map),sA=by("gradRegistry",()=>new Map);function aA(e,t){let n=Z4(e,t);return cf.get(n)}function K4(e){return sA.get(e)}function X4(e){let t=cf.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function oA(e){let{kernelName:t,backendName:n}=e,r=Z4(t,n);cf.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),cf.set(r,e)}function sH(e){let{kernelName:t}=e;sA.has(t)&&ae().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),sA.set(t,e)}function Z4(e,t){return`${t}_${e}`}var k={};De(k,{arraysEqual:()=>Da,assert:()=>z,assertNonNegativeIntegerDimensions:()=>yy,assertNonNull:()=>Wp,assertShapesMatch:()=>rs,bytesFromStringArray:()=>W4,bytesPerElement:()=>my,checkConversionForErrors:()=>L4,clamp:()=>gc,computeStrides:()=>Ki,createScalarValue:()=>cH,createShuffledIndices:()=>VU,decodeString:()=>ff,distSquared:()=>zU,encodeString:()=>pf,fetch:()=>hH,fingerPrint64:()=>uH,flatten:()=>yc,getArrayFromDType:()=>z4,getTypedArrayFromDType:()=>GU,hasEncodingLoss:()=>jU,hexToLong:()=>fd,indexToLoc:()=>XU,inferDtype:()=>Up,inferFromImplicitShape:()=>HU,isBoolean:()=>V4,isFunction:()=>Hp,isInt:()=>mn,isNumber:()=>U4,isPromise:()=>Ay,isScalarShape:()=>LU,isString:()=>Vp,isTypedArray:()=>ss,isValidDtype:()=>B4,locToIndex:()=>KU,makeOnesTypedArray:()=>gy,makeZerosNestedTypedArray:()=>qU,makeZerosTypedArray:()=>jp,nearestDivisor:()=>Gp,nearestLargerEven:()=>MU,now:()=>md,parseAxisParam:()=>jr,randUniform:()=>PU,repeatedTry:()=>UU,rightPad:()=>Ac,shuffle:()=>O4,shuffleCombo:()=>FU,sizeFromShape:()=>on,sizeToSquarishShape:()=>WU,squeezeShape:()=>P4,sum:()=>OU,tanh:()=>BU,toNestedArray:()=>Xi,toTypedArray:()=>hf});var Y4=Ks(P3()),Wo=Y4.default||Y4;function fd(e){return Wo.fromString(e,!0,16)}var J4=fd("c3a5c85c97cb3127"),Vo=fd("b492b66fbe98f273"),zn=fd("9ae16a3b2f90404f");function iA(e){return e.xor(e.shru(47))}function Q4(e,t,n){let r=e.slice(t,t+n);return Wo.fromBytes(Array.from(r),!0,!0)}function Nt(e,t){return Q4(e,t,8)}function e6(e,t){return Q4(e,t,4)}function gn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ma(e,t,n=fd("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function aH(e,t,n,r,s,a){s=s.add(e),a=gn(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(gn(s,44)),[s.add(r),a.add(o)]}function df(e,t,n,r){return aH(Nt(e,t),Nt(e,t+8),Nt(e,t+16),Nt(e,t+24),n,r)}function oH(e,t=e.length){if(t>=8){let n=zn.add(t*2),r=Nt(e,0).add(zn),s=Nt(e,t-8),a=gn(s,37).mul(n).add(r),o=gn(r,25).add(s).mul(n);return Ma(a,o,n)}if(t>=4){let n=zn.add(t*2),r=e6(e,0);return Ma(r.shl(3).add(t),e6(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return iA(zn.mul(a).xor(J4.mul(o))).mul(zn)}return zn}function iH(e,t=e.length){let n=zn.add(t*2),r=Nt(e,0).mul(Vo),s=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(zn);return Ma(gn(r.add(s),43).add(gn(a,30)).add(o),r.add(gn(s.add(zn),18)).add(a),n)}function lH(e,t=e.length){let n=zn.add(t*2),r=Nt(e,0).mul(zn),s=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(zn),i=gn(r.add(s),43).add(gn(a,30)).add(o),l=Ma(i,r.add(gn(s.add(zn),18)).add(a),n),u=Nt(e,16).mul(n),c=Nt(e,24),d=i.add(Nt(e,t-32)).mul(n),h=l.add(Nt(e,t-24)).mul(n);return Ma(gn(u.add(c),43).add(gn(d,30)).add(h),u.add(gn(c.add(r),18)).add(d),n)}function uH(e,t=e.length){let n=Wo.fromNumber(81,!0);if(t<=32)return t<=16?oH(e,t):iH(e,t);if(t<=64)return lH(e,t);let r=n,s=n.mul(Vo).add(113),a=iA(s.mul(zn).add(113)).mul(zn),o=[Wo.UZERO,Wo.UZERO],i=[Wo.UZERO,Wo.UZERO];r=r.mul(zn).add(Nt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do r=gn(r.add(s).add(o[0]).add(Nt(e,l+8)),37).mul(Vo),s=gn(s.add(o[1]).add(Nt(e,l+48)),42).mul(Vo),r=r.xor(i[1]),s=s.add(o[0]).add(Nt(e,l+40)),a=gn(a.add(i[0]),33).mul(Vo),o=df(e,l,o[1].mul(Vo),r.add(i[0])),i=df(e,l+32,a.add(i[1]),s.add(Nt(e,l+16))),[a,r]=[r,a],l+=64;while(l!==u);let d=Vo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=gn(r.add(s).add(o[0]).add(Nt(e,l+8)),37).mul(d),s=gn(s.add(o[1]).add(Nt(e,l+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(Nt(e,l+40))),a=gn(a.add(i[0]),33).mul(d),o=df(e,l,o[1].mul(d),r.add(i[0])),i=df(e,l+32,a.add(i[1]),s.add(Nt(e,l+16))),[a,r]=[r,a],Ma(Ma(o[0],i[0],d).add(iA(s).mul(J4)).add(a),Ma(o[1],i[1],d).add(r),d)}function cH(e,t){return t==="string"?pf(e):hf([e],t)}function dH(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function hf(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=yc(e)),ae().getBool("DEBUG")&&L4(e,t),dH(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},a,o=md();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let l of r)l.dataSync();a=Promise.resolve({kernelMs:md()-o})}if(ae().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{fH(c,u.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function fH(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function gH(e,t,n){let r={},s={};for(let l=0;lr[m.id]=!0),p=!0,s[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d=0;s--){let a=t[s],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Da(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=r(d,u),d.dispose()}}}}var t6=20,gd=3,lA=7;function AH(e,t,n,r){let s=Ki(t),a=xH(e,t,n,s),o=t.length,i=mf(e,t,n,s,a),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` + ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return U.runKernel(a7,o)}var bV=H({sparseSegmentSum_:xV});function vV(e,t,n,r,s,a,o,i){let l=P(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=P(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=U.runKernel(u7,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var wV=H({stringNGrams_:vV});function kV(e,t,n=!0){let r=P(e,"input","stringSplit","string"),s=P(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=U.runKernel(c7,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var IV=H({stringSplit_:kV});function SV(e,t){let n=P(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return U.runKernel(d7,s,r)}var TV=H({stringToHashBucketFast_:SV}),NV={fft:r1,ifft:Cp,rfft:s1,irfft:o4},CV={hammingWindow:sW,hannWindow:f4,frame:m4,stft:lW},Ze={flipLeftRight:hW,resizeNearestNeighbor:OW,resizeBilinear:FW,rotateWithOffset:fW,cropAndResize:cW,nonMaxSuppression:gW,nonMaxSuppressionAsync:IW,nonMaxSuppressionWithScore:TW,nonMaxSuppressionWithScoreAsync:CW,nonMaxSuppressionPadded:$W,nonMaxSuppressionPaddedAsync:_W,threshold:LW,transform:WW},EV={bandPart:UW,gramSchmidt:GW,qr:qW},$V={absoluteDifference:ZW,computeWeightedLoss:aa,cosineDistance:JW,hingeLoss:eV,huberLoss:nV,logLoss:sV,meanSquaredError:oV,sigmoidCrossEntropy:uV,softmaxCrossEntropy:hV},RV={sparseFillEmptyRows:fV,sparseReshape:gV,sparseSegmentMean:AV,sparseSegmentSum:bV},_V={stringNGrams:wV,stringSplit:IV,stringToHashBucketFast:TV},Da=class extends wk{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return We(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Gk(e,t)}dispose(){this.iterations_!=null&&We(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ut(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Da,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Dp=class extends Da{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=U.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:Ve(()=>Tr(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:Ve(()=>Tr(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,l=this.accumulatedUpdates[r].variable;Ve(()=>{let u=Me(pe(i,this.rho),pe(rs(o),1-this.rho)),c=pe(Je(ra(Me(l,this.epsilon)),ra(Me(i,this.epsilon))),o),d=Me(pe(l,this.rho),pe(rs(c),1-this.rho));i.assign(u),l.assign(d);let h=Me(pe(c,-this.learningRate),s);s.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(We(this.accumulatedGrads.map(e=>e.variable)),We(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Dp.className="Adadelta";$a(Dp);var Fp=class extends Da{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:Ve(()=>vp(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;Ve(()=>{let i=Me(o,rs(a));o.assign(i);let l=Me(pe(Je(a,ra(Me(i,U.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&We(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Fp.className="Adagrad";$a(Fp);var Mp=class extends Da{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Ve(()=>{this.accBeta1=ut(t).variable(),this.accBeta2=ut(n).variable()}),r==null&&(this.epsilon=U.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Ve(()=>{let n=Ue(1,this.accBeta1),r=Ue(1,this.accBeta2);t.forEach((s,a)=>{let o=U.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ve(()=>Tr(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:Ve(()=>Tr(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=Me(pe(u,this.beta1),pe(l,1-this.beta1)),h=Me(pe(c,this.beta2),pe(rs(l),1-this.beta2)),p=Je(d,n),f=Je(h,r);u.assign(d),c.assign(h);let m=Me(pe(Je(p,Me(ra(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(pe(this.accBeta1,this.beta1)),this.accBeta2.assign(pe(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&We(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&We(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Ve(()=>{this.accBeta1.assign(dc(this.beta1,this.iterations_+1)),this.accBeta2.assign(dc(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Mp.className="Adam";$a(Mp);var Op=class extends Da{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Ve(()=>{this.iteration=ut(0).variable(),this.accBeta1=ut(t).variable()}),r==null&&(this.epsilon=U.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Ve(()=>{let n=Ue(1,this.accBeta1),r=Je(-this.learningRate,Me(pe(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=U.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Tr(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Tr(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=Me(pe(u,this.beta1),pe(l,1-this.beta1)),h=pe(c,this.beta2),p=Sr(l),f=Jk(h,p);u.assign(d),c.assign(f);let m=Me(pe(Je(r,n),Je(d,Me(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(Me(this.iteration,1)),this.accBeta1.assign(pe(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&We(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&We(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Op.className="Adamax";$a(Op);var fc=class extends Da{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=U.registeredVariables[n];Ve(()=>{let o=Me(pe(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Nk(ut(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};fc.className="SGD";$a(fc);var Pp=class extends fc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ut(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:Ve(()=>Tr(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&Ve(()=>{let i,l=Me(pe(this.m,a),o);this.useNesterov?i=Me(pe(this.c,Me(o,pe(l,this.m))),s):i=Me(pe(this.c,l),s),a.assign(l),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&We(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Pp.className="Momentum";$a(Pp);var zp=class extends Da{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=U.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=U.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:Ve(()=>Tr(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:Ve(()=>Tr(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:Ve(()=>Tr(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,l=this.accumulatedMoments[r].variable;Ve(()=>{let u=Me(pe(i,this.decay),pe(rs(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[r].variable,d=Me(pe(c,this.decay),pe(o,1-this.decay)),h=Je(pe(o,this.learningRate),ra(Ue(u,Me(rs(d),this.epsilon)))),p=Me(pe(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=Ue(s,p);s.assign(f)}else{let c=Me(pe(i,this.decay),pe(rs(o),1-this.decay)),d=Me(pe(l,this.momentum),Je(pe(o,this.learningRate),ra(Me(c,this.epsilon))));i.assign(c),l.assign(d);let h=Ue(s,d);s.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&We(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&We(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&We(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};zp.className="RMSProp";$a(zp);var To=class{static sgd(e){return new fc(e)}static momentum(e,t,n=!1){return new Pp(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new zp(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new Mp(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Dp(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new Op(e,t,n,r,s)}static adagrad(e,t=.1){return new Fp(e,t)}},DV={sgd:To.sgd,momentum:To.momentum,adadelta:To.adadelta,adagrad:To.adagrad,rmsprop:To.rmsprop,adamax:To.adamax,adam:To.adam},FV=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function MV(){return new Promise(e=>FV(()=>e()))}var v4={};_e(v4,{ERF_A1:()=>KV,ERF_A2:()=>XV,ERF_A3:()=>ZV,ERF_A4:()=>YV,ERF_A5:()=>JV,ERF_P:()=>qV,PARALLELIZE_THRESHOLD:()=>l1,SELU_SCALE:()=>jV,SELU_SCALEALPHA:()=>GV,applyActivation:()=>Rp,assertAndGetBroadcastShape:()=>kn,assertAxesAreInnerMostDims:()=>oz,assertParamsConsistent:()=>OV,assignToTypedArray:()=>oU,axesAreInnerMostDims:()=>Q2,calculateShapes:()=>ck,checkEinsumDimSizes:()=>hU,combineLocations:()=>qk,complexWithEvenIndex:()=>rU,complexWithOddIndex:()=>sU,computeConv2DInfo:()=>ac,computeConv3DInfo:()=>$k,computeDefaultPad:()=>q2,computeDilation2DInfo:()=>ZM,computeOptimalWindowSize:()=>zV,computeOutAndReduceShapes:()=>az,computeOutShape:()=>PV,computePool2DInfo:()=>Ek,computePool3DInfo:()=>YM,convertConv2DDataFormat:()=>Rk,decodeEinsumEquation:()=>cU,eitherStridesOrDilationsAreOne:()=>ea,expandShapeToKeepDim:()=>uc,exponent:()=>lU,exponents:()=>iU,fromStringArrayToUint8:()=>vU,fromUint8ToStringArray:()=>bU,getAxesPermutation:()=>iz,getBroadcastDims:()=>iP,getComplexWithIndex:()=>aU,getEinsumComputePath:()=>pU,getEinsumPermutation:()=>dU,getFusedBiasGradient:()=>$p,getFusedDyActivation:()=>Ep,getImageCenter:()=>LV,getInnerMostAxes:()=>uz,getPermuted:()=>WV,getReductionAxes:()=>Ok,getReshaped:()=>BV,getReshapedPermuted:()=>VV,getSliceBeginCoords:()=>UV,getSliceSize:()=>HV,getUndoAxesPermutation:()=>lz,isIdentityPermutation:()=>fU,log:()=>eU,mergeRealAndImagArrays:()=>tU,prepareAndValidate:()=>lk,prepareSplitSize:()=>gU,segment_util:()=>I4,shouldFuse:()=>_p,slice_util:()=>L2,splitRealAndImagArrays:()=>nU,tupleValuesAreOne:()=>oc,upcastType:()=>up,validateInput:()=>z2,validateUpdateShape:()=>P2,warn:()=>QV});function OV(e,t){let n=e[0].length;e.forEach((s,a)=>{L(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),L(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function PV(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||o%2==1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function VV(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a/g,w4=",",k4="...";function cU(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(uU,"").length)/u1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${u1}").`);let[r,s]=e.split(u1);L(r.indexOf(k4)===-1,()=>`The ellipsis notation ("${k4}") is not supported yet.`);let a=r.split(w4),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;hf.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;hs!==-1),{permutationIndices:n,expandDims:r}}function hU(e,t,n){let r=new Array(e);for(let s=0;s`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function pU(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;ot===n)}function mU(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);L(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}L(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var I4={};_e(I4,{collectGatherOpShapeInfo:()=>xU,computeOutShape:()=>AU,segOpComputeOptimalWindowSize:()=>yU});function yU(e,t){let n=!1,r;for(e<=l1?(r=e,n=!0):r=ep(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=ep(e,r+1);return r}function AU(e,t,n){let r=[],s=e.length;for(let a=0;as))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) ( + ${a}).`);if(nop(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function vU(e){return e.map(t=>Ju(t))}var S4={};_e(S4,{nonMaxSuppressionV3Impl:()=>g4,nonMaxSuppressionV4Impl:()=>y4,nonMaxSuppressionV5Impl:()=>A4,whereImpl:()=>u4});var wU=1e-7,kU=1e-4,c1=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Lp=class{refCount(e){return Wr("refCount")}incRef(e){return Wr("incRef")}timerAvailable(){return!0}time(e){return Wr("time")}read(e){return Wr("read")}readSync(e){return Wr("readSync")}numDataIds(){return Wr("numDataIds")}disposeData(e,t){return Wr("disposeData")}write(e,t,n){return Wr("write")}move(e,t,n,r,s){return Wr("move")}memory(){return Wr("memory")}floatPrecision(){return Wr("floatPrecision")}epsilon(){return this.floatPrecision()===32?wU:kU}dispose(){return Wr("dispose")}};function Wr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function T4(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Bp(e,t,n)}function IU(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r=0;for(;n>0;)r=Math.random()*n|0,n--,Bp(e,n,r),Bp(t,n,r)}function mc(e,t,n){return Math.max(e,Math.min(t,n))}function SU(e){return e%2==0?e:e+1}function Bp(e,t,n){let r=e[t];e[t]=e[n],e[n]=r}function TU(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function Wp(e){z(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function gc(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||as(e)&&!n)for(let r=0;r0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function FU(e,t){let n=1,r=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function Vr(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),z(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),z(e.every(r=>fn(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function N4(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:Vr(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function MU(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function C4(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function E4(e,t){for(let n=0;nt+=n.length),t}function Vp(e){return typeof e=="string"||e instanceof String}function _4(e){return typeof e=="boolean"}function D4(e){return typeof e=="number"}function Up(e){return Array.isArray(e)?Up(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":D4(e)?"float32":Vp(e)?"string":_4(e)?"bool":"float32"}function Hp(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Gp(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function F4(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;ol*u)*(r?2:1);for(let l=0;ls*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return F4(0,e,t,n)}function h1(e,t){let n=jp(e,t);for(let r=0;rr*s,1);if(t==null||t==="float32")return Ki(e,new Float32Array(n));if(t==="int32")return Ki(e,new Int32Array(n));if(t==="bool")return Ki(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function p1(e){e.forEach(t=>{z(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function zU(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s{let[r,s]=n.split(":");this.urlFlags[r]=UU(r,s)})}};function WU(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(VU(t,r[0],r[1]),r.join("="))),t}function VU(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function UU(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function re(){return O4}var O4=null;function HU(e){O4=e}var m1;function P4(){if(m1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");m1=e}return m1}function GU(){let e=P4();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function g1(e,t){let n=GU();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Ac="Abs",xc="Acos",bc="Acosh",Ma="Add",Xi="AddN",vc="All",wc="Any",Zi="ArgMax",qp="ArgMin",kc="Asin",Ic="Asinh",Sc="Atan",Tc="Atanh",Nc="Atan2",Yi="AvgPool",y1="AvgPoolGrad",Kp="AvgPool3D",A1="AvgPool3DGrad",Ji="BatchMatMul",Cc="BatchToSpaceND",x1="Bincount",jU="BroadcastTo",Qi="Cast",No="Ceil",Co="ClipByValue",b1="Complex",Xp="ComplexAbs",Ec="Concat",el="Conv2D",v1="Conv2DBackpropFilter",tl="Conv2DBackpropInput",Zp="Conv3D",w1="Conv3DBackpropFilterV2",k1="Conv3DBackpropInputV2",nl="Cos",rl="Cosh",sl="Cumsum",$c="CropAndResize",I1="DenseBincount",Rc="DepthToSpace",al="DepthwiseConv2dNative",S1="DepthwiseConv2dNativeBackpropFilter",T1="DepthwiseConv2dNativeBackpropInput",N1="Diag",Yp="Dilation2D",C1="Dilation2DBackpropInput",E1="Dilation2DBackpropFilter",ol="RealDiv",$1="Einsum",_c="Elu",R1="EluGrad",Dc="Erf",il="Equal",Eo="Exp",Fc="ExpandDims",ll="Expm1",_1="FFT",Jp="Fill",Mc="FlipLeftRight",$o="Floor",ul="FloorDiv",cl="FusedBatchNorm",Oc="GatherV2",Pc="GatherNd",dl="Greater",Ro="GreaterEqual",hl="Identity",D1="IFFT",F1="Imag",zc="IsFinite",Lc="IsInf",Bc="IsNan",pl="LeakyRelu",fl="Less",ml="LessEqual",M1="LinSpace",_o="Log",Wc="Log1p",Vc="LogicalAnd",Qp="LogicalNot",ef="LogicalOr",qU="LogSoftmax",tf="LRN",O1="LRNGrad",gl="Max",Do="Maximum",yl="MaxPool",P1="MaxPoolGrad",nf="MaxPool3D",z1="MaxPool3DGrad",L1="MaxPoolWithArgmax",Al="Mean",xl="Min",Fo="Minimum",bl="MirrorPad",Uc="Mod",B1="Multinomial",Mo="Multiply",Hc="Neg",vl="NotEqual",Gc="NonMaxSuppressionV3",jc="NonMaxSuppressionV4",qc="NonMaxSuppressionV5",Kc="OnesLike",wl="OneHot",Xc="Pack",kl="PadV2",Il="Pow",Sl="Prelu",Zc="Prod",rf="Range",W1="Real",Yc="Reciprocal",Tl="Relu",Jc="Reshape",sf="ResizeNearestNeighbor",V1="ResizeNearestNeighborGrad",Nl="ResizeBilinear",U1="ResizeBilinearGrad",Cl="Relu6",El="Reverse",$l="Round",Oo="Rsqrt",Qc="ScatterNd",ed="Select",td="Selu",nd="Slice",Rl="Sin",rd="Sinh",sd="Sign",_l="Sigmoid",ad="Softplus",Dl="Sqrt",Fl="Sum",od="SpaceToBatchND",id="SplitV",Ml="Softmax",H1="SparseFillEmptyRows",G1="SparseReshape",j1="SparseSegmentMean",q1="SparseSegmentSum",K1="SparseToDense",Po="SquaredDifference",af="Square",ld="StridedSlice",X1="StringNGrams",Z1="StringSplit",Y1="StringToHashBucketFast",zo="Sub",Ol="Tan",Pl="Tanh",Lo="Tile",ud="TopK",cd="Transform",zl="Transpose",J1="Unique",dd="Unpack",of="UnsortedSegmentSum",hd="ZerosLike",Bo="Step",Q1="FromPixels",pd="RotateWithOffset",Ll="_FusedMatMul",Bl="FusedConv2D",Wl="FusedDepthwiseConv2D",lf=g1("kernelRegistry",()=>new Map),ey=g1("gradRegistry",()=>new Map);function ty(e,t){let n=B4(e,t);return lf.get(n)}function z4(e){return ey.get(e)}function L4(e){let t=lf.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function ny(e){let{kernelName:t,backendName:n}=e,r=B4(t,n);lf.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),lf.set(r,e)}function KU(e){let{kernelName:t}=e;ey.has(t)&&re().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),ey.set(t,e)}function B4(e,t){return`${t}_${e}`}var k={};_e(k,{arraysEqual:()=>Fa,assert:()=>z,assertNonNegativeIntegerDimensions:()=>p1,assertNonNull:()=>Wp,assertShapesMatch:()=>ss,bytesFromStringArray:()=>R4,bytesPerElement:()=>d1,checkConversionForErrors:()=>E4,clamp:()=>mc,computeStrides:()=>qi,createScalarValue:()=>eH,createShuffledIndices:()=>_U,decodeString:()=>hf,distSquared:()=>CU,encodeString:()=>df,fetch:()=>nH,fingerPrint64:()=>QU,flatten:()=>gc,getArrayFromDType:()=>C4,getTypedArrayFromDType:()=>MU,hasEncodingLoss:()=>OU,hexToLong:()=>fd,indexToLoc:()=>LU,inferDtype:()=>Up,inferFromImplicitShape:()=>FU,isBoolean:()=>_4,isFunction:()=>Hp,isInt:()=>fn,isNumber:()=>D4,isPromise:()=>f1,isScalarShape:()=>EU,isString:()=>Vp,isTypedArray:()=>as,isValidDtype:()=>$4,locToIndex:()=>zU,makeOnesTypedArray:()=>h1,makeZerosNestedTypedArray:()=>PU,makeZerosTypedArray:()=>jp,nearestDivisor:()=>Gp,nearestLargerEven:()=>SU,now:()=>md,parseAxisParam:()=>Vr,randUniform:()=>NU,repeatedTry:()=>DU,rightPad:()=>yc,shuffle:()=>T4,shuffleCombo:()=>IU,sizeFromShape:()=>sn,sizeToSquarishShape:()=>RU,squeezeShape:()=>N4,sum:()=>TU,swap:()=>Bp,tanh:()=>$U,toNestedArray:()=>Ki,toTypedArray:()=>cf});var W4=Xs(S3()),Wo=W4.default||W4;function fd(e){return Wo.fromString(e,!0,16)}var V4=fd("c3a5c85c97cb3127"),Vo=fd("b492b66fbe98f273"),zn=fd("9ae16a3b2f90404f");function ry(e){return e.xor(e.shru(47))}function U4(e,t,n){let r=e.slice(t,t+n);return Wo.fromBytes(Array.from(r),!0,!0)}function St(e,t){return U4(e,t,8)}function H4(e,t){return U4(e,t,4)}function mn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Oa(e,t,n=fd("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function XU(e,t,n,r,s,a){s=s.add(e),a=mn(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(mn(s,44)),[s.add(r),a.add(o)]}function uf(e,t,n,r){return XU(St(e,t),St(e,t+8),St(e,t+16),St(e,t+24),n,r)}function ZU(e,t=e.length){if(t>=8){let n=zn.add(t*2),r=St(e,0).add(zn),s=St(e,t-8),a=mn(s,37).mul(n).add(r),o=mn(r,25).add(s).mul(n);return Oa(a,o,n)}if(t>=4){let n=zn.add(t*2),r=H4(e,0);return Oa(r.shl(3).add(t),H4(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return ry(zn.mul(a).xor(V4.mul(o))).mul(zn)}return zn}function YU(e,t=e.length){let n=zn.add(t*2),r=St(e,0).mul(Vo),s=St(e,8),a=St(e,t-8).mul(n),o=St(e,t-16).mul(zn);return Oa(mn(r.add(s),43).add(mn(a,30)).add(o),r.add(mn(s.add(zn),18)).add(a),n)}function JU(e,t=e.length){let n=zn.add(t*2),r=St(e,0).mul(zn),s=St(e,8),a=St(e,t-8).mul(n),o=St(e,t-16).mul(zn),i=mn(r.add(s),43).add(mn(a,30)).add(o),l=Oa(i,r.add(mn(s.add(zn),18)).add(a),n),u=St(e,16).mul(n),c=St(e,24),d=i.add(St(e,t-32)).mul(n),h=l.add(St(e,t-24)).mul(n);return Oa(mn(u.add(c),43).add(mn(d,30)).add(h),u.add(mn(c.add(r),18)).add(d),n)}function QU(e,t=e.length){let n=Wo.fromNumber(81,!0);if(t<=32)return t<=16?ZU(e,t):YU(e,t);if(t<=64)return JU(e,t);let r=n,s=n.mul(Vo).add(113),a=ry(s.mul(zn).add(113)).mul(zn),o=[Wo.UZERO,Wo.UZERO],i=[Wo.UZERO,Wo.UZERO];r=r.mul(zn).add(St(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do r=mn(r.add(s).add(o[0]).add(St(e,l+8)),37).mul(Vo),s=mn(s.add(o[1]).add(St(e,l+48)),42).mul(Vo),r=r.xor(i[1]),s=s.add(o[0]).add(St(e,l+40)),a=mn(a.add(i[0]),33).mul(Vo),o=uf(e,l,o[1].mul(Vo),r.add(i[0])),i=uf(e,l+32,a.add(i[1]),s.add(St(e,l+16))),[a,r]=[r,a],l+=64;while(l!==u);let d=Vo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=mn(r.add(s).add(o[0]).add(St(e,l+8)),37).mul(d),s=mn(s.add(o[1]).add(St(e,l+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(St(e,l+40))),a=mn(a.add(i[0]),33).mul(d),o=uf(e,l,o[1].mul(d),r.add(i[0])),i=uf(e,l+32,a.add(i[1]),s.add(St(e,l+16))),[a,r]=[r,a],Oa(Oa(o[0],i[0],d).add(ry(s).mul(V4)).add(a),Oa(o[1],i[1],d).add(r),d)}function eH(e,t){return t==="string"?df(e):cf([e],t)}function tH(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function cf(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=gc(e)),re().getBool("DEBUG")&&E4(e,t),tH(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},a,o=md();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let l of r)l.dataSync();a=Promise.resolve({kernelMs:md()-o})}if(re().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l{sH(c,u.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function sH(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function oH(e,t,n){let r={},s={};for(let l=0;lr[m.id]=!0),p=!0,s[u.id]=!0;break}if(p)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d=0;s--){let a=t[s],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!Fa(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=r(d,u),d.dispose()}}}}var G4=20,gd=3,sy=7;function lH(e,t,n,r){let s=qi(t),a=uH(e,t,n,s),o=t.length,i=pf(e,t,n,s,a),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` `)),l.join(` -`)}function xH(e,t,n,r){let s=on(t),a=r[r.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?Ad(e):e;if(i>1)for(let u=0;ut6){let g=gd*o,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((i-gd)*o,i*o));return n==="complex64"&&(y=Ad(y),A=Ad(A)),["["+y.map((x,b)=>yd(x,s[b],n)).join(", ")+", ..., "+A.map((x,b)=>yd(x,s[i-gd+b],n)).join(", ")+"]"]}let m=n==="complex64"?Ad(e):Array.from(e);return["["+m.map((g,y)=>yd(g,s[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),d=r[0]*o,h=[];if(i>t6){for(let m=0;m1)for(let u=0;uG4){let g=gd*o,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((i-gd)*o,i*o));return n==="complex64"&&(y=Ad(y),A=Ad(A)),["["+y.map((x,b)=>yd(x,s[b],n)).join(", ")+", ..., "+A.map((x,b)=>yd(x,s[i-gd+b],n)).join(", ")+"]"]}let m=n==="complex64"?Ad(e):Array.from(e);return["["+m.map((g,y)=>yd(g,s[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),d=r[0]*o,h=[];if(i>G4){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||z4(t,this.size),this.strides=Ki(e)}set(e,...t){t.length===0&&(t=[0]),z(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;rff(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Cs().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>ff(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Cs().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Cs().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Vl.print(this,e)}clone(){return this.throwIfDisposed(),Vl.clone(this)}toString(e=!1){let t=this.dataSync();return AH(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Vl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Cs().makeVariable(this,e,t,n)}};Object.defineProperty(Ct,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function re(){return by("Tensor",()=>Ct)}re();var gf=class extends Ct{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Da(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Cs().disposeTensor(this),this.dataId=e.dataId,Cs().incRef(this,null)}dispose(){Cs().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(gf,Symbol.hasInstance,{value:e=>e instanceof Ct&&e.assign!=null&&e.assign instanceof Function});var Es={};De(Es,{assertTypesMatch:()=>s6,getTensorsInContainer:()=>fA,isTensorInList:()=>SH,makeTypesMatch:()=>Ut});var r6;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(r6||(r6={}));var uA;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(uA||(uA={}));var cA;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(cA||(cA={}));var dA;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(dA||(dA={}));var hA;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(hA||(hA={}));var IH={float32:dA,int32:uA,bool:cA,complex64:hA};function qr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return IH[e][t]}function pA(e){return qr(e,"int32")}function Ut(e,t){if(e.dtype===t.dtype)return[e,t];let n=qr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function s6(e,t){z(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function SH(e,t){return t.some(n=>n.id===e.id)}function fA(e){let t=[],n=new Set;return a6(e,t,n),t}function a6(e,t,n){if(e==null)return;if(e instanceof Ct){t.push(e);return}if(!TH(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),a6(a,t,n))}}function TH(e){return Array.isArray(e)||typeof e=="object"}function mA(e){return e.kernelName!=null}var o6=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},xd=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new o6}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){X4(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Bp)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return xd.nextTensorId++}nextVariableId(){return xd.nextVariableId++}clone(e){let t=G.runKernel(hl,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return G.runKernel(el,i,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(!(aA(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=mA(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(mA(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=aA(p,this.backendName);z(g!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:w,dtype:S}=b;return this.makeTensorFromDataId(v,w,S)});if(r){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=mA(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),r&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=K4(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(z(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=s.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&Vp(e[0])&&(s=e.map(i=>pf(i)));let a=r.write(s,t,n),o=new Ct(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),l=W4(s);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new Ct(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new gf(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*my(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof gf||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*my(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=K4(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=jp(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),r(l.length>1?l:l[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=fA(e),n=new Set(t.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(z(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));z(s instanceof Ct,()=>"The result y returned by f() must be a tensor.");let a=gH(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?NH(s.shape):n,yH(o,a,l=>this.tidy(l),CH);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return z(Hp(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{z(t.every(o=>o instanceof Ct),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),z(n.value instanceof Ct,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),z(Hp(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];z(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),z(u.every(d=>d instanceof Ct),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=md(),n=await this.backend.time(e);return n.wallMs=md()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new o6;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};xd.nextTensorId=0;xd.nextVariableId=0;function NH(e){let t=gy(on(e),"float32");return G.makeTensor(t,e,"float32")}function i6(){let e=q4();if(e._tfengine==null){let t=new ZU(e);e._tfengine=new xd(t)}return eH(e._tfengine.ENV),vH(()=>e._tfengine),e._tfengine}var G=i6();function CH(e,t){let n={a:e,b:t};return G.runKernel(Fa,n)}var yf={};De(yf,{isBrowser:()=>l6,isMobile:()=>$H});function EH(){return typeof navigator!="undefined"&&navigator!=null}function $H(e){if(e||EH()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function l6(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var as=ae();as.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});as.registerFlag("IS_BROWSER",()=>l6());as.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");as.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));as.registerFlag("PROD",()=>!1);as.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>as.getBool("DEBUG"));as.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);as.registerFlag("IS_TEST",()=>!1);as.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);as.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function bd(e,t){let n=e;if(ss(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||ss(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&ae().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&u6(e,r,[]),r}function u6(e,t,n){if(n=n||[],!Array.isArray(e)&&!ss(e)){z(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}z(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),z(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s=0&&(s=r),c6(r,s,t,n),e==null||!ss(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=bd(e,s);!ss(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?hf(e,s):yc(e,[],!0);return G.makeTensor(i,a,s)}function Af(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>M(a,`${t}[${o}]`,n,r))}var _H="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+_H;let s=(...a)=>{G.startScope(n);try{let o=r(...a);return Ay(o)&&console.error("Cannot return a Promise inside of tidy."),G.endScope(o),o}catch(o){throw G.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function RH(e,t){let n=M(e,"real","complex"),r=M(t,"imag","complex");rs(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return G.runKernel(Iy,s)}var Uo=V({complex_:RH});function vd(e,t,n,r){if(r==null&&(r=Up(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!ss(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){yy(t);let s=on(t),a=on(n);z(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!ss(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?hf(e,r):yc(e,[],!0),G.makeTensor(e,t,r)}function $s(e,t,n){let r=bd(e,n);return vd(e,t,r,n)}var gA={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},xf=4;async function DH(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let h=await l.bytes(),p=h.reduce((g,y)=>g+y.length,0)+xf*h.length,f=new Uint8Array(p),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var yA=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function h6(e){return yA?Buffer.byteLength(e):new Blob([e]).size}function MH(e){if(yA)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function p6(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function wd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:h6(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:h6(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function PH(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)==0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function zH(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function LH(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function BH(){let e=PH(),t=zH(),n=LH();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(s)}}var qt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return qt.instance==null&&(qt.instance=new qt),qt.instance}static registerSaveRouter(e){qt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){qt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return qt.getHandlers(e,"save")}static getLoadHandlers(e,t){return qt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?qt.getInstance().loadRouters:qt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},WH=e=>qt.registerSaveRouter(e),VH=e=>qt.registerLoadRouter(e),UH=e=>qt.getSaveHandlers(e),HH=(e,t)=>qt.getLoadHandlers(e,t),xA="tensorflowjs",bA=1,Ho="models_store",Oa="model_info_store";function f6(){if(!ae().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function vA(e){let t=e.result;t.createObjectStore(Ho,{keyPath:"modelPath"}),t.createObjectStore(Oa,{keyPath:"modelPath"})}var Go=class{constructor(e){if(this.indexedDB=f6(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(xA,bA);s.onupgradeneeded=()=>vA(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction(Ho,"readonly"),l=o.objectStore(Ho).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),r(l.error)),o.oncomplete=()=>a.close()}else{let o=wd(t),i=a.transaction(Oa,"readwrite"),l=i.objectStore(Oa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Ho,"readwrite");let h=c.objectStore(Ho).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Oa);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(h.error)),f.onerror=m=>(a.close(),r(h.error))}},u.onerror=d=>(a.close(),r(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Go.URL_SCHEME="indexeddb://";var m6=e=>ae().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Go.URL_SCHEME)?GH(e.slice(Go.URL_SCHEME.length)):null;qt.registerSaveRouter(m6);qt.registerLoadRouter(m6);function GH(e){return new Go(e)}function jH(e){return e.startsWith(Go.URL_SCHEME)?e.slice(Go.URL_SCHEME.length):e}var qH=class{constructor(){this.indexedDB=f6()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(xA,bA);n.onupgradeneeded=()=>vA(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(Oa,"readonly"),o=s.objectStore(Oa).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=jH(e),new Promise((t,n)=>{let r=this.indexedDB.open(xA,bA);r.onupgradeneeded=()=>vA(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(Oa,"readwrite"),o=a.objectStore(Oa),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=s.transaction(Ho,"readwrite");let h=l.objectStore(Ho).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),s.close(),n(i.error))}},i.onerror=u=>(s.close(),n(i.error)),a.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},aa="/",Ul="tensorflowjs_models",g6="info",KH="model_topology",XH="weight_specs",ZH="weight_data",YH="model_metadata";function y6(e){return{info:[Ul,e,g6].join(aa),topology:[Ul,e,KH].join(aa),weightSpecs:[Ul,e,XH].join(aa),weightData:[Ul,e,ZH].join(aa),modelMetadata:[Ul,e,YH].join(aa)}}function JH(e){let t=e.split(aa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(aa)}function QH(e){return e.startsWith(jo.URL_SCHEME)?e.slice(jo.URL_SCHEME.length):e}var jo=class{constructor(e){if(!ae().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=y6(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=wd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,MH(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=OH(a),t}};jo.URL_SCHEME="localstorage://";var A6=e=>ae().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(jo.URL_SCHEME)?eG(e.slice(jo.URL_SCHEME.length)):null;qt.registerSaveRouter(A6);qt.registerLoadRouter(A6);function eG(e){return new jo(e)}var tG=class{constructor(){z(ae().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),z(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ul+aa,n=aa+g6;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(Hl)&&(e=e.slice(0,e.indexOf(Hl))),z(e.length>0,()=>"scheme must not be an empty string.");let n=Er.getInstance();z(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function bf(e){if(e.indexOf(Hl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Er.getSchemes().join(",")}`);return{scheme:e.split(Hl)[0],path:e.split(Hl)[1]}}async function x6(e,t,n=!1){z(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=qt.getLoadHandlers(e);z(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),z(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=qt.getSaveHandlers(t);z(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),z(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=bf(e).scheme,l=bf(e).path,u=i===bf(e).scheme,c=await s.load();n&&u&&await Er.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await Er.getManager(i).removeModel(l),d.modelArtifactsInfo}async function nG(){let e=Er.getSchemes(),t={};for(let n of e){let r=await Er.getManager(n).listModels();for(let s in r){let a=n+Hl+s;t[a]=r[s]}}return t}async function rG(e){let t=bf(e);return Er.getManager(t.scheme).removeModel(t.path)}async function sG(e,t){return x6(e,t,!1)}async function aG(e,t){return x6(e,t,!0)}var oG=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ae().get("IS_BROWSER")){ae().setPlatform("browser",new oG);try{Er.registerManager(jo.URL_SCHEME,new tG)}catch(e){}try{Er.registerManager(Go.URL_SCHEME,new qH)}catch(e){}}var iG={importFetch:()=>z3()},wA,lG=class{constructor(){this.util=co("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ae().global.fetch!=null?ae().global.fetch(e,t):(wA==null&&(wA=iG.importFetch()),wA(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ae().get("IS_NODE")&&ae().setPlatform("node",new lG);function Le(e,t="float32",n){return t=t||"float32",yy(e),new Qt(e,t,n)}function uG(e,t){let n=M(e,"x","cast");if(!B4(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return G.runKernel(el,r,s)}var ke=V({cast_:uG});function cG(e){let n={x:M(e,"x","clone","string_or_numeric")};return G.runKernel(hl,n)}var qo=V({clone_:cG});function dG(e,t=!1){console.log(e.toString(t))}i6();var hG={buffer:Le,cast:ke,clone:qo,print:dG};wH(hG);var cr={};De(cr,{browserFiles:()=>xG,browserHTTPRequest:()=>IG,concatenateArrayBuffers:()=>AA,copyModel:()=>sG,decodeWeights:()=>d6,encodeWeights:()=>DH,fromMemory:()=>TG,getLoadHandlers:()=>HH,getModelArtifactsInfoForJSON:()=>wd,getSaveHandlers:()=>UH,http:()=>SA,isHTTPScheme:()=>IA,listModels:()=>nG,loadWeights:()=>bG,moveModel:()=>aG,registerLoadRouter:()=>VH,registerSaveRouter:()=>WH,removeModel:()=>rG,weightsLoaderFactory:()=>k6,withSaveHandler:()=>NG});var pG="model",fG=".json",mG=".weights.bin";function b6(e){return new Promise(t=>setTimeout(t)).then(e)}var Gl=class{constructor(e){if(!ae().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Gl.URL_SCHEME)&&(e=e.slice(Gl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=pG),this.modelTopologyFileName=e+fG,this.weightDataFileName=e+mG}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await b6(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await b6(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:wd(e)}}}};Gl.URL_SCHEME="downloads://";var gG=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=JSON.parse(a.target.result),i=o.modelTopology;if(i==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:i});let l=o.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],d=[],h=[];l.forEach(p=>{p.paths.forEach(f=>{d.push(f),h.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=g=>{let y=g.target.result,A=d.indexOf(f);if(h[A]=y,h.indexOf(null)===-1){let x={modelTopology:i,weightSpecs:c,weightData:AA(h),format:o.format,generatedBy:o.generatedBy,convertedBy:o.convertedBy};o.signature!=null&&(x.signature=o.signature),o.userDefinedMetadata!=null&&(x.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(x.modelInitializer=o.modelInitializer),n(x)}},m.onerror=g=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},s.onerror=a=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(a=>p6(a.name)),s={};for(let a of e)a.paths.forEach(o=>{let i=p6(o);if(n.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(n.push(i),r.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);s[o]=t[r.indexOf(i)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return s}},yG=e=>ae().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Gl.URL_SCHEME)?AG(e.slice(Gl.URL_SCHEME.length)):null;qt.registerSaveRouter(yG);function AG(e="model"){return new Gl(e)}function xG(e){return new gG(e)}function v6(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=l=>(l.then(u=>{let c=n+ ++s/e.length*(r-n);return t(c),u}),l);function o(l){z(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){z(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),z(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),z(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function w6(e,t){t==null&&(t={});let n=t.fetchFunc==null?ae().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await v6(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await v6(i,t.onProgress,l,u)}async function bG(e,t="",n,r){return k6(o=>w6(o,{requestInit:r}))(e,t,n)}function k6(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=gA[y]*on(g.shape),x=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};r!=null?r.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=A})}),!o.every(p=>p)){let p=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. -Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=s.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),w=d6(v,[b.manifestEntry]);for(let S in w)d[S]=w[S]}),h+=f}),d}}var vG="application/octet-stream",wG="application/json",kA=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(z(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ae().platform.fetch,z(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&z(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:wG}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:vG}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:wd(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,o=t.format,i=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let d={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:s,convertedBy:a,format:o};i!=null&&(d.signature=i),l!=null&&(d.userDefinedMetadata=l);let h=t.modelInitializer;return h&&(d.modelInitializer=h),d}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=kG(t),s=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(s+c+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await w6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,AA(l)]}};kA.URL_SCHEME_REGEX=/^https?:\/\//;function kG(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function IA(e){return e.match(kA.URL_SCHEME_REGEX)!=null}var I6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>IA(r)):n=IA(e),n)return SA(e,t)}return null};qt.registerSaveRouter(I6);qt.registerLoadRouter(I6);function SA(e,t){return new kA(e,t)}function IG(e,t){return SA(e,t)}var TA=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},SG=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function TG(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new TA(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new TA({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new TA({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function NG(e){return new SG(e)}function CG(e,t,n=!1,r=!1){let s=M(e,"a","matMul"),a=M(t,"b","matMul");[s,a]=Ut(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return G.runKernel(Qi,o,i)}var ot=V({matMul_:CG});function EG(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:M(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return G.runKernel(wl,a,o)}var kd=V({oneHot_:EG});function $G(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),z(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{z(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return G.runKernel(zl,r,s)}var pt=V({transpose_:$G});function _G(e,t,n){let r=M(e,"labels","confusionMatrix"),s=M(t,"predictions","confusionMatrix");z(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),z(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),z(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),z(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),z(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=kd(ke(r,"int32"),n),o=kd(ke(s,"int32"),n),i=pt(a),l=ot(i,o);return ke(l,"int32")}var Awe=V({confusionMatrix_:_G}),S6={};De(S6,{fromPixels:()=>LG,fromPixelsAsync:()=>PG,toPixels:()=>zG});function RG(e,t,n){if(Wp(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=bd(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return vd(e,t,r,n)}var jl;function T6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState element.")}if(aA(rA,G.backendName)!=null){let f={pixels:e},m={numChannels:t};return G.runKernel(rA,f,m)}let[u,c]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:r||n?d=e.data:(a||s||i)&&(jl==null&&(jl=document.createElement("canvas").getContext("2d")),jl.canvas.width=u,jl.canvas.height=c,jl.drawImage(e,0,0,u,c),d=jl.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(s*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=s,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,s,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var LG=V({fromPixels_:T6}),N6={};De(N6,{prepareAndValidate:()=>C6});function C6(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(on(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;dd/u),1].slice(0,a);return[l,o,u,c]}var E6={};De(E6,{calculateShapes:()=>$6,validateInput:()=>CA,validateUpdateShape:()=>NA});function NA(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;dBG,computeFlatOffset:()=>VG,computeOutShape:()=>_6,getNormalizedAxes:()=>M6,isSliceContinous:()=>WG,maskToAxes:()=>vf,parseSliceParams:()=>W6,sliceInfo:()=>UG,startForAxis:()=>L6,startIndicesWithElidedDims:()=>O6,stopForAxis:()=>B6,stopIndicesWithElidedDims:()=>P6,stridesForAxis:()=>z6,stridesWithElidedDims:()=>R6});function BG(e,t,n){let r=e.shape.length;z(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),z(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function vf(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function _6(e,t,n){let r=[];for(let s=0;s0){let p=t[0],f=n+1;c=O6(o,p,f,r,e),d=P6(i,p,f,s,e),h=R6(a,p,f,e)}else for(let p=0;p-1)a[i]=0;else{let l=D6(t,n,i),u=r[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=D6(t,n,i),u=r[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),o=gc(0,o,l-1),o}function B6(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),i>0?o=gc(0,o,l):o=gc(-1,o,l-1),o}function WG(e,t,n){let r=n.length;for(let s=0;s1){r=s;break}for(let s=r+1;s0||n[s]!==e[s])return!1;return!0}function VG(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{z(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.lengtho>=0?o:(z(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function UG(e,t,n,r,s,a,o,i,l){let u=t.slice(),c=n.slice(),d=r;r==null&&(d=new Array(u.length));let h=vf(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=vf(i),m=e.slice();f.forEach(S=>{u[S]=0,c[S]=1,m.splice(S,0,1)});let{begin:g,end:y,strides:A}=M6(m,h,p,u,c,d,s,a,o);u=g,c=y,d=A;let x=vf(l);x.forEach(S=>{c[S]=u[S]+1,d[S]=1});let b=_6(u,c,d),v=b.filter((S,I)=>x.indexOf(I)===-1);return{nonStrided:d.every(S=>S===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var ce={};De(ce,{Serializable:()=>V6,SerializationMap:()=>Ko,registerClass:()=>Pa});var V6=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ko=class{constructor(){this.classNameMap={}}static getMap(){return Ko.instance==null&&(Ko.instance=new Ko),Ko.instance}static register(e){Ko.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pa(e){z(e.className!=null,()=>"Class being registered does not have the static className property defined."),z(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),z(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ko.register(e)}function U6(e){ae().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}kH(U6);function za(){return G}function EA(){return G.memory()}function Z(e,t){return G.tidy(e,t)}function je(e){fA(e).forEach(n=>n.dispose())}function Sn(e){return G.keep(e)}function $A(e,t,n=1){return G.registerBackend(e,t,n)}function HG(){return G.backend}function GG(e,t){let n=M(e,"a","add"),r=M(t,"b","add");[n,r]=Ut(n,r);let s={a:n,b:r};return G.runKernel(Fa,s)}var pe=V({add_:GG});function jG(e,t){let n=M(e,"a","floorDiv"),r=M(t,"b","floorDiv");[n,r]=Ut(n,r);let s={a:n,b:r};return G.runKernel(ul,s)}var _A=V({floorDiv_:jG});function qG(e,t){let n=M(e,"a","div"),r=M(t,"b","div");if([n,r]=Ut(n,r),n.dtype==="int32"&&r.dtype==="int32")return _A(n,r);let s={a:n,b:r},a={};return G.runKernel(ol,s,a)}var Re=V({div_:qG});function KG(e,t){let n=M(e,"a","mul"),r=M(t,"b","mul");[n,r]=Ut(n,r);let s={a:n,b:r};return G.runKernel(Mo,s)}var K=V({mul_:KG});function XG(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return G.runKernel(Zp,n)}else{let n={x:t};return G.runKernel(xc,n)}}var yn=V({abs_:XG});function ZG(e){let n={x:M(e,"x","acos")};return G.runKernel(bc,n)}var H6=V({acos_:ZG});function YG(e){let n={x:M(e,"x","acosh")};return G.runKernel(vc,n)}var G6=V({acosh_:YG});function JG(e){z(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),z(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>M(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!Da(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return G.runKernel(Zi,r)}var QG=V({addN_:JG});function ej(e,t=null,n=!1){let s={x:M(e,"x","all","bool")},a={axis:t,keepDims:n};return G.runKernel(wc,s,a)}var RA=V({all_:ej});function tj(e,t=null,n=!1){let s={x:M(e,"x","any","bool")},a={axis:t,keepDims:n};return G.runKernel(kc,s,a)}var wf=V({any_:tj});function nj(e,t=0){let r={x:M(e,"x","argMax")},s={axis:t};return G.runKernel(Yi,r,s)}var kf=V({argMax_:nj});function rj(e,t=0){let r={x:M(e,"x","argMin")},s={axis:t};return G.runKernel(qp,r,s)}var j6=V({argMin_:rj});function sj(e){let n={x:M(e,"x","asin")};return G.runKernel(Ic,n)}var q6=V({asin_:sj});function aj(e){let n={x:M(e,"x","asinh")};return G.runKernel(Sc,n)}var K6=V({asinh_:aj});function oj(e){let n={x:M(e,"x","atan")};return G.runKernel(Tc,n)}var X6=V({atan_:oj});function ij(e,t){let n=M(e,"a","atan2"),r=M(t,"b","atan2");[n,r]=Ut(n,r);let s={a:n,b:r};return G.runKernel(Cc,s)}var Z6=V({atan2_:ij});function lj(e){let n={x:M(e,"x","atanh")};return G.runKernel(Nc,n)}var Y6=V({atanh_:lj});function uj(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],l=eI(s);return Id(e,i,n,a,r,null,null,l)}function J6(e,t,n,r,s,a,o="channelsLast"){let[i,l]=If(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Id(e,u,n,r,s,a,!1,o)}function cj(e,t,n,r,s,a,o="NDHWC"){let[i,l,u]=FA(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Q6(e,c,n,r,s,!1,d,a)}function Id(e,t,n,r,s,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,g]=If(n),[y,A]=If(r),x=ql(h,y),b=ql(p,A),{padInfo:v,outHeight:w,outWidth:S}=pj(s,u,c,m,g,x,b,a,i),I=o?f*d:f,E;return i==="channelsFirst"?E=[l,I,w,S]:i==="channelsLast"&&(E=[l,w,S,I]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:w,outWidth:S,outChannels:I,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:E,filterShape:t}}function Q6(e,t,n,r,s,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,g]=t,[y,A,x]=FA(n),[b,v,w]=FA(r),S=ql(p,b),I=ql(f,v),E=ql(m,w),{padInfo:F,outDepth:$,outHeight:_,outWidth:N}=fj(s,u,c,d,y,A,x,S,I,E,i),P=a?g*h:g,B;return o==="channelsFirst"?B=[l,P,$,_,N]:o==="channelsLast"&&(B=[l,$,_,N,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:$,outHeight:_,outWidth:N,outChannels:P,padInfo:F,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:I,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:v,dilationWidth:w,inShape:e,outShape:B,filterShape:t}}function dj(e,t,n,r,s){r==null&&(r=DA(e,t,n));let a=e[0],o=e[1],i=Xo((a-t+2*r)/n+1,s),l=Xo((o-t+2*r)/n+1,s);return[i,l]}function hj(e,t,n,r,s,a){s==null&&(s=DA(e,t,r));let o=e[0],i=e[1],l=e[2],u=Xo((o-t+2*s)/r+1,a),c=Xo((i-t+2*s)/r+1,a),d=Xo((l-t+2*s)/r+1,a);return[u,c,d,n]}function DA(e,t,n,r=1){let s=ql(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function If(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function FA(e){return typeof e=="number"?[e,e,e]:e}function ql(e,t){return t<=1?e:e+(e-1)*(t-1)}function pj(e,t,n,r,s,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=dj([t,n],a,r,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/r),d=Math.ceil(n/s);let h=Math.max(0,(c-1)*r+a-t),p=Math.max(0,(d-1)*s+o-n),f=Math.floor(h/2),m=h-f,g=Math.floor(p/2),y=p-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Xo((t-a+h+p)/r+1,i),d=Xo((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function fj(e,t,n,r,s,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=hj([t,n,r,1],i,1,s,e,c);h=g[0],p=g[1],f=g[2]}else if(e==="same"){h=Math.ceil(t/s),p=Math.ceil(n/a),f=Math.ceil(r/o);let m=(h-1)*s+i-t,g=(p-1)*a+l-n,y=(f-1)*o+u-r,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),v=g-b,w=Math.floor(y/2),S=y-w;d={top:b,bottom:v,left:w,right:S,front:A,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/s),p=Math.ceil((n-l+1)/a),f=Math.ceil((r-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function Xo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function La(e){let[t,n,r]=If(e);return t===1&&n===1&&r===1}function _s(e,t){return La(e)||La(t)}function eI(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function mj(e,t){let r={x:M(e,"x","reshape","string_or_numeric")},s={shape:t};return G.runKernel(Qc,r,s)}var J=V({reshape_:mj});function gj(e,t,n,r,s){let a=M(e,"x","avgPool","float32"),o=1;z(_s(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=J(a,[1,a.shape[0],a.shape[1],a.shape[2]])),z(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),s!=null&&z(mn(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=G.runKernel(Ji,u,c);return d=ke(d,a.dtype),l?J(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Sf=V({avgPool_:gj});function yj(e,t,n,r,s,a="NDHWC"){let o=M(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=J(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),z(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),z(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&z(mn(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=G.runKernel(Kp,u,c);return d=ke(d,i.dtype),l?J(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var tI=V({avgPool3d_:yj});function Aj(e,t=0){z(e.length>=1,()=>"Pass at least one tensor to concat");let n=Af(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor - with dtype ${a.dtype}. `)}),n.length===1)return qo(n[0]);let r=n,s={axis:t};return G.runKernel(Ec,r,s)}var en=V({concat_:Aj});function xj(e){let n={x:M(e,"x","sigmoid")};return G.runKernel(Rl,n)}var Rs=V({sigmoid_:xj});function bj(e,t,n){let r=M(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return G.runKernel(rd,s,a)}var nt=V({slice_:bj});function vj(e){let n={x:M(e,"x","tanh")};return G.runKernel(Pl,n)}var Kl=V({tanh_:vj});function wj(e,t,n,r,s,a){let o=M(e,"forgetBias","basicLSTMCell"),i=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),u=M(r,"data","basicLSTMCell"),c=M(s,"c","basicLSTMCell"),d=M(a,"h","basicLSTMCell"),h=en([u,d],1),p=ot(h,i),f=pe(p,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=nt(f,[0,0],y),x=nt(f,[0,g],y),b=nt(f,[0,g*2],y),v=nt(f,[0,g*3],y),w=pe(K(Rs(A),Kl(x)),K(c,Rs(pe(o,b)))),S=K(Kl(w),Rs(v));return[w,S]}var xwe=V({basicLSTMCell_:wj});function kj(e,t,n){let r=M(e,"x","batchToSpaceND"),s=t.reduce((i,l)=>i*l);z(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),z(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),z(r.shape[0]%s==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return G.runKernel(Xp,a,o)}var Tf=V({batchToSpaceND_:kj});function Ij(e){let t;return e.rank===0||e.rank===1?t=J(e,[1,1,1,e.size]):e.rank===2?t=J(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function Sj(e,t,n,r,s,a){a==null&&(a=.001);let o=M(e,"x","batchNorm"),i=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;s!=null&&(u=M(s,"scale","batchNorm"));let c;r!=null&&(c=M(r,"offset","batchNorm")),z(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),z(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),z(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:Ij(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=G.runKernel(cl,h,p);return J(f,o.shape)}var Xl=V({batchNorm_:Sj});function Tj(e,t,n,r,s,a){let o=M(e,"x","batchNorm"),i=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;s!=null&&(u=M(s,"scale","batchNorm"));let c;return r!=null&&(c=M(r,"offset","batchNorm")),z(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),z(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),z(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&z(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&z(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Xl(o,i,l,c,u,a)}var Nj=V({batchNorm2d_:Tj});function Cj(e,t,n,r,s,a){let o=M(e,"x","batchNorm"),i=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;s!=null&&(u=M(s,"scale","batchNorm"));let c;return r!=null&&(c=M(r,"offset","batchNorm")),z(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),z(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),z(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&z(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&z(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Xl(o,i,l,c,u,a)}var Ej=V({batchNorm3d_:Cj});function $j(e,t,n,r,s,a){let o=M(e,"x","batchNorm"),i=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;s!=null&&(u=M(s,"scale","batchNorm"));let c;return r!=null&&(c=M(r,"offset","batchNorm")),z(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),z(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),z(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&z(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&z(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Xl(o,i,l,c,u,a)}var _j=V({batchNorm4d_:$j});function Rj(e,t,n){let r=M(e,"x","bincount"),s=M(t,"weights","bincount");z(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),z(n>=0,()=>`size must be non-negative, but got ${n}.`),z(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return G.runKernel(ky,a,o)}var nI=V({bincount_:Rj});function Dj(e,t){let n=M(e,"broadcastTo","x"),r=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(s[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return qo(n);let i={x:n},l={reps:a};return G.runKernel(Lo,i,l)}var Sd=V({broadcastTo_:Dj});function Fj(e){let n={x:M(e,"x","ceil")};return G.runKernel(No,n)}var rI=V({ceil_:Fj});function Mj(e,t,n){let r=M(e,"x","clipByValue");z(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return G.runKernel(Co,s,a)}var dr=V({clipByValue_:Mj});function Oj(e){return en(e,0)}var Pj=V({concat1d_:Oj});function zj(e,t){return en(e,t)}var Lj=V({concat2d_:zj});function Bj(e,t){return en(e,t)}var Wj=V({concat3d_:Bj});function Vj(e,t){return en(e,t)}var Uj=V({concat4d_:Vj});function Hj(e,t,n,r,s="NHWC",a=[1,1],o){let i=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=J(i,[1,i.shape[0],i.shape[1],i.shape[2]])),z(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),z(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&z(mn(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d=s==="NHWC"?u.shape[3]:u.shape[1];z(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),z(_s(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=G.runKernel(tl,h,p);return c?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ba=V({conv2d_:Hj});function Gj(e,t,n,r,s="NWC",a=1,o){let i=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=J(i,[1,i.shape[0],i.shape[1]])),z(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),z(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&z(mn(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),z(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),z(_s(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),z(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=J(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=J(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Ba(h,d,[1,n],r,"NHWC",[1,a],o);return c?J(g,[g.shape[2],g.shape[3]]):J(g,[g.shape[0],g.shape[2],g.shape[3]])}var MA=V({conv1d_:Gj});function jj(e,t,n,r,s,a="NHWC",o){z(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),z(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),z(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),z(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];z(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),z(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&z(mn(s),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let h={dy:l,filter:n},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=G.runKernel(nl,h,p);return u?J(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var OA=V({conv2DBackpropInput_:jj});function qj(e,t,n,r,s,a){let o=M(e,"x","conv2dTranspose"),i=M(t,"filter","conv2dTranspose");return OA(n,o,i,r,s,"NHWC",a)}var PA=V({conv2dTranspose_:qj});function Kj(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=M(e,"x","conv3d"),i=M(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=J(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),z(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),z(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),z(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),z(_s(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),z(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},h=G.runKernel(Yp,c,d);return u?J(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var sI=V({conv3d_:Kj});function Xj(e,t,n,r,s){z(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=J(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];z(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),z(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),z(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),z(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),z(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},h=G.runKernel(Ny,c,d);return i?J(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var aI=V({conv3DBackpropInput_:Xj});function Zj(e,t,n,r,s){let a=M(e,"x","conv3dTranspose"),o=M(t,"filter","conv3dTranspose");return aI(n,a,o,r,s)}var Yj=V({conv3dTranspose_:Zj});function Jj(e){let n={x:M(e,"x","cos")};return G.runKernel(rl,n)}var Nf=V({cos_:Jj});function Qj(e){let n={x:M(e,"x","cosh")};return G.runKernel($c,n)}var zA=V({cosh_:Qj});function eq(e,t=0,n=!1,r=!1){let a={x:M(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return G.runKernel(sl,a,o)}var LA=V({cumsum_:eq});function tq(e,t,n,r=!1){let s=M(e,"x","denseBincount"),a=M(t,"weights","denseBincount");z(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),z(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),z(n>=0,()=>`size must be non-negative, but got ${n}.`),z(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return G.runKernel(Cy,o,i)}var nq=V({denseBincount_:tq});function rq(e,t,n="NHWC"){let r=M(e,"x","depthToSpace"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];z(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying +`;return h[h.length-1]=" "+h[h.length-1]+"]"+(a?"":f),h}function Ad(e){let t=[];for(let n=0;n`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||C4(t,this.size),this.strides=qi(e)}set(e,...t){t.length===0&&(t=[0]),z(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;rhf(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ts().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>hf(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ts().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ts().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Vl.print(this,e)}clone(){return this.throwIfDisposed(),Vl.clone(this)}toString(e=!1){let t=this.dataSync();return lH(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Vl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ts().makeVariable(this,e,t,n)}};Object.defineProperty(Ot,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function fH(){return g1("Tensor",()=>Ot)}fH();var ff=class extends Ot{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Fa(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ts().disposeTensor(this),this.dataId=e.dataId,Ts().incRef(this,null)}dispose(){Ts().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ff,Symbol.hasInstance,{value:e=>e instanceof Ot&&e.assign!=null&&e.assign instanceof Function});var Ns={};_e(Ns,{assertTypesMatch:()=>K4,getTensorsInContainer:()=>cy,isTensorInList:()=>gH,makeTypesMatch:()=>Vt});var q4;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(q4||(q4={}));var ay;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(ay||(ay={}));var oy;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(oy||(oy={}));var iy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(iy||(iy={}));var ly;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(ly||(ly={}));var mH={float32:iy,int32:ay,bool:oy,complex64:ly};function Ur(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return mH[e][t]}function uy(e){return Ur(e,"int32")}function Vt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ur(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function K4(e,t){z(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function gH(e,t){return t.some(n=>n.id===e.id)}function cy(e){let t=[],n=new Set;return X4(e,t,n),t}function X4(e,t,n){if(e==null)return;if(e instanceof Ot){t.push(e);return}if(!yH(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),X4(a,t,n))}}function yH(e){return Array.isArray(e)||typeof e=="object"}function dy(e){return e.kernelName!=null}var Z4=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},xd=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Z4}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){L4(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Lp)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return xd.nextTensorId++}nextVariableId(){return xd.nextVariableId++}clone(e){let t=G.runKernel(hl,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return G.runKernel(Qi,i,l)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(ty(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=dy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(dy(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=ty(p,this.backendName);z(g!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let A=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,A);let x=A.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:I,dtype:w}=b;return this.makeTensorFromDataId(v,I,w)});if(r){let b=this.getTensorsForGradient(p,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>p(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=dy(e)?null:e.backwardsFunc,h;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(h=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(h),t=h.outputs)}),r&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:h.timeMs,extraInfo:h.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=z4(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(z(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=s.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&Vp(e[0])&&(s=e.map(i=>df(i)));let a=r.write(s,t,n),o=new Ot(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),l=R4(s);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new Ot(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new ff(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*d1(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ff||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*d1(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=z4(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],h=jp(d.size,d.dtype);return this.makeTensor(h,d.shape,d.dtype)}return u}),r(l.length>1?l:l[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=cy(e),n=new Set(t.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(z(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));z(s instanceof Ot,()=>"The result y returned by f() must be a tensor.");let a=oH(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?AH(s.shape):n,iH(o,a,l=>this.tidy(l),xH);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return z(Hp(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{z(t.every(o=>o instanceof Ot),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),z(n.value instanceof Ot,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),z(Hp(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];z(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),z(u.every(d=>d instanceof Ot),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,h)=>{c[h]=()=>d}),c};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=md(),n=await this.backend.time(e);return n.wallMs=md()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Z4;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};xd.nextTensorId=0;xd.nextVariableId=0;function AH(e){let t=h1(sn(e),"float32");return G.makeTensor(t,e,"float32")}function Y4(){let e=P4();if(e._tfengine==null){let t=new BU(e);e._tfengine=new xd(t)}return HU(e._tfengine.ENV),dH(()=>e._tfengine),e._tfengine}var G=Y4();function xH(e,t){let n={a:e,b:t};return G.runKernel(Ma,n)}var mf={};_e(mf,{isBrowser:()=>J4,isMobile:()=>vH});function bH(){return typeof navigator!="undefined"&&navigator!=null}function vH(e){if(e||bH()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function J4(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var os=re();os.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});os.registerFlag("IS_BROWSER",()=>J4());os.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");os.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));os.registerFlag("PROD",()=>!1);os.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>os.getBool("DEBUG"));os.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);os.registerFlag("IS_TEST",()=>!1);os.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);os.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function bd(e,t){let n=e;if(as(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||as(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&re().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Q4(e,r,[]),r}function Q4(e,t,n){if(n=n||[],!Array.isArray(e)&&!as(e)){z(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}z(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),z(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s=0&&(s=r),e6(r,s,t,n),e==null||!as(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=bd(e,s);!as(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?cf(e,s):gc(e,[],!0);return G.makeTensor(i,a,s)}function gf(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>O(a,`${t}[${o}]`,n,r))}var wH="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+wH;let s=(...a)=>{G.startScope(n);try{let o=r(...a);return f1(o)&&console.error("Cannot return a Promise inside of tidy."),G.endScope(o),o}catch(o){throw G.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function kH(e,t){let n=O(e,"real","complex"),r=O(t,"imag","complex");ss(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return G.runKernel(b1,s)}var Uo=V({complex_:kH});function vd(e,t,n,r){if(r==null&&(r=Up(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!as(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){p1(t);let s=sn(t),a=sn(n);z(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!as(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?cf(e,r):gc(e,[],!0),G.makeTensor(e,t,r)}function Cs(e,t,n){let r=bd(e,n);return vd(e,t,r,n)}var hy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},yf=4;async function IH(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let h=await l.bytes(),p=h.reduce((g,y)=>g+y.length,0)+yf*h.length,f=new Uint8Array(p),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var py=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function n6(e){return py?Buffer.byteLength(e):new Blob([e]).size}function TH(e){if(py)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function r6(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function s6(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function my(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[r,s]=await t(e.weightsManifest);n.weightSpecs=r,n.weightData=s}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function wd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:n6(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:n6(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function CH(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)==0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function EH(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function $H(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function RH(){let e=CH(),t=EH(),n=$H();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(s)}}var jt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return jt.instance==null&&(jt.instance=new jt),jt.instance}static registerSaveRouter(e){jt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){jt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return jt.getHandlers(e,"save")}static getLoadHandlers(e,t){return jt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?jt.getInstance().loadRouters:jt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},_H=e=>jt.registerSaveRouter(e),DH=e=>jt.registerLoadRouter(e),FH=e=>jt.getSaveHandlers(e),MH=(e,t)=>jt.getLoadHandlers(e,t),gy="tensorflowjs",yy=1,Ho="models_store",Pa="model_info_store";function a6(){if(!re().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ay(e){let t=e.result;t.createObjectStore(Ho,{keyPath:"modelPath"}),t.createObjectStore(Pa,{keyPath:"modelPath"})}var Go=class{constructor(e){if(this.indexedDB=a6(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(gy,yy);s.onupgradeneeded=()=>Ay(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction(Ho,"readonly"),l=o.objectStore(Ho).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),r(l.error)),o.oncomplete=()=>a.close()}else{let o=wd(t),i=a.transaction(Pa,"readwrite"),l=i.objectStore(Pa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Ho,"readwrite");let h=c.objectStore(Ho).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});h.onsuccess=()=>n({modelArtifactsInfo:o}),h.onerror=p=>{l=i.objectStore(Pa);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(h.error)),f.onerror=m=>(a.close(),r(h.error))}},u.onerror=d=>(a.close(),r(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Go.URL_SCHEME="indexeddb://";var o6=e=>re().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Go.URL_SCHEME)?OH(e.slice(Go.URL_SCHEME.length)):null;jt.registerSaveRouter(o6);jt.registerLoadRouter(o6);function OH(e){return new Go(e)}function PH(e){return e.startsWith(Go.URL_SCHEME)?e.slice(Go.URL_SCHEME.length):e}var zH=class{constructor(){this.indexedDB=a6()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(gy,yy);n.onupgradeneeded=()=>Ay(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(Pa,"readonly"),o=s.objectStore(Pa).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=PH(e),new Promise((t,n)=>{let r=this.indexedDB.open(gy,yy);r.onupgradeneeded=()=>Ay(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(Pa,"readwrite"),o=a.objectStore(Pa),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=s.transaction(Ho,"readwrite");let h=l.objectStore(Ho).delete(e);h.onsuccess=()=>t(i.result.modelArtifactsInfo),h.onerror=p=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),s.close(),n(i.error))}},i.onerror=u=>(s.close(),n(i.error)),a.oncomplete=()=>{l==null?s.close():l.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},oa="/",Ul="tensorflowjs_models",i6="info",LH="model_topology",BH="weight_specs",WH="weight_data",VH="model_metadata";function l6(e){return{info:[Ul,e,i6].join(oa),topology:[Ul,e,LH].join(oa),weightSpecs:[Ul,e,BH].join(oa),weightData:[Ul,e,WH].join(oa),modelMetadata:[Ul,e,VH].join(oa)}}function u6(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function UH(e){let t=e.split(oa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(oa)}function HH(e){return e.startsWith(jo.URL_SCHEME)?e.slice(jo.URL_SCHEME.length):e}var jo=class{constructor(e){if(!re().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=l6(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=wd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,TH(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw u6(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=NH(a),t}};jo.URL_SCHEME="localstorage://";var c6=e=>re().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(jo.URL_SCHEME)?GH(e.slice(jo.URL_SCHEME.length)):null;jt.registerSaveRouter(c6);jt.registerLoadRouter(c6);function GH(e){return new jo(e)}var jH=class{constructor(){z(re().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),z(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ul+oa,n=oa+i6;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(Hl)&&(e=e.slice(0,e.indexOf(Hl))),z(e.length>0,()=>"scheme must not be an empty string.");let n=Nr.getInstance();z(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Af(e){if(e.indexOf(Hl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Nr.getSchemes().join(",")}`);return{scheme:e.split(Hl)[0],path:e.split(Hl)[1]}}async function d6(e,t,n=!1){z(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=jt.getLoadHandlers(e);z(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),z(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=jt.getSaveHandlers(t);z(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),z(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Af(e).scheme,l=Af(e).path,u=i===Af(e).scheme,c=await s.load();n&&u&&await Nr.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await Nr.getManager(i).removeModel(l),d.modelArtifactsInfo}async function qH(){let e=Nr.getSchemes(),t={};for(let n of e){let r=await Nr.getManager(n).listModels();for(let s in r){let a=n+Hl+s;t[a]=r[s]}}return t}async function KH(e){let t=Af(e);return Nr.getManager(t.scheme).removeModel(t.path)}async function XH(e,t){return d6(e,t,!1)}async function ZH(e,t){return d6(e,t,!0)}var YH=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(re().get("IS_BROWSER")){re().setPlatform("browser",new YH);try{Nr.registerManager(jo.URL_SCHEME,new jH)}catch(e){}try{Nr.registerManager(Go.URL_SCHEME,new zH)}catch(e){}}var JH={importFetch:()=>T3()},xy,QH=class{constructor(){this.util=co("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return re().global.fetch!=null?re().global.fetch(e,t):(xy==null&&(xy=JH.importFetch()),xy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};re().get("IS_NODE")&&re().setPlatform("node",new QH);function ze(e,t="float32",n){return t=t||"float32",p1(e),new Jt(e,t,n)}function eG(e,t){let n=O(e,"x","cast");if(!$4(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return G.runKernel(Qi,r,s)}var xe=V({cast_:eG});function tG(e){let n={x:O(e,"x","clone","string_or_numeric")};return G.runKernel(hl,n)}var za=V({clone_:tG});function nG(e,t=!1){console.log(e.toString(t))}Y4();var rG={buffer:ze,cast:xe,clone:za,print:nG};hH(rG);var cr={};_e(cr,{browserFiles:()=>cG,browserHTTPRequest:()=>mG,concatenateArrayBuffers:()=>fy,copyModel:()=>XH,decodeWeights:()=>t6,encodeWeights:()=>IH,fromMemory:()=>yG,getLoadHandlers:()=>MH,getModelArtifactsForJSON:()=>my,getModelArtifactsInfoForJSON:()=>wd,getSaveHandlers:()=>FH,http:()=>wy,isHTTPScheme:()=>vy,listModels:()=>qH,loadWeights:()=>dG,moveModel:()=>ZH,registerLoadRouter:()=>DH,registerSaveRouter:()=>_H,removeModel:()=>KH,weightsLoaderFactory:()=>m6,withSaveHandler:()=>AG});var sG="model",aG=".json",oG=".weights.bin";function h6(e){return new Promise(t=>setTimeout(t)).then(e)}var Gl=class{constructor(e){if(!re().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Gl.URL_SCHEME)&&(e=e.slice(Gl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=sG),this.modelJsonFileName=e+aG,this.weightDataFileName=e+oG}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r=s6(e,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=s,await h6(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await h6(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:wd(e)}}}};Gl.URL_SCHEME="downloads://";var iG=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=r=>{let s=JSON.parse(r.target.result),a=s.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=my(s,l=>this.loadWeights(l));e(i)},n.onerror=r=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let r=this.checkManifestAndWeightFiles(e),s=n.map(a=>this.loadWeightsFile(a,r[a]));return Promise.all(s).then(a=>[t,fy(a)])}loadWeightsFile(e,t){return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=a.target.result;n(o)},s.onerror=a=>r(`Failed to weights data from file of path '${e}'.`),s.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(s=>r6(s.name)),r={};for(let s of e)s.paths.forEach(a=>{let o=r6(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return r}},lG=e=>re().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Gl.URL_SCHEME)?uG(e.slice(Gl.URL_SCHEME.length)):null;jt.registerSaveRouter(lG);function uG(e="model"){return new Gl(e)}function cG(e){return new iG(e)}function p6(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=l=>(l.then(u=>{let c=n+ ++s/e.length*(r-n);return t(c),u}),l);function o(l){z(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){z(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),z(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),z(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function f6(e,t){t==null&&(t={});let n=t.fetchFunc==null?re().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await p6(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await p6(i,t.onProgress,l,u)}async function dG(e,t="",n,r){return m6(o=>f6(o,{requestInit:r}))(e,t,n)}function m6(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=hy[y]*sn(g.shape),x=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:A})};r!=null?r.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=A})}),!o.every(p=>p)){let p=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}. +Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=s.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},h=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let b=0;b{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),I=t6(v,[b.manifestEntry]);for(let w in I)d[w]=I[w]}),h+=f}),d}}var hG="application/octet-stream",pG="application/json",by=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(z(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=re().platform.fetch,z(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&z(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r=s6(e,n);t.body.append("model.json",new Blob([JSON.stringify(r)],{type:pG}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:hG}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:wd(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(s){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,r=t.weightsManifest;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return my(t,s=>this.loadWeights(s))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=fG(t),s=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(s+c+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await f6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,fy(l)]}};by.URL_SCHEME_REGEX=/^https?:\/\//;function fG(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function vy(e){return e.match(by.URL_SCHEME_REGEX)!=null}var g6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>vy(r)):n=vy(e),n)return wy(e,t)}return null};jt.registerSaveRouter(g6);jt.registerLoadRouter(g6);function wy(e,t){return new by(e,t)}function mG(e,t){return wy(e,t)}var ky=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},gG=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function yG(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new ky(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ky({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ky({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function AG(e){return new gG(e)}function xG(e,t,n=!1,r=!1){let s=O(e,"a","matMul"),a=O(t,"b","matMul");[s,a]=Vt(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return G.runKernel(Ji,o,i)}var rt=V({matMul_:xG});function bG(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:O(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return G.runKernel(wl,a,o)}var xf=V({oneHot_:bG});function vG(e,t){let n=O(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),z(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{z(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return G.runKernel(zl,r,s)}var st=V({transpose_:vG});function wG(e,t,n){let r=O(e,"labels","confusionMatrix"),s=O(t,"predictions","confusionMatrix");z(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),z(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),z(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),z(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),z(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=xf(xe(r,"int32"),n),o=xf(xe(s,"int32"),n),i=st(a),l=rt(i,o);return xe(l,"int32")}var Pwe=V({confusionMatrix_:wG}),y6={};_e(y6,{fromPixels:()=>$G,fromPixelsAsync:()=>CG,toPixels:()=>EG});function kG(e,t,n){if(Wp(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=bd(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return vd(e,t,r,n)}var jl;function A6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState element.")}if(ty(Q1,G.backendName)!=null){let f={pixels:e},m={numChannels:t};return G.runKernel(Q1,f,m)}let[u,c]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:r||n?d=e.data:(a||s||i)&&(jl==null&&(jl=document.createElement("canvas").getContext("2d")),jl.canvas.width=u,jl.canvas.height=c,jl.drawImage(e,0,0,u,c),d=jl.getImageData(0,0,u,c).data);let h;if(t===4)h=new Int32Array(d);else{let f=u*c;h=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(s*r*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);a===1?(c[0]=p*i,c[1]=p*i,c[2]=p*i):c[h]=p*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=s,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,s,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var $G=V({fromPixels_:A6}),x6={};_e(x6,{prepareAndValidate:()=>b6});function b6(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(sn(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;dd/u),1].slice(0,a);return[l,o,u,c]}var v6={};_e(v6,{calculateShapes:()=>w6,validateInput:()=>Sy,validateUpdateShape:()=>Iy});function Iy(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;dRG,computeFlatOffset:()=>DG,computeOutShape:()=>k6,getNormalizedAxes:()=>N6,isSliceContinous:()=>_G,maskToAxes:()=>bf,parseSliceParams:()=>D6,sliceInfo:()=>FG,startForAxis:()=>R6,startIndicesWithElidedDims:()=>C6,stopForAxis:()=>_6,stopIndicesWithElidedDims:()=>E6,stridesForAxis:()=>$6,stridesWithElidedDims:()=>I6});function RG(e,t,n){let r=e.shape.length;z(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),z(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function bf(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function k6(e,t,n){let r=[];for(let s=0;s0){let p=t[0],f=n+1;c=C6(o,p,f,r,e),d=E6(i,p,f,s,e),h=I6(a,p,f,e)}else for(let p=0;p-1)a[i]=0;else{let l=S6(t,n,i),u=r[l];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=S6(t,n,i),u=r[l];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),o=mc(0,o,l-1),o}function _6(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=r[s];return o<0&&(o+=l),i>0?o=mc(0,o,l):o=mc(-1,o,l-1),o}function _G(e,t,n){let r=n.length;for(let s=0;s1){r=s;break}for(let s=r+1;s0||n[s]!==e[s])return!1;return!0}function DG(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{z(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.lengtho>=0?o:(z(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function FG(e,t,n,r,s,a,o,i,l){let u=t.slice(),c=n.slice(),d=r;r==null&&(d=new Array(u.length));let h=bf(o);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=bf(i),m=e.slice();f.forEach(w=>{u[w]=0,c[w]=1,m.splice(w,0,1)});let{begin:g,end:y,strides:A}=N6(m,h,p,u,c,d,s,a,o);u=g,c=y,d=A;let x=bf(l);x.forEach(w=>{c[w]=u[w]+1,d[w]=1});let b=k6(u,c,d),v=b.filter((w,S)=>x.indexOf(S)===-1);return{nonStrided:d.every(w=>w===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var ue={};_e(ue,{Serializable:()=>F6,SerializationMap:()=>qo,registerClass:()=>La});var F6=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},qo=class{constructor(){this.classNameMap={}}static getMap(){return qo.instance==null&&(qo.instance=new qo),qo.instance}static register(e){qo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function La(e){z(e.className!=null,()=>"Class being registered does not have the static className property defined."),z(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),z(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),qo.register(e)}function M6(e){re().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}pH(M6);function Ba(){return G}function Ty(){return G.memory()}function Y(e,t){return G.tidy(e,t)}function Ge(e){cy(e).forEach(n=>n.dispose())}function In(e){return G.keep(e)}function Ny(e,t,n=1){return G.registerBackend(e,t,n)}function MG(){return G.backend}function OG(e,t){let n=O(e,"a","add"),r=O(t,"b","add");[n,r]=Vt(n,r);let s={a:n,b:r};return G.runKernel(Ma,s)}var de=V({add_:OG});function PG(e,t){let n=O(e,"a","floorDiv"),r=O(t,"b","floorDiv");[n,r]=Vt(n,r);let s={a:n,b:r};return G.runKernel(ul,s)}var O6=V({floorDiv_:PG});function zG(e,t){let n=O(e,"a","div"),r=O(t,"b","div");if([n,r]=Vt(n,r),n.dtype==="int32"&&r.dtype==="int32")return O6(n,r);let s={a:n,b:r},a={};return G.runKernel(ol,s,a)}var Re=V({div_:zG});function LG(e,t){let n=O(e,"a","mul"),r=O(t,"b","mul");[n,r]=Vt(n,r);let s={a:n,b:r};return G.runKernel(Mo,s)}var j=V({mul_:LG});function BG(e){let t=O(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return G.runKernel(Xp,n)}else{let n={x:t};return G.runKernel(Ac,n)}}var gn=V({abs_:BG});function WG(e){let n={x:O(e,"x","acos")};return G.runKernel(xc,n)}var VG=V({acos_:WG});function UG(e){let n={x:O(e,"x","acosh")};return G.runKernel(bc,n)}var HG=V({acosh_:UG});function GG(e){z(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),z(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>O(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!Fa(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return G.runKernel(Xi,r)}var jG=V({addN_:GG});function qG(e,t=null,n=!1){let s={x:O(e,"x","all","bool")},a={axis:t,keepDims:n};return G.runKernel(vc,s,a)}var P6=V({all_:qG});function KG(e,t=null,n=!1){let s={x:O(e,"x","any","bool")},a={axis:t,keepDims:n};return G.runKernel(wc,s,a)}var Cy=V({any_:KG});function XG(e,t=0){let r={x:O(e,"x","argMax")},s={axis:t};return G.runKernel(Zi,r,s)}var kd=V({argMax_:XG});function ZG(e,t=0){let r={x:O(e,"x","argMin")},s={axis:t};return G.runKernel(qp,r,s)}var YG=V({argMin_:ZG});function JG(e){let n={x:O(e,"x","asin")};return G.runKernel(kc,n)}var QG=V({asin_:JG});function ej(e){let n={x:O(e,"x","asinh")};return G.runKernel(Ic,n)}var tj=V({asinh_:ej});function nj(e){let n={x:O(e,"x","atan")};return G.runKernel(Sc,n)}var rj=V({atan_:nj});function sj(e,t){let n=O(e,"a","atan2"),r=O(t,"b","atan2");[n,r]=Vt(n,r);let s={a:n,b:r};return G.runKernel(Nc,s)}var aj=V({atan2_:sj});function oj(e){let n={x:O(e,"x","atanh")};return G.runKernel(Tc,n)}var ij=V({atanh_:oj});function lj(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],l=B6(s);return Id(e,i,n,a,r,null,null,l)}function z6(e,t,n,r,s,a,o="channelsLast"){let[i,l]=vf(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Id(e,u,n,r,s,a,!1,o)}function uj(e,t,n,r,s,a,o="NDHWC"){let[i,l,u]=$y(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return L6(e,c,n,r,s,!1,d,a)}function Id(e,t,n,r,s,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,p,,f]=t,[m,g]=vf(n),[y,A]=vf(r),x=ql(h,y),b=ql(p,A),{padInfo:v,outHeight:I,outWidth:w}=hj(s,u,c,m,g,x,b,a,i),S=o?f*d:f,E;return i==="channelsFirst"?E=[l,S,I,w]:i==="channelsLast"&&(E=[l,I,w,S]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:I,outWidth:w,outChannels:S,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:h,filterWidth:p,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:A,inShape:e,outShape:E,filterShape:t}}function L6(e,t,n,r,s,a=!1,o="channelsLast",i){let[l,u,c,d,h]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,h]=e;else if(o==="channelsFirst")[l,h,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,f,m,,g]=t,[y,A,x]=$y(n),[b,v,I]=$y(r),w=ql(p,b),S=ql(f,v),E=ql(m,I),{padInfo:D,outDepth:$,outHeight:R,outWidth:N}=pj(s,u,c,d,y,A,x,w,S,E,i),M=a?g*h:g,B;return o==="channelsFirst"?B=[l,M,$,R,N]:o==="channelsLast"&&(B=[l,$,R,N,M]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:h,outDepth:$,outHeight:R,outWidth:N,outChannels:M,padInfo:D,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:w,effectiveFilterHeight:S,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:v,dilationWidth:I,inShape:e,outShape:B,filterShape:t}}function cj(e,t,n,r,s){r==null&&(r=Ey(e,t,n));let a=e[0],o=e[1],i=Ko((a-t+2*r)/n+1,s),l=Ko((o-t+2*r)/n+1,s);return[i,l]}function dj(e,t,n,r,s,a){s==null&&(s=Ey(e,t,r));let o=e[0],i=e[1],l=e[2],u=Ko((o-t+2*s)/r+1,a),c=Ko((i-t+2*s)/r+1,a),d=Ko((l-t+2*s)/r+1,a);return[u,c,d,n]}function Ey(e,t,n,r=1){let s=ql(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function vf(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function $y(e){return typeof e=="number"?[e,e,e]:e}function ql(e,t){return t<=1?e:e+(e-1)*(t-1)}function hj(e,t,n,r,s,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=cj([t,n],a,r,e,i);c=p[0],d=p[1]}else if(e==="same"){c=Math.ceil(t/r),d=Math.ceil(n/s);let h=Math.max(0,(c-1)*r+a-t),p=Math.max(0,(d-1)*s+o-n),f=Math.floor(h/2),m=h-f,g=Math.floor(p/2),y=p-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let h=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:h,bottom:p,left:f,right:m,type:h===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Ko((t-a+h+p)/r+1,i),d=Ko((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function pj(e,t,n,r,s,a,o,i,l,u,c){let d,h,p,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=dj([t,n,r,1],i,1,s,e,c);h=g[0],p=g[1],f=g[2]}else if(e==="same"){h=Math.ceil(t/s),p=Math.ceil(n/a),f=Math.ceil(r/o);let m=(h-1)*s+i-t,g=(p-1)*a+l-n,y=(f-1)*o+u-r,A=Math.floor(m/2),x=m-A,b=Math.floor(g/2),v=g-b,I=Math.floor(y/2),w=y-I;d={top:b,bottom:v,left:I,right:w,front:A,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},h=Math.ceil((t-i+1)/s),p=Math.ceil((n-l+1)/a),f=Math.ceil((r-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:h,outHeight:p,outWidth:f}}function Ko(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Wa(e){let[t,n,r]=vf(e);return t===1&&n===1&&r===1}function Es(e,t){return Wa(e)||Wa(t)}function B6(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function fj(e,t){let r={x:O(e,"x","reshape","string_or_numeric")},s={shape:t};return G.runKernel(Jc,r,s)}var Z=V({reshape_:fj});function mj(e,t,n,r,s){let a=O(e,"x","avgPool","float32"),o=1;z(Es(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=Z(a,[1,a.shape[0],a.shape[1],a.shape[2]])),z(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),s!=null&&z(fn(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=G.runKernel(Yi,u,c);return d=xe(d,a.dtype),l?Z(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ry=V({avgPool_:mj});function gj(e,t,n,r,s,a="NDHWC"){let o=O(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=Z(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),z(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),z(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&z(fn(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=G.runKernel(Kp,u,c);return d=xe(d,i.dtype),l?Z(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var W6=V({avgPool3d_:gj});function yj(e,t=0){z(e.length>=1,()=>"Pass at least one tensor to concat");let n=gf(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor + with dtype ${a.dtype}. `)}),n.length===1)return za(n[0]);let r=n,s={axis:t};return G.runKernel(Ec,r,s)}var an=V({concat_:yj});function Aj(e){let n={x:O(e,"x","sigmoid")};return G.runKernel(_l,n)}var ia=V({sigmoid_:Aj});function xj(e,t,n){let r=O(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return G.runKernel(nd,s,a)}var at=V({slice_:xj});function bj(e){let n={x:O(e,"x","tanh")};return G.runKernel(Pl,n)}var Sd=V({tanh_:bj});function vj(e,t,n,r,s,a){let o=O(e,"forgetBias","basicLSTMCell"),i=O(t,"lstmKernel","basicLSTMCell"),l=O(n,"lstmBias","basicLSTMCell"),u=O(r,"data","basicLSTMCell"),c=O(s,"c","basicLSTMCell"),d=O(a,"h","basicLSTMCell"),h=an([u,d],1),p=rt(h,i),f=de(p,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],A=at(f,[0,0],y),x=at(f,[0,g],y),b=at(f,[0,g*2],y),v=at(f,[0,g*3],y),I=de(j(ia(A),Sd(x)),j(c,ia(de(o,b)))),w=j(Sd(I),ia(v));return[I,w]}var zwe=V({basicLSTMCell_:vj});function wj(e,t,n){let r=O(e,"x","batchToSpaceND"),s=t.reduce((i,l)=>i*l);z(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),z(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),z(r.shape[0]%s==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return G.runKernel(Cc,a,o)}var _y=V({batchToSpaceND_:wj});function kj(e){let t;return e.rank===0||e.rank===1?t=Z(e,[1,1,1,e.size]):e.rank===2?t=Z(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=Z(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function Ij(e,t,n,r,s,a){a==null&&(a=.001);let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;r!=null&&(c=O(r,"offset","batchNorm")),z(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),z(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),z(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:kj(o),scale:u,offset:c,mean:i,variance:l},p={varianceEpsilon:a},f=G.runKernel(cl,h,p);return Z(f,o.shape)}var Td=V({batchNorm_:Ij});function Sj(e,t,n,r,s,a){let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;return r!=null&&(c=O(r,"offset","batchNorm")),z(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),z(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),z(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&z(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&z(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Td(o,i,l,c,u,a)}var Tj=V({batchNorm2d_:Sj});function Nj(e,t,n,r,s,a){let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;return r!=null&&(c=O(r,"offset","batchNorm")),z(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),z(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),z(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&z(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&z(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Td(o,i,l,c,u,a)}var Cj=V({batchNorm3d_:Nj});function Ej(e,t,n,r,s,a){let o=O(e,"x","batchNorm"),i=O(t,"mean","batchNorm"),l=O(n,"variance","batchNorm"),u;s!=null&&(u=O(s,"scale","batchNorm"));let c;return r!=null&&(c=O(r,"offset","batchNorm")),z(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),z(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),z(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&z(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&z(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Td(o,i,l,c,u,a)}var $j=V({batchNorm4d_:Ej});function Rj(e,t,n){let r=O(e,"x","bincount"),s=O(t,"weights","bincount");z(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),z(n>=0,()=>`size must be non-negative, but got ${n}.`),z(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return G.runKernel(x1,a,o)}var V6=V({bincount_:Rj});function _j(e,t){let n=O(e,"broadcastTo","x"),r=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let u=n.shape.slice();for(;u.length=0;u--)if(s[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return za(n);let i={x:n},l={reps:a};return G.runKernel(Lo,i,l)}var wf=V({broadcastTo_:_j});function Dj(e){let n={x:O(e,"x","ceil")};return G.runKernel(No,n)}var Fj=V({ceil_:Dj});function Mj(e,t,n){let r=O(e,"x","clipByValue");z(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return G.runKernel(Co,s,a)}var Cr=V({clipByValue_:Mj});function Oj(e){return an(e,0)}var Pj=V({concat1d_:Oj});function zj(e,t){return an(e,t)}var Lj=V({concat2d_:zj});function Bj(e,t){return an(e,t)}var Wj=V({concat3d_:Bj});function Vj(e,t){return an(e,t)}var Uj=V({concat4d_:Vj});function Hj(e,t,n,r,s="NHWC",a=[1,1],o){let i=O(e,"x","conv2d"),l=O(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=Z(i,[1,i.shape[0],i.shape[1],i.shape[2]])),z(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),z(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&z(fn(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d=s==="NHWC"?u.shape[3]:u.shape[1];z(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),z(Es(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let h={x:u,filter:l},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=G.runKernel(el,h,p);return c?Z(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Xo=V({conv2d_:Hj});function Gj(e,t,n,r,s="NWC",a=1,o){let i=O(e,"x","conv1d"),l=O(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=Z(i,[1,i.shape[0],i.shape[1]])),z(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),z(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&z(fn(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),z(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),z(Es(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),z(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=Z(l,[1,l.shape[0],l.shape[1],l.shape[2]]),h=Z(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Xo(h,d,[1,n],r,"NHWC",[1,a],o);return c?Z(g,[g.shape[2],g.shape[3]]):Z(g,[g.shape[0],g.shape[2],g.shape[3]])}var U6=V({conv1d_:Gj});function jj(e,t,n,r,s,a="NHWC",o){z(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=Z(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),z(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),z(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),z(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];z(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),z(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&z(fn(s),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let h={dy:l,filter:n},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=G.runKernel(tl,h,p);return u?Z(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Dy=V({conv2DBackpropInput_:jj});function qj(e,t,n,r,s,a){let o=O(e,"x","conv2dTranspose"),i=O(t,"filter","conv2dTranspose");return Dy(n,o,i,r,s,"NHWC",a)}var H6=V({conv2dTranspose_:qj});function Kj(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=O(e,"x","conv3d"),i=O(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=Z(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),z(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),z(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),z(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),z(Es(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),z(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},h=G.runKernel(Zp,c,d);return u?Z(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var G6=V({conv3d_:Kj});function Xj(e,t,n,r,s){z(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=Z(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];z(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),z(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),z(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),z(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),z(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},h=G.runKernel(k1,c,d);return i?Z(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var j6=V({conv3DBackpropInput_:Xj});function Zj(e,t,n,r,s){let a=O(e,"x","conv3dTranspose"),o=O(t,"filter","conv3dTranspose");return j6(n,a,o,r,s)}var Yj=V({conv3dTranspose_:Zj});function Jj(e){let n={x:O(e,"x","cos")};return G.runKernel(nl,n)}var Fy=V({cos_:Jj});function Qj(e){let n={x:O(e,"x","cosh")};return G.runKernel(rl,n)}var q6=V({cosh_:Qj});function eq(e,t=0,n=!1,r=!1){let a={x:O(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return G.runKernel(sl,a,o)}var K6=V({cumsum_:eq});function tq(e,t,n,r=!1){let s=O(e,"x","denseBincount"),a=O(t,"weights","denseBincount");z(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),z(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),z(n>=0,()=>`size must be non-negative, but got ${n}.`),z(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return G.runKernel(I1,o,i)}var nq=V({denseBincount_:tq});function rq(e,t,n="NHWC"){let r=O(e,"x","depthToSpace"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];z(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${r.shape}`),z(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape - ${r.shape}`),z(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},l={blockSize:t,dataFormat:n};return G.runKernel(Rc,i,l)}var oI=V({depthToSpace_:rq});function sq(e,t,n,r,s="NHWC",a=[1,1],o){let i=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=J(i,[1,i.shape[0],i.shape[1],i.shape[2]])),z(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),z(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),z(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&z(mn(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:u,filter:l},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},p=G.runKernel(al,d,h);return c?J(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Td=V({depthwiseConv2d_:sq});function aq(e){let n={x:M(e,"x","diag")};return G.runKernel(_y,n)}var bwe=V({diag_:aq});function oq(e,t,n,r,s=[1,1],a="NHWC"){let o=M(e,"x","dilation2d"),i=M(t,"filter","dilation2d");z(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),z(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),z(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=J(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:r,dilations:s},h=G.runKernel(Jp,c,d);return u?J(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var iI=V({dilation2d_:oq});function iq(e,t){let n=e.length,r=[];for(let s=0;s1&&o===1&&r.unshift(a)}return r}function ln(e,t){let n=[];for(let r=0;r1)&&n.unshift(a)}return n}function Rt(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(z(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=J(n,[1,-1]),i=J(r,[-1,1]),l=ot(o,i);return J(l,[])}else if(n.rank===1&&r.rank===2){let o=J(n,[1,-1]),i=J(r,[r.shape[0],r.shape[1]]),l=ot(o,i);return J(l,[l.size])}else if(n.rank===2&&r.rank===1){let o=J(r,[-1,1]),i=ot(n,o);return J(i,[i.size])}else{let o=J(r,[r.shape[0],r.shape[1]]);return ot(n,o)}}var pq=V({dot_:hq});function fq(e,...t){let n=t.map((s,a)=>M(s,`tensors${a}`,"einsum")),r={equation:e};return G.runKernel(Fy,n,r)}var mq=V({einsum_:fq});function gq(e){let n={x:M(e,"x","elu")};return G.runKernel(Dc,n)}var Nd=V({elu_:gq});function yq(e){let t=M(e,"x","erf");z(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ke(t,"float32"));let n={x:t};return G.runKernel(Fc,n)}var uI=V({erf_:yq});function Aq(e){let n={x:M(e,"x","exp")};return G.runKernel(Eo,n)}var Kr=V({exp_:Aq});function xq(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");z(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return G.runKernel(Mc,r,s)}var $r=V({expandDims_:xq});function bq(e){let n={x:M(e,"x","expm1")};return G.runKernel(ll,n)}var cI=V({expm1_:bq});function vq(e,t){let n=M(e,"x","tile","string_or_numeric");z(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return G.runKernel(Lo,r,s)}var Yo=V({tile_:vq});function wq(e,t,n,r="float32"){t==null&&(t=e);let s=Le([e,t],r),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got - rank ${a.rank}.`),z(mn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=J(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:r,beta:s},c=G.runKernel(nf,l,u);return i?J(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var pI=V({localResponseNormalization_:Pq});function zq(e){let n={x:M(e,"x","log")};return G.runKernel(Ro,n)}var Rr=V({log_:zq});function Lq(e){let n={x:M(e,"x","log1p")};return G.runKernel(Vc,n)}var VA=V({log1p_:Lq});function Bq(e,t){z(Hp(e),()=>"The f passed in variableGrads(f) must be a function"),z(t==null||Array.isArray(t)&&t.every(u=>u instanceof gf),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in G.registeredVariables)t.push(G.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,s=t.length;t=t.filter(u=>u.trainable),z(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=G.gradients(e,t,null,a);z(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),z(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:o,grads:l}}function oa(e){return G.customGrad(e)}function Wq(e){let n={x:M(e,"x","neg")};return G.runKernel(Gc,n)}var Kt=V({neg_:Wq});function Vq(e){let n={x:M(e,"x","softplus")};return G.runKernel(od,n)}var Zl=V({softplus_:Vq});function Uq(e){let t=M(e,"x","logSigmoid");return oa(r=>({value:Kt(Zl(Kt(r))),gradFunc:o=>K(o,Rs(Kt(r)))}))(t)}var Hq=V({logSigmoid_:Uq});function Gq(e,t=null,n=!1){let s={x:M(e,"x","max")},a={reductionIndices:t,keepDims:n};return G.runKernel(gl,s,a)}var os=V({max_:Gq});function jq(e,t){let n=M(e,"a","sub"),r=M(t,"b","sub");[n,r]=Ut(n,r);let s={a:n,b:r};return G.runKernel(zo,s)}var Ne=V({sub_:jq});function qq(e,t=null,n=!1){let r=M(e,"x","sum");r.dtype==="bool"&&(r=ke(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return G.runKernel(Fl,s,a)}var _e=V({sum_:qq});function Kq(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return oa((s,a)=>{let o=!0,i=os(s,t,!0),l=Ne(s,i),u=Ne(ke(l,"float32"),Rr(_e(Kr(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=Kr(p);return Ne(d,K(_e(d,t,f),m))}}})(n)}var UA=V({logSoftmax_:Kq});function HA(e,t){for(let n=0;ne[a]);return[n,s]}function ei(e,t){let n=t.map(r=>1);return fI(e,n,t)}function Xq(e,t,n){z(HA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function gI(e,t){if(HA(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function GA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function Zq(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),z(_s(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),s!=null&&z(mn(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=G.runKernel(yl,u,c);return l?J(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var $f=V({maxPool_:rK});function sK(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=M(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=J(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),z(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),z(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&z(mn(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=G.runKernel(rf,u,c);return l?J(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var AI=V({maxPool3d_:sK});function aK(e,t,n,r,s=!1){let o={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},l=G.runKernel(Uy,o,i);return{result:l[0],indexes:l[1]}}var oK=V({maxPoolWithArgmax_:aK});function iK(e,t){let n=M(e,"a","maximum"),r=M(t,"b","maximum");[n,r]=Ut(n,r),n.dtype==="bool"&&(n=ke(n,"int32"),r=ke(r,"int32")),Rt(n.shape,r.shape);let s={a:n,b:r};return G.runKernel(Do,s)}var ia=V({maximum_:iK});function lK(e,t=null,n=!1){let s={x:M(e,"x","mean")},a={axis:t,keepDims:n};return G.runKernel(Al,s,a)}var Xt=V({mean_:lK});function un(e,t="float32"){if(t==="complex64"){let r=un(e,"float32"),s=un(e,"float32");return Uo(r,s)}let n=jp(on(e),t);return G.makeTensor(n,e,t)}function la(e,t="float32"){if(t==="complex64"){let r=la(e,"float32"),s=un(e,"float32");return Uo(r,s)}let n=gy(on(e),t);return G.makeTensor(n,e,t)}function uK(e,t=null,n=!1){let s={x:M(e,"x","min")},a={axis:t,keepDims:n};return G.runKernel(xl,s,a)}var _f=V({min_:uK});function cK(e,t){let n=M(e,"a","minimum"),r=M(t,"b","minimum");[n,r]=Ut(n,r),n.dtype==="bool"&&(n=ke(n,"int32"),r=ke(r,"int32")),Rt(n.shape,r.shape);let s={a:n,b:r};return G.runKernel(Fo,s)}var _d=V({minimum_:cK});function dK(e,t,n){z(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=M(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");z(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),z(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return G.runKernel(bl,o,a)}var xI=V({mirrorPad_:dK});function hK(e,t){let n=M(e,"a","mod"),r=M(t,"b","mod");[n,r]=Ut(n,r);let s={a:n,b:r};return G.runKernel(Hc,s)}var bI=V({mod_:hK});function pK(e){let t=M(e,"x","square"),n={};return G.runKernel("Square",{x:t},n)}var wt=V({square_:pK});function fK(e,t=null,n=!1){e=M(e,"x","moments");let r=jr(t,e.shape),s=Xt(e,r,n),a=s.shape;n||(a=ei(s.shape,r));let o=wt(Ne(ke(e,"float32"),J(s,a))),i=Xt(o,r,n);return{mean:s,variance:i}}var qA=V({moments_:fK});function mK(e,t,n,r){let s=M(t,"data","multiRNNCell"),a=Af(n,"c","multiRNNCell"),o=Af(r,"h","multiRNNCell"),i=s,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?J(s,[1,-1]):s},u={numSamples:t,seed:n,normalized:r},c=G.runKernel(Hy,l,u);return o===1?J(c,[c.size]):c}var yK=V({multinomial_:gK});function AK(e,t){let n=M(e,"a","notEqual","string_or_numeric"),r=M(t,"b","notEqual","string_or_numeric");[n,r]=Ut(n,r),Rt(n.shape,r.shape);let s={a:n,b:r};return G.runKernel(vl,s)}var Yl=V({notEqual_:AK});function xK(e){let n={x:M(e,"x","onesLike")};return G.runKernel(Xc,n)}var Dr=V({onesLike_:xK});function bK(e,t){let n=M(e,"v1","outerProduct"),r=M(t,"v2","outerProduct");z(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=J(n,[-1,1]),a=J(r,[1,-1]);return ot(s,a)}var wwe=V({outerProduct_:bK});function vK(e,t,n=0){let r=M(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return G.runKernel(kl,a,s)}var Wa=V({pad_:vK});function wK(e,t,n=0){return z(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Wa(e,[t],n)}var kwe=V({pad1d_:wK});function kK(e,t,n=0){return z(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Wa(e,t,n)}var Iwe=V({pad2d_:kK});function IK(e,t,n=0){return z(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Wa(e,t,n)}var Swe=V({pad3d_:IK});function SK(e,t,n=0){return z(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Wa(e,t,n)}var Twe=V({pad4d_:SK});function TK(e,t,n){let r=M(e,"x","spaceToBatchND");z(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),z(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),z(r.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return G.runKernel(of,s,a)}var Rf=V({spaceToBatchND_:TK});function NK(e,t,n,r,s,a){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let o=M(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=J(o,[1,o.shape[0],o.shape[1],o.shape[2]])),z(_s(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let u=J6(i.shape,t,a,s,r),c=[u.dilationHeight,u.dilationWidth],d;r==="same"?d=EK([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=CK([u.inHeight,u.inWidth],c,d),m=h?r:"valid",g=h?i:Rf(i,c,p),A=(n==="avg"?()=>Sf(g,t,a,m):()=>$f(g,t,a,m))(),x=h?A:Tf(A,c,f);return l?J(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function CK(e,t,n){let r=n.map(c=>c[0]),s=n.map(c=>c[1]),a=e.concat(r,s),o=t.map((c,d)=>(c-a[d]%c)%c),i=s.map((c,d)=>c+o[d]),l=t.map((c,d)=>[r[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function EK(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var $K=V({pool_:NK});function _K(e,t){let n=M(e,"base","pow"),r=M(t,"exp","pow");[n,r]=Ut(n,r);let s={a:n,b:r};return G.runKernel(Il,s)}var Va=V({pow_:_K});function RK(e,t){let n=M(e,"x","prelu"),r=M(t,"alpha","prelu"),s={x:n,alpha:r};return G.runKernel(Sl,s)}var Df=V({prelu_:RK});function DK(e,t=null,n=!1){let r=M(e,"x","prod");r.dtype==="bool"&&(r=ke(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return G.runKernel(Yc,s,a)}var KA=V({prod_:DK});function FK(e,t,n){let r=on(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},MK=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=XA.alea(s.toString()),this.randn=new ZA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),sthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=XA.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function PK(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new MK(t,n,r,s),o=Le(e,r);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Fr(t,0)}var Ewe=V({reverse1d_:jK});function qK(e,t){let n=M(e,"x","reverse");return z(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Fr(n,t)}var $we=V({reverse2d_:qK});function KK(e,t){let n=M(e,"x","reverse");return z(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Fr(n,t)}var _we=V({reverse3d_:KK});function XK(e,t){let n=M(e,"x","reverse");return z(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Fr(n,t)}var Rwe=V({reverse4d_:XK});function ZK(e){let n={x:M(e,"x","round")};return G.runKernel($l,n)}var JA=V({round_:ZK});function YK(e){let n={x:M(e,"x","rsqrt")};return G.runKernel(Oo,n)}var QA=V({rsqrt_:YK});function Fe(e,t){if((ss(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&ss(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return vd(e,[],[],t)}function JK(e){let n={x:M(e,"x","selu")};return G.runKernel(nd,n)}var e1=V({selu_:JK});function QK(e,t,n,r,s,a=[1,1],o="NHWC"){let i=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),u=M(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=J(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");z(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),z(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),z(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),z(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),z(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];z(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=Td(c,l,r,s,o,a),g=Ba(f,u,1,"valid",o);return d?J(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var wI=V({separableConv2d_:QK});async function eX(e,t){let n=M(e,"x","setdiff1d"),r=M(t,"y","setdiff1d");z(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),z(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),z(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),nt(r,[t],[n])}var r1=V({slice1d_:aX});function oX(e,t,n){let r=M(e,"x","slice2d");return z(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),nt(r,t,n)}var II=V({slice2d_:oX});function iX(e,t,n){let r=M(e,"x","slice3d");return z(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),nt(r,t,n)}var s1=V({slice3d_:iX});function lX(e,t,n){let r=M(e,"x","slice4d");return z(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),nt(r,t,n)}var Mf=V({slice4d_:lX});function uX(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return G.runKernel(Ml,r,s)}var Of=V({softmax_:uX});function cX(e){z(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return G.runKernel(Oy,t)}var a1=V({fft_:cX});function dX(e){z(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return G.runKernel(Py,t)}var Pf=V({ifft_:dX});function hX(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=J(e,[n,t]);r=Pf(s)}else{let s=[n,2*(t-1)],a=J(Ff(e),[n,t]),o=J(BA(e),[n,t]),i=Fr(nt(a,[0,1],[n,t-2]),1),l=K(Fr(nt(o,[0,1],[n,t-2]),1),Fe(-1)),u=en([a,i],1),c=en([o,l],1),d=J(Uo(u,c),[s[0],s[1]]);r=Pf(d)}if(r=Ff(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=J(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var SI=V({irfft_:hX});function pX(e,t,n=0){let s={x:M(e,"x","split")},a={numOrSizeSplits:t,axis:n};return G.runKernel(id,s,a)}var hr=V({split_:pX});function fX(e,t){z(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=nt(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=en([e,un(f)],e.shape.length-1),n=t}else s=e;let a=rt(s),o=J(Uo(s,a),[r,n]),i=a1(o),l=Math.floor(n/2)+1,u=Ff(i),c=BA(i),d=hr(u,[l,n-l],u.shape.length-1),h=hr(c,[l,n-l],c.shape.length-1),p=s.shape.slice();return p[s.shape.length-1]=l,J(Uo(d[0],h[0]),p)}var o1=V({rfft_:fX});function mX(e){let n={x:M(e,"x","sqrt")};return G.runKernel(Dl,n)}var $n=V({sqrt_:mX});function gX(e,t){let n=M(e,"a","squaredDifference"),r=M(t,"b","squaredDifference");[n,r]=Ut(n,r),Rt(n.shape,r.shape);let s={a:n,b:r},a={};return G.runKernel(Po,s,a)}var i1=V({squaredDifference_:gX});function yX(e,t){let n=M(e,"x","squeeze");return J(n,P4(n.shape,t).newShape)}var Jl=V({squeeze_:yX});function AX(e,t=0){let n=Af(e,"tensors","stack","string_or_numeric");z(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&z(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return G.runKernel(Zc,r,s)}var Mr=V({stack_:AX});function xX(e,t=0){let r={x:M(e,"x","step")},s={alpha:t};return G.runKernel(Bo,r,s)}var Fd=V({step_:xX});function bX(e,t,n,r,s=0,a=0,o=0,i=0,l=0){let c={x:M(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return G.runKernel(ld,c,d)}var TI=V({stridedSlice_:bX});function vX(e){let n={x:M(e,"x","tan")};return G.runKernel(Ol,n)}var NI=V({tan_:vX});function _n(e,t){Wp(e);let n=bd(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return vd(e,null,n,t)}function Ql(e,t,n){if(Wp(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=bd(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return vd(e,t,r,n)}function wX(e,t=1,n=!0){let r=M(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,l]=G.runKernel(ud,a,o);return{values:i,indices:l}}var CI=V({topk_:wX});function kX(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new ZA(t,n,r,!0,s),o=Le(e,r);for(let i=0;i0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=G.runKernel(nA,r,s);return{values:a,indices:o}}var u1=V({unique_:IX});function SX(e,t,n){let r=M(e,"x","unsortedSegmentSum"),s=M(t,"segmentIds","unsortedSegmentSum","int32");z(mn(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return G.runKernel(uf,a,o)}var EI=V({unsortedSegmentSum_:SX});function TX(e,t=0){let n=M(e,"x","unstack","string_or_numeric");z(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return G.runKernel(dd,r,s)}var ls=V({unstack_:TX});function NX(e,t=!0,n,r){return G.makeVariable(e,t,n,r)}function $I(e,t){let n=[];for(let a=0;a"Shape mismatch in v and x");let l=Fe(1),u=Ne(l,i),c=K(Ne(o,a),u);if(s){z(r!=null,()=>"When using zeroDebias: true, step is required.");let d=M(r,"step","movingAverage");c=Re(c,Ne(l,Va(i,d)))}return pe(a,c)}var Dwe=V({movingAverage_:_X});function RX(e,t,n){let r=M(e,"indices","scatterND","int32"),s=M(t,"updates","scatterND");CA(s,r,n);let a={indices:r,updates:s},o={shape:n};return G.runKernel(ed,a,o)}var DX=V({scatterND_:RX});function FX(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function MX(e,t,n,r=0){let s=M(e,"sparseIndices","sparseToDense","int32"),a=M(t,"sparseValues","sparseToDense"),o=M(r,"defaultValue","sparseToDense",a.dtype);FX(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},l={outputShape:n};return G.runKernel(Jy,i,l)}var RI=V({sparseToDense_:MX});function OX(e,t){let n=M(t,"indices","gatherND","int32"),s={params:M(e,"x","gatherND","string_or_numeric"),indices:n};return G.runKernel(zc,s)}var PX=V({gatherND_:OX});function zX(e,t){if(t==null)return e.shape.slice();if(Da(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),z(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ct?s.clone():s;let a=zX(s,n),o=1-t,i=Re(Ed(pe(Rd(a,0,1,"float32",r),o)),o);return K(s,i)}var BX=V({dropout_:LX});function WX(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function DI(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;aHX,depthwiseConv2d:()=>KX,matMul:()=>ZX});function VX(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]])),z(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),z(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),z(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];z(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),z(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&z(mn(s),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:i,dy:l},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return G.runKernel(Sy,d,h)}var d1=V({conv2DBackpropFilter_:VX});function zf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return K(e,Fd(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Lf(e,t){let n=t,r=ln(e.shape,t.shape);return r.length>0&&(n=_e(n,r)),J(n,e.shape)}function Bf(e,t,n,r){if(t==="linear")return e;if(t==="relu")return ua(e);if(t==="elu")return Nd(e);if(t==="relu6")return YA(e);if(t==="prelu")return Df(e,n);if(t==="leakyrelu")return Cf(e,r);if(t==="sigmoid")return Rs(e);throw new Error(`Unknown fused activation ${t}.`)}var Wf=(e,t)=>!(e>0)||t==="linear";function UX({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Wf(G.state.gradientDepth,l)===!1){let v=Ba(e,t,n,r,s,a,o);return i!=null&&(v=pe(v,i)),Bf(v,l,u,c)}let d=M(e,"x","conv2d"),h=M(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=J(d,[1,d.shape[0],d.shape[1],d.shape[2]])),z(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),z(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&z(mn(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),z(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),z(_s(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),z(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=Id(p.shape,h.shape,n,a,r,o),g;i!=null&&(g=M(i,"bias","fused conv2d"),[g]=Ut(g,d),Rt(m.outShape,g.shape));let y;u!=null&&(y=M(u,"prelu weights","fused conv2d"));let A=(v,w)=>{let[S,I,E,F]=w,$=zf(v,E,l);z(La(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let _=OA(I.shape,$,S,n,r),N=d1(I,$,S.shape,n,r),P=[_,N];if(F!=null){let B=Lf(F,$);P.push(B)}return P},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?oa((w,S,I)=>{let E=G.runKernel(Bl,x,b);return I([S,w,E]),f&&(E=J(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):oa((w,S,I,E)=>{let F=G.runKernel(Bl,x,b);return E([S,w,F,I]),f&&(F=J(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(p,h,g)}var HX=V({fusedConv2d_:UX});function GX(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=J(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return G.runKernel(Ey,u,c)}var FI=V({depthwiseConv2dNativeBackpropFilter_:GX});function jX(e,t,n,r,s,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=J(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=G.runKernel($y,u,c);return l?J(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var MI=V({depthwiseConv2dNativeBackpropInput_:jX});function qX({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Wf(G.state.gradientDepth,l)===!1){let v=Td(e,t,n,r,s,a,o);return i!=null&&(v=pe(v,i)),Bf(v,l,u,c)}let d=M(e,"x","depthwiseConv2d"),h=M(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=J(d,[1,d.shape[0],d.shape[1],d.shape[2]])),z(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),z(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),z(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),z(_s(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&z(mn(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${r}.`);let m=Id(p.shape,h.shape,n,a,r,o,!0),g;i!=null&&(g=M(i,"bias","fused conv2d"),[g]=Ut(g,d),Rt(m.outShape,g.shape));let y;u!=null&&(y=M(u,"prelu weights","fused depthwiseConv2d"));let A=(v,w)=>{z(La(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,I,E,F]=w,$=zf(v,E,l),_=MI(I.shape,$,S,n,r,a,o),N=FI(I,$,S.shape,n,r,a,o);if(F!=null){let P=Lf(g,$);return[_,N,P]}return[_,N]},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?oa((w,S,I)=>{let E=G.runKernel(Wl,x,b);return I([S,w,E]),f&&(E=J(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):oa((w,S,I,E)=>{let F=G.runKernel(Wl,x,b);return E([S,w,F,I]),f&&(F=J(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:A}})(p,h,g)}var KX=V({fusedDepthwiseConv2d_:qX});function XX({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Wf(G.state.gradientDepth,a)===!1){let F=ot(e,t,n,r);return s!=null&&(F=pe(F,s)),Bf(F,a,o,i)}let l=M(e,"a","fused matMul"),u=M(t,"b","fused matMul");[l,u]=Ut(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=r?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=on(f),y=on(m);z(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),z(Da(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),z(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let A=l.shape.slice(0,-2).concat([h,p]),x=n?J(l,[g,c,h]):J(l,[g,h,c]),b=r?J(u,[y,p,d]):J(u,[y,d,p]),v;s!=null&&(v=M(s,"bias","fused matMul"),[v]=Ut(v,l),Rt(A,v.shape));let w;o!=null&&(w=M(o,"prelu weights","fused matMul"));let S=(F,$)=>{let[_,N,P,B]=$,j=zf(J(F,P.shape),P,a),X,Y;if(!n&&!r?(X=ot(j,N,!1,!0),Y=ot(_,j,!0,!1)):!n&&r?(X=ot(j,N,!1,!1),Y=ot(j,_,!0,!1)):n&&!r?(X=ot(N,j,!1,!0),Y=ot(_,j,!1,!1)):(X=ot(N,j,!0,!0),Y=ot(j,_,!0,!0)),s!=null){let ee=Lf(B,j);return[X,Y,ee]}else return[X,Y]},I={a:x,b,bias:v,preluActivationWeights:w},E={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?oa(($,_,N)=>{let P=G.runKernel(Ll,I,E);return N([$,_,P]),{value:J(P,A),gradFunc:S}})(x,b):oa(($,_,N,P)=>{let B=G.runKernel(Ll,I,E);return P([$,_,B,N]),{value:J(B,A),gradFunc:S}})(x,b,v)}var ZX=V({fusedMatMul_:XX});function YX(e){return DI(e,.54,.46)}var Fwe=V({hammingWindow_:YX});function JX(e){return DI(e,.5,.5)}var QX=V({hannWindow_:JX});function eZ(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(nt(e,a,t)),a+=n;if(r)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),z(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),z(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),z(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),z(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),z(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let c={image:o,boxes:i,boxInd:l},d={method:s,extrapolationValue:a,cropSize:r};return G.runKernel(_c,c,d)}var sZ=V({cropAndResize_:rZ});function aZ(e){let t=M(e,"image","flipLeftRight","float32");z(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return G.runKernel(Oc,n,{})}var oZ=V({flipLeftRight_:aZ});function iZ(e,t,n=0,r=.5){let s=M(e,"image","rotateWithOffset","float32");z(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return G.runKernel(pd,a,o)}var lZ=V({rotateWithOffset_:iZ});function eu(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),z(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),z(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),z(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),z(t.rank===1,()=>"scores must be a 1D tensor"),z(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),z(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function uZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),i=eu(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return G.runKernel(jc,{boxes:a,scores:o},l)}var cZ=V({nonMaxSuppression_:uZ});function dZ(e,t,n){let r=hZ(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function hZ(e,t,n){return fZ(e,t,n||pZ)}function pZ(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function OI(e,t,n,r,s){return h1(e,t,n,r,s,0)}function PI(e,t,n,r,s,a){return h1(e,t,n,r,s,0,!1,a,!0)}function zI(e,t,n,r,s,a){return h1(e,t,n,r,s,a,!0)}function h1(e,t,n,r,s,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;gs&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(LI);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y=x;--v){let w=mZ(e,A,d[v]);if(w>=r){b=!0;break}if(g.score=g.score*gZ(r,c,w),g.score<=s)break}g.suppressBeginIndex=d.length,b||(g.score===y?(d.push(A),h.push(g.score)):g.score>s&&dZ(u,g,LI))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function mZ(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(s[0],s[2]),c=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),h=Math.max(s[1],s[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,d),A=Math.min(l,h),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(p+f-x)}function gZ(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function LI(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function yZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),i=eu(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=OI(u,c,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),_n(d,"int32")}var AZ=yZ;function xZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),l=eu(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=G.runKernel(Kc,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var bZ=V({nonMaxSuppressionWithScore_:xZ});async function vZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),l=eu(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=zI(c,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:_n(h,"int32"),selectedScores:_n(p)}}var wZ=vZ;function kZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),l=eu(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=G.runKernel(qc,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var IZ=V({nonMaxSuppressionPadded_:kZ});async function SZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),l=eu(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=PI(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:_n(f,"int32"),validOutputs:Fe(m,"int32")}}var TZ=SZ;function NZ(e,t,n=!1,r=!1){let s=M(e,"images","resizeBilinear");z(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),z(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),z(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=J(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=G.runKernel(Nl,i,l);return o?J(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var BI=V({resizeBilinear_:NZ});function CZ(e,t,n=!1,r=!1){let s=M(e,"images","resizeNearestNeighbor");z(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),z(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),z(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),z(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=J(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=G.runKernel(af,i,l);return o?J(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var WI=V({resizeNearestNeighbor_:CZ});function EZ(e,t="binary",n=!1,r=.5){let s=M(e,"image","threshold"),a=.2989,o=.587,i=.114,l=s.shape[0]*s.shape[1],u=K(_n([r]),255),c,d,h,p;if(z(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),z(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),z(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),z(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[c,d,h]=hr(s,[1,1,1],-1);let g=K(c,a),y=K(d,o),A=K(h,i);p=pe(pe(g,y),A)}else p=e;if(t==="otsu"){let g=nI(ke(JA(p),"int32"),$s([]),256);u=$Z(g,l)}let f=n?Qo(p,u):_r(p,u);return ke(K(f,255),"int32")}function $Z(e,t){let n=_n([-1]),r=_n([0]),s=_n([0]),a,o,i,l,u,c;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),z(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),z(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return G.runKernel(cd,l,u)}var DZ=V({transform_:RZ});function FZ(e,t,n){z(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),z(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=M(e,"a","bandPart");z(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=J(Dd(0,a,1,"int32"),[-1,1]),l=Dd(0,o,1,"int32"),u=Ne(i,l),c=is(Qo(u,Fe(+t,"int32")),Jo(u,Fe(-n,"int32"))),d=un([a,o],r.dtype);return J(Mr(ls(J(r,[-1,a,o])).map(h=>Ln(c,h,d))),s)}var MZ=V({bandPart_:FZ});function OZ(e){let t;if(Array.isArray(e)){t=!1,z(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=hr(e,e.shape[0],0).map(s=>Jl(s,[0]));z(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s{let a=r[s];if(s>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return VI(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=ls(J(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(l=>{let[u,c]=VI(l,t);s.push(u),a.push(c)});let o=J(Mr(s,0),e.shape),i=J(Mr(a,0),e.shape);return[o,i]}}function VI(e,t=!1){return G.tidy(()=>{z(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=dI(n),a=qo(e),o=Ql([[1]],[1,1]),i=qo(o),l=n>=r?r:n;for(let u=0;u{let p=nt(a,[u,u],[n-u,1]),f=c1(p),m=nt(a,[u,u],[1,1]),g=Ln(_r(m,0),Ql([[-1]]),Ql([[1]])),y=Ne(m,K(g,f)),A=Re(p,y);A.shape[0]===1?i=qo(o):i=en([o,nt(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=Kt(Re(ot(g,y),f)),b=nt(a,[u,0],[n-u,r]),v=K(x,i),w=pt(i);if(u===0)a=Ne(b,ot(v,ot(w,b)));else{let E=Ne(b,ot(v,ot(w,b)));a=en([nt(a,[0,0],[u,r]),E],0)}let S=pt(v),I=nt(s,[0,u],[n,s.shape[1]-u]);if(u===0)s=Ne(I,ot(ot(I,i),S));else{let E=Ne(I,ot(ot(I,i),S));s=en([nt(s,[0,0],[n,u]),E],1)}return[i,a,s]}),je([c,d,h])}return!t&&n>r&&(s=nt(s,[0,0],[n,r]),a=nt(a,[0,0],[r,r])),[s,a]})}var LZ=V({qr_:zZ}),Yn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Yn||(Yn={}));function BZ(e,t,n=Yn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=M(t,"weights","computeWeightedLoss"));let a=s==null?r:K(r,s);if(n===Yn.NONE)return a;if(n===Yn.SUM)return _e(a);if(n===Yn.MEAN){if(s==null)return Xt(a);{let o=r.size/s.size,i=Re(_e(a),_e(s));return o>1?Re(i,Fe(o)):i}}if(n===Yn.SUM_BY_NONZERO_WEIGHTS){if(s==null)return Re(_e(a),Fe(r.size));{let o=K(s,la(r.shape)),i=ke(_e(Yl(o,Fe(0))),"float32");return Re(_e(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ua=V({computeWeightedLoss_:BZ});function WZ(e,t,n,r=Yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","absoluteDifference"),a=M(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=M(n,"weights","absoluteDifference")),rs(s.shape,a.shape,"Error in absoluteDifference: ");let i=yn(Ne(s,a));return Ua(i,o,r)}var Owe=V({absoluteDifference_:WZ});function VZ(e,t,n,r,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"labels","cosineDistance"),o=M(t,"predictions","cosineDistance"),i=null;r!=null&&(i=M(r,"weights","cosineDistance")),rs(a.shape,o.shape,"Error in cosineDistance: ");let l=Fe(1),u=Ne(l,_e(K(a,o),n,!0));return Ua(u,i,s)}var Pwe=V({cosineDistance_:VZ});function UZ(e,t,n,r=Yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","hingeLoss"),a=M(t,"predictions","hingeLoss"),o=null;n!=null&&(o=M(n,"weights","hingeLoss")),rs(s.shape,a.shape,"Error in hingeLoss: ");let i=Fe(1);s=Ne(K(Fe(2),s),i);let l=ua(Ne(i,K(s,a)));return Ua(l,o,r)}var zwe=V({hingeLoss_:UZ});function HZ(e,t,n,r=1,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"labels","huberLoss"),o=M(t,"predictions","huberLoss"),i=null;n!=null&&(i=M(n,"weights","huberLoss")),rs(a.shape,o.shape,"Error in huberLoss: ");let l=Fe(r),u=yn(Ne(o,a)),c=_d(u,l),d=Ne(u,c),h=pe(K(Fe(.5),wt(c)),K(l,d));return Ua(h,i,s)}var Lwe=V({huberLoss_:HZ});function GZ(e,t,n,r=1e-7,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"labels","logLoss"),o=M(t,"predictions","logLoss"),i=null;n!=null&&(i=M(n,"weights","logLoss")),rs(a.shape,o.shape,"Error in logLoss: ");let l=Fe(1),u=Fe(r),c=Kt(K(a,Rr(pe(o,u)))),d=K(Ne(l,a),Rr(pe(Ne(l,o),u))),h=Ne(c,d);return Ua(h,i,s)}var Bwe=V({logLoss_:GZ});function jZ(e,t,n,r=Yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","meanSquaredError"),a=M(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=M(n,"weights","meanSquaredError")),rs(s.shape,a.shape,"Error in meanSquaredError: ");let i=i1(s,a);return Ua(i,o,r)}var Wwe=V({meanSquaredError_:jZ});function qZ(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),r=M(t,"logits","sigmoidCrossEntropyWithLogits");rs(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=ua(r),a=K(r,n),o=VA(Kr(Kt(yn(r))));return pe(Ne(s,a),o)}function KZ(e,t,n,r=0,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"multiClassLabels","sigmoidCrossEntropy"),o=M(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=M(n,"weights","sigmoidCrossEntropy")),rs(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=Fe(r),c=Fe(1),d=Fe(.5);a=pe(K(a,Ne(c,u)),K(d,u))}let l=qZ(a,o);return Ua(l,i,s)}var Vwe=V({sigmoidCrossEntropy_:KZ});function XZ(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return oa((s,a,o)=>{let l=yI(a,[n],!0),u=Ne(ke(a,"float32"),l);o([s,u]);let c=Kt(K(u,s));return{value:_e(c,[n]),gradFunc:(p,f)=>{let[m,g]=f,y=ei(p.shape,[n]);return[K(J(p,y),Ne(ke(m,"float32"),Kr(g))),K(J(p,y),Ne(Kr(g),ke(m,"float32")))]}}})(e,t)}function ZZ(e,t,n,r=0,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"onehotLabels","softmaxCrossEntropy"),o=M(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=M(n,"weights","softmaxCrossEntropy")),rs(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let u=Fe(r),c=Fe(1),d=Fe(a.shape[1]);a=pe(K(a,Ne(c,u)),Re(u,d))}let l=XZ(a,o);return Ua(l,i,s)}var Uwe=V({softmaxCrossEntropy_:ZZ});function YZ(e,t,n,r){let s=M(e,"indices","sparseFillEmptyRows"),a=M(t,"values","sparseFillEmptyRows"),o=M(n,"denseShape","sparseFillEmptyRows"),i=M(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape - ${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:s,values:a,denseShape:o,defaultValue:i},u=G.runKernel(Ky,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var JZ=V({sparseFillEmptyRows_:YZ});function QZ(e,t,n){let r=M(e,"inputIndices","sparseReshape"),s=M(t,"inputShape","sparseReshape"),a=M(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape - ${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=G.runKernel(Xy,o);return{outputIndices:i[0],outputShape:i[1]}}var eY=V({sparseReshape_:QZ});function tY(e,t,n){let r=M(e,"data","sparseSegmentMean"),s=M(t,"indices","sparseSegmentMean"),a=M(n,"segmentIds","sparseSegmentMean");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${r.shape}`),z(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},l={blockSize:t,dataFormat:n};return G.runKernel(Rc,i,l)}var sq=V({depthToSpace_:rq});function aq(e,t,n,r,s="NHWC",a=[1,1],o){let i=O(e,"x","depthwiseConv2d"),l=O(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=Z(i,[1,i.shape[0],i.shape[1],i.shape[2]])),z(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),z(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),z(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&z(fn(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:u,filter:l},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},p=G.runKernel(al,d,h);return c?Z(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var kf=V({depthwiseConv2d_:aq});function oq(e){let n={x:O(e,"x","diag")};return G.runKernel(N1,n)}var Lwe=V({diag_:oq});function iq(e,t,n,r,s=[1,1],a="NHWC"){let o=O(e,"x","dilation2d"),i=O(t,"filter","dilation2d");z(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),z(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),z(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=Z(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:r,dilations:s},h=G.runKernel(Yp,c,d);return u?Z(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var lq=V({dilation2d_:iq});function uq(e,t){let n=e.length,r=[];for(let s=0;s1&&o===1&&r.unshift(a)}return r}function on(e,t){let n=[];for(let r=0;r1)&&n.unshift(a)}return n}function $t(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(z(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=Z(n,[1,-1]),i=Z(r,[-1,1]),l=rt(o,i);return Z(l,[])}else if(n.rank===1&&r.rank===2){let o=Z(n,[1,-1]),i=Z(r,[r.shape[0],r.shape[1]]),l=rt(o,i);return Z(l,[l.size])}else if(n.rank===2&&r.rank===1){let o=Z(r,[-1,1]),i=rt(n,o);return Z(i,[i.size])}else{let o=Z(r,[r.shape[0],r.shape[1]]);return rt(n,o)}}var Bwe=V({dot_:mq});function gq(e,...t){let n=t.map((s,a)=>O(s,`tensors${a}`,"einsum")),r={equation:e};return G.runKernel($1,n,r)}var yq=V({einsum_:gq});function Aq(e){let n={x:O(e,"x","elu")};return G.runKernel(_c,n)}var If=V({elu_:Aq});function xq(e){let t=O(e,"x","erf");z(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=xe(t,"float32"));let n={x:t};return G.runKernel(Dc,n)}var bq=V({erf_:xq});function vq(e){let n={x:O(e,"x","exp")};return G.runKernel(Eo,n)}var Gr=V({exp_:vq});function wq(e,t=0){let n=O(e,"x","expandDims","string_or_numeric");z(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return G.runKernel(Fc,r,s)}var Er=V({expandDims_:wq});function kq(e){let n={x:O(e,"x","expm1")};return G.runKernel(ll,n)}var Iq=V({expm1_:kq});function Sq(e,t){let n=O(e,"x","tile","string_or_numeric");z(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return G.runKernel(Lo,r,s)}var $s=V({tile_:Sq});function Tq(e,t,n,r="float32"){t==null&&(t=e);let s=ze([e,t],r),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got + rank ${a.rank}.`),z(fn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=Z(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:r,beta:s},c=G.runKernel(tf,l,u);return i?Z(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Wq=V({localResponseNormalization_:Bq});function Vq(e){let n={x:O(e,"x","log")};return G.runKernel(_o,n)}var jr=V({log_:Vq});function Uq(e){let n={x:O(e,"x","log1p")};return G.runKernel(Wc,n)}var Py=V({log1p_:Uq});function Hq(e,t){z(Hp(e),()=>"The f passed in variableGrads(f) must be a function"),z(t==null||Array.isArray(t)&&t.every(u=>u instanceof ff),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in G.registeredVariables)t.push(G.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,s=t.length;t=t.filter(u=>u.trainable),z(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=G.gradients(e,t,null,a);z(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),z(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:o,grads:l}}function la(e){return G.customGrad(e)}function Gq(e){let n={x:O(e,"x","neg")};return G.runKernel(Hc,n)}var qt=V({neg_:Gq});function jq(e){let n={x:O(e,"x","softplus")};return G.runKernel(ad,n)}var Cd=V({softplus_:jq});function qq(e){let t=O(e,"x","logSigmoid");return la(r=>({value:qt(Cd(qt(r))),gradFunc:o=>j(o,ia(qt(r)))}))(t)}var Uwe=V({logSigmoid_:qq});function Kq(e,t=null,n=!1){let s={x:O(e,"x","max")},a={reductionIndices:t,keepDims:n};return G.runKernel(gl,s,a)}var Rs=V({max_:Kq});function Xq(e,t){let n=O(e,"a","sub"),r=O(t,"b","sub");[n,r]=Vt(n,r);let s={a:n,b:r};return G.runKernel(zo,s)}var ke=V({sub_:Xq});function Zq(e,t=null,n=!1){let r=O(e,"x","sum");r.dtype==="bool"&&(r=xe(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return G.runKernel(Fl,s,a)}var Te=V({sum_:Zq});function Yq(e,t=-1){let n=O(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return la((s,a)=>{let o=!0,i=Rs(s,t,!0),l=ke(s,i),u=ke(xe(l,"float32"),jr(Te(Gr(l),t,o)));return a([u]),{value:u,gradFunc:(d,h)=>{let[p]=h,f=!0,m=Gr(p);return ke(d,j(Te(d,t,f),m))}}})(n)}var Y6=V({logSoftmax_:Yq});function zy(e,t){for(let n=0;ne[a]);return[n,s]}function Zo(e,t){let n=t.map(r=>1);return J6(e,n,t)}function Jq(e,t,n){z(zy(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function eI(e,t){if(zy(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Ly(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function Qq(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),z(Es(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),s!=null&&z(fn(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=G.runKernel(yl,u,c);return l?Z(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Wy=V({maxPool_:oK});function iK(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=O(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=Z(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),z(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),z(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&z(fn(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let u={x:i},c={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=G.runKernel(nf,u,c);return l?Z(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var nI=V({maxPool3d_:iK});function lK(e,t,n,r,s=!1){let o={x:O(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},l=G.runKernel(L1,o,i);return{result:l[0],indexes:l[1]}}var uK=V({maxPoolWithArgmax_:lK});function cK(e,t){let n=O(e,"a","maximum"),r=O(t,"b","maximum");[n,r]=Vt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),$t(n.shape,r.shape);let s={a:n,b:r};return G.runKernel(Do,s)}var Va=V({maximum_:cK});function dK(e,t=null,n=!1){let s={x:O(e,"x","mean")},a={axis:t,keepDims:n};return G.runKernel(Al,s,a)}var Xt=V({mean_:dK});function ln(e,t="float32"){if(t==="complex64"){let r=ln(e,"float32"),s=ln(e,"float32");return Uo(r,s)}let n=jp(sn(e),t);return G.makeTensor(n,e,t)}function ua(e,t="float32"){if(t==="complex64"){let r=ua(e,"float32"),s=ln(e,"float32");return Uo(r,s)}let n=h1(sn(e),t);return G.makeTensor(n,e,t)}function hK(e,t=null,n=!1){let s={x:O(e,"x","min")},a={axis:t,keepDims:n};return G.runKernel(xl,s,a)}var Vy=V({min_:hK});function pK(e,t){let n=O(e,"a","minimum"),r=O(t,"b","minimum");[n,r]=Vt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),$t(n.shape,r.shape);let s={a:n,b:r};return G.runKernel(Fo,s)}var Nf=V({minimum_:pK});function fK(e,t,n){z(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=O(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");z(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),z(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return G.runKernel(bl,o,a)}var mK=V({mirrorPad_:fK});function gK(e,t){let n=O(e,"a","mod"),r=O(t,"b","mod");[n,r]=Vt(n,r);let s={a:n,b:r};return G.runKernel(Uc,s)}var yK=V({mod_:gK});function AK(e){let t=O(e,"x","square"),n={};return G.runKernel("Square",{x:t},n)}var Tt=V({square_:AK});function xK(e,t=null,n=!1){e=O(e,"x","moments");let r=Vr(t,e.shape),s=Xt(e,r,n),a=s.shape;n||(a=Zo(s.shape,r));let o=Tt(ke(xe(e,"float32"),Z(s,a))),i=Xt(o,r,n);return{mean:s,variance:i}}var Uy=V({moments_:xK});function bK(e,t,n,r){let s=O(t,"data","multiRNNCell"),a=gf(n,"c","multiRNNCell"),o=gf(r,"h","multiRNNCell"),i=s,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?Z(s,[1,-1]):s},u={numSamples:t,seed:n,normalized:r},c=G.runKernel(B1,l,u);return o===1?Z(c,[c.size]):c}var wK=V({multinomial_:vK});function kK(e,t){let n=O(e,"a","notEqual","string_or_numeric"),r=O(t,"b","notEqual","string_or_numeric");[n,r]=Vt(n,r),$t(n.shape,r.shape);let s={a:n,b:r};return G.runKernel(vl,s)}var Ed=V({notEqual_:kK});function IK(e){let n={x:O(e,"x","onesLike")};return G.runKernel(Kc,n)}var qr=V({onesLike_:IK});function SK(e,t){let n=O(e,"v1","outerProduct"),r=O(t,"v2","outerProduct");z(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=Z(n,[-1,1]),a=Z(r,[1,-1]);return rt(s,a)}var jwe=V({outerProduct_:SK});function TK(e,t,n=0){let r=O(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return G.runKernel(kl,a,s)}var Yo=V({pad_:TK});function NK(e,t,n=0){return z(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Yo(e,[t],n)}var qwe=V({pad1d_:NK});function CK(e,t,n=0){return z(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Yo(e,t,n)}var Kwe=V({pad2d_:CK});function EK(e,t,n=0){return z(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Yo(e,t,n)}var Xwe=V({pad3d_:EK});function $K(e,t,n=0){return z(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Yo(e,t,n)}var Zwe=V({pad4d_:$K});function RK(e,t,n){let r=O(e,"x","spaceToBatchND");z(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),z(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),z(r.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return G.runKernel(od,s,a)}var Hy=V({spaceToBatchND_:RK});function _K(e,t,n,r,s,a){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let o=O(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=Z(o,[1,o.shape[0],o.shape[1],o.shape[2]])),z(Es(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let u=z6(i.shape,t,a,s,r),c=[u.dilationHeight,u.dilationWidth],d;r==="same"?d=FK([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let h=c[0]===1&&c[1]===1,[p,f]=DK([u.inHeight,u.inWidth],c,d),m=h?r:"valid",g=h?i:Hy(i,c,p),A=(n==="avg"?()=>Ry(g,t,a,m):()=>Wy(g,t,a,m))(),x=h?A:_y(A,c,f);return l?Z(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function DK(e,t,n){let r=n.map(c=>c[0]),s=n.map(c=>c[1]),a=e.concat(r,s),o=t.map((c,d)=>(c-a[d]%c)%c),i=s.map((c,d)=>c+o[d]),l=t.map((c,d)=>[r[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function FK(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var Ywe=V({pool_:_K});function MK(e,t){let n=O(e,"base","pow"),r=O(t,"exp","pow");[n,r]=Vt(n,r);let s={a:n,b:r};return G.runKernel(Il,s)}var Jo=V({pow_:MK});function OK(e,t){let n=O(e,"x","prelu"),r=O(t,"alpha","prelu"),s={x:n,alpha:r};return G.runKernel(Sl,s)}var Gy=V({prelu_:OK});function PK(e,t=null,n=!1){let r=O(e,"x","prod");r.dtype==="bool"&&(r=xe(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return G.runKernel(Zc,s,a)}var rI=V({prod_:PK});function zK(e,t,n){let r=sn(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},LK=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=jy.alea(s.toString()),this.randn=new qy(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),sthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=jy.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function WK(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new LK(t,n,r,s),o=ze(e,r);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Kr(t,0)}var e7e=V({reverse1d_:YK});function JK(e,t){let n=O(e,"x","reverse");return z(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Kr(n,t)}var t7e=V({reverse2d_:JK});function QK(e,t){let n=O(e,"x","reverse");return z(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Kr(n,t)}var n7e=V({reverse3d_:QK});function eX(e,t){let n=O(e,"x","reverse");return z(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Kr(n,t)}var r7e=V({reverse4d_:eX});function tX(e){let n={x:O(e,"x","round")};return G.runKernel($l,n)}var aI=V({round_:tX});function nX(e){let n={x:O(e,"x","rsqrt")};return G.runKernel(Oo,n)}var oI=V({rsqrt_:nX});function De(e,t){if((as(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&as(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return vd(e,[],[],t)}function rX(e){let n={x:O(e,"x","selu")};return G.runKernel(td,n)}var iI=V({selu_:rX});function sX(e,t,n,r,s,a=[1,1],o="NHWC"){let i=O(e,"x","separableConv2d"),l=O(t,"depthwiseFilter","separableConv2d"),u=O(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=Z(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");z(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),z(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),z(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),z(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),z(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let h=l.shape[2],p=l.shape[3];z(u.shape[2]===h*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${h*p}, but got ${u.shape[2]}.`);let f=kf(c,l,r,s,o,a),g=Xo(f,u,1,"valid",o);return d?Z(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var aX=V({separableConv2d_:sX});async function oX(e,t){let n=O(e,"x","setdiff1d"),r=O(t,"y","setdiff1d");z(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),z(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),z(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),at(r,[t],[n])}var Ky=V({slice1d_:hX});function pX(e,t,n){let r=O(e,"x","slice2d");return z(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),at(r,t,n)}var cI=V({slice2d_:pX});function fX(e,t,n){let r=O(e,"x","slice3d");return z(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),at(r,t,n)}var Xy=V({slice3d_:fX});function mX(e,t,n){let r=O(e,"x","slice4d");return z(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),at(r,t,n)}var Ef=V({slice4d_:mX});function gX(e,t=-1){let n=O(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return G.runKernel(Ml,r,s)}var Zy=V({softmax_:gX});function yX(e){z(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return G.runKernel(_1,t)}var dI=V({fft_:yX});function AX(e){z(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return G.runKernel(D1,t)}var Yy=V({ifft_:AX});function xX(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=Z(e,[n,t]);r=Yy(s)}else{let s=[n,2*(t-1)],a=Z(Cf(e),[n,t]),o=Z(My(e),[n,t]),i=Kr(at(a,[0,1],[n,t-2]),1),l=j(Kr(at(o,[0,1],[n,t-2]),1),De(-1)),u=an([a,i],1),c=an([o,l],1),d=Z(Uo(u,c),[s[0],s[1]]);r=Yy(d)}if(r=Cf(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=Z(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var bX=V({irfft_:xX});function vX(e,t,n=0){let s={x:O(e,"x","split")},a={numOrSizeSplits:t,axis:n};return G.runKernel(id,s,a)}var Rr=V({split_:vX});function wX(e,t){z(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=at(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=an([e,ln(f)],e.shape.length-1),n=t}else s=e;let a=ot(s),o=Z(Uo(s,a),[r,n]),i=dI(o),l=Math.floor(n/2)+1,u=Cf(i),c=My(i),d=Rr(u,[l,n-l],u.shape.length-1),h=Rr(c,[l,n-l],c.shape.length-1),p=s.shape.slice();return p[s.shape.length-1]=l,Z(Uo(d[0],h[0]),p)}var hI=V({rfft_:wX});function kX(e){let n={x:O(e,"x","sqrt")};return G.runKernel(Dl,n)}var Ln=V({sqrt_:kX});function IX(e,t){let n=O(e,"a","squaredDifference"),r=O(t,"b","squaredDifference");[n,r]=Vt(n,r),$t(n.shape,r.shape);let s={a:n,b:r},a={};return G.runKernel(Po,s,a)}var pI=V({squaredDifference_:IX});function SX(e,t){let n=O(e,"x","squeeze");return Z(n,N4(n.shape,t).newShape)}var Qo=V({squeeze_:SX});function TX(e,t=0){let n=gf(e,"tensors","stack","string_or_numeric");z(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&z(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return G.runKernel(Xc,r,s)}var Xr=V({stack_:TX});function NX(e,t=0){let r={x:O(e,"x","step")},s={alpha:t};return G.runKernel(Bo,r,s)}var $f=V({step_:NX});function CX(e,t,n,r,s=0,a=0,o=0,i=0,l=0){let c={x:O(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return G.runKernel(ld,c,d)}var EX=V({stridedSlice_:CX});function $X(e){let n={x:O(e,"x","tan")};return G.runKernel(Ol,n)}var RX=V({tan_:$X});function En(e,t){Wp(e);let n=bd(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return vd(e,null,n,t)}function Zl(e,t,n){if(Wp(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=bd(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return vd(e,t,r,n)}function _X(e,t=1,n=!0){let r=O(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,l]=G.runKernel(ud,a,o);return{values:i,indices:l}}var DX=V({topk_:_X});function FX(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new qy(t,n,r,!0,s),o=ze(e,r);for(let i=0;i0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=G.runKernel(J1,r,s);return{values:a,indices:o}}var fI=V({unique_:MX});function OX(e,t,n){let r=O(e,"x","unsortedSegmentSum"),s=O(t,"segmentIds","unsortedSegmentSum","int32");z(fn(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return G.runKernel(of,a,o)}var PX=V({unsortedSegmentSum_:OX});function zX(e,t=0){let n=O(e,"x","unstack","string_or_numeric");z(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return G.runKernel(dd,r,s)}var Ds=V({unstack_:zX});function LX(e,t=!0,n,r){return G.makeVariable(e,t,n,r)}function mI(e,t){let n=[];for(let a=0;a"Shape mismatch in v and x");let l=De(1),u=ke(l,i),c=j(ke(o,a),u);if(s){z(r!=null,()=>"When using zeroDebias: true, step is required.");let d=O(r,"step","movingAverage");c=Re(c,ke(l,Jo(i,d)))}return de(a,c)}var s7e=V({movingAverage_:UX});function HX(e,t,n){let r=O(e,"indices","scatterND","int32"),s=O(t,"updates","scatterND");Sy(s,r,n);let a={indices:r,updates:s},o={shape:n};return G.runKernel(Qc,a,o)}var GX=V({scatterND_:HX});function jX(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function qX(e,t,n,r=0){let s=O(e,"sparseIndices","sparseToDense","int32"),a=O(t,"sparseValues","sparseToDense"),o=O(r,"defaultValue","sparseToDense",a.dtype);jX(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},l={outputShape:n};return G.runKernel(K1,i,l)}var AI=V({sparseToDense_:qX});function KX(e,t){let n=O(t,"indices","gatherND","int32"),s={params:O(e,"x","gatherND","string_or_numeric"),indices:n};return G.runKernel(Pc,s)}var XX=V({gatherND_:KX});function ZX(e,t){if(t==null)return e.shape.slice();if(Fa(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),z(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ot?s.clone():s;let a=ZX(s,n),o=1-t,i=Re(Sf(de($d(a,0,1,"float32",r),o)),o);return j(s,i)}var JX=V({dropout_:YX});function QX(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function xI(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;anZ,depthwiseConv2d:()=>oZ,matMul:()=>lZ});function eZ(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=Z(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=Z(t,[1,t.shape[0],t.shape[1],t.shape[2]])),z(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),z(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),z(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];z(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),z(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&z(fn(s),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:i,dy:l},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return G.runKernel(v1,d,h)}var Qy=V({conv2DBackpropFilter_:eZ});function Rf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return j(e,$f(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function _f(e,t){let n=t,r=on(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),Z(n,e.shape)}function Df(e,t,n,r){if(t==="linear")return e;if(t==="relu")return ca(e);if(t==="elu")return If(e);if(t==="relu6")return sI(e);if(t==="prelu")return Gy(e,n);if(t==="leakyrelu")return Oy(e,r);if(t==="sigmoid")return ia(e);throw new Error(`Unknown fused activation ${t}.`)}var Ff=(e,t)=>!(e>0)||t==="linear";function tZ({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Ff(G.state.gradientDepth,l)===!1){let v=Xo(e,t,n,r,s,a,o);return i!=null&&(v=de(v,i)),Df(v,l,u,c)}let d=O(e,"x","conv2d"),h=O(t,"filter","conv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=Z(d,[1,d.shape[0],d.shape[1],d.shape[2]])),z(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),z(h.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${h.rank}.`),o!=null&&z(fn(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),z(p.shape[3]===h.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${h.shape[2]}.`),z(Es(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),z(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=Id(p.shape,h.shape,n,a,r,o),g;i!=null&&(g=O(i,"bias","fused conv2d"),[g]=Vt(g,d),$t(m.outShape,g.shape));let y;u!=null&&(y=O(u,"prelu weights","fused conv2d"));let A=(v,I)=>{let[w,S,E,D]=I,$=Rf(v,E,l);z(Wa(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=Dy(S.shape,$,w,n,r),N=Qy(S,$,w.shape,n,r),M=[R,N];if(D!=null){let B=_f(D,$);M.push(B)}return M},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?la((I,w,S)=>{let E=G.runKernel(Bl,x,b);return S([w,I,E]),f&&(E=Z(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):la((I,w,S,E)=>{let D=G.runKernel(Bl,x,b);return E([w,I,D,S]),f&&(D=Z(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(p,h,g)}var nZ=V({fusedConv2d_:tZ});function rZ(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=Z(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=Z(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return G.runKernel(S1,u,c)}var bI=V({depthwiseConv2dNativeBackpropFilter_:rZ});function sZ(e,t,n,r,s,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=Z(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=G.runKernel(T1,u,c);return l?Z(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var vI=V({depthwiseConv2dNativeBackpropInput_:sZ});function aZ({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Ff(G.state.gradientDepth,l)===!1){let v=kf(e,t,n,r,s,a,o);return i!=null&&(v=de(v,i)),Df(v,l,u,c)}let d=O(e,"x","depthwiseConv2d"),h=O(t,"filter","depthwiseConv2d"),p=d,f=!1;d.rank===3&&(f=!0,p=Z(d,[1,d.shape[0],d.shape[1],d.shape[2]])),z(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),z(h.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${h.rank}.`),z(p.shape[3]===h.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${h.shape[2]}.`),a==null&&(a=[1,1]),z(Es(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&z(fn(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${r}.`);let m=Id(p.shape,h.shape,n,a,r,o,!0),g;i!=null&&(g=O(i,"bias","fused conv2d"),[g]=Vt(g,d),$t(m.outShape,g.shape));let y;u!=null&&(y=O(u,"prelu weights","fused depthwiseConv2d"));let A=(v,I)=>{z(Wa(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[w,S,E,D]=I,$=Rf(v,E,l),R=vI(S.shape,$,w,n,r,a,o),N=bI(S,$,w.shape,n,r,a,o);if(D!=null){let M=_f(g,$);return[R,N,M]}return[R,N]},x={x:p,filter:h,bias:g,preluActivationWeights:y},b={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?la((I,w,S)=>{let E=G.runKernel(Wl,x,b);return S([w,I,E]),f&&(E=Z(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(p,h):la((I,w,S,E)=>{let D=G.runKernel(Wl,x,b);return E([w,I,D,S]),f&&(D=Z(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:A}})(p,h,g)}var oZ=V({fusedDepthwiseConv2d_:aZ});function iZ({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Ff(G.state.gradientDepth,a)===!1){let D=rt(e,t,n,r);return s!=null&&(D=de(D,s)),Df(D,a,o,i)}let l=O(e,"a","fused matMul"),u=O(t,"b","fused matMul");[l,u]=Vt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=r?u.shape[u.rank-1]:u.shape[u.rank-2],h=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=sn(f),y=sn(m);z(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),z(Fa(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),z(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let A=l.shape.slice(0,-2).concat([h,p]),x=n?Z(l,[g,c,h]):Z(l,[g,h,c]),b=r?Z(u,[y,p,d]):Z(u,[y,d,p]),v;s!=null&&(v=O(s,"bias","fused matMul"),[v]=Vt(v,l),$t(A,v.shape));let I;o!=null&&(I=O(o,"prelu weights","fused matMul"));let w=(D,$)=>{let[R,N,M,B]=$,q=Rf(Z(D,M.shape),M,a),X,J;if(!n&&!r?(X=rt(q,N,!1,!0),J=rt(R,q,!0,!1)):!n&&r?(X=rt(q,N,!1,!1),J=rt(q,R,!0,!1)):n&&!r?(X=rt(N,q,!1,!0),J=rt(R,q,!1,!1)):(X=rt(N,q,!0,!0),J=rt(q,R,!0,!0)),s!=null){let ee=_f(B,q);return[X,J,ee]}else return[X,J]},S={a:x,b,bias:v,preluActivationWeights:I},E={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?la(($,R,N)=>{let M=G.runKernel(Ll,S,E);return N([$,R,M]),{value:Z(M,A),gradFunc:w}})(x,b):la(($,R,N,M)=>{let B=G.runKernel(Ll,S,E);return M([$,R,B,N]),{value:Z(B,A),gradFunc:w}})(x,b,v)}var lZ=V({fusedMatMul_:iZ});function uZ(e){return xI(e,.54,.46)}var a7e=V({hammingWindow_:uZ});function cZ(e){return xI(e,.5,.5)}var dZ=V({hannWindow_:cZ});function hZ(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(at(e,a,t)),a+=n;if(r)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),z(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),z(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),z(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),z(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),z(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let c={image:o,boxes:i,boxInd:l},d={method:s,extrapolationValue:a,cropSize:r};return G.runKernel($c,c,d)}var gZ=V({cropAndResize_:mZ});function yZ(e){let t=O(e,"image","flipLeftRight","float32");z(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return G.runKernel(Mc,n,{})}var AZ=V({flipLeftRight_:yZ});function xZ(e,t,n=0,r=.5){let s=O(e,"image","rotateWithOffset","float32");z(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return G.runKernel(pd,a,o)}var bZ=V({rotateWithOffset_:xZ});function Yl(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),z(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),z(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),z(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),z(t.rank===1,()=>"scores must be a 1D tensor"),z(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),z(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function vZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=O(e,"boxes","nonMaxSuppression"),o=O(t,"scores","nonMaxSuppression"),i=Yl(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return G.runKernel(Gc,{boxes:a,scores:o},l)}var wZ=V({nonMaxSuppression_:vZ});function kZ(e,t,n){let r=IZ(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function IZ(e,t,n){return TZ(e,t,n||SZ)}function SZ(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function wI(e,t,n,r,s){return eA(e,t,n,r,s,0)}function kI(e,t,n,r,s,a){return eA(e,t,n,r,s,0,!1,a,!0)}function II(e,t,n,r,s,a){return eA(e,t,n,r,s,a,!0)}function eA(e,t,n,r,s,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;gs&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(SI);let c=a>0?-.5/a:0,d=[],h=[];for(;d.length0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y=x;--v){let I=NZ(e,A,d[v]);if(I>=r){b=!0;break}if(g.score=g.score*CZ(r,c,I),g.score<=s)break}g.suppressBeginIndex=d.length,b||(g.score===y?(d.push(A),h.push(g.score)):g.score>s&&kZ(u,g,SI))}let p=d.length,f=n-p;i&&f>0&&(d.push(...new Array(f).fill(0)),h.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=h),l&&(m.validOutputs=p),m}function NZ(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(s[0],s[2]),c=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),h=Math.max(s[1],s[3]),p=(i-a)*(l-o),f=(d-u)*(h-c);if(p<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,d),A=Math.min(l,h),x=Math.max(y-m,0)*Math.max(A-g,0);return x/(p+f-x)}function CZ(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function SI(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function EZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=O(e,"boxes","nonMaxSuppressionAsync"),o=O(t,"scores","nonMaxSuppressionAsync"),i=Yl(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=wI(u,c,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),En(d,"int32")}var $Z=EZ;function RZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=O(e,"boxes","nonMaxSuppression"),i=O(t,"scores","nonMaxSuppression"),l=Yl(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=G.runKernel(qc,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var _Z=V({nonMaxSuppressionWithScore_:RZ});async function DZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=O(e,"boxes","nonMaxSuppressionAsync"),i=O(t,"scores","nonMaxSuppressionAsync"),l=Yl(o,i,n,r,s,a);n=l.maxOutputSize,r=l.iouThreshold,s=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:h,selectedScores:p}=II(c,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:En(h,"int32"),selectedScores:En(p)}}var FZ=DZ;function MZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=O(e,"boxes","nonMaxSuppression"),i=O(t,"scores","nonMaxSuppression"),l=Yl(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,h={boxes:o,scores:i},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=G.runKernel(jc,h,p);return{selectedIndices:f[0],validOutputs:f[1]}}var OZ=V({nonMaxSuppressionPadded_:MZ});async function PZ(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=O(e,"boxes","nonMaxSuppressionAsync"),i=O(t,"scores","nonMaxSuppressionAsync"),l=Yl(o,i,n,r,s,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[h,p]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=kI(h,p,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:En(f,"int32"),validOutputs:De(m,"int32")}}var zZ=PZ;function LZ(e,t,n=!1,r=!1){let s=O(e,"images","resizeBilinear");z(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),z(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),z(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=Z(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=G.runKernel(Nl,i,l);return o?Z(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var BZ=V({resizeBilinear_:LZ});function WZ(e,t,n=!1,r=!1){let s=O(e,"images","resizeNearestNeighbor");z(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),z(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),z(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),z(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=Z(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:r,size:t},u=G.runKernel(sf,i,l);return o?Z(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var VZ=V({resizeNearestNeighbor_:WZ});function UZ(e,t="binary",n=!1,r=.5){let s=O(e,"image","threshold"),a=.2989,o=.587,i=.114,l=s.shape[0]*s.shape[1],u=j(En([r]),255),c,d,h,p;if(z(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),z(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),z(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),z(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[c,d,h]=Rr(s,[1,1,1],-1);let g=j(c,a),y=j(d,o),A=j(h,i);p=de(de(g,y),A)}else p=e;if(t==="otsu"){let g=V6(xe(aI(p),"int32"),Cs([]),256);u=HZ(g,l)}let f=n?Xl(p,u):$r(p,u);return xe(j(f,255),"int32")}function HZ(e,t){let n=En([-1]),r=En([0]),s=En([0]),a,o,i,l,u,c;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),z(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),z(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return G.runKernel(cd,l,u)}var qZ=V({transform_:jZ});function KZ(e,t,n){z(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),z(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=O(e,"a","bandPart");z(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=Z(Rd(0,a,1,"int32"),[-1,1]),l=Rd(0,o,1,"int32"),u=ke(i,l),c=_s(Xl(u,De(+t,"int32")),Kl(u,De(-n,"int32"))),d=ln([a,o],r.dtype);return Z(Xr(Ds(Z(r,[-1,a,o])).map(h=>Zn(c,h,d))),s)}var XZ=V({bandPart_:KZ});function ZZ(e){let t;if(Array.isArray(e)){t=!1,z(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=Rr(e,e.shape[0],0).map(s=>Qo(s,[0]));z(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s{let a=r[s];if(s>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return TI(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=Ds(Z(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(l=>{let[u,c]=TI(l,t);s.push(u),a.push(c)});let o=Z(Xr(s,0),e.shape),i=Z(Xr(a,0),e.shape);return[o,i]}}function TI(e,t=!1){return G.tidy(()=>{z(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=X6(n),a=za(e),o=Zl([[1]],[1,1]),i=za(o),l=n>=r?r:n;for(let u=0;u{let p=at(a,[u,u],[n-u,1]),f=yI(p),m=at(a,[u,u],[1,1]),g=Zn($r(m,0),Zl([[-1]]),Zl([[1]])),y=ke(m,j(g,f)),A=Re(p,y);A.shape[0]===1?i=za(o):i=an([o,at(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=qt(Re(rt(g,y),f)),b=at(a,[u,0],[n-u,r]),v=j(x,i),I=st(i);if(u===0)a=ke(b,rt(v,rt(I,b)));else{let E=ke(b,rt(v,rt(I,b)));a=an([at(a,[0,0],[u,r]),E],0)}let w=st(v),S=at(s,[0,u],[n,s.shape[1]-u]);if(u===0)s=ke(S,rt(rt(S,i),w));else{let E=ke(S,rt(rt(S,i),w));s=an([at(s,[0,0],[n,u]),E],1)}return[i,a,s]}),Ge([c,d,h])}return!t&&n>r&&(s=at(s,[0,0],[n,r]),a=at(a,[0,0],[r,r])),[s,a]})}var QZ=V({qr_:JZ}),Yn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Yn||(Yn={}));function eY(e,t,n=Yn.SUM_BY_NONZERO_WEIGHTS){let r=O(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=O(t,"weights","computeWeightedLoss"));let a=s==null?r:j(r,s);if(n===Yn.NONE)return a;if(n===Yn.SUM)return Te(a);if(n===Yn.MEAN){if(s==null)return Xt(a);{let o=r.size/s.size,i=Re(Te(a),Te(s));return o>1?Re(i,De(o)):i}}if(n===Yn.SUM_BY_NONZERO_WEIGHTS){if(s==null)return Re(Te(a),De(r.size));{let o=j(s,ua(r.shape)),i=xe(Te(Ed(o,De(0))),"float32");return Re(Te(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ua=V({computeWeightedLoss_:eY});function tY(e,t,n,r=Yn.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","absoluteDifference"),a=O(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=O(n,"weights","absoluteDifference")),ss(s.shape,a.shape,"Error in absoluteDifference: ");let i=gn(ke(s,a));return Ua(i,o,r)}var i7e=V({absoluteDifference_:tY});function nY(e,t,n,r,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"labels","cosineDistance"),o=O(t,"predictions","cosineDistance"),i=null;r!=null&&(i=O(r,"weights","cosineDistance")),ss(a.shape,o.shape,"Error in cosineDistance: ");let l=De(1),u=ke(l,Te(j(a,o),n,!0));return Ua(u,i,s)}var l7e=V({cosineDistance_:nY});function rY(e,t,n,r=Yn.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","hingeLoss"),a=O(t,"predictions","hingeLoss"),o=null;n!=null&&(o=O(n,"weights","hingeLoss")),ss(s.shape,a.shape,"Error in hingeLoss: ");let i=De(1);s=ke(j(De(2),s),i);let l=ca(ke(i,j(s,a)));return Ua(l,o,r)}var u7e=V({hingeLoss_:rY});function sY(e,t,n,r=1,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"labels","huberLoss"),o=O(t,"predictions","huberLoss"),i=null;n!=null&&(i=O(n,"weights","huberLoss")),ss(a.shape,o.shape,"Error in huberLoss: ");let l=De(r),u=gn(ke(o,a)),c=Nf(u,l),d=ke(u,c),h=de(j(De(.5),Tt(c)),j(l,d));return Ua(h,i,s)}var c7e=V({huberLoss_:sY});function aY(e,t,n,r=1e-7,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"labels","logLoss"),o=O(t,"predictions","logLoss"),i=null;n!=null&&(i=O(n,"weights","logLoss")),ss(a.shape,o.shape,"Error in logLoss: ");let l=De(1),u=De(r),c=qt(j(a,jr(de(o,u)))),d=j(ke(l,a),jr(de(ke(l,o),u))),h=ke(c,d);return Ua(h,i,s)}var d7e=V({logLoss_:aY});function oY(e,t,n,r=Yn.SUM_BY_NONZERO_WEIGHTS){let s=O(e,"labels","meanSquaredError"),a=O(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=O(n,"weights","meanSquaredError")),ss(s.shape,a.shape,"Error in meanSquaredError: ");let i=pI(s,a);return Ua(i,o,r)}var h7e=V({meanSquaredError_:oY});function iY(e,t){let n=O(e,"labels","sigmoidCrossEntropyWithLogits"),r=O(t,"logits","sigmoidCrossEntropyWithLogits");ss(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=ca(r),a=j(r,n),o=Py(Gr(qt(gn(r))));return de(ke(s,a),o)}function lY(e,t,n,r=0,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"multiClassLabels","sigmoidCrossEntropy"),o=O(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=O(n,"weights","sigmoidCrossEntropy")),ss(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=De(r),c=De(1),d=De(.5);a=de(j(a,ke(c,u)),j(d,u))}let l=iY(a,o);return Ua(l,i,s)}var p7e=V({sigmoidCrossEntropy_:lY});function uY(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return la((s,a,o)=>{let l=tK(a,[n],!0),u=ke(xe(a,"float32"),l);o([s,u]);let c=qt(j(u,s));return{value:Te(c,[n]),gradFunc:(p,f)=>{let[m,g]=f,y=Zo(p.shape,[n]);return[j(Z(p,y),ke(xe(m,"float32"),Gr(g))),j(Z(p,y),ke(Gr(g),xe(m,"float32")))]}}})(e,t)}function cY(e,t,n,r=0,s=Yn.SUM_BY_NONZERO_WEIGHTS){let a=O(e,"onehotLabels","softmaxCrossEntropy"),o=O(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=O(n,"weights","softmaxCrossEntropy")),ss(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let u=De(r),c=De(1),d=De(a.shape[1]);a=de(j(a,ke(c,u)),Re(u,d))}let l=uY(a,o);return Ua(l,i,s)}var f7e=V({softmaxCrossEntropy_:cY});function dY(e,t,n,r){let s=O(e,"indices","sparseFillEmptyRows"),a=O(t,"values","sparseFillEmptyRows"),o=O(n,"denseShape","sparseFillEmptyRows"),i=O(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape + ${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:s,values:a,denseShape:o,defaultValue:i},u=G.runKernel(H1,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var hY=V({sparseFillEmptyRows_:dY});function pY(e,t,n){let r=O(e,"inputIndices","sparseReshape"),s=O(t,"inputShape","sparseReshape"),a=O(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape + ${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=G.runKernel(G1,o);return{outputIndices:i[0],outputShape:i[1]}}var fY=V({sparseReshape_:pY});function mY(e,t,n){let r=O(e,"data","sparseSegmentMean"),s=O(t,"indices","sparseSegmentMean"),a=O(n,"segmentIds","sparseSegmentMean");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return G.runKernel(Zy,o)}var nY=V({sparseSegmentMean_:tY});function rY(e,t,n){let r=M(e,"data","sparseSegmentSum"),s=M(t,"indices","sparseSegmentSum"),a=M(n,"segmentIds","sparseSegmentSum");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape + ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return G.runKernel(j1,o)}var gY=V({sparseSegmentMean_:mY});function yY(e,t,n){let r=O(e,"data","sparseSegmentSum"),s=O(t,"indices","sparseSegmentSum"),a=O(n,"segmentIds","sparseSegmentSum");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape - ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return G.runKernel(Yy,o)}var sY=V({sparseSegmentSum_:rY});function aY(e,t,n,r,s,a,o,i){let l=M(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=M(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=G.runKernel(Qy,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var oY=V({stringNGrams_:aY});function iY(e,t,n=!0){let r=M(e,"input","stringSplit","string"),s=M(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=G.runKernel(eA,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var lY=V({stringSplit_:iY});function uY(e,t){let n=M(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return G.runKernel(tA,s,r)}var cY=V({stringToHashBucketFast_:uY}),ni={flipLeftRight:oZ,resizeNearestNeighbor:WI,resizeBilinear:BI,rotateWithOffset:lZ,cropAndResize:sZ,nonMaxSuppression:cZ,nonMaxSuppressionAsync:AZ,nonMaxSuppressionWithScore:bZ,nonMaxSuppressionWithScoreAsync:wZ,nonMaxSuppressionPadded:IZ,nonMaxSuppressionPaddedAsync:TZ,threshold:_Z,transform:DZ},dY={bandPart:MZ,gramSchmidt:PZ,qr:LZ},Vf={sparseFillEmptyRows:JZ,sparseReshape:eY,sparseSegmentMean:nY,sparseSegmentSum:sY},p1={stringNGrams:oY,stringSplit:lY,stringToHashBucketFast:cY},Ha=class extends V6{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return je(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Bq(e,t)}dispose(){this.iterations_!=null&&je(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Fe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ha,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var f1=class extends Ha{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:Z(()=>rt(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:Z(()=>rt(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,l=this.accumulatedUpdates[r].variable;Z(()=>{let u=pe(K(i,this.rho),K(wt(o),1-this.rho)),c=K(Re($n(pe(l,this.epsilon)),$n(pe(i,this.epsilon))),o),d=pe(K(l,this.rho),K(wt(c),1-this.rho));i.assign(u),l.assign(d);let h=pe(K(c,-this.learningRate),s);s.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(je(this.accumulatedGrads.map(e=>e.variable)),je(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};f1.className="Adadelta";Pa(f1);var m1=class extends Ha{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:Z(()=>Cd(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;Z(()=>{let i=pe(o,wt(a));o.assign(i);let l=pe(K(Re(a,$n(pe(i,G.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&je(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};m1.className="Adagrad";Pa(m1);var g1=class extends Ha{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Z(()=>{this.accBeta1=Fe(t).variable(),this.accBeta2=Fe(n).variable()}),r==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=Ne(1,this.accBeta1),r=Ne(1,this.accBeta2);t.forEach((s,a)=>{let o=G.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Z(()=>rt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:Z(()=>rt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=pe(K(u,this.beta1),K(l,1-this.beta1)),h=pe(K(c,this.beta2),K(wt(l),1-this.beta2)),p=Re(d,n),f=Re(h,r);u.assign(d),c.assign(h);let m=pe(K(Re(p,pe($n(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(K(this.accBeta1,this.beta1)),this.accBeta2.assign(K(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&je(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&je(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Z(()=>{this.accBeta1.assign(Va(this.beta1,this.iterations_+1)),this.accBeta2.assign(Va(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};g1.className="Adam";Pa(g1);var y1=class extends Ha{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Z(()=>{this.iteration=Fe(0).variable(),this.accBeta1=Fe(t).variable()}),r==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Z(()=>{let n=Ne(1,this.accBeta1),r=Re(-this.learningRate,pe(K(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=G.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:rt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:rt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=pe(K(u,this.beta1),K(l,1-this.beta1)),h=K(c,this.beta2),p=yn(l),f=ia(h,p);u.assign(d),c.assign(f);let m=pe(K(Re(r,n),Re(d,pe(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(pe(this.iteration,1)),this.accBeta1.assign(K(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&je(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&je(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};y1.className="Adamax";Pa(y1);var Uf=class extends Ha{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=G.registeredVariables[n];Z(()=>{let o=pe(K(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Sn(Fe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Uf.className="SGD";Pa(Uf);var A1=class extends Uf{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Fe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:Z(()=>rt(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&Z(()=>{let i,l=pe(K(this.m,a),o);this.useNesterov?i=pe(K(this.c,pe(o,K(l,this.m))),s):i=pe(K(this.c,l),s),a.assign(l),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&je(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};A1.className="Momentum";Pa(A1);var x1=class extends Ha{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=G.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:Z(()=>rt(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:Z(()=>rt(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:Z(()=>rt(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,l=this.accumulatedMoments[r].variable;Z(()=>{let u=pe(K(i,this.decay),K(wt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[r].variable,d=pe(K(c,this.decay),K(o,1-this.decay)),h=Re(K(o,this.learningRate),$n(Ne(u,pe(wt(d),this.epsilon)))),p=pe(K(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=Ne(s,p);s.assign(f)}else{let c=pe(K(i,this.decay),K(wt(o),1-this.decay)),d=pe(K(l,this.momentum),Re(K(o,this.learningRate),$n(pe(c,this.epsilon))));i.assign(c),l.assign(d);let h=Ne(s,d);s.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&je(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&je(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&je(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};x1.className="RMSProp";Pa(x1);var ri=class{static sgd(e){return new Uf(e)}static momentum(e,t,n=!1){return new A1(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new x1(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new g1(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new f1(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new y1(e,t,n,r,s)}static adagrad(e,t=.1){return new m1(e,t)}},tu={sgd:ri.sgd,momentum:ri.momentum,adadelta:ri.adadelta,adagrad:ri.adagrad,rmsprop:ri.rmsprop,adamax:ri.adamax,adam:ri.adam},hY=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function b1(){return new Promise(e=>hY(()=>e()))}var R={};De(R,{ERF_A1:()=>kY,ERF_A2:()=>IY,ERF_A3:()=>SY,ERF_A4:()=>TY,ERF_A5:()=>NY,ERF_P:()=>wY,PARALLELIZE_THRESHOLD:()=>v1,SELU_SCALE:()=>HI,SELU_SCALEALPHA:()=>UI,applyActivation:()=>Bf,assertAndGetBroadcastShape:()=>Rt,assertAxesAreInnerMostDims:()=>Xq,assertParamsConsistent:()=>pY,assignToTypedArray:()=>MY,axesAreInnerMostDims:()=>HA,calculateShapes:()=>$6,checkEinsumDimSizes:()=>WY,combineLocations:()=>fI,complexWithEvenIndex:()=>RY,complexWithOddIndex:()=>DY,computeConv2DInfo:()=>Id,computeConv3DInfo:()=>Q6,computeDefaultPad:()=>DA,computeDilation2DInfo:()=>uj,computeOptimalWindowSize:()=>mY,computeOutAndReduceShapes:()=>mI,computeOutShape:()=>fY,computePool2DInfo:()=>J6,computePool3DInfo:()=>cj,convertConv2DDataFormat:()=>eI,decodeEinsumEquation:()=>LY,eitherStridesOrDilationsAreOne:()=>_s,expandShapeToKeepDim:()=>ei,exponent:()=>PY,exponents:()=>OY,fromStringArrayToUint8:()=>ZY,fromUint8ToStringArray:()=>XY,getAxesPermutation:()=>gI,getBroadcastDims:()=>iq,getComplexWithIndex:()=>FY,getEinsumComputePath:()=>VY,getEinsumPermutation:()=>BY,getFusedBiasGradient:()=>Lf,getFusedDyActivation:()=>zf,getImageCenter:()=>gY,getInnerMostAxes:()=>Zq,getPermuted:()=>AY,getReductionAxes:()=>ln,getReshaped:()=>yY,getReshapedPermuted:()=>xY,getSliceBeginCoords:()=>bY,getSliceSize:()=>vY,getUndoAxesPermutation:()=>GA,isIdentityPermutation:()=>UY,log:()=>EY,mergeRealAndImagArrays:()=>$Y,prepareAndValidate:()=>C6,prepareSplitSize:()=>GY,segment_util:()=>qI,shouldFuse:()=>Wf,slice_util:()=>En,splitRealAndImagArrays:()=>_Y,tupleValuesAreOne:()=>La,upcastType:()=>qr,validateInput:()=>CA,validateUpdateShape:()=>NA,warn:()=>CY});function pY(e,t){let n=e[0].length;e.forEach((s,a)=>{z(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),z(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function fY(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||o%2==1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function xY(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a/g,GI=",",jI="...";function LY(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(zY,"").length)/w1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${w1}").`);let[r,s]=e.split(w1);z(r.indexOf(jI)===-1,()=>`The ellipsis notation ("${jI}") is not supported yet.`);let a=r.split(GI),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;hf.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;hs!==-1),{permutationIndices:n,expandDims:r}}function WY(e,t,n){let r=new Array(e);for(let s=0;s`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function VY(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;ot===n)}function HY(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);z(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}z(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var qI={};De(qI,{collectGatherOpShapeInfo:()=>KY,computeOutShape:()=>qY,segOpComputeOptimalWindowSize:()=>jY});function jY(e,t){let n=!1,r;for(e<=v1?(r=e,n=!0):r=Gp(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Gp(e,r+1);return r}function qY(e,t,n){let r=[],s=e.length;for(let a=0;as))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) ( - ${a}).`);if(nff(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function ZY(e){return e.map(t=>pf(t))}var ca={};De(ca,{nonMaxSuppressionV3Impl:()=>OI,nonMaxSuppressionV4Impl:()=>PI,nonMaxSuppressionV5Impl:()=>zI,whereImpl:()=>$I});re().prototype.abs=function(){return this.throwIfDisposed(),yn(this)};re().prototype.acos=function(){return this.throwIfDisposed(),H6(this)};re().prototype.acosh=function(){return this.throwIfDisposed(),G6(this)};re().prototype.add=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.all=function(e,t){return this.throwIfDisposed(),RA(this,e,t)};re().prototype.any=function(e,t){return this.throwIfDisposed(),wf(this,e,t)};re().prototype.argMax=function(e){return this.throwIfDisposed(),kf(this,e)};re().prototype.argMin=function(e){return this.throwIfDisposed(),j6(this,e)};re().prototype.asScalar=function(){return this.throwIfDisposed(),z(this.size===1,()=>"The array must have only 1 element."),J(this,[])};re().prototype.asType=function(e){return this.throwIfDisposed(),ke(this,e)};re().prototype.as1D=function(){return this.throwIfDisposed(),J(this,[this.size])};re().prototype.as2D=function(e,t){return this.throwIfDisposed(),J(this,[e,t])};re().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),J(this,[e,t,n])};re().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),J(this,[e,t,n,r])};re().prototype.as5D=function(e,t,n,r,s){return this.throwIfDisposed(),J(this,[e,t,n,r,s])};re().prototype.asin=function(){return this.throwIfDisposed(),q6(this)};re().prototype.asinh=function(){return this.throwIfDisposed(),K6(this)};re().prototype.atan=function(){return this.throwIfDisposed(),X6(this)};re().prototype.atan2=function(e){return this.throwIfDisposed(),Z6(this,e)};re().prototype.atanh=function(){return this.throwIfDisposed(),Y6(this)};re().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Sf(this,e,t,n,r)};re().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Tf(this,e,t)};re().prototype.batchNorm=function(e,t,n,r,s){return this.throwIfDisposed(),Xl(this,e,t,n,r,s)};re().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Sd(this,e)};re().prototype.cast=function(e){return this.throwIfDisposed(),ke(this,e)};re().prototype.ceil=function(){return this.throwIfDisposed(),rI(this)};re().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),dr(this,e,t)};re().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ct&&(e=[e]),en([this,...e],t)};re().prototype.conv1d=function(e,t,n,r,s,a){return this.throwIfDisposed(),MA(this,e,t,n,r,s,a)};re().prototype.conv2dTranspose=function(e,t,n,r,s){return this.throwIfDisposed(),PA(this,e,t,n,r,s)};re().prototype.conv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),Ba(this,e,t,n,r,s,a)};re().prototype.cos=function(){return this.throwIfDisposed(),Nf(this)};re().prototype.cosh=function(){return this.throwIfDisposed(),zA(this)};re().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),LA(this,e,t,n)};re().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),oI(this,e,t)};re().prototype.depthwiseConv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),Td(this,e,t,n,r,s,a)};re().prototype.dilation2d=function(e,t,n,r,s){return this.throwIfDisposed(),iI(this,e,t,n,r,s)};re().prototype.divNoNan=function(e){return this.throwIfDisposed(),lI(this,e)};re().prototype.div=function(e){return this.throwIfDisposed(),Re(this,e)};re().prototype.dot=function(e){return this.throwIfDisposed(),pq(this,e)};re().prototype.elu=function(){return this.throwIfDisposed(),Nd(this)};re().prototype.equal=function(e){return this.throwIfDisposed(),Zo(this,e)};re().prototype.erf=function(){return this.throwIfDisposed(),uI(this)};re().prototype.exp=function(){return this.throwIfDisposed(),Kr(this)};re().prototype.expandDims=function(e){return this.throwIfDisposed(),$r(this,e)};re().prototype.expm1=function(){return this.throwIfDisposed(),cI(this)};re().prototype.fft=function(){return this.throwIfDisposed(),a1(this)};re().prototype.flatten=function(){return this.throwIfDisposed(),J(this,[this.size])};re().prototype.floor=function(){return this.throwIfDisposed(),Ed(this)};re().prototype.floorDiv=function(e){return this.throwIfDisposed(),_A(this,e)};re().prototype.gather=function(e,t){return this.throwIfDisposed(),$d(this,e,t)};re().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Jo(this,e)};re().prototype.greater=function(e){return this.throwIfDisposed(),_r(this,e)};re().prototype.ifft=function(){return this.throwIfDisposed(),Pf(this)};re().prototype.irfft=function(){return this.throwIfDisposed(),SI(this)};re().prototype.isFinite=function(){return this.throwIfDisposed(),Eq(this)};re().prototype.isInf=function(){return this.throwIfDisposed(),_q(this)};re().prototype.isNaN=function(){return this.throwIfDisposed(),hI(this)};re().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Cf(this,e)};re().prototype.lessEqual=function(e){return this.throwIfDisposed(),Qo(this,e)};re().prototype.less=function(e){return this.throwIfDisposed(),WA(this,e)};re().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),pI(this,e,t,n,r)};re().prototype.logSigmoid=function(){return this.throwIfDisposed(),Hq(this)};re().prototype.logSoftmax=function(e){return this.throwIfDisposed(),UA(this,e)};re().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),yI(this,e,t)};re().prototype.log=function(){return this.throwIfDisposed(),Rr(this)};re().prototype.log1p=function(){return this.throwIfDisposed(),VA(this)};re().prototype.logicalAnd=function(e){return this.throwIfDisposed(),is(this,e)};re().prototype.logicalNot=function(){return this.throwIfDisposed(),Ef(this)};re().prototype.logicalOr=function(e){return this.throwIfDisposed(),jA(this,e)};re().prototype.logicalXor=function(e){return this.throwIfDisposed(),nK(this,e)};re().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ot(this,e,t,n)};re().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),$f(this,e,t,n,r)};re().prototype.max=function(e,t){return this.throwIfDisposed(),os(this,e,t)};re().prototype.maximum=function(e){return this.throwIfDisposed(),ia(this,e)};re().prototype.mean=function(e,t){return this.throwIfDisposed(),Xt(this,e,t)};re().prototype.min=function(e,t){return this.throwIfDisposed(),_f(this,e,t)};re().prototype.minimum=function(e){return this.throwIfDisposed(),_d(this,e)};re().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),xI(this,e,t)};re().prototype.mod=function(e){return this.throwIfDisposed(),bI(this,e)};re().prototype.mul=function(e){return this.throwIfDisposed(),K(this,e)};re().prototype.neg=function(){return this.throwIfDisposed(),Kt(this)};re().prototype.norm=function(e,t,n){return this.throwIfDisposed(),c1(this,e,t,n)};re().prototype.notEqual=function(e){return this.throwIfDisposed(),Yl(this,e)};re().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),kd(this,e,t,n)};re().prototype.onesLike=function(){return this.throwIfDisposed(),Dr(this)};re().prototype.pad=function(e,t){return this.throwIfDisposed(),Wa(this,e,t)};re().prototype.pool=function(e,t,n,r,s){return this.throwIfDisposed(),$K(this,e,t,n,r,s)};re().prototype.pow=function(e){return this.throwIfDisposed(),Va(this,e)};re().prototype.prelu=function(e){return this.throwIfDisposed(),Df(this,e)};re().prototype.prod=function(e,t){return this.throwIfDisposed(),KA(this,e,t)};re().prototype.reciprocal=function(){return this.throwIfDisposed(),vI(this)};re().prototype.relu=function(){return this.throwIfDisposed(),ua(this)};re().prototype.relu6=function(){return this.throwIfDisposed(),YA(this)};re().prototype.reshapeAs=function(e){return this.throwIfDisposed(),J(this,e.shape)};re().prototype.reshape=function(e){return this.throwIfDisposed(),J(this,e)};re().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),BI(this,e,t,n)};re().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),WI(this,e,t,n)};re().prototype.reverse=function(e){return this.throwIfDisposed(),Fr(this,e)};re().prototype.rfft=function(){return this.throwIfDisposed(),o1(this)};re().prototype.round=function(){return this.throwIfDisposed(),JA(this)};re().prototype.rsqrt=function(){return this.throwIfDisposed(),QA(this)};re().prototype.selu=function(){return this.throwIfDisposed(),e1(this)};re().prototype.separableConv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),wI(this,e,t,n,r,s,a)};re().prototype.sigmoid=function(){return this.throwIfDisposed(),Rs(this)};re().prototype.sign=function(){return this.throwIfDisposed(),kI(this)};re().prototype.sin=function(){return this.throwIfDisposed(),t1(this)};re().prototype.sinh=function(){return this.throwIfDisposed(),n1(this)};re().prototype.slice=function(e,t){return this.throwIfDisposed(),nt(this,e,t)};re().prototype.softmax=function(e){return this.throwIfDisposed(),Of(this,e)};re().prototype.softplus=function(){return this.throwIfDisposed(),Zl(this)};re().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Rf(this,e,t)};re().prototype.split=function(e,t){return this.throwIfDisposed(),hr(this,e,t)};re().prototype.sqrt=function(){return this.throwIfDisposed(),$n(this)};re().prototype.square=function(){return this.throwIfDisposed(),wt(this)};re().prototype.squaredDifference=function(e){return this.throwIfDisposed(),i1(this,e)};re().prototype.squeeze=function(e){return this.throwIfDisposed(),Jl(this,e)};re().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ct?[this,e]:[this,...e];return Mr(n,t)};re().prototype.step=function(e){return this.throwIfDisposed(),Fd(this,e)};re().prototype.stridedSlice=function(e,t,n,r,s,a,o,i){return this.throwIfDisposed(),TI(this,e,t,n,r,s,a,o,i)};re().prototype.sub=function(e){return this.throwIfDisposed(),Ne(this,e)};re().prototype.sum=function(e,t){return this.throwIfDisposed(),_e(this,e,t)};re().prototype.tan=function(){return this.throwIfDisposed(),NI(this)};re().prototype.tanh=function(){return this.throwIfDisposed(),Kl(this)};re().prototype.tile=function(e){return this.throwIfDisposed(),Yo(this,e)};re().prototype.toBool=function(){return this.throwIfDisposed(),ke(this,"bool")};re().prototype.toFloat=function(){return this.throwIfDisposed(),ke(this,"float32")};re().prototype.toInt=function(){return this.throwIfDisposed(),ke(this,"int32")};re().prototype.topk=function(e,t){return this.throwIfDisposed(),CI(this,e,t)};re().prototype.transpose=function(e){return this.throwIfDisposed(),pt(this,e)};re().prototype.unique=function(e){return this.throwIfDisposed(),u1(this,e)};re().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),EI(this,e,t)};re().prototype.unstack=function(e){return this.throwIfDisposed(),ls(this,e)};re().prototype.where=function(e,t){return this.throwIfDisposed(),Ln(e,this,t)};re().prototype.zerosLike=function(){return this.throwIfDisposed(),rt(this)};var KI={kernelName:xc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,Fd(ke(n,"float32"),-1))}}},YY={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=wt(ke(n,"float32")),s=$n(Ne(Fe(1),r));return Kt(Re(e,s))}}}},JY={kernelName:vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=$n(Ne(wt(ke(n,"float32")),1));return Re(e,r)}}}},QY={kernelName:Fa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Rt(n.shape,r.shape);return{a:()=>{let i=e,l=ln(n.shape,s);return l.length>0&&(i=_e(i,l)),J(i,n.shape)},b:()=>{let i=e,l=ln(r.shape,s);return l.length>0&&(i=_e(i,l)),J(i,r.shape)}}}},eJ={kernelName:Zi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,s)=>{n[s]=()=>e.clone()}),n}},tJ={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>rt(n)}}},nJ={kernelName:qp,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>rt(n)}}},rJ={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,$n(Ne(Fe(1),wt(ke(n,"float32")))))}}},sJ={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=$n(pe(Fe(1),wt(ke(n,"float32"))));return Re(e,r)}}}},aJ={kernelName:Cc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Rt(n.shape,r.shape);return{a:()=>{let i=pe(wt(n),wt(r)),l=K(e,Re(r,i)),u=ln(n.shape,s);return u.length>0&&(l=_e(l,u)),J(l,n.shape)},b:()=>{let i=pe(wt(n),wt(r)),l=Kt(K(e,Re(n,i))),u=ln(r.shape,s);return u.length>0&&(l=_e(l,u)),J(l,r.shape)}}}},oJ={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,pe(wt(ke(n,"float32")),1))}}},iJ={kernelName:Nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,Ne(Fe(1),wt(ke(n,"float32"))))}}};function lJ(e,t,n,r,s,a){let o=M(e,"dy","avgPool3dGrad"),i=M(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=J(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),z(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),z(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&z(mn(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:l,input:u},h={filterSize:n,strides:r,pad:s,dimRoundingMode:a},p=G.runKernel(wy,d,h);return c?J(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var uJ=V({avgPool3dGrad_:lJ}),cJ={kernelName:Kp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>uJ(e,r,s,a,o,i)}}};function dJ(e,t,n,r,s){let a=M(e,"dy","avgPoolGrad"),o=M(t,"input","avgPoolGrad");z(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=J(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=J(a,[1,a.shape[0],a.shape[1],a.shape[2]])),z(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),z(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:r,pad:s},h=G.runKernel(vy,c,d);return u?J(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var hJ=V({avgPoolGrad_:dJ}),pJ={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o}=n;return{x:()=>hJ(e,r,s,a,o)}}},fJ={kernelName:Qi,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,s]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>ot(e,s,!1,!0),b:()=>ot(r,e,!0,!1)}:!a&&o?{a:()=>ot(e,s,!1,!1),b:()=>ot(e,r,!0,!1)}:a&&!o?{a:()=>ot(s,e,!1,!0),b:()=>ot(r,e,!1,!1)}:{a:()=>ot(s,e,!0,!0),b:()=>ot(e,r,!0,!0)}}},mJ={kernelName:Xp,gradFunc:(e,t,n)=>{let{blockShape:r,crops:s}=n;return{x:()=>Rf(e,r,s)}}},gJ={kernelName:nH,gradFunc:(e,t,n)=>{let r=n,s=r.inputShape,a=r.shape,o=Array.from(a);for(let l=s.length-1;l>=0;l--)if(s[l]===a[l])o[l]=1;else if(s[l]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>_e(e,i,!0)}}},yJ={kernelName:el,gradFunc:e=>({x:()=>e.clone()})},AJ={kernelName:No,gradFunc:e=>({x:()=>rt(e)})},xJ={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:s,clipValueMax:a}=n;return{x:()=>Ln(is(Jo(r,s),Qo(r,a)),e,rt(e))}}},bJ={kernelName:Zp,inputsToSave:["x"],gradFunc:KI.gradFunc},vJ={kernelName:Ec,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(l=>l.shape),{axis:s}=n,a=jr(s,t[0].shape)[0],o=r.map(l=>l[a]);return hr(e,o,a).map(l=>()=>l)}},wJ={kernelName:tl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return z(La(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>OA(r.shape,e,s,o,i,l),filter:()=>d1(r,e,s.shape,o,i,l)}}},kJ={kernelName:nl,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Ba(e,s,a,o,i,1,l),filter:()=>d1(e,r,s.shape,a,o,i,l)}}};function IJ(e,t,n,r,s){let a=e;e.rank===4&&(a=J(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=J(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),z(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),z(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),z(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),z(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),z(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:r,pad:s,filterShape:n};return G.runKernel(Ty,i,l)}var SJ=V({conv3DBackpropFilter_:IJ}),TJ={kernelName:Yp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a}=n;z(La(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[o,i]=t;return{x:()=>aI(o.shape,e,i,s,a),filter:()=>SJ(o,e,i.shape,s,a)}}},NJ={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(Kt(t1(ke(n,"float32"))),e)}}},CJ={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(n1(ke(n,"float32")),e)}}},EJ={kernelName:sl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s,exclusive:a,reverse:o}=n;return{x:()=>{let i=gI([s],r.rank),l=LA(e,s,a,!o);return i!=null&&(l=pt(l,i)),l}}}},$J={kernelName:al,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a,dimRoundingMode:o}=n,i=r==null?[1,1]:r;z(La(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return z(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),z(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),z(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),z(_s(s,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'.`),o!=null&&z(mn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>MI(l.shape,e,u,s,a,r,o),filter:()=>FI(l,e,u.shape,s,a,r,o)}}},_J={kernelName:Jp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,a={x:r,filter:s,dy:e},o={x:r,filter:s,dy:e};return{x:()=>G.runKernel(Ry,a,n),filter:()=>G.runKernel(Dy,o,n)}}},RJ={kernelName:Dc,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>G.runKernel(My,r)}}},DJ={kernelName:Fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=K(Kr(Kt(wt(n))),2/Math.sqrt(Math.PI));return{x:()=>K(e,r)}}},FJ={kernelName:Eo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,n)}}},MJ={kernelName:Mc,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>J(e,n.shape)}}},OJ={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,Kr(n))}}},PJ={kernelName:$o,gradFunc:e=>({x:()=>rt(e)})},zJ={kernelName:ul,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Rt(n.shape,r.shape);return{a:()=>{let i=Re(e,ke(r,"float32")),l=ln(n.shape,s);return l.length>0?J(_e(i,l),n.shape):i},b:()=>{let i=K(e,ke(n,"float32")),l=ln(r.shape,s);l.length>0&&(i=J(_e(i,l),r.shape));let u=wt(r);return Kt(Re(i,ke(u,"float32")))}}}},LJ={kernelName:cl,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[s,a,o,i]=t,l=i==null?Fe(1):i,u=ln(a.shape,s.shape),c=[];if(a.rank===1){for(let b=0;ba.rank===1?J(K(K(e,Yo(J(p,[1,1,1,a.shape[0]]),c)),l),s.shape):J(K(K(e,p),l),s.shape),mean:()=>{let b=K(K(p,Fe(-1)),h);return a.rank===1&&(b=_e(b,u)),J(b,a.shape)},variance:()=>{let b=K(K(f,d),h);return a.rank===1&&(b=_e(b,u)),J(b,a.shape)},scale:()=>{let b=K(d,p),v=K(e,b);return a.rank===1&&(v=_e(v,u)),J(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=_e(b,u)),J(b,a.shape)}}}},BJ={kernelName:Pc,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,s]=t,{axis:a}=n,o=jr(a,r.shape)[0];return{x:()=>{let l=r.shape,u=s.size,c=l.slice(0,o),d=c.length,h=l.slice(a,l.length).slice(1),p=h.length,f=XI(0,d),m=XI(d+1,d+1+p),g=ZI([c,[u],h]),y=J(e,g),A=J(s,[u]),x=ZI([[d],f,m]),b=pt(y,x),v=EI(b,A,r.shape[o]),w=GA(x);return v=pt(v,w),v},indices:()=>s}}};function XI(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>rt(n),b:()=>rt(r)}}},VJ={kernelName:hl,gradFunc:e=>({x:()=>ke(e,"float32")})},UJ={kernelName:Lc,gradFunc:e=>({x:()=>rt(e)})},HJ={kernelName:Bc,gradFunc:e=>({x:()=>rt(e)})},GJ={kernelName:Wc,gradFunc:e=>({x:()=>rt(e)})},jJ={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:s}=n,a=_r(r,0);return{x:()=>Ln(a,e,K(e,s))}}},qJ={kernelName:Vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,pe(n,1))}}},KJ={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,ke(n,"float32"))}}},XJ={kernelName:rH,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n;return{logits:()=>{let a=!0,o=Kr(r);return Ne(e,K(_e(e,s,a),o))}}}};function ZJ(e,t,n,r=5,s=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:r,bias:s,alpha:a,beta:o};return G.runKernel(By,i,l)}var YJ=V({localResponseNormalizationBackprop_:ZJ}),JJ={kernelName:nf,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>YJ(r,s,e,a,o,i,l)}}};function YI(e,t,n,r){return t.rankK(e,ke(Zo(n,t),e.dtype))}}var JI={kernelName:gl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:s}=r,a=t[0],o=t[1],i=jr(s,a.shape),l=YI(e,o,a,i);return{x:()=>l.x()}}},QJ={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>K(e,ke(Jo(n,r),"float32")),b:()=>K(e,ke(WA(n,r),"float32"))}}};function eQ(e,t,n,r,s,a,o){let i=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),u=M(n,"output","maxPool3dGrad"),c=i,d=l,h=u,p=!1;l.rank===4&&(p=!0,c=J(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=J(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=J(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),z(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),z(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),z(h.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${h.rank}.`),o!=null&&z(mn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:h},m={filterSize:r,strides:s,pad:a,dimRoundingMode:o},g=G.runKernel(Vy,f,m);return p?J(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var tQ=V({maxPool3dGrad_:eQ}),nQ={kernelName:rf,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>tQ(e,r,s,a,o,i,l)}}};function rQ(e,t,n,r,s,a,o){let i=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),u=M(n,"output","maxPoolGrad");z(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),z(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),z(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&z(mn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:r,strides:s,pad:a,dimRoundingMode:o};return G.runKernel(Wy,c,d)}var sQ=V({maxPoolGrad_:rQ}),aQ={kernelName:yl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>sQ(e,r,s,a,o,i)}}},oQ={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n,a=jr(s,r.shape),i=mI(r.shape,a)[1],l=on(i);return{x:()=>{let c=r.shape.slice();a.forEach(p=>{c[p]=1});let d=J(e,c);return Re(K(d,la(r.shape,"float32")),l)}}}},iQ={kernelName:xl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:s}=r,[a,o]=t,i=jr(s,a.shape),l=YI(e,o,a,i);return{x:()=>l.x()}}},lQ={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>K(e,ke(Qo(n,r),"float32")),b:()=>K(e,ke(_r(n,r),"float32"))}}},uQ={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>nt(e,a,r.shape)}}},cQ={kernelName:Hc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Rt(n.shape,r.shape);return{a:()=>{let i=ln(n.shape,s);return i.length>0?J(_e(e,i),n.shape):e},b:()=>{let i=K(e,Kt(Ed(Re(n,r)))),l=ln(r.shape,s);return l.length>0?J(_e(i,l),r.shape):i}}}},dQ={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Rt(n.shape,r.shape);return{a:()=>{let i=K(e,ke(r,"float32")),l=ln(n.shape,s);return l.length>0?J(_e(i,l),n.shape):i},b:()=>{let i=K(e,ke(n,"float32")),l=ln(r.shape,s);return l.length>0?J(_e(i,l),r.shape):i}}}},hQ={kernelName:Gc,gradFunc:e=>({x:()=>Kt(e)})},pQ={kernelName:wl,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>un(n.shape,"float32")}}},fQ={kernelName:Xc,gradFunc:e=>({x:()=>rt(e)})},mQ={kernelName:Zc,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return ls(e,r).map(a=>()=>a)}},QI={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>nt(e,a,r.shape)}}},gQ={kernelName:Il,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,s]=t,a=n,o=r,i=Rt(a.shape,o.shape);return{a:()=>{let c=ke(o,"float32"),d=K(e,K(c,Va(a,Ne(c,Fe(1))))),h=ln(a.shape,i);return h.length>0&&(d=_e(d,h)),J(d,a.shape)},b:()=>{let c=_r(a,0),d=Ln(c,Rr(a),rt(a)),h=K(e,K(s,d)),p=ln(o.shape,i);return p.length>0&&(h=_e(h,p)),J(h,o.shape)}}}},yQ={kernelName:Sl,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,s=_r(n,0);return{x:()=>Ln(s,e,K(e,r)),alpha:()=>{let a=Ln(s,rt(e),K(e,n)),o=ln(r.shape,e.shape);return o.length>0&&(a=_e(a,o)),J(a,r.shape)}}}},AQ={kernelName:ol,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Rt(n.shape,r.shape);return{a:()=>{let i=Re(e,ke(r,"float32")),l=ln(n.shape,s);return l.length>0?J(_e(i,l),n.shape):i},b:()=>{let i=K(e,ke(n,"float32")),l=ln(r.shape,s);l.length>0&&(i=J(_e(i,l),r.shape));let u=wt(r);return Kt(Re(i,ke(u,"float32")))}}}},xQ={kernelName:Jc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,Kt(wt(n)))}}},bQ={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=K(Qo(n,6),Fd(n));return{x:()=>K(e,ke(r,"float32"))}}},vQ={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,ke(Fd(n),"float32"))}}},wQ={kernelName:Qc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>J(e,n.shape)}}},kQ={kernelName:Nl,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>G.runKernel(qy,s,n)}}},IQ={kernelName:af,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>G.runKernel(jy,s,n)}}},SQ={kernelName:El,gradFunc:(e,t,n)=>{let{dims:r}=n,s=jr(r,e.shape);return{x:()=>Fr(e,s)}}},TQ={kernelName:$l,gradFunc:e=>({x:()=>rt(e)})},NQ={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Kt(Re(e,K(Va(n,1.5),2)))}}},CQ={kernelName:td,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ke(rt(n),"float32"),t:()=>K(e,ke(n,e.dtype)),e:()=>K(e,ke(Ef(n),e.dtype))}}},EQ={kernelName:nd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=_r(n,Fe(0)),s=Fe(UI),a=Fe(HI),o=K(e,a),i=K(K(e,s),Kr(ke(n,"float32")));return Ln(r,o,i)}}}},$Q={kernelName:Rl,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,K(n,Ne(Fe(1),n)))}}},_Q={kernelName:ad,gradFunc:e=>({x:()=>rt(e)})},RQ={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(Nf(ke(n,"float32")),e)}}},DQ={kernelName:sd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(zA(ke(n,"float32")),e)}}},FQ={kernelName:rd,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:s,size:a}=n,o=r.shape,[i,l]=W6(r,s,a),u=[];for(let c=0;cWa(e,u)}}},MQ={kernelName:Ml,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:s}=n,a=!0,o=K(e,r);return{logits:()=>Ne(o,K(_e(o,[s],a),r))}}},OQ={kernelName:od,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,Rs(n))}}},eS={kernelName:of,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:s}=n;return{x:()=>Tf(e,r,s)}}},tS={kernelName:id,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>en(e,r)}}},PQ={kernelName:Dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,K($n(ke(n,"float32")),2))}}},zQ={kernelName:lf,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(e,K(ke(n,"float32"),2))}}},LQ={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Fe(2);return{a:()=>K(e,K(s,Ne(n,r))),b:()=>K(e,K(s,Ne(r,n)))}}},BQ={kernelName:Bo,gradFunc:e=>({x:()=>rt(e)})},WQ={kernelName:zo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Rt(n.shape,r.shape);return{a:()=>{let i=e,l=ln(n.shape,s);return l.length>0&&(i=_e(i,l)),J(i,n.shape)},b:()=>{let i=e,l=ln(r.shape,s);return l.length>0&&(i=_e(i,l)),J(Kt(i),r.shape)}}}},VQ={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,s=r.shape.slice(),{axis:a}=n;jr(a,r.shape).forEach(u=>{s[u]=1});let i=J(e,s),l=K(i,la(r.shape,"float32"));return{x:()=>l}}},UQ={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,wt(Nf(n)))}}},HQ={kernelName:Pl,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>K(Ne(Fe(1),wt(n)),e)}}},GQ={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:s}=n;return{x:()=>{let o=rt(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:s}=r,a=GA(s);return{x:()=>pt(e,a)}}},qQ={kernelName:dd,gradFunc:(e,t,n)=>{let r=n,{axis:s}=r;return{value:()=>Mr(e,s)}}},KQ={kernelName:uf,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>XQ(e,n)}}};function XQ(e,t){let n=ia(t,rt(t)),r=$d(e,n),s=Jo(t,Fe(0,"int32")),a=r.rank-s.rank;for(let i=0;i({x:()=>rt(e)})},YQ=[KI,YY,JY,QY,eJ,tJ,nJ,rJ,sJ,aJ,oJ,iJ,cJ,pJ,fJ,mJ,gJ,yJ,AJ,xJ,bJ,vJ,kJ,wJ,TJ,NJ,CJ,EJ,$J,_J,AQ,RJ,DJ,FJ,MJ,OJ,zJ,PJ,LJ,BJ,WJ,VJ,UJ,HJ,GJ,jJ,qJ,KJ,XJ,JJ,JI,JI,QJ,nQ,aQ,oQ,iQ,lQ,uQ,cQ,dQ,hQ,pQ,fQ,mQ,QI,QI,gQ,yQ,xQ,bQ,vQ,wQ,kQ,IQ,SQ,TQ,NQ,CQ,EQ,$Q,_Q,RQ,DQ,FQ,MQ,OQ,eS,eS,tS,tS,PQ,LQ,zQ,BQ,WQ,VQ,UQ,HQ,GQ,jQ,qQ,KQ,ZQ];for(let e of YQ)sH(e);var nS={};De(nS,{maxNorm:()=>tee,minMaxNorm:()=>see,nonNeg:()=>ree,unitNorm:()=>nee});var k1;function cn(){return k1==null&&(k1=HG().epsilon()),k1}function us(){return"channelsLast"}var da=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,da.prototype)}},cs=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,cs.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Ge=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ge.prototype)}},rS=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,rS.prototype)}};function si(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Xr={};function I1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function S1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>S1(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:S1(r))}}}function Md(e,t={},n={},r="object",s=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Xr)o=Xr[a];else if(o=t[a],o==null)throw new q(`Unknown ${r}: ${e}. This may be due to one of the following reasons: + ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return G.runKernel(q1,o)}var AY=V({sparseSegmentSum_:yY});function xY(e,t,n,r,s,a,o,i){let l=O(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=O(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},h=G.runKernel(X1,d,c);return{nGrams:h[0],nGramsSplits:h[1]}}var bY=V({stringNGrams_:xY});function vY(e,t,n=!0){let r=O(e,"input","stringSplit","string"),s=O(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=G.runKernel(Z1,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var wY=V({stringSplit_:vY});function kY(e,t){let n=O(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return G.runKernel(Y1,s,r)}var IY=V({stringToHashBucketFast_:kY}),is={flipLeftRight:AZ,resizeNearestNeighbor:VZ,resizeBilinear:BZ,rotateWithOffset:bZ,cropAndResize:gZ,nonMaxSuppression:wZ,nonMaxSuppressionAsync:$Z,nonMaxSuppressionWithScore:_Z,nonMaxSuppressionWithScoreAsync:FZ,nonMaxSuppressionPadded:OZ,nonMaxSuppressionPaddedAsync:zZ,threshold:GZ,transform:qZ},SY={bandPart:XZ,gramSchmidt:YZ,qr:QZ},Mf={sparseFillEmptyRows:hY,sparseReshape:fY,sparseSegmentMean:gY,sparseSegmentSum:AY},tA={stringNGrams:bY,stringSplit:wY,stringToHashBucketFast:IY},Ha=class extends F6{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ge(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Hq(e,t)}dispose(){this.iterations_!=null&&Ge(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:De(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ha,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var nA=class extends Ha{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:Y(()=>ot(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:Y(()=>ot(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,l=this.accumulatedUpdates[r].variable;Y(()=>{let u=de(j(i,this.rho),j(Tt(o),1-this.rho)),c=j(Re(Ln(de(l,this.epsilon)),Ln(de(i,this.epsilon))),o),d=de(j(l,this.rho),j(Tt(c),1-this.rho));i.assign(u),l.assign(d);let h=de(j(c,-this.learningRate),s);s.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ge(this.accumulatedGrads.map(e=>e.variable)),Ge(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};nA.className="Adadelta";La(nA);var rA=class extends Ha{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:Y(()=>Nd(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;Y(()=>{let i=de(o,Tt(a));o.assign(i);let l=de(j(Re(a,Ln(de(i,G.backend.epsilon()))),-this.learningRate),s);s.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ge(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};rA.className="Adagrad";La(rA);var sA=class extends Ha{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Y(()=>{this.accBeta1=De(t).variable(),this.accBeta2=De(n).variable()}),r==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Y(()=>{let n=ke(1,this.accBeta1),r=ke(1,this.accBeta2);t.forEach((s,a)=>{let o=G.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Y(()=>ot(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:Y(()=>ot(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=de(j(u,this.beta1),j(l,1-this.beta1)),h=de(j(c,this.beta2),j(Tt(l),1-this.beta2)),p=Re(d,n),f=Re(h,r);u.assign(d),c.assign(h);let m=de(j(Re(p,de(Ln(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(j(this.accBeta1,this.beta1)),this.accBeta2.assign(j(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ge(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ge(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Y(()=>{this.accBeta1.assign(Jo(this.beta1,this.iterations_+1)),this.accBeta2.assign(Jo(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};sA.className="Adam";La(sA);var aA=class extends Ha{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Y(()=>{this.iteration=De(0).variable(),this.accBeta1=De(t).variable()}),r==null&&(this.epsilon=G.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Y(()=>{let n=ke(1,this.accBeta1),r=Re(-this.learningRate,de(j(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=G.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:ot(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:ot(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[s];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=de(j(u,this.beta1),j(l,1-this.beta1)),h=j(c,this.beta2),p=gn(l),f=Va(h,p);u.assign(d),c.assign(f);let m=de(j(Re(r,n),Re(d,de(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(de(this.iteration,1)),this.accBeta1.assign(j(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ge(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ge(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};aA.className="Adamax";La(aA);var Of=class extends Ha{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=G.registeredVariables[n];Y(()=>{let o=de(j(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=In(De(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Of.className="SGD";La(Of);var oA=class extends Of{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=De(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:Y(()=>ot(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&Y(()=>{let i,l=de(j(this.m,a),o);this.useNesterov?i=de(j(this.c,de(o,j(l,this.m))),s):i=de(j(this.c,l),s),a.assign(l),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ge(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};oA.className="Momentum";La(oA);var iA=class extends Ha{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=G.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=G.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:Y(()=>ot(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:Y(()=>ot(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:Y(()=>ot(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,l=this.accumulatedMoments[r].variable;Y(()=>{let u=de(j(i,this.decay),j(Tt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[r].variable,d=de(j(c,this.decay),j(o,1-this.decay)),h=Re(j(o,this.learningRate),Ln(ke(u,de(Tt(d),this.epsilon)))),p=de(j(l,this.momentum),h);i.assign(u),c.assign(d),l.assign(p);let f=ke(s,p);s.assign(f)}else{let c=de(j(i,this.decay),j(Tt(o),1-this.decay)),d=de(j(l,this.momentum),Re(j(o,this.learningRate),Ln(de(c,this.epsilon))));i.assign(c),l.assign(d);let h=ke(s,d);s.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ge(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ge(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ge(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};iA.className="RMSProp";La(iA);var ti=class{static sgd(e){return new Of(e)}static momentum(e,t,n=!1){return new oA(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new iA(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new sA(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new nA(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new aA(e,t,n,r,s)}static adagrad(e,t=.1){return new rA(e,t)}},Jl={sgd:ti.sgd,momentum:ti.momentum,adadelta:ti.adadelta,adagrad:ti.adagrad,rmsprop:ti.rmsprop,adamax:ti.adamax,adam:ti.adam},TY=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function lA(){return new Promise(e=>TY(()=>e()))}var _={};_e(_,{ERF_A1:()=>PY,ERF_A2:()=>zY,ERF_A3:()=>LY,ERF_A4:()=>BY,ERF_A5:()=>WY,ERF_P:()=>OY,PARALLELIZE_THRESHOLD:()=>uA,SELU_SCALE:()=>CI,SELU_SCALEALPHA:()=>NI,applyActivation:()=>Df,assertAndGetBroadcastShape:()=>$t,assertAxesAreInnerMostDims:()=>Jq,assertParamsConsistent:()=>NY,assignToTypedArray:()=>XY,axesAreInnerMostDims:()=>zy,calculateShapes:()=>w6,checkEinsumDimSizes:()=>tJ,combineLocations:()=>J6,complexWithEvenIndex:()=>jY,complexWithOddIndex:()=>qY,computeConv2DInfo:()=>Id,computeConv3DInfo:()=>L6,computeDefaultPad:()=>Ey,computeDilation2DInfo:()=>lj,computeOptimalWindowSize:()=>EY,computeOutAndReduceShapes:()=>Q6,computeOutShape:()=>CY,computePool2DInfo:()=>z6,computePool3DInfo:()=>uj,convertConv2DDataFormat:()=>B6,decodeEinsumEquation:()=>QY,eitherStridesOrDilationsAreOne:()=>Es,expandShapeToKeepDim:()=>Zo,exponent:()=>YY,exponents:()=>ZY,fromStringArrayToUint8:()=>cJ,fromUint8ToStringArray:()=>uJ,getAxesPermutation:()=>eI,getBroadcastDims:()=>uq,getComplexWithIndex:()=>KY,getEinsumComputePath:()=>nJ,getEinsumPermutation:()=>eJ,getFusedBiasGradient:()=>_f,getFusedDyActivation:()=>Rf,getImageCenter:()=>$Y,getInnerMostAxes:()=>Qq,getPermuted:()=>_Y,getReductionAxes:()=>on,getReshaped:()=>RY,getReshapedPermuted:()=>DY,getSliceBeginCoords:()=>FY,getSliceSize:()=>MY,getUndoAxesPermutation:()=>Ly,isIdentityPermutation:()=>rJ,log:()=>UY,mergeRealAndImagArrays:()=>HY,prepareAndValidate:()=>b6,prepareSplitSize:()=>aJ,segment_util:()=>RI,shouldFuse:()=>Ff,slice_util:()=>Cn,splitRealAndImagArrays:()=>GY,tupleValuesAreOne:()=>Wa,upcastType:()=>Ur,validateInput:()=>Sy,validateUpdateShape:()=>Iy,warn:()=>VY});function NY(e,t){let n=e[0].length;e.forEach((s,a)=>{z(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),z(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function CY(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||o%2==1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function DY(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a/g,EI=",",$I="...";function QY(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(JY,"").length)/cA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${cA}").`);let[r,s]=e.split(cA);z(r.indexOf($I)===-1,()=>`The ellipsis notation ("${$I}") is not supported yet.`);let a=r.split(EI),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let h=0;hf.indexOf(p)!==-1))throw new Error(`Output subscripts contain the label ${p} not present in the input subscripts.`);i.indexOf(p)===-1&&i.push(p)}for(let h=0;hs!==-1),{permutationIndices:n,expandDims:r}}function tJ(e,t,n){let r=new Array(e);for(let s=0;s`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function nJ(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;ot===n)}function sJ(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);z(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}z(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var RI={};_e(RI,{collectGatherOpShapeInfo:()=>lJ,computeOutShape:()=>iJ,segOpComputeOptimalWindowSize:()=>oJ});function oJ(e,t){let n=!1,r;for(e<=uA?(r=e,n=!0):r=Gp(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Gp(e,r+1);return r}function iJ(e,t,n){let r=[],s=e.length;for(let a=0;as))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) ( + ${a}).`);if(nhf(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function cJ(e){return e.map(t=>df(t))}var da={};_e(da,{nonMaxSuppressionV3Impl:()=>wI,nonMaxSuppressionV4Impl:()=>kI,nonMaxSuppressionV5Impl:()=>II,whereImpl:()=>mI});var _I={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,$f(xe(n,"float32"),-1))}}},dJ={kernelName:xc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Tt(xe(n,"float32")),s=Ln(ke(De(1),r));return qt(Re(e,s))}}}},hJ={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Ln(ke(Tt(xe(n,"float32")),1));return Re(e,r)}}}},pJ={kernelName:Ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=$t(n.shape,r.shape);return{a:()=>{let i=e,l=on(n.shape,s);return l.length>0&&(i=Te(i,l)),Z(i,n.shape)},b:()=>{let i=e,l=on(r.shape,s);return l.length>0&&(i=Te(i,l)),Z(i,r.shape)}}}},fJ={kernelName:Xi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,s)=>{n[s]=()=>e.clone()}),n}},mJ={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ot(n)}}},gJ={kernelName:qp,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ot(n)}}},yJ={kernelName:kc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,Ln(ke(De(1),Tt(xe(n,"float32")))))}}},AJ={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Ln(de(De(1),Tt(xe(n,"float32"))));return Re(e,r)}}}},xJ={kernelName:Nc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=$t(n.shape,r.shape);return{a:()=>{let i=de(Tt(n),Tt(r)),l=j(e,Re(r,i)),u=on(n.shape,s);return u.length>0&&(l=Te(l,u)),Z(l,n.shape)},b:()=>{let i=de(Tt(n),Tt(r)),l=qt(j(e,Re(n,i))),u=on(r.shape,s);return u.length>0&&(l=Te(l,u)),Z(l,r.shape)}}}},bJ={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,de(Tt(xe(n,"float32")),1))}}},vJ={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,ke(De(1),Tt(xe(n,"float32"))))}}};function wJ(e,t,n,r,s,a){let o=O(e,"dy","avgPool3dGrad"),i=O(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=Z(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=Z(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),z(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),z(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&z(fn(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:l,input:u},h={filterSize:n,strides:r,pad:s,dimRoundingMode:a},p=G.runKernel(A1,d,h);return c?Z(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var kJ=V({avgPool3dGrad_:wJ}),IJ={kernelName:Kp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>kJ(e,r,s,a,o,i)}}};function SJ(e,t,n,r,s){let a=O(e,"dy","avgPoolGrad"),o=O(t,"input","avgPoolGrad");z(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=Z(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=Z(a,[1,a.shape[0],a.shape[1],a.shape[2]])),z(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),z(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:r,pad:s},h=G.runKernel(y1,c,d);return u?Z(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var TJ=V({avgPoolGrad_:SJ}),NJ={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o}=n;return{x:()=>TJ(e,r,s,a,o)}}},CJ={kernelName:Ji,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,s]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>rt(e,s,!1,!0),b:()=>rt(r,e,!0,!1)}:!a&&o?{a:()=>rt(e,s,!1,!1),b:()=>rt(e,r,!0,!1)}:a&&!o?{a:()=>rt(s,e,!1,!0),b:()=>rt(r,e,!1,!1)}:{a:()=>rt(s,e,!0,!0),b:()=>rt(e,r,!0,!0)}}},EJ={kernelName:Cc,gradFunc:(e,t,n)=>{let{blockShape:r,crops:s}=n;return{x:()=>Hy(e,r,s)}}},$J={kernelName:jU,gradFunc:(e,t,n)=>{let r=n,s=r.inputShape,a=r.shape,o=Array.from(a);for(let l=s.length-1;l>=0;l--)if(s[l]===a[l])o[l]=1;else if(s[l]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>Te(e,i,!0)}}},RJ={kernelName:Qi,gradFunc:e=>({x:()=>e.clone()})},_J={kernelName:No,gradFunc:e=>({x:()=>ot(e)})},DJ={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:s,clipValueMax:a}=n;return{x:()=>Zn(_s(Kl(r,s),Xl(r,a)),e,ot(e))}}},FJ={kernelName:Xp,inputsToSave:["x"],gradFunc:_I.gradFunc},MJ={kernelName:Ec,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(l=>l.shape),{axis:s}=n,a=Vr(s,t[0].shape)[0],o=r.map(l=>l[a]);return Rr(e,o,a).map(l=>()=>l)}},OJ={kernelName:el,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return z(Wa(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Dy(r.shape,e,s,o,i,l),filter:()=>Qy(r,e,s.shape,o,i,l)}}},PJ={kernelName:tl,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Xo(e,s,a,o,i,1,l),filter:()=>Qy(e,r,s.shape,a,o,i,l)}}};function zJ(e,t,n,r,s){let a=e;e.rank===4&&(a=Z(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=Z(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),z(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),z(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),z(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),z(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),z(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:r,pad:s,filterShape:n};return G.runKernel(w1,i,l)}var LJ=V({conv3DBackpropFilter_:zJ}),BJ={kernelName:Zp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a}=n;z(Wa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[o,i]=t;return{x:()=>j6(o.shape,e,i,s,a),filter:()=>LJ(o,e,i.shape,s,a)}}},WJ={kernelName:nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(qt(lI(xe(n,"float32"))),e)}}},VJ={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(uI(xe(n,"float32")),e)}}},UJ={kernelName:sl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s,exclusive:a,reverse:o}=n;return{x:()=>{let i=eI([s],r.rank),l=K6(e,s,a,!o);return i!=null&&(l=st(l,i)),l}}}},HJ={kernelName:al,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a,dimRoundingMode:o}=n,i=r==null?[1,1]:r;z(Wa(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return z(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),z(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),z(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),z(Es(s,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'.`),o!=null&&z(fn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>vI(l.shape,e,u,s,a,r,o),filter:()=>bI(l,e,u.shape,s,a,r,o)}}},GJ={kernelName:Yp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,a={x:r,filter:s,dy:e},o={x:r,filter:s,dy:e};return{x:()=>G.runKernel(C1,a,n),filter:()=>G.runKernel(E1,o,n)}}},jJ={kernelName:_c,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>G.runKernel(R1,r)}}},qJ={kernelName:Dc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=j(Gr(qt(Tt(n))),2/Math.sqrt(Math.PI));return{x:()=>j(e,r)}}},KJ={kernelName:Eo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,n)}}},XJ={kernelName:Fc,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>Z(e,n.shape)}}},ZJ={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,Gr(n))}}},YJ={kernelName:$o,gradFunc:e=>({x:()=>ot(e)})},JJ={kernelName:ul,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=$t(n.shape,r.shape);return{a:()=>{let i=Re(e,xe(r,"float32")),l=on(n.shape,s);return l.length>0?Z(Te(i,l),n.shape):i},b:()=>{let i=j(e,xe(n,"float32")),l=on(r.shape,s);l.length>0&&(i=Z(Te(i,l),r.shape));let u=Tt(r);return qt(Re(i,xe(u,"float32")))}}}},QJ={kernelName:cl,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[s,a,o,i]=t,l=i==null?De(1):i,u=on(a.shape,s.shape),c=[];if(a.rank===1){for(let b=0;ba.rank===1?Z(j(j(e,$s(Z(p,[1,1,1,a.shape[0]]),c)),l),s.shape):Z(j(j(e,p),l),s.shape),mean:()=>{let b=j(j(p,De(-1)),h);return a.rank===1&&(b=Te(b,u)),Z(b,a.shape)},variance:()=>{let b=j(j(f,d),h);return a.rank===1&&(b=Te(b,u)),Z(b,a.shape)},scale:()=>{let b=j(d,p),v=j(e,b);return a.rank===1&&(v=Te(v,u)),Z(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Te(b,u)),Z(b,a.shape)}}}},eQ={kernelName:Oc,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,s]=t,{axis:a}=n,o=Vr(a,r.shape)[0];return{x:()=>{let l=r.shape,u=s.size,c=l.slice(0,o),d=c.length,h=l.slice(a,l.length).slice(1),p=h.length,f=DI(0,d),m=DI(d+1,d+1+p),g=FI([c,[u],h]),y=Z(e,g),A=Z(s,[u]),x=FI([[d],f,m]),b=st(y,x),v=PX(b,A,r.shape[o]),I=Ly(x);return v=st(v,I),v},indices:()=>s}}};function DI(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>ot(n),b:()=>ot(r)}}},nQ={kernelName:hl,gradFunc:e=>({x:()=>xe(e,"float32")})},rQ={kernelName:zc,gradFunc:e=>({x:()=>ot(e)})},sQ={kernelName:Lc,gradFunc:e=>({x:()=>ot(e)})},aQ={kernelName:Bc,gradFunc:e=>({x:()=>ot(e)})},oQ={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:s}=n,a=$r(r,0);return{x:()=>Zn(a,e,j(e,s))}}},iQ={kernelName:Wc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,de(n,1))}}},lQ={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,xe(n,"float32"))}}},uQ={kernelName:qU,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n;return{logits:()=>{let a=!0,o=Gr(r);return ke(e,j(Te(e,s,a),o))}}}};function cQ(e,t,n,r=5,s=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:r,bias:s,alpha:a,beta:o};return G.runKernel(O1,i,l)}var dQ=V({localResponseNormalizationBackprop_:cQ}),hQ={kernelName:tf,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>dQ(r,s,e,a,o,i,l)}}};function MI(e,t,n,r){return t.rankj(e,xe(Hr(n,t),e.dtype))}}var OI={kernelName:gl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:s}=r,a=t[0],o=t[1],i=Vr(s,a.shape),l=MI(e,o,a,i);return{x:()=>l.x()}}},pQ={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>j(e,xe(Kl(n,r),"float32")),b:()=>j(e,xe(Z6(n,r),"float32"))}}};function fQ(e,t,n,r,s,a,o){let i=O(e,"dy","maxPool3dGrad"),l=O(t,"input","maxPool3dGrad"),u=O(n,"output","maxPool3dGrad"),c=i,d=l,h=u,p=!1;l.rank===4&&(p=!0,c=Z(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=Z(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),h=Z(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),z(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),z(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),z(h.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${h.rank}.`),o!=null&&z(fn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:h},m={filterSize:r,strides:s,pad:a,dimRoundingMode:o},g=G.runKernel(z1,f,m);return p?Z(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var mQ=V({maxPool3dGrad_:fQ}),gQ={kernelName:nf,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>mQ(e,r,s,a,o,i,l)}}};function yQ(e,t,n,r,s,a,o){let i=O(e,"dy","maxPoolGrad"),l=O(t,"input","maxPoolGrad"),u=O(n,"output","maxPoolGrad");z(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),z(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),z(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&z(fn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:r,strides:s,pad:a,dimRoundingMode:o};return G.runKernel(P1,c,d)}var AQ=V({maxPoolGrad_:yQ}),xQ={kernelName:yl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>AQ(e,r,s,a,o,i)}}},bQ={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n,a=Vr(s,r.shape),i=Q6(r.shape,a)[1],l=sn(i);return{x:()=>{let c=r.shape.slice();a.forEach(p=>{c[p]=1});let d=Z(e,c);return Re(j(d,ua(r.shape,"float32")),l)}}}},vQ={kernelName:xl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:s}=r,[a,o]=t,i=Vr(s,a.shape),l=MI(e,o,a,i);return{x:()=>l.x()}}},wQ={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>j(e,xe(Xl(n,r),"float32")),b:()=>j(e,xe($r(n,r),"float32"))}}},kQ={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>at(e,a,r.shape)}}},IQ={kernelName:Uc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=$t(n.shape,r.shape);return{a:()=>{let i=on(n.shape,s);return i.length>0?Z(Te(e,i),n.shape):e},b:()=>{let i=j(e,qt(Sf(Re(n,r)))),l=on(r.shape,s);return l.length>0?Z(Te(i,l),r.shape):i}}}},SQ={kernelName:Mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=$t(n.shape,r.shape);return{a:()=>{let i=j(e,xe(r,"float32")),l=on(n.shape,s);return l.length>0?Z(Te(i,l),n.shape):i},b:()=>{let i=j(e,xe(n,"float32")),l=on(r.shape,s);return l.length>0?Z(Te(i,l),r.shape):i}}}},TQ={kernelName:Hc,gradFunc:e=>({x:()=>qt(e)})},NQ={kernelName:wl,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>ln(n.shape,"float32")}}},CQ={kernelName:Kc,gradFunc:e=>({x:()=>ot(e)})},EQ={kernelName:Xc,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return Ds(e,r).map(a=>()=>a)}},PI={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>at(e,a,r.shape)}}},$Q={kernelName:Il,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,s]=t,a=n,o=r,i=$t(a.shape,o.shape);return{a:()=>{let c=xe(o,"float32"),d=j(e,j(c,Jo(a,ke(c,De(1))))),h=on(a.shape,i);return h.length>0&&(d=Te(d,h)),Z(d,a.shape)},b:()=>{let c=$r(a,0),d=Zn(c,jr(a),ot(a)),h=j(e,j(s,d)),p=on(o.shape,i);return p.length>0&&(h=Te(h,p)),Z(h,o.shape)}}}},RQ={kernelName:Sl,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,s=$r(n,0);return{x:()=>Zn(s,e,j(e,r)),alpha:()=>{let a=Zn(s,ot(e),j(e,n)),o=on(r.shape,e.shape);return o.length>0&&(a=Te(a,o)),Z(a,r.shape)}}}},_Q={kernelName:ol,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=$t(n.shape,r.shape);return{a:()=>{let i=Re(e,xe(r,"float32")),l=on(n.shape,s);return l.length>0?Z(Te(i,l),n.shape):i},b:()=>{let i=j(e,xe(n,"float32")),l=on(r.shape,s);l.length>0&&(i=Z(Te(i,l),r.shape));let u=Tt(r);return qt(Re(i,xe(u,"float32")))}}}},DQ={kernelName:Yc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,qt(Tt(n)))}}},FQ={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=j(Xl(n,6),$f(n));return{x:()=>j(e,xe(r,"float32"))}}},MQ={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,xe($f(n),"float32"))}}},OQ={kernelName:Jc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Z(e,n.shape)}}},PQ={kernelName:Nl,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>G.runKernel(U1,s,n)}}},zQ={kernelName:sf,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>G.runKernel(V1,s,n)}}},LQ={kernelName:El,gradFunc:(e,t,n)=>{let{dims:r}=n,s=Vr(r,e.shape);return{x:()=>Kr(e,s)}}},BQ={kernelName:$l,gradFunc:e=>({x:()=>ot(e)})},WQ={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qt(Re(e,j(Jo(n,1.5),2)))}}},VQ={kernelName:ed,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>xe(ot(n),"float32"),t:()=>j(e,xe(n,e.dtype)),e:()=>j(e,xe(By(n),e.dtype))}}},UQ={kernelName:td,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=$r(n,De(0)),s=De(NI),a=De(CI),o=j(e,a),i=j(j(e,s),Gr(xe(n,"float32")));return Zn(r,o,i)}}}},HQ={kernelName:_l,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,j(n,ke(De(1),n)))}}},GQ={kernelName:sd,gradFunc:e=>({x:()=>ot(e)})},jQ={kernelName:Rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(Fy(xe(n,"float32")),e)}}},qQ={kernelName:rd,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(q6(xe(n,"float32")),e)}}},KQ={kernelName:nd,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:s,size:a}=n,o=r.shape,[i,l]=D6(r,s,a),u=[];for(let c=0;cYo(e,u)}}},XQ={kernelName:Ml,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:s}=n,a=!0,o=j(e,r);return{logits:()=>ke(o,j(Te(o,[s],a),r))}}},ZQ={kernelName:ad,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,ia(n))}}},zI={kernelName:od,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:s}=n;return{x:()=>_y(e,r,s)}}},LI={kernelName:id,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>an(e,r)}}},YQ={kernelName:Dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,j(Ln(xe(n,"float32")),2))}}},JQ={kernelName:af,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,j(xe(n,"float32"),2))}}},QQ={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=De(2);return{a:()=>j(e,j(s,ke(n,r))),b:()=>j(e,j(s,ke(r,n)))}}},eee={kernelName:Bo,gradFunc:e=>({x:()=>ot(e)})},tee={kernelName:zo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=$t(n.shape,r.shape);return{a:()=>{let i=e,l=on(n.shape,s);return l.length>0&&(i=Te(i,l)),Z(i,n.shape)},b:()=>{let i=e,l=on(r.shape,s);return l.length>0&&(i=Te(i,l)),Z(qt(i),r.shape)}}}},nee={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,s=r.shape.slice(),{axis:a}=n;Vr(a,r.shape).forEach(u=>{s[u]=1});let i=Z(e,s),l=j(i,ua(r.shape,"float32"));return{x:()=>l}}},ree={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Re(e,Tt(Fy(n)))}}},see={kernelName:Pl,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(ke(De(1),Tt(n)),e)}}},aee={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:s}=n;return{x:()=>{let o=ot(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:s}=r,a=Ly(s);return{x:()=>st(e,a)}}},iee={kernelName:dd,gradFunc:(e,t,n)=>{let r=n,{axis:s}=r;return{value:()=>Xr(e,s)}}},lee={kernelName:of,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>uee(e,n)}}};function uee(e,t){let n=Va(t,ot(t)),r=Tf(e,n),s=Kl(t,De(0,"int32")),a=r.rank-s.rank;for(let i=0;i({x:()=>ot(e)})},dee=[_I,dJ,hJ,pJ,fJ,mJ,gJ,yJ,AJ,xJ,bJ,vJ,IJ,NJ,CJ,EJ,$J,RJ,_J,DJ,FJ,MJ,PJ,OJ,BJ,WJ,VJ,UJ,HJ,GJ,_Q,jJ,qJ,KJ,XJ,ZJ,JJ,YJ,QJ,eQ,tQ,nQ,rQ,sQ,aQ,oQ,iQ,lQ,uQ,hQ,OI,OI,pQ,gQ,xQ,bQ,vQ,wQ,kQ,IQ,SQ,TQ,NQ,CQ,EQ,PI,PI,$Q,RQ,DQ,FQ,MQ,OQ,PQ,zQ,LQ,BQ,WQ,VQ,UQ,HQ,GQ,jQ,qQ,KQ,XQ,ZQ,zI,zI,LI,LI,YQ,QQ,JQ,eee,tee,nee,ree,see,aee,oee,iee,lee,cee];for(let e of dee)KU(e);var BI={};_e(BI,{maxNorm:()=>mee,minMaxNorm:()=>Aee,nonNeg:()=>yee,unitNorm:()=>gee});var dA;function un(){return dA==null&&(dA=MG().epsilon()),dA}function ls(){return"channelsLast"}var ha=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ha.prototype)}},us=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,us.prototype)}},K=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,K.prototype)}},He=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,He.prototype)}},WI=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,WI.prototype)}};function ni(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Zr={};function hA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function pA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>pA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:pA(r))}}}function _d(e,t={},n={},r="object",s=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Zr)o=Zr[a];else if(o=t[a],o==null)throw new K(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${r}: Improper config format: ${JSON.stringify(a)}. -'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Xr?[i,l]=Xr.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${r}: ${o}. This may be due to one of the following reasons: +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new K(`${r}: Improper config format: ${JSON.stringify(a)}. +'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Zr?[i,l]=Zr.className:o in t&&([i,l]=t[o]),i==null)throw new K(`Unknown ${r}: ${o}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. -2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(Xr))u[p]=Xr[p];for(let p of Object.keys(n))u[p]=n[p];let c=a.config;c.customObjects=u;let d={...Xr};for(let p of Object.keys(n))Xr[p]=n[p];S1(a.config);let h=l(i,a.config,n,s);return Xr={...d},h}else{let u={...Xr};for(let d of Object.keys(n))Xr[d]=n[d];let c=new i(a.config);return Xr={...u},c}}}function JQ(e,t){return et?1:0}function Hf(e,t){return-1*JQ(e,t)}function Ga(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function QQ(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function oi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function T1(e,t,n=0,r=Infinity){return Ds(n>=0),Ds(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(s=>typeof s===t)}function An(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>An(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${aS(e)}.`)}function aS(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>aS(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function eee(e,t){let n=k.now(),r;return(...a)=>{let o=k.now();return o-n$n(_e(K(e,e),t,!0)))}var Od=class extends ce.Serializable{getConfig(){return{}}},C1=class extends Od{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=N1(e,this.axis),n=dr(t,0,this.maxValue);return K(e,Re(n,pe(cn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};C1.className="MaxNorm";ce.registerClass(C1);var E1=class extends Od{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>Re(e,pe(cn(),N1(e,this.axis))))}getConfig(){return{axis:this.axis}}};E1.className="UnitNorm";ce.registerClass(E1);var $1=class extends Od{apply(e){return ua(e)}};$1.className="NonNeg";ce.registerClass($1);var _1=class extends Od{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Z(()=>{let t=N1(e,this.axis),n=pe(K(this.rate,dr(t,this.minValue,this.maxValue)),K(1-this.rate,t));return K(e,Re(n,pe(cn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};_1.className="MinMaxNorm";ce.registerClass(_1);var iS={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function dn(e){return I1(e)}function lS(e,t={}){return Md(e,ce.SerializationMap.getMap().classNameMap,t,"constraint")}function hn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in iS?iS[e]:e,config:{}};return lS(n)}else return e instanceof Od?e:lS(e)}function tee(e){return new C1(e)}function nee(e){return new E1(e)}function ree(){return new $1}function see(e){return new _1(e)}var uS={};De(uS,{constant:()=>Nee,glorotNormal:()=>Fee,glorotUniform:()=>Dee,heNormal:()=>Mee,heUniform:()=>Oee,identity:()=>_ee,leCunNormal:()=>Pee,leCunUniform:()=>zee,ones:()=>Tee,orthogonal:()=>Lee,randomNormal:()=>Eee,randomUniform:()=>Cee,truncatedNormal:()=>$ee,varianceScaling:()=>Ree,zeros:()=>See});var aee=["channelsFirst","channelsLast"],oee=["nearest","bilinear"],iee=["valid","same","causal"],lee=["max","avg"],uee=["sum","mul","concat","ave"],nu=new Map;function Yt(e){oi(aee,"DataFormat",e)}function cee(e){oi(oee,"InterpolationFormat",e)}function Or(e){oi(iee,"PaddingMode",e)}function cS(e){oi(lee,"PoolMode",e)}var Pd=[],dS="/";function ii(e,t){Pd.push(e);try{let n=t();return Pd.pop(),n}catch(n){throw Pd.pop(),n}}function dee(){return Pd.length===0?"":Pd.join(dS)+dS}function hS(e){if(!fS(e))throw new Error("Not a valid tensor name: '"+e+"'");return dee()+e}function pS(e){if(!fS(e))throw new Error("Not a valid tensor name: '"+e+"'");nu.has(e)||nu.set(e,0);let t=nu.get(e);if(nu.set(e,nu.get(e)+1),t>0){let n=`${e}_${t}`;return nu.set(n,1),n}else return e}var hee=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function fS(e){return!!e.match(hee)}function pee(e){return e===parseInt(e.toString(),10)}function ja(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let s=t;st&&(t=r)}return t}function ds(e,t){if(t{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Ld(e,1);return F1(n,[1,t,1])})}function mee(e){let t=[ja(e.shape)];return e.reshape(t)}function gee(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ja(e.shape,1)];return e.reshape(t)}function li(e,t,n){return Z(()=>{switch(e.rank){case 1:return r1(e,t,n);case 2:return II(e,[t,0],[n,e.shape[1]]);case 3:return s1(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Mf(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return nt(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return nt(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function R1(e,t,n){return Z(()=>{switch(e.rank){case 1:return r1(e,t,n);case 2:return II(e,[0,t],[e.shape[0],n]);case 3:return s1(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Mf(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Gf(e,t,n,r){return Z(()=>{switch(e.rank){case 1:return r1(e,t,n);case 2:switch(r){case 1:return li(e,t,n);case 2:return R1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return li(e,t,n);case 2:return s1(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return R1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return li(e,t,n);case 2:return Mf(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Mf(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return R1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${r}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function D1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),en(e,t)}function mS(e,t){switch(e.rank){case 1:return Pj([e,t]);case 2:return Lj([e,t],0);case 3:return Wj([e,t],0);case 4:return Uj([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function F1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Yo(e,t)}function jf(e,t=0,n=1,r,s){return LK(e,t,n,r,s)}function Fs(e,t,n,r){if(e.rank<2||t.rank<2)throw new Ge(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let s=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(s!==a)throw new Ge(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let s=!1,a=!1;return ti.matMul({a:e,b:t,transposeA:s,transposeB:a,bias:r?M1(e.rank,r,us()):null,activation:n})}else{let s=e.shape.slice(),a=s.pop();e=e.reshape([-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(c).reshape([l,-1]);let d=[...s,...u],h=!1,p=!1;return ti.matMul({a:e,b:t,transposeA:h,transposeB:p,bias:r?M1(e.rank,r,us()):null,activation:n}).reshape(d)}}function gS(e,t,n){return Z(()=>(Array.isArray(t)?t=_n(t,"int32"):t=t.toInt(),$d(e,t,n)))}function Bd(e){return K(e,e)}function M1(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function hs(e,t,n){return Z(()=>(n==null&&(n=us()),Yt(n),e.add(M1(e.rank,t,n))))}function yee(e,t=1){if(t!==1)throw new Ge(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Nd(e)}function Aee(e){return Z(()=>Re(e,yn(e).add(1)))}function yS(e,t,n,r){return Z(()=>BX(e,t,n,r))}function xee(e){return Z(()=>{let t=pe(.5,K(.2,e));return dr(t,0,1)})}function Wd(e,t,n=!1){return n?e():t()}var bee=["fanIn","fanOut","fanAvg"],vee=["normal","uniform","truncatedNormal"];function wee(e){oi(bee,"FanMode",e)}function kee(e){oi(vee,"Distribution",e)}var Zr=class extends ce.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},O1=class extends Zr{apply(e,t){return un(e,t)}};O1.className="Zeros";ce.registerClass(O1);var qf=class extends Zr{apply(e,t){return la(e,t)}};qf.className="Ones";ce.registerClass(qf);var P1=class extends Zr{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Z(()=>K(Fe(this.value),la(e,t)))}getConfig(){return{value:this.value}}};P1.className="Constant";ce.registerClass(P1);var z1=class extends Zr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Rd(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};z1.className="RandomUniform";ce.registerClass(z1);var L1=class extends Zr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ge(`randomNormal does not support dType ${t}.`);return jf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};L1.className="RandomNormal";ce.registerClass(L1);var B1=class extends Zr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ge(`truncatedNormal does not support dType ${t}.`);return l1(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};B1.className="TruncatedNormal";ce.registerClass(B1);var W1=class extends Zr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return Z(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return K(this.gain,dI(e[0]))})}getConfig(){return{gain:this.gain}}};W1.className="Identity";ce.registerClass(W1);function Iee(e,t="channelsLast"){let n,r;if(Yt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let s=ja(e,2);n=e[1]*s,r=e[0]*s}else if(t==="channelsLast"){let s=ja(e,0,e.length-2);n=e[e.length-2]*s,r=e[e.length-1]*s}}else{let s=ja(e);n=Math.sqrt(s),r=Math.sqrt(s)}return[n,r]}var Qn=class extends Zr{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,wee(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,kee(this.distribution),this.seed=e.seed}apply(e,t){let n=Iee(e),r=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,r):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(r+s)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ge(`${this.getClassName()} does not support dType ${t}.`);return l1(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Rd(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Qn.className="VarianceScaling";ce.registerClass(Qn);var Kf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Kf.className="GlorotUniform";ce.registerClass(Kf);var Xf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Xf.className="GlorotNormal";ce.registerClass(Xf);var Zf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Zf.className="HeNormal";ce.registerClass(Zf);var Yf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Yf.className="HeUniform";ce.registerClass(Yf);var Jf=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Jf.className="LeCunNormal";ce.registerClass(Jf);var Qf=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Qf.className="LeCunNormal";ce.registerClass(Qf);var V1=class extends Zr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ge("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Z(()=>{if(e.length<2)throw new Ge("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=jf(n,0,1,"float32"),s=dY.gramSchmidt(r);return e[0]>e[1]&&(s=s.transpose()),K(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};V1.className="Orthogonal";ce.registerClass(V1);var AS={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function xS(e,t={}){return Md(e,ce.SerializationMap.getMap().classNameMap,t,"initializer")}function Ht(e){return I1(e)}function zt(e){if(typeof e=="string"){let t=e in AS?AS[e]:e;if(t==="GlorotNormal")return new Xf;if(t==="GlorotUniform")return new Kf;if(t==="HeNormal")return new Zf;if(t==="HeUniform")return new Yf;if(t==="LeCunNormal")return new Jf;if(t==="LeCunUniform")return new Qf;{let n={};return n.className=t,n.config={},xS(n)}}else return e instanceof Zr?e:xS(e)}function See(){return new O1}function Tee(){return new qf}function Nee(e){return new P1(e)}function Cee(e){return new z1(e)}function Eee(e){return new L1(e)}function $ee(e){return new B1(e)}function _ee(e){return new W1(e)}function Ree(e){return new Qn(e)}function Dee(e){return new Kf(e)}function Fee(e){return new Xf(e)}function Mee(e){return new Zf(e)}function Oee(e){return new Yf(e)}function Pee(e){return new Jf(e)}function zee(e){return new Qf(e)}function Lee(e){return new V1(e)}var bS={};De(bS,{Layer:()=>st,RNN:()=>fa,RNNCell:()=>Kd,activation:()=>bne,add:()=>Ene,alphaDropout:()=>hre,average:()=>$ne,averagePooling1d:()=>u5,averagePooling2d:()=>c5,averagePooling3d:()=>d5,avgPool1d:()=>Lne,avgPool2d:()=>Wne,avgPool3d:()=>Une,avgPooling1d:()=>Bne,avgPooling2d:()=>Vne,avgPooling3d:()=>Hne,batchNormalization:()=>One,bidirectional:()=>sre,concatenate:()=>_ne,conv1d:()=>dne,conv2d:()=>hne,conv2dTranspose:()=>pne,conv3d:()=>fne,conv3dTranspose:()=>mne,convLstm2d:()=>ere,convLstm2dCell:()=>tre,cropping2D:()=>yne,dense:()=>vne,depthwiseConv2d:()=>xne,dot:()=>Mne,dropout:()=>wne,elu:()=>ane,embedding:()=>Cne,flatten:()=>Ine,gaussianDropout:()=>dre,gaussianNoise:()=>cre,globalAveragePooling1d:()=>Gne,globalAveragePooling2d:()=>jne,globalMaxPool1d:()=>ore,globalMaxPool2d:()=>ire,globalMaxPooling1d:()=>D8,globalMaxPooling2d:()=>F8,gru:()=>Kne,gruCell:()=>Xne,input:()=>QS,inputLayer:()=>sne,layerNormalization:()=>Pne,leakyReLU:()=>ine,lstm:()=>Zne,lstmCell:()=>Yne,masking:()=>pre,maxPool1d:()=>lre,maxPool2d:()=>ure,maxPooling1d:()=>M8,maxPooling2d:()=>O8,maxPooling3d:()=>qne,maximum:()=>Rne,minimum:()=>Dne,multiply:()=>Fne,permute:()=>Nne,prelu:()=>lne,reLU:()=>one,repeatVector:()=>Sne,reshape:()=>Tne,rnn:()=>nre,separableConv2d:()=>gne,simpleRNN:()=>Jne,simpleRNNCell:()=>Qne,softmax:()=>une,spatialDropout1d:()=>kne,stackedRNNCells:()=>rre,thresholdedReLU:()=>cne,timeDistributed:()=>are,upSampling2d:()=>Ane,zeroPadding2d:()=>zne});var Bee=0;function vS(){return Bee++}var em={};function tm(e=""){return e in em||(em[e]=0),em[e]+=1,e+em[e].toString()}function U1(e){return Array.isArray(e)&&Array.isArray(e[0])}function nm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ke(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function rm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,s)=>r*s);return t}var wS="Variable",kS=class{constructor(e,t="float32",n=wS,r=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=vS(),n=n==null?wS:n,this.originalName=hS(n),this.name=pS(this.originalName),this.trainable_=r,this.constraint=s,this.val=NX(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Wee(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Wee(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function H1(e){return e.map(t=>t.read())}function G1(e){e.forEach(t=>{t[0].write(t[1])})}var tn=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},ps=class{constructor(e,t,n,r,s,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=s,this.outputTensorIndex=o,this.id=vS(),a!=null&&(this.originalName=hS(a),this.name=pS(this.originalName)),this.rank=t.length}},Vee=0,sm=class{constructor(e,t){this.callArgs=t,this.id=Vee++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Uee=0,st=class extends ce.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Uee++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ha(n)+"_"+tm(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new cs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} is not connected, no input to return.`);return Jn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new da(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new da(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Dt(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;ns.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(s.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Dt(e))a.push(o.shape);this.build(Jn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),o=Dt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Jn(i),this.activityRegularizer!=null)throw new Ge("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=Hee(e),o=this.computeOutputShape(a),i,l=Gee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new ps(l,u,this,Dt(e),t,this.name,c)):i=new ps(l,o,this,Dt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Ge("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new da(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new da(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new cs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return rm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return H1(e?this.trainableWeights:this.weights)}setWeights(e){Z(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=H1(t);for(let s=0;ss.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,s,a,o=null){let i=Dt(e);t=Dt(t),n=Dt(n),r=Dt(r),s=nm(s),a=nm(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new sm({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:s,outputShapes:a},o);for(let d=0;de.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Hee(e){e=Dt(e);let t=[];for(let n of e)t.push(n.shape);return Jn(t)}function Gee(e){return"float32"}function IS(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let s=[];for(let a=0;a0){let s=await Promise.all(t);for(let a=0;ape(this.totals[r],K(s,n)));this.totals[r]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Z(()=>{let r=K(Re(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Sn(t[n])}))}},ES=class extends au{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let o=0;onew $S(r,t))}var Ms=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ms.checkForDuplicate(t),Ms.constructors[e]==null&&(Ms.constructors[e]=[]),Ms.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ms.constructors)Ms.constructors[+t].forEach(r=>{if(r===e)throw new q("Duplicate callback constructor.")})}static clear(){Ms.constructors={}}static createCallbacks(e){let t=[];for(let n in Ms.constructors){let r=+n;e>=r&&t.push(...Ms.constructors[r])}return t.map(n=>new n)}},j1=Ms;j1.constructors={};function RS(e,t,n,r,s,a,o,i,l){let u=new ES,c=[new qee,...j1.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new CS(c);return d.setParams({epochs:n,initialEpoch:r,samples:s,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function fs(e,t={},n=!1){return Md(e,ce.SerializationMap.getMap().classNameMap,t,"layer",n)}function am(e,t){return Z(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=_e(Bd(e),t,!0),r=Cd(n.shape,cn()),s=$n(ia(n,r));return Re(e,s)})}function ui(e,t){return Z(()=>Xt(Bd(Ne(t,e)),-1))}function om(e,t){return Z(()=>Xt(yn(Ne(t,e)),-1))}function ou(e,t){return Z(()=>{let n=Ne(e,t),r=dr(yn(e),cn(),Number.MAX_VALUE),s=yn(Re(n,r));return K(100,Xt(s,-1))})}function Kee(e,t){return Z(()=>{let n=dr(t,cn(),Number.MAX_VALUE),r=Rr(pe(1,n)),s=dr(e,cn(),Number.MAX_VALUE),a=Rr(pe(1,s));return Xt(Bd(Ne(r,a)),-1)})}function Xee(e,t){return Z(()=>{let n=ia(0,Ne(1,K(e,t)));return Xt(Bd(n),-1)})}function Zee(e,t){return Z(()=>{let n=ia(0,Ne(1,K(e,t)));return Xt(n,-1)})}function Yee(e,t){return Z(()=>{let n=_e(K(e,t),-1),r=os(K(Ne(1,e),t),-1);return ia(0,pe(1,Ne(r,n)))})}function Jee(e,t){return Z(()=>{let n=Math.log(2),r=Ne(t,e),s=Ne(pe(r,Zl(K(-2,r))),n);return Xt(s,-1)})}function Vd(e,t,n=!1){return Z(()=>{if(n)t=Of(t);else{let r=_e(t,t.shape.length-1,!0);t=Re(t,r)}return t=dr(t,cn(),1-cn()),Kt(_e(K(e.toFloat(),Rr(t)),t.shape.length-1))})}function im(e,t,n=!1){return Z(()=>{let r=Ed(mee(e)).toInt();t=dr(t,cn(),1-cn());let s=t.shape,a=kd(r,s[s.length-1]).reshape(s);return Vd(a,t,n)})}function Qee(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Z(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function lm(e,t){return Z(()=>{let n;return n=dr(t,cn(),1-cn()),n=Rr(Re(n,Ne(1,n))),Xt(Qee(e,n),-1)})}function ete(e,t){return Z(()=>{let n=dr(e,cn(),1),r=dr(t,cn(),1);return _e(K(e,Rr(Re(n,r))),-1)})}function tte(e,t){return Z(()=>{let n=Rr(pe(cn(),t));return Xt(Ne(t,K(e,n)),-1)})}function q1(e,t){return Z(()=>{let n=am(e,-1),r=am(t,-1),s=K(n,r);return Kt(_e(s,-1))})}var um={meanSquaredError:ui,meanAbsoluteError:om,meanAbsolutePercentageError:ou,meanSquaredLogarithmicError:Kee,squaredHinge:Xee,hinge:Zee,categoricalHinge:Yee,logcosh:Jee,categoricalCrossentropy:Vd,sparseCategoricalCrossentropy:im,binaryCrossentropy:lm,kullbackLeiblerDivergence:ete,poisson:tte,cosineProximity:q1};function K1(e){if(typeof e=="string"){if(e in um)return um[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function X1(e,t){return Z(()=>{let n=K(.5,Dr(t)),r=zd(_r(t,n),e.dtype);return Xt(Zo(e,r),-1)})}function Z1(e,t){return Z(()=>zd(Zo(kf(e,-1),kf(t,-1)),"float32"))}function DS(e,t){return Z(()=>is(e.equal(1),t.equal(1)).sum().cast("float32"))}function nte(e,t){return Z(()=>is(e.equal(1),t.equal(0)).sum().cast("float32"))}function rte(e,t){return Z(()=>is(e.equal(0),t.equal(1)).sum().cast("float32"))}function FS(e,t){return Z(()=>{let n=DS(e,t),r=rte(e,t),s=n.add(r);return Ln(_r(s,0),n.div(s),0).cast("float32")})}function ste(e,t){return Z(()=>{let n=DS(e,t),r=nte(e,t),s=n.add(r);return Ln(_r(s,0),n.div(s),0).cast("float32")})}function MS(e,t){return lm(e,t)}function OS(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Zo(e,t).asType("float32")}var ate=ui,ote=ui,ite=om,lte=om,ute=ou,cte=ou,Y1=Vd,dte=q1,PS=im,cm={binaryAccuracy:X1,categoricalAccuracy:Z1,precision:FS,categoricalCrossentropy:Y1,sparseCategoricalCrossentropy:PS,mse:ate,MSE:ote,mae:ite,MAE:lte,mape:ute,MAPE:cte,cosine:dte};function hte(e){if(typeof e=="string"&&e in cm)return cm[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function dm(e){if(Ds(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(um))if(um[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(cm))if(cm[n]===e){t=n;break}return t!==void 0?t:e.name}}function pte(e){let t={Adagrad:()=>tu.adagrad(.01),Adadelta:()=>tu.adadelta(1,.95,cn()),Adam:()=>tu.adam(.001,.9,.999,cn()),Adamax:()=>tu.adamax(.002,.9,.999,cn(),0),RMSProp:()=>tu.rmsprop(.001,.9,0,cn()),SGD:()=>tu.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var zS=1*1024*1024;function LS(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!J1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>zS&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${zS}.`)}}function J1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!J1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!J1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function fte(e,t,n,r=console.log){let s=gte(e),a=["Layer (type)","Output shape","Param #"];s?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!s){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}r("_".repeat(t)),hm(a,n,r),r("=".repeat(t));let i=e.layers;for(let c=0;c1||s.length===1&&s[0].inboundLayers.length>1){t=!1;break}r.push(...s)}if(t)for(let s of e.layers){let a=!1;for(let o of s.inboundNodes)if(r.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function hm(e,t,n=console.log){let r="";for(let s=0;s0&&(r=r.slice(0,r.length-1)+" "),r+=e[s],r=r.slice(0,t[s]),r+=" ".repeat(t[s]-r.length);n(r)}function yte(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(i){r="multiple"}let s=e.name,a=e.getClassName(),o=[`${s} (${a})`,r,e.countParams().toString()];hm(o,t,n)}function Ate(e,t,n,r){let s;try{s=JSON.stringify(e.outputShape)}catch(c){s="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;df.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=i.join(",")+"|"+t.names().join(","),d,h;if(tx[c]==null){let f=bte(o,t);d=f.sorted,h=f.recipientCounts,tx[c]=d,WS[c]=h}d=tx[c],h={},s||Object.assign(h,WS[c]);let p=new ci(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=E),E0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let s=VS(e[0],t);n=s.sorted,r=s.recipientMap}else{let s=new Set;for(let a of e){let{sorted:o,recipientMap:i}=VS(a,t);for(let l of o)s.has(l.name)||(n.push(l),s.add(l.name));for(let l in i)r[l]==null&&(r[l]=new Set),i[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:vte(r)}}function vte(e){let t={};for(let n in e)t[n]=e[n].size;return t}function VS(e,t){let n=new Set,r=[],s={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),r.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)s[u.name]==null&&(s[u.name]=new Set),s[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:r,recipientMap:s}}function wte(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ga(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;Ds(x===0,"input layer has >1 nodes"),Ds(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},s={},a={},o=[],i=(y,A,x,b,v,w)=>{(b==null||v==null||w==null)&&(b=y.sourceLayer,v=y.nodeIndex,w=y.tensorIndex);let S=b.inboundNodes[v];if(x.indexOf(S)!==-1)throw new cs(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(S)!==-1)return;this.containerNodes.add(Os.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let I=S.inboundLayers.length;for(let E=0;E=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];A=Math.max(A,x),r[y.outboundLayer.id]=A,s[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;bparseInt(y,10)).sort(Hf);this.layers=[];for(let y of p){let A=h[y];A.sort((x,b)=>{let v=a[x.id],w=a[b.id];return vw?1:0});for(let x of A)x instanceof Os&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,p=Object.keys(d).map(y=>parseInt(y,10)).sort(Hf);let f=this.inputs.slice(),m=[];for(let y of p)for(let A of d[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(f.indexOf(b)===-1)throw new cs(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of A.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new cs(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new sm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,r++}let s=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)s.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${r} weights are not set: ${a}`)}G1(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ex}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Q1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Z(()=>{e=Dt(e);let n=new ci;for(let r=0;r{e=Dt(e);let n;return t==null?n=si(null,e.length):n=Dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=nm(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(Hf);if(r.length>1)for(let o of r){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;fparseInt(i,10)).sort(Hf);for(let i of r){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,h=u.outputTensors,p=new Array;for(let f of d)f.id in n&&p.push(n[f.id]);if(p.length===d.length){let f={},m,g,y,A;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[x,b]=p[0];f.mask==null&&(f.mask=b),y=Dt(c.call(x,f)),A=Dt(c.computeMask(x,b)),m=[x],g=[b]}else m=p.map(x=>x[0]),g=p.map(x=>x[1]),f.mask==null&&(f.mask=g),y=Dt(c.call(m,f)),A=Dt(c.computeMask(m,g));if(c.activityRegularizer)throw new Ge("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(Jn(y),A)}function l(m){let g=m.name,y=fs(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),s[g]=y,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${x}`);o(y,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!QQ(a);)for(let m of c){let g=s[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let A of y)i(g,A)}}let d=[],h=[],p=t.inputLayers;for(let m of p){let g=m[0],y=m[1],A=m[2];Ds(g in s);let b=s[g].inboundNodes[y].outputTensors;d.push(b[A])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],A=m[2];Ds(g in s);let b=s[g].inboundNodes[y].outputTensors;h.push(b[A])}return new e({inputs:d,outputs:h,name:u})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Z(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function kte(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let s=[];return t.forEach(a=>{a in e?s.push(e[a]):s.push(null)}),s}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function US(e,t){return kte(e,t,"classWeight")}async function HS(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let s=Z(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let i=1;return e.argMax(i)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await s.data());je(s);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),_n(o,"float32")}else return null}function Ite(e,t){return K(e,t)}var Ste=32;function GS(e,t){let n,r,s=t;n=s.xs,r=s.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=jS("input",e.inputNames,n),o=jS("output",e.outputNames,r),i=a[0].shape[0];k.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function jS(e,t,n){if(n instanceof Ct)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let s of t){if(n[s]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${s}'.`);r.push(n[s])}return r}}function Tte(e){if(e.length===3)throw new Ge("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Nte(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let s=n.validationData!=null,a,o;if(s)if(qS(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=Tte(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;s?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=_S(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:h,history:p}=RS(c,d,n.epochs,null,null,Cte(t,n),null,s,u);h.setModel(e),e.history=p,await h.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:x.done){if(s){let b;qS(n.validationData)?b=Dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Dt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?Ste:n.validationBatchSize,verbose:0}));for(let v=0;v0)throw new Ge("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=Ete(t)?t:await t.iterator(),i=0,l=0;for(;r?l{if(u.value){let{xs:c,ys:d}=GS(e,u.value),h=c.concat(d),p=Z(()=>s(h));if(je(h),l===0)for(let m=0;mpe(a[m],K(f,g))),l>0&&je(y)}je(p),i+=f,++l}return a}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Gd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>li(r,t,n-t)):li(e,t,n-t)}function rx(e,t){return Z(()=>e==null?null:Array.isArray(e)?e.map(n=>rx(n,t)):gS(e,t.dtype==="int32"?t:t.toInt()))}function sx(e,t){let n=[],r=0,s=null;for(;r=e&&(s=e),n.push([r,s]),r=s;return n}async function _te(e,t,n,r,s,a,o,i,l,u,c,d,h,p,f){s==null&&(s=32),a==null&&(a=1),c==null&&(c=!0),h==null&&(h=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,s,p,"steps_per_epoch"),y;g!=null&&(y=ds(0,g)),o==null&&(o=1);let{callbackList:A,history:x}=RS(i,o,a,h,g,p,s,m,d);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=h;b{let F=S[I][0],$=S[I][1],_=li(w,F,$-F);E.batch=I,E.size=$-F;let N=rx(n,_),P=t(N);for(let B=0;B0){if(f=!0,r.validationData.length===2)o=r.validationData[0],i=r.validationData[1];else throw r.validationData.length===3?new Ge("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let S=!0,I=await e.standardizeUserData(o,i,null,null,S,d);l=I[0],u=I[1],m=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let S=Math.floor(s[0].shape[0]*(1-r.validationSplit)),I=s[0].shape[0];l=Gd(s,S,I),s=Gd(s,0,S),u=Gd(a,S,I),a=Gd(a,0,S),m=l.concat(u)}else r.validationSteps!=null&&(f=!0);let g=s.concat(a).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),A=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=A.slice().concat(A.map(S=>"val_"+S))):(x=null,m=[],b=A.slice());let v=_S(r.callbacks,r.yieldEvery);return await _te(e,y,g,A,d,r.epochs,r.verbose,v,x,m,r.shuffle,b,r.initialEpoch,null,null)}finally{e.isTraining=!1,di(s,t),di(a,n),di(l,o),di(u,i),c!=null&&je(c)}}function KS(e){let t=[];e instanceof Ct&&(e=[e]);for(let n=0;nn.push(s.id));else if(t!=null)for(let s in t){let a=t[s];n.push(a.id)}let r=[];if(e instanceof Ct)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(s=>{n.indexOf(s.id)===-1&&r.push(s)});else if(e!=null)for(let s in e){let a=e[s];n.indexOf(a.id)===-1&&r.push(a)}r.forEach(s=>{s.isDisposed||s.dispose()})}function Dte(e){return e instanceof Ct}function ax(e){return Array.isArray(e)}function XS(e){return!Dte(e)&&!ax(e)}function ZS(e,t,n,r=!0,s=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(ax(e)&&e.length>0)o=!0;else if(XS(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${s} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(XS(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(ax(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${s} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=KS(a),n!=null)for(let o=0;o=0&&u!==c)throw new q(`Error when checking ${s}: expected ${t[o]} to have shape [${n[o]}], but got array with shape [${i.shape}].`)}}return a}function Fte(e,t,n){let r=Ga(e.map(a=>a.shape[0]));r.sort();let s=Ga(t.map(a=>a.shape[0]));if(s.sort(),r.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(s.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(r.length>0&&s.length>0&&!k.arraysEqual(r,s))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${s[0]} target sample(s).`)}function Mte(e,t,n){let r=[ui,lm,Vd];for(let s=0;s1)throw new q(`The model expects ${t.length} ${s} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let s of t){let a=n.hasOwnProperty(s)?n[s]:[];Array.isArray(a)||(a=[a]),r.push(a)}return r}}var Pte="layers-model",pa=class extends Os{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");fte(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=pte(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ha))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(K1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>K1(o))}else{let a=K1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let r=Ote(e.metrics,this.outputNames),s=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ii("metric",()=>{for(let a=0;a{let u="",c,d,h;for(let p of l){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===lm?["accuracy","acc"].indexOf(p)!==-1?d=X1:["crossentropy","ce"].indexOf(p)!==-1&&(d=MS):this.lossFunctions[a]===im?["accuracy","acc"].indexOf(p)!==-1?d=OS:["crossentropy","ce"].indexOf(p)!==-1&&(d=PS):["accuracy","acc"].indexOf(p)!==-1?d=Z1:["crossentropy","ce"].indexOf(p)!==-1&&(d=Y1);let g;["accuracy","acc"].indexOf(p)!==-1?g="acc":["crossentropy","ce"].indexOf(p)!==-1&&(g="ce"),h=d,c=u+g}else h=hte(p),c=u+dm(p);let f;ii(c,()=>{f=h}),s(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;nx(r);let s=!0,a=this.standardizeUserDataXY(e,t,s,r);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,r,n.verbose,n.steps);return Jn(l)}finally{di(a[0],e),di(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),$te(this,e,t)}checkNumSamples(e,t,n,r="steps"){let s;if(n!=null){if(s=null,t!=null)throw new q(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],s=this.retrieveSymbolicTensors(r),a=new ci;if(e instanceof Ct&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let r=[];throw t.forEach((s,a)=>{s==null&&r.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return Z(()=>{let r=this.checkNumSamples(e);if(n)throw new Ge("Verbose predictLoop() is not implemented yet.");let s=sx(r,t),a=this.outputs.map(o=>[]);for(let o=0;o{let l=s[o][0],u=s[o][1],c=Gd(e,l,u),d=[];if(Array.isArray(c))for(let p=0;pa[u].push(l));return Jn(a.map(o=>en(o,0)))})}predict(e,t={}){let n=KS(e);YS(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return nx(r),this.predictLoop(n,r)}finally{di(n,e)}}predictOnBatch(e){YS(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new cs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a0&&e[0].shape[0]%r!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,s=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=US(r,this.outputNames);l=[];for(let c=0;c{let a=this.checkNumSamples(t,n,s,"steps"),o=[];if(r>0)throw new Ge("Verbose mode is not implemented yet.");if(s!=null)throw new Ge("steps mode in testLoop() is not implemented yet");{let i=sx(a,n),l=_n(ds(0,a));for(let u=0;u1&&(s+=`_${sS(e.slice(0,n),r)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f1&&f{p=pe(p,f)}),p},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>Z(()=>{let t=[],n,r=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;lha(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ha(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ha(dm(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ha(dm(e)));{let e={};for(let t in this.metrics)e[t]=ha(dm(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ud(e.optimizer_config),n=fs(t),r;if(typeof e.loss=="string")r=ai(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(a=>ai(a));else if(e.loss!=null){r={};for(let a in e.loss)r[a]=ai(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>ai(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=ai(e.metrics[a])}this.compile({loss:r,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=cr.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await cr.encodeWeights(this.getNamedWeights(t)),r=!1,s=null,o={modelTopology:this.toJSON(s,r),format:Pte,generatedBy:`TensorFlow.js tfjs-layers v${ex}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await cr.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=cr.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;LS(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){LS(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};pa.className="Model";ce.registerClass(pa);var JS=class extends pa{};JS.className="Functional";ce.registerClass(JS);async function zte(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Ud(n),s=fs(r,t);if(e.weightsManifest!=null){let a=await cr.loadWeights(e.weightsManifest,e.pathPrefix,s.weights.map(i=>i.originalName)),o={};for(let i of s.weights)o[i.originalName]=a[i.originalName];s.loadWeights(o),je(a)}return s}async function Lte(e,t){if(t==null&&(t={}),typeof e=="string"){let n=cr.getLoadHandlers(e,t);if(n.length===0)n.push(cr.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Bte(e,void 0,t)}async function Bte(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),s=r.modelTopology;s.model_config!=null&&(s=s.model_config);let a=n.strict==null?!0:n.strict,o=r.weightData!=null&&r.weightSpecs!=null&&a,i=fs(Ud(s),t,o),l=r.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),r.userDefinedMetadata!=null&&i.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=Wte(r.weightData,r.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),je(u),je(c.map(d=>d.tensor))}return i}function Wte(e,t){let n=cr.decodeWeights(e,t),r={},s=[];return t.forEach(a=>{a.group==="optimizer"?s.push({name:a.name,tensor:n[a.name]}):r[a.name]=n[a.name]}),{modelWeights:r,optimizerWeights:s}}var ox=class extends pa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:tm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ox||e instanceof pa,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=SS({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=IS(this.outputs[0])}this.inboundNodes=[],new sm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:si(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new pa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new cs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new cs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new cs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new cs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");s=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof ox))throw new Ge(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of s){let u=fs(i,void 0,r);r&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},pm=ox;pm.className="Sequential";ce.registerClass(pm);function Vte(e){return new pa(e)}function Ute(e){return new pm(e)}function Hte(e,t){return t==null&&(t={}),Lte(e,t)}function QS(e){return SS(e)}function Gte(e,t){j1.registerCallbackConstructor(e,t)}var er=class extends ce.Serializable{getConfig(){return{}}},e8=class extends er{apply(e,t=1){return yee(e,t)}};e8.className="elu";ce.registerClass(e8);var t8=class extends er{apply(e){return e1(e)}};t8.className="selu";ce.registerClass(t8);var n8=class extends er{apply(e){return ua(e)}};n8.className="relu";ce.registerClass(n8);var r8=class extends er{apply(e){return Z(()=>_d(6,ua(e)))}};r8.className="relu6";ce.registerClass(r8);var s8=class extends er{apply(e){return e}};s8.className="linear";ce.registerClass(s8);var a8=class extends er{apply(e){return Rs(e)}};a8.className="sigmoid";ce.registerClass(a8);var o8=class extends er{apply(e){return xee(e)}};o8.className="hardSigmoid";ce.registerClass(o8);var i8=class extends er{apply(e){return Zl(e)}};i8.className="softplus";ce.registerClass(i8);var l8=class extends er{apply(e){return Aee(e)}};l8.className="softsign";ce.registerClass(l8);var u8=class extends er{apply(e){return Kl(e)}};u8.className="tanh";ce.registerClass(u8);var ix=class extends er{apply(e,t=-1){return Of(e,t)}};ix.className="softmax";ce.registerClass(ix);var c8=class extends er{apply(e,t=-1){return UA(e,t)}};c8.className="logSoftmax";ce.registerClass(c8);var d8=class extends er{apply(e,t=1){return Z(()=>Rs(e.mul(t)).mul(e))}};d8.className="swish";ce.registerClass(d8);var h8=class extends er{apply(e){return Z(()=>K(e,Kl(Zl(e))))}};h8.className="mish";ce.registerClass(h8);function Xa(e){return e.getClassName()}function lx(e,t={}){return Md(e,ce.SerializationMap.getMap().classNameMap,t,"activation")}function Za(e){if(e==null){let t={};return t.className="linear",t.config={},lx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},lx(t)}else return e instanceof er?e:lx(e)}function ux(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var p8=class extends ce.Serializable{},jd=class extends p8{constructor(e){super();ux(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Z(()=>{let t=un([1]);return this.hasL1&&(t=pe(t,_e(K(this.l1,yn(e))))),this.hasL2&&(t=pe(t,_e(K(this.l2,Bd(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};jd.className="L1L2";ce.registerClass(jd);function jte(e){return ux(e),new jd({l1:e!=null?e.l1:null,l2:0})}function qte(e){return ux(e),new jd({l2:e!=null?e.l2:null,l1:0})}var f8={l1l2:"L1L2"};function kt(e){return I1(e)}function m8(e,t={}){return Md(e,ce.SerializationMap.getMap().classNameMap,t,"regularizer")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in f8?f8[e]:e,config:{}};return m8(n)}else return e instanceof p8?e:m8(e)}var cx=class extends st{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ke(e);let n=ua(e);return this.maxValue!=null&&(n=dr(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};cx.className="ReLU";ce.registerClass(cx);var dx=class extends st{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return Cf(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};dx.className="LeakyReLU";ce.registerClass(dx);var hx=class extends st{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=zt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Lt(e.alphaRegularizer),this.alphaConstraint=hn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Yt(t),t==="channelsFirst"?pt(e,[0,2,3,1]):e))}function g8(e,t){return Z(()=>(Yt(t),t==="channelsFirst"?pt(e,[0,2,3,4,1]):e))}function Kte(e,t,n,r=1,s="valid",a,o=1){return Z(()=>{if(a==null&&(a=us()),Yt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=pt(e,[0,2,1])),s==="causal")throw new Ge("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=MA(e,t,r,s==="same"?"same":"valid","NWC",o);return n!=null&&(i=hs(i,n)),i})}function y8(e,t,n,r=[1,1],s="valid",a,o,i=null){return Z(()=>{if(a==null&&(a=us()),Yt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=gx(e,a);if(s==="causal")throw new Ge("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ti.conv2d({x:l,filter:t,strides:r,pad:s==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=pt(l,[0,3,1,2])),l})}function Xte(e,t,n,r=[1,1,1],s="valid",a,o){return Z(()=>{if(a==null&&(a=us()),Yt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=g8(e,a);if(s==="causal")throw new Ge("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=sI(i,t,r,s==="same"?"same":"valid","NDHWC",o),n!=null&&(i=hs(i,n)),a==="channelsFirst"&&(i=pt(i,[0,4,1,2,3])),i})}var yx=class extends st{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",yx.verifyArgs(t),this.rank=e,An(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ge(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=iu(t.kernelSize,e,"kernelSize"),this.strides=iu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Or(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Yt(this.dataFormat),this.activation=Za(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=zt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=hn(t.biasConstraint),this.biasRegularizer=Lt(t.biasRegularizer),this.activityRegularizer=Lt(t.activityRegularizer),this.dilationRate=iu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ds("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!T1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Xa(this.activation),useBias:this.useBias,biasInitializer:Ht(this.biasInitializer),biasRegularizer:kt(this.biasRegularizer),activityRegularizer:kt(this.activityRegularizer),biasConstraint:dn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},qd=class extends yx{constructor(e,t){super(e,t);this.kernel=null,qd.verifyArgs(t),this.filters=t.filters,An(this.filters,"filters"),this.kernelInitializer=zt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=hn(t.kernelConstraint),this.kernelRegularizer=Lt(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n,r=this.bias==null?null:this.bias.read(),s=oS(this.activation.getClassName());if(s!=null&&this.rank===2)n=y8(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=Kte(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=y8(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Xte(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ge("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s 0 but got ${JSON.stringify(e.filters)}`)}},A8=class extends qd{constructor(e){super(2,e);A8.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!T1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},fm=A8;fm.className="Conv2D";ce.registerClass(fm);var x8=class extends qd{constructor(e){super(3,e);x8.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},mm=x8;mm.className="Conv3D";ce.registerClass(mm);var Ax=class extends fm{constructor(e){super(e);if(this.inputSpec=[new tn({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new tn({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=r[a],l=r[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],h=this.strides[1],p=Ps(i,d,u,this.padding),f=Ps(l,h,c,this.padding),m=[s,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=pt(n,[0,2,3,1]));let g=PA(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=pt(g,[0,3,1,2])),this.bias!=null&&(g=hs(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,r,s;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3):(n=3,r=1,s=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Ps(t[r],i,a,this.padding),t[s]=Ps(t[s],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ax.className="Conv2DTranspose";ce.registerClass(Ax);var xx=class extends mm{constructor(e){super(e);if(this.inputSpec=[new tn({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new tn({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Z(()=>{let n=Ke(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=r[i],u=r[a],c=r[o],d=this.kernelSize[0],h=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Ps(l,f,d,this.padding),A=Ps(u,m,h,this.padding),x=Ps(c,g,p,this.padding),b=[s,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(n=pt(n,[0,2,3,4,1]));let v=Yj(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=pt(v,[0,4,1,2,3])),this.bias!==null&&(v=hs(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=At(e);let t=e.slice(),n,r,s,a;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3,a=4):(n=4,r=1,s=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[r]=Ps(t[r],u,o,this.padding),t[s]=Ps(t[s],c,i,this.padding),t[a]=Ps(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};xx.className="Conv3DTranspose";ce.registerClass(xx);var b8=class extends qd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=zt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Lt(t.depthwiseRegularizer),this.depthwiseConstraint=hn(t.depthwiseConstraint),this.pointwiseInitializer=zt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Lt(t.pointwiseRegularizer),this.pointwiseConstraint=hn(t.pointwiseConstraint)}build(e){if(e=At(e),e.length{e=Ke(e);let n;if(this.rank===1)throw new Ge("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=pt(e,[0,2,3,1])),n=wI(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=hs(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=pt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ht(this.depthwiseInitializer),e.pointwiseInitializer=Ht(this.pointwiseInitializer),e.depthwiseRegularizer=kt(this.depthwiseRegularizer),e.pointwiseRegularizer=kt(this.pointwiseRegularizer),e.depthwiseConstraint=dn(this.depthwiseConstraint),e.pointwiseConstraint=dn(this.pointwiseConstraint),e}};b8.className="SeparableConv";var bx=class extends b8{constructor(e){super(2,e)}};bx.className="SeparableConv2D";ce.registerClass(bx);var v8=class extends qd{constructor(e){super(1,e);v8.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!T1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},vx=v8;vx.className="Conv1D";ce.registerClass(vx);var wx=class extends st{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Z(()=>{if(e=Ke(e),this.dataFormat==="channelsLast"){let n=Gf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Gf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Gf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Gf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};wx.className="Cropping2D";ce.registerClass(wx);var kx=class extends st{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,cee(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Z(()=>{let n=Ke(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=pt(n,[0,2,3,1]);let s=this.size[0]*r[2],a=this.size[1]*r[3],o=this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a]);return pt(o,[0,3,1,2])}else{let s=this.size[0]*r[1],a=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([s,a]):n.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};kx.className="UpSampling2D";ce.registerClass(kx);function Zte(e,t,n=[1,1],r="valid",s,a){return Z(()=>{s==null&&(s=us()),Yt(s);let o=gx(e,s);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Td(o,t,n,r==="same"?"same":"valid","NHWC",a),s==="channelsFirst"&&(o=pt(o,[0,3,1,2])),o})}var Ix=class extends yx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=zt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=hn(e.depthwiseConstraint),this.depthwiseRegularizer=Lt(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{e=Ke(e);let n=Zte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=hs(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=ms(t,this.kernelSize[0],this.padding,this.strides[0]),a=ms(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,s,a]:[e[0],s,a,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ht(this.depthwiseInitializer),e.depthwiseRegularizer=kt(this.depthwiseRegularizer),e.depthwiseConstraint=dn(this.depthwiseRegularizer),e}};Ix.className="DepthwiseConv2D";ce.registerClass(Ix);function w8(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function s(a){return a==null||Array.isArray(a)?a:[a]}return t=s(t),n=s(n),{inputs:e,initialState:t,constants:n}}function k8(e,t,n,r=!1,s,a,o=!1,i=!1){return Z(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(ds(2,l));if(t=pt(t,u),a!=null)throw new Ge("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),s!=null&&(s=s.asType("bool").asType("float32"),s.rank===l-1&&(s=$r(s,-1)),s=pt(s,u)),r&&(t=Fr(t,0),s!=null&&(s=Fr(s,0)));let c=[],d,h=n,p=t.shape[0],f=ls(t),m;s!=null&&(m=ls(s));for(let y=0;ye(A,h));if(s==null)d=x[0],h=x[1];else{let b=Z(()=>{let v=m[y],w=Dr(v).sub(v),S=x[0].mul(v).add(h[0].mul(w)),I=h.map((E,F)=>x[1][F].mul(v).add(E.mul(w)));return{output:S,newStates:I}});d=b.output,h=b.newStates}i&&c.push(d)}let g;return i&&(g=Mr(c,1)),[d,g,h]})}var I8=class extends st{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Am({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new tn({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ds(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){U1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[r].concat(s)}else return r}computeMask(e,t){return Z(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(s=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new tn({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>un([n,r])):this.states_=[un([n,this.cell.stateSize])];else if(e==null)je(this.states_),this.keptStates!=null&&(je(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>un([n,r])):this.states_[0]=un([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):je(this.states_);for(let r=0;rSn(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=w8(e,n,r,this.numConstants);e=s.inputs,n=s.initialState,r=s.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new tn({shape:l.shape}));o=o.concat(this.stateSpec)}if(r!=null&&(t.constants=r,a=a.concat(r),this.numConstants=r.length),a[0]instanceof ps){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;e=Ke(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:r},l=k8((p,f)=>{let m=this.cell.call([p].concat(f),o);return[m[0],m.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,r);let h=this.returnSequences?c:u;return this.returnState?[h].concat(d):h})}getInitialState(e){return Z(()=>{let t=un(e.shape);return t=_e(t,[1,2]),t=Ld(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?F1(t,[1,n]):t):this.cell.stateSize>1?[F1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===I8.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let r=t.cell,s=fs(r,n);return new e(Object.assign(t,{cell:s}))}},fa=I8;fa.className="RNN";ce.registerClass(fa);var Kd=class extends st{},gm=class extends Kd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,An(this.units,"units"),this.activation=Za(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=zt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=zt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=zt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Lt(e.kernelRegularizer),this.recurrentRegularizer=Lt(e.recurrentRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.kernelConstraint=hn(e.kernelConstraint),this.recurrentConstraint=hn(e.recurrentConstraint),this.biasConstraint=hn(e.biasConstraint),this.dropout=ru([1,qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Dr(e),rate:this.dropout,training:r})),0Dr(n),rate:this.recurrentDropout,training:r}));let s,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?s=Fs(K(e,a),this.kernel.read()):s=Fs(e,this.kernel.read()),this.bias!=null&&(s=hs(s,this.bias.read())),o!=null&&(n=K(n,o));let i=pe(s,Fs(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:Ht(this.kernelInitializer),recurrentInitializer:Ht(this.recurrentInitializer),biasInitializer:Ht(this.biasInitializer),kernelRegularizer:kt(this.kernelRegularizer),recurrentRegularizer:kt(this.recurrentRegularizer),biasRegularizer:kt(this.biasRegularizer),activityRegularizer:kt(this.activityRegularizer),kernelConstraint:dn(this.kernelConstraint),recurrentConstraint:dn(this.recurrentConstraint),biasConstraint:dn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};gm.className="SimpleRNNCell";ce.registerClass(gm);var Sx=class extends fa{constructor(e){e.cell=new gm(e),super(e)}call(e,t){return Z(()=>{this.cell.dropoutMask!=null&&(je(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(je(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return new e(t)}};Sx.className="SimpleRNN";ce.registerClass(Sx);var ym=class extends Kd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,An(this.units,"units"),this.activation=Za(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Za(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=zt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=zt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=zt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Lt(e.kernelRegularizer),this.recurrentRegularizer=Lt(e.recurrentRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.kernelConstraint=hn(e.kernelConstraint),this.recurrentConstraint=hn(e.recurrentConstraint),this.biasConstraint=hn(e.biasConstraint),this.dropout=ru([1,qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Z(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Dr(e),rate:this.dropout,training:n,count:3})),0Dr(r),rate:this.recurrentDropout,training:n,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0{this.cell.dropoutMask!=null&&(je(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(je(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Tx.className="GRU";ce.registerClass(Tx);var Xd=class extends Kd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,An(this.units,"units"),this.activation=Za(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Za(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=zt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=zt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=zt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Lt(e.kernelRegularizer),this.recurrentRegularizer=Lt(e.recurrentRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.kernelConstraint=hn(e.kernelConstraint),this.recurrentConstraint=hn(e.recurrentConstraint),this.biasConstraint=hn(e.biasConstraint),this.dropout=ru([1,qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;r=new(t=class extends Zr{apply(o,i){let l=s.apply([a]),u=new qf().apply([a]),c=s.apply([a*2]);return mS(mS(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],s=e[2];e=e[0],0Dr(e),rate:this.dropout,training:n,count:4})),0Dr(r),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0{this.cell.dropoutMask!=null&&(je(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(je(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Nx.className="LSTM";ce.registerClass(Nx);var Am=class extends Kd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Z(()=>{e=e;let n=e.slice(1),r=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?r.push(n.splice(0,o.stateSize.length)):r.push(n.splice(0,1));r.reverse();let s=[],a;for(let o=0;o{ii(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,n={}){let r=[];for(let s of t.cells)r.push(fs(s,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return H1(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,s=e.splice(r);for(let a=0;ayS(t(),n),o=()=>Wd(a,t,r);return!s||s<=1?Sn(o().clone()):Array(s).fill(void 0).map(o).map(l=>Sn(l.clone()))}var S8=class extends fa{constructor(e){if(e.unroll)throw new Ge("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Ge("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new tn({ndim:5})]}call(e,t){return Z(()=>{if(this.cell.dropoutMask!=null&&(je(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(je(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Z(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)],a=un(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){Z(()=>{if(!this.stateful)throw new da("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>un(s)):this.states_=[un(s)];else if(e==null)je(this.states_),this.keptStates!=null&&(je(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>un(s)):this.states_[0]=un(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):je(this.states_);for(let o=0;oSn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:s,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=ms(l,r[0],s,a[0],o[0]),d=ms(u,r[1],s,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};S8.className="ConvRNN2D";var xm=class extends Xd{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:s,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,An(this.filters,"filters"),this.kernelSize=iu(n,2,"kernelSize"),this.kernelSize.forEach(i=>An(i,"kernelSize")),this.strides=iu(r||1,2,"strides"),this.strides.forEach(i=>An(i,"strides")),this.padding=s||"valid",Or(this.padding),this.dataFormat=a||"channelsLast",Yt(this.dataFormat),this.dilationRate=iu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>An(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],s=4,a=this.kernelSize.concat([r,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Zr{apply(c,d){let h=l.apply([u]),p=la([u]),f=l.apply([u*2]);return D1([h,p,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Z(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],s=e[1],a=e[2],o=4;0Dr(r),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(ee,oe,se)=>!oe||!oe[se]?ee:K(oe[se],ee),u=l(r,i,0),c=l(r,i,1),d=l(r,i,2),h=l(r,i,3);0Dr(s),rate:this.recurrentDropout,training:n,count:o}));let p=this.recurrentDropoutMask,f=l(s,p,0),m=l(s,p,1),g=l(s,p,2),y=l(s,p,3),A=3,[x,b,v,w]=hr(this.kernel.read(),o,A),[S,I,E,F]=this.useBias?hr(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),c=this.inputConv(c,b,I,this.padding),d=this.inputConv(d,v,E,this.padding),h=this.inputConv(h,w,F,this.padding);let[$,_,N,P]=hr(this.recurrentKernel.read(),o,A);f=this.recurrentConv(f,$),m=this.recurrentConv(m,_),g=this.recurrentConv(g,N),y=this.recurrentConv(y,P);let B=this.recurrentActivation.apply(pe(u,f)),j=this.recurrentActivation.apply(pe(c,m)),X=pe(K(j,a),K(B,this.activation.apply(pe(d,g)))),Y=K(this.recurrentActivation.apply(pe(h,y)),this.activation.apply(X));return[Y,Y,X]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,r){let s=Ba(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?hs(s,n,this.dataFormat):s}recurrentConv(e,t){return Ba(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};xm.className="ConvLSTM2DCell";ce.registerClass(xm);var Cx=class extends S8{constructor(e){let t=new xm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};Cx.className="ConvLSTM2D";ce.registerClass(Cx);var bm=class extends st{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=Ke(e);if(0yS(n,this.rate,s,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};bm.className="Dropout";ce.registerClass(bm);var Ex=class extends bm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Ex.className="SpatialDropout1D";ce.registerClass(Ex);var $x=class extends st{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,An(this.units,"units"),this.activation=Za(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=zt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=zt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=hn(e.kernelConstraint),this.biasConstraint=hn(e.biasConstraint),this.kernelRegularizer=Lt(e.kernelRegularizer),this.biasRegularizer=Lt(e.biasRegularizer),this.activityRegularizer=Lt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),r=oS(this.activation.getClassName()),s;return r!=null?s=Fs(n,this.kernel.read(),r,this.bias?this.bias.read():null):(s=Fs(n,this.kernel.read()),this.bias!=null&&(s=hs(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:Ht(this.kernelInitializer),biasInitializer:Ht(this.biasInitializer),kernelRegularizer:kt(this.kernelRegularizer),biasRegularizer:kt(this.biasRegularizer),activityRegularizer:kt(this.activityRegularizer),kernelConstraint:dn(this.kernelConstraint),biasConstraint:dn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};$x.className="Dense";ce.registerClass($x);var _x=class extends st{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ja(e,1)]}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let s=2;s{this.invokeCallHook(e,t);let n=Ke(e);return this.activation.apply(n)})}getConfig(){let e={activation:Xa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Rx.className="Activation";ce.registerClass(Rx);var Dx=class extends st{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Z(()=>(e=Ke(e),fee(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="RepeatVector";ce.registerClass(Dx);var Fx=class extends st{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Ke(e),r=n.shape,s=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Fx.className="Reshape";ce.registerClass(Fx);var Mx=class extends st{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ds(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new tn({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return pt(Ke(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Mx.className="Permute";ce.registerClass(Mx);var Ox=class extends st{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ke(e),r=-1;return wf(Yl(n,this.maskValue),r)}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e),r=-1,s=!0,a=wf(Yl(n,this.maskValue),r,s);return n.mul(a.asType(n.dtype))})}};Ox.className="Masking";ce.registerClass(Ox);var Px=class extends st{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Dt(e.inputLength))}this.inputDim=e.inputDim,An(this.inputDim,"inputDim"),this.outputDim=e.outputDim,An(this.outputDim,"outputDim"),this.embeddingsInitializer=zt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Lt(e.embeddingsRegularizer),this.activityRegularizer=Lt(e.activityRegularizer),this.embeddingsConstraint=hn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Z(()=>this.maskZero?(e=Ke(e),Yl(e,rt(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Dt(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=Ke(e);return n.dtype!=="int32"&&(n=zd(n,"int32")),gS(this.embeddings.read(),n.as1D()).reshape(At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ht(this.embeddingsInitializer),embeddingsRegularizer:kt(this.embeddingsRegularizer),activityRegularizer:kt(this.activityRegularizer),embeddingsConstraint:dn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Px.className="Embedding";ce.registerClass(Px);var hi=class extends st{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ge}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;ss.length);e.indexOf(null)===-1&&Ga(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Z(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(s=>s.rank);if(r.indexOf(null)===-1){let s=qa(r);for(let a of e){let o=a.rank;for(let i=0;i1){let u=ds(1,l).concat([0]);n.push(pt(i,u)),s=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(s){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=pt(a.reshape([-1,u]),[1,0]).reshape(c)}else if(o>1){let i=[o-1].concat(ds(0,o-1));a=pt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:$r(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Z(()=>D1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[r]==null||s[r]==null){n[r]=null;break}n[r]+=s[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Z(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let r=[];for(let a=0;a3||t.shape.length>3)throw new Ge("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Ge("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,s=t.shape.length;n==null&&(n=[r-1,s-2]);let a=n;return Z(()=>{let o;if(r>s){o=r-s;let l=[];for(let u=0;ur){o=s-r;let l=[];for(let u=0;u0){let l;r>s?l=r+s-3:l=r-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Ge("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new q(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((s,a)=>Zd(s,e[a].shape.length)):r=[Zd(this.axes,t.shape.length),Zd(this.axes,n.shape.length)],this.normalize&&(t=am(t,r[0]),n=am(n,r[1])),Yte(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zd(this.axes,e.length),Zd(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Ge("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Hx.className="Dot";ce.registerClass(Hx);var Gx=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return Wd(()=>jf(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Gx.className="GaussianNoise";ce.registerClass(Gx);var jx=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.rate>0&&this.rate<1?Wd(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return n.mul(jf(n.shape,1,s))},()=>n,t.training||!1):n})}};jx.className="GaussianDropout";ce.registerClass(jx);var qx=class extends st{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ke(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Z(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Wd(()=>{let s=Ke(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Jo(Rd(n),this.rate);l=zd(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate;return s.mul(l).add(l.add(-1).mul(i)).mul(u).add(c)},()=>Ke(e),t.training||!1)}return e})}};qx.className="AlphaDropout";ce.registerClass(qx);function Yd(e,t,n,r,s,a=.001){let o;if(e.rank===2)o=Nj(e,t,n,r,s,a);else if(e.rank===3)o=Ej(e,t,n,r,s,a);else if(e.rank===4)o=_j(e,t,n,r,s,a);else throw new Ge(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function Jte(e,t,n,r,s=.001){return Z(()=>{let a=qA(e,r),o=a.mean,i=a.variance;return[Yd(e,o,i,n,t,s),o,i]})}function Qte(e,t,n,r,s=.001){return Z(()=>{let a=qA(e,r),o=a.mean,i=a.variance,l=[];for(let f of ds(0,e.rank))r.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=o.reshape(l),c=i.reshape(l),d=t==null?null:t.reshape(l),h=n==null?null:n.reshape(l);return[Yd(e,u,c,h,d,s),o,i]})}function ene(e,t,n,r,s=.001){return k.arraysEqual(r.slice().sort(),ds(0,e.rank-1))?Jte(e,t,n,r,s):Qte(e,t,n,r,s)}var Kx=class extends st{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=zt(e.betaInitializer||"zeros"),this.gammaInitializer=zt(e.gammaInitializer||"ones"),this.movingMeanInitializer=zt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=zt(e.movingVarianceInitializer||"ones"),this.betaConstraint=hn(e.betaConstraint),this.gammaConstraint=hn(e.gammaConstraint),this.betaRegularizer=Lt(e.betaRegularizer),this.gammaRegularizer=Lt(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new tn({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Z(()=>{let n=t.training==null?!1:t.training,r=Ke(e),s=r.shape,a=s.length,o=ds(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=si(1,a);l[i]=s[i];let u=o.slice();u.sort();let c=!k.arraysEqual(u,ds(0,a).slice(0,a-1)),d=()=>{if(c){let y=this.movingMean.read().reshape(l),A=this.movingVariance.read().reshape(l),x=this.center?this.beta.read().reshape(l):null,b=this.scale?this.gamma.read().reshape(l):null;return Yd(r,y,A,x,b,this.epsilon)}else return Yd(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[h,p,f]=ene(r,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,A,x)=>{Z(()=>{let b=1-x,v=y.read(),w=v.sub(A).mul(b);y.write(v.sub(w))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),h})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ht(this.betaInitializer),gammaInitializer:Ht(this.gammaInitializer),movingMeanInitializer:Ht(this.movingMeanInitializer),movingVarianceInitializer:Ht(this.movingVarianceInitializer),betaRegularizer:kt(this.betaRegularizer),gammaRegularizer:kt(this.gammaRegularizer),betaConstraint:dn(this.betaConstraint),gammaConstraint:dn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Kx.className="BatchNormalization";ce.registerClass(Kx);var Xx=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=zt(e.betaInitializer||"zeros"),this.gammaInitializer=zt(e.gammaInitializer||"ones"),this.betaRegularizer=Lt(e.betaRegularizer),this.gammaRegularizer=Lt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Ga(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Ke(e),r=n.shape,s=r.length;return Z(()=>{let a=!0,{mean:o,variance:i}=qA(n,this.axis,a),l=si(1,s);for(let f of this.axis)l[f]=r[f];let u=f=>f!=null&&f.shape.length!==s&&this.axis!==[s-1]?f.reshape(l):f,c=u(this.gamma.read()),d=u(this.beta.read()),h=[],p=[];for(let f=0;f{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=us()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Wa(e,r)})}var Zx=class extends st{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?us():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new tn({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Z(()=>tne(Ke(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Zx.className="ZeroPadding2D";ce.registerClass(Zx);function vm(e,t,n,r,s,a){return Z(()=>{Yt(s),cS(a),Or(r),n==null&&(n=[1,1]),r==null&&(r="valid"),s==null&&(s=us()),a==null&&(a="max"),e=gx(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=$f(e,t,n,i):o=Sf(e,t,n,i),s==="channelsFirst"&&(o=pt(o,[0,3,1,2])),o})}function T8(e,t,n,r,s,a){return Z(()=>{Yt(s),cS(a),Or(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),s==null&&(s=us()),a==null&&(a="max"),e=g8(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=AI(e,t,n,i):o=tI(e,t,n,i),s==="channelsFirst"&&(o=pt(o,[0,4,1,2,3])),o})}var N8=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(An(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);An(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Or(this.padding),this.inputSpec=[new tn({ndim:3})]}computeOutputShape(e){e=At(e);let t=ms(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Z(()=>{this.invokeCallHook(e,t),e=Ld(Ke(e),2);let n=this.poolingFunction(Ke(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Jl(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Yx=class extends N8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Yt(s),Or(r),vm(e,t,n,r,s,"max")}};Yx.className="MaxPooling1D";ce.registerClass(Yx);var Jx=class extends N8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Yt(s),Or(r),vm(e,t,n,r,s,"avg")}};Jx.className="AveragePooling1D";ce.registerClass(Jx);var C8=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];An(this.poolSize,"poolSize"),An(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Or(this.padding),this.inputSpec=[new tn({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=ms(t,this.poolSize[0],this.padding,this.strides[0]),n=ms(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Qx=class extends C8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Yt(s),Or(r),vm(e,t,n,r,s,"max")}};Qx.className="MaxPooling2D";ce.registerClass(Qx);var e5=class extends C8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Yt(s),Or(r),vm(e,t,n,r,s,"avg")}};e5.className="AveragePooling2D";ce.registerClass(e5);var E8=class extends st{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];An(this.poolSize,"poolSize"),An(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Or(this.padding),this.inputSpec=[new tn({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=ms(t,this.poolSize[0],this.padding,this.strides[0]),n=ms(n,this.poolSize[1],this.padding,this.strides[1]),r=ms(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return Z(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},t5=class extends E8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Yt(s),Or(r),T8(e,t,n,r,s,"max")}};t5.className="MaxPooling3D";ce.registerClass(t5);var n5=class extends E8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Yt(s),Or(r),T8(e,t,n,r,s,"avg")}};n5.className="AveragePooling3D";ce.registerClass(n5);var $8=class extends st{constructor(e){super(e);this.inputSpec=[new tn({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ge}},r5=class extends $8{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return Xt(n,1)})}};r5.className="GlobalAveragePooling1D";ce.registerClass(r5);var s5=class extends $8{constructor(e){super(e||{})}call(e,t){return Z(()=>{let n=Ke(e);return os(n,1)})}};s5.className="GlobalMaxPooling1D";ce.registerClass(s5);var _8=class extends st{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.inputSpec=[new tn({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ge}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},a5=class extends _8{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?Xt(n,[1,2]):Xt(n,[2,3])})}};a5.className="GlobalAveragePooling2D";ce.registerClass(a5);var o5=class extends _8{call(e,t){return Z(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?os(n,[1,2]):os(n,[2,3])})}};o5.className="GlobalMaxPooling2D";ce.registerClass(o5);var R8=class extends st{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,s=fs(r,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},i5=class extends R8{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return Z(()=>(e=Ke(e),k8((a,o)=>[Ke(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};i5.className="TimeDistributed";ce.registerClass(i5);function nne(e){oi(uee,"BidirectionalMergeMode",e)}var rne="concat",l5=class extends R8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=fs(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=fs(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?rne:e.mergeMode,nne(this.mergeMode),e.weights)throw new Ge("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):Jn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=w8(e,n,r,this.numConstants);if(e=s.inputs,n=s.initialState,r=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new tn({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(r!=null)throw new Ge("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof ps;for(let l of a)if(l instanceof ps!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return Z(()=>{let n=t.initialState,r,s;if(n==null)r=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(r)&&(a=r.slice(1).concat(s.slice(1))),r=r[0],s=s[0]),this.returnSequences&&(s=Fr(s,1));let o;return this.mergeMode==="concat"?o=D1([r,s]):this.mergeMode==="sum"?o=pe(r,s):this.mergeMode==="ave"?o=K(.5,pe(r,s)):this.mergeMode==="mul"?o=K(r,s):this.mergeMode==null&&(o=[r,s]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ii(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ii(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=fs(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ge("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};l5.className="Bidirectional";ce.registerClass(l5);function sne(e){return new su(e)}function ane(e){return new px(e)}function one(e){return new cx(e)}function ine(e){return new dx(e)}function lne(e){return new hx(e)}function une(e){return new mx(e)}function cne(e){return new fx(e)}function dne(e){return new vx(e)}function hne(e){return new fm(e)}function pne(e){return new Ax(e)}function fne(e){return new mm(e)}function mne(e){return new xx(e)}function gne(e){return new bx(e)}function yne(e){return new wx(e)}function Ane(e){return new kx(e)}function xne(e){return new Ix(e)}function bne(e){return new Rx(e)}function vne(e){return new $x(e)}function wne(e){return new bm(e)}function kne(e){return new Ex(e)}function Ine(e){return new _x(e)}function Sne(e){return new Dx(e)}function Tne(e){return new Fx(e)}function Nne(e){return new Mx(e)}function Cne(e){return new Px(e)}function Ene(e){return new zx(e)}function $ne(e){return new Bx(e)}function _ne(e){return new Ux(e)}function Rne(e){return new Wx(e)}function Dne(e){return new Vx(e)}function Fne(e){return new Lx(e)}function Mne(e){return new Hx(e)}function One(e){return new Kx(e)}function Pne(e){return new Xx(e)}function zne(e){return new Zx(e)}function u5(e){return new Jx(e)}function Lne(e){return u5(e)}function Bne(e){return u5(e)}function c5(e){return new e5(e)}function Wne(e){return c5(e)}function Vne(e){return c5(e)}function d5(e){return new n5(e)}function Une(e){return d5(e)}function Hne(e){return d5(e)}function Gne(e){return new r5(e)}function jne(e){return new a5(e)}function D8(e){return new s5(e)}function F8(e){return new o5(e)}function M8(e){return new Yx(e)}function O8(e){return new Qx(e)}function qne(e){return new t5(e)}function Kne(e){return new Tx(e)}function Xne(e){return new ym(e)}function Zne(e){return new Nx(e)}function Yne(e){return new Xd(e)}function Jne(e){return new Sx(e)}function Qne(e){return new gm(e)}function ere(e){return new Cx(e)}function tre(e){return new xm(e)}function nre(e){return new fa(e)}function rre(e){return new Am(e)}function sre(e){return new l5(e)}function are(e){return new i5(e)}var ore=D8,ire=F8,lre=M8,ure=O8;function cre(e){return new Gx(e)}function dre(e){return new jx(e)}function hre(e){return new qx(e)}function pre(e){return new Ox(e)}var P8={};De(P8,{MAPE:()=>Ire,MSE:()=>Nre,binaryAccuracy:()=>fre,binaryCrossentropy:()=>mre,categoricalAccuracy:()=>yre,categoricalCrossentropy:()=>Are,cosineProximity:()=>vre,mape:()=>Sre,meanAbsoluteError:()=>wre,meanAbsolutePercentageError:()=>kre,meanSquaredError:()=>Tre,mse:()=>Cre,precision:()=>xre,recall:()=>bre,sparseCategoricalAccuracy:()=>gre});function fre(e,t){return X1(e,t)}function mre(e,t){return MS(e,t)}function gre(e,t){return OS(e,t)}function yre(e,t){return Z1(e,t)}function Are(e,t){return Y1(e,t)}function xre(e,t){return FS(e,t)}function bre(e,t){return ste(e,t)}function vre(e,t){return q1(e,t)}function wre(e,t){return om(e,t)}function kre(e,t){return ou(e,t)}function Ire(e,t){return ou(e,t)}function Sre(e,t){return ou(e,t)}function Tre(e,t){return ui(e,t)}function Nre(e,t){return ui(e,t)}function Cre(e,t){return ui(e,t)}var z8={};De(z8,{modelFromJSON:()=>zte});var L8={};De(L8,{l1:()=>$re,l1l2:()=>Ere,l2:()=>_re});function Ere(e){return new jd(e)}function $re(e){return jte(e)}function _re(e){return qte(e)}var B8=class extends au{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof pa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function wm(e,t){return et}var V8=class extends B8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ge("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=wm:this.mode==="max"?this.monitorFunc=W8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=W8:this.monitorFunc=wm,this.monitorFunc===wm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===wm?Infinity:-Infinity}async onEpochEnd(e,t){await Ka(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Rre(e){return new V8(e)}var Dre={earlyStopping:Rre},gs;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(gs||(gs={}));var U8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(U8||(U8={}));var h5={};function Fre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};h5[e]=n}function H8(e){return h5[e]}function Mre(e){delete h5[e]}function T(e,t,n,r,s){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Bn(t.inputNames[a.inputIndexStart],n,r,s);if(a.type==="tensors")return t.inputNames.slice(i,l).map(h=>Bn(h,n,r,s));let u=Bn(t.inputNames.slice(i)[0],n,r,s),c=u.dataSync();return a.type==="number"?c[0]:k.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function Bn(e,t,n,r){let[s,a]=pr(e);if(r!=null){let i=r.getHashTableHandleByName(s);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[km(s,i)]);return o!==void 0?t[km(s,o)][a]:void 0}function Ore(e,t,n){return t[km(e,n.currentContextId)]}function ma(e,t){let[n,r,s]=pr(e);return[km(n,t&&t.currentContextId),r,s]}function km(e,t){return t?`${e}-${t}`:e}function pr(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],r=t.length===3?t[1]:void 0,s=Number(t[t.length-1]);return[n,s,r]}function Im(e,t,n){let r=T("pad",e,t,n);if(r==="explicit"){r=T("explicitPaddings",e,t,n);let s=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)s[a][0]=r[a*2],s[a][1]=r[a*2+1];return s}return r}function ga(e){return e.kept?e:qo(e)}var G8={};De(G8,{json:()=>Pre});var Pre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],j8={};De(j8,{json:()=>zre});var zre=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],q8={};De(q8,{json:()=>Lre});var Lre=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],K8={};De(K8,{json:()=>Bre});var Bre=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],X8={};De(X8,{json:()=>Wre});var Wre=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Z8={};De(Z8,{json:()=>Vre});var Vre=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Y8={};De(Y8,{json:()=>Ure});var Ure=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],J8={};De(J8,{json:()=>Hre});var Hre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Q8={};De(Q8,{json:()=>Gre});var Gre=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],eT={};De(eT,{json:()=>jre});var jre=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],tT={};De(tT,{json:()=>qre});var qre=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nT={};De(nT,{json:()=>Kre});var Kre=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],rT={};De(rT,{json:()=>Xre});var Xre=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],sT={};De(sT,{json:()=>Zre});var Zre=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],aT={};De(aT,{json:()=>Yre});var Yre=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],oT={};De(oT,{json:()=>Jre});var Jre=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],iT={};De(iT,{json:()=>Qre});var Qre=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],lT={};De(lT,{json:()=>ese});var ese=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],uT={};De(uT,{json:()=>tse});var tse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],cT=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[G8,j8,q8,K8,X8,Z8,Y8,J8,Q8,eT,tT,nT,rT,sT,aT,oT,iT,lT,uT],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],s=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?s.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[A,,x]=ma(g),b=o[A];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let w=`${A}:${v}`;m.inputNames[y]=w}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=ma(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=ma(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=r;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:o,inputs:i,outputs:l,weights:s,placeholders:r,signature:t,functions:h};return a.length>0&&(p.initNodes=a),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=H8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,s)=>(r[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,s)=>{let a=s.type,o;switch(s.type){case"string":o=p5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=p5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":o=v5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=v5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":o=m5(e.attr,s.tfName,s.defaultValue||0),o===void 0&&!!s.tfDeprecatedName&&(o=m5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":o=b5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=b5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":o=f5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=f5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":o=k5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=k5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":o=x5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=x5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":o=w5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=w5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":o=y5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=y5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":o=A5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=A5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":o=hT(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=hT(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return r[s.name]={value:o,type:a},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],s={};t!=null&&(s=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&r.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=ma(c.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:g5(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,a.push(h),s[d]=h}),Object.keys(s).forEach(c=>{let d=s[c];d.inputNames.forEach((h,p)=>{let[f,,m]=ma(h),g=s[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let A=`${f}:${y}`;d.inputNames[p]=A}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,h]=ma(l[c.name]),p=s[d];p!=null&&(p.defaultOutput=h,o.push(p))});let u=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:o,weights:r,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function nse(e){let t=ae().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function dT(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):nse(e);return t?n:n.toLowerCase()}function p5(e,t,n,r=!1){let s=e[t];return s!=null?dT(s.s,r):n}function f5(e,t,n){let r=e[t];return r?r.b:n}function m5(e,t,n){let r=e[t]||{},s=r.i!=null?r.i:r.f!=null?r.f:n;return typeof s=="number"?s:parseInt(s,10)}function g5(e){switch(typeof e=="string"&&(e=gs[e]),e){case gs.DT_FLOAT:return"float32";case gs.DT_INT32:case gs.DT_INT64:case gs.DT_INT8:case gs.DT_UINT8:return"int32";case gs.DT_BOOL:return"bool";case gs.DT_DOUBLE:return"float32";case gs.DT_STRING:return"string";default:return null}}function hT(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function y5(e,t,n){let r=e[t];return r&&r.type?g5(r.type):n}function A5(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(s=>g5(s)):n}function pT(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function x5(e,t,n){let r=e[t];return r&&r.shape?pT(r.shape):n}function b5(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(s=>typeof s=="number"?s:parseInt(s,10)):n}function v5(e,t,n,r=!1){let s=e[t];return s&&s.list&&s.list.s?s.list.s.map(a=>dT(a,r)):n}function w5(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(s=>pT(s)):n}function k5(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var rse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,s)=>(r[s]=this.getAttr(s),r),{}))}getInput(e){return Bn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Bn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return m5(this.node.rawAttrs,e,t);if(n.s!=null)return p5(this.node.rawAttrs,e,t);if(n.b!=null)return f5(this.node.rawAttrs,e,t);if(n.shape!=null)return x5(this.node.rawAttrs,e,t);if(n.type!=null)return y5(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return b5(this.node.rawAttrs,e,t);if(n.list.s!=null)return v5(this.node.rawAttrs,e,t);if(n.list.shape!=null)return w5(this.node.rawAttrs,e,t);if(n.list.b!=null)return k5(this.node.rawAttrs,e,t);if(n.list.type!=null)return A5(this.node.rawAttrs,e,t)}return t}},sse=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[pe(T("a",e,t,n),T("b",e,t,n))];case"AddN":return[QG(T("tensors",e,t,n))];case"FloorMod":case"Mod":return[bI(T("a",e,t,n),T("b",e,t,n))];case"Mul":return[K(T("a",e,t,n),T("b",e,t,n))];case"RealDiv":case"Div":return[Re(T("a",e,t,n),T("b",e,t,n))];case"DivNoNan":return[lI(T("a",e,t,n),T("b",e,t,n))];case"FloorDiv":return[_A(T("a",e,t,n),T("b",e,t,n))];case"Sub":return[Ne(T("a",e,t,n),T("b",e,t,n))];case"Minimum":return[_d(T("a",e,t,n),T("b",e,t,n))];case"Maximum":return[ia(T("a",e,t,n),T("b",e,t,n))];case"Pow":return[Va(T("a",e,t,n),T("b",e,t,n))];case"SquaredDifference":return[i1(T("a",e,t,n),T("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ase=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[yn(T("x",e,t,n))];case"Acos":return[H6(T("x",e,t,n))];case"Acosh":return[G6(T("x",e,t,n))];case"Asin":return[q6(T("x",e,t,n))];case"Asinh":return[K6(T("x",e,t,n))];case"Atan":return[X6(T("x",e,t,n))];case"Atan2":return[Z6(T("x",e,t,n),T("y",e,t,n))];case"Atanh":return[Y6(T("x",e,t,n))];case"Ceil":return[rI(T("x",e,t,n))];case"Complex":return[Uo(T("real",e,t,n),T("imag",e,t,n))];case"Cos":return[Nf(T("x",e,t,n))];case"Cosh":return[zA(T("x",e,t,n))];case"Elu":return[Nd(T("x",e,t,n))];case"Erf":return[uI(T("x",e,t,n))];case"Exp":return[Kr(T("x",e,t,n))];case"Expm1":return[cI(T("x",e,t,n))];case"Floor":return[Ed(T("x",e,t,n))];case"Log":return[Rr(T("x",e,t,n))];case"Log1p":return[VA(T("x",e,t,n))];case"Imag":return[BA(T("x",e,t,n))];case"Neg":return[Kt(T("x",e,t,n))];case"Reciprocal":return[vI(T("x",e,t,n))];case"Real":return[Ff(T("x",e,t,n))];case"Relu":return[ua(T("x",e,t,n))];case"Round":return[JA(T("x",e,t,n))];case"Selu":return[e1(T("x",e,t,n))];case"Sigmoid":return[Rs(T("x",e,t,n))];case"Sin":return[t1(T("x",e,t,n))];case"Sign":return[kI(T("x",e,t,n))];case"Sinh":return[n1(T("x",e,t,n))];case"Softplus":return[Zl(T("x",e,t,n))];case"Sqrt":return[$n(T("x",e,t,n))];case"Square":return[wt(T("x",e,t,n))];case"Tanh":return[Kl(T("x",e,t,n))];case"Tan":return[NI(T("x",e,t,n))];case"ClipByValue":return[dr(T("x",e,t,n),T("clipValueMin",e,t,n),T("clipValueMax",e,t,n))];case"Relu6":return[YA(T("x",e,t,n))];case"Rsqrt":return[QA(Bn(e.inputNames[0],t,n))];case"Prod":return[KA(T("x",e,t,n),T("axes",e,t,n))];case"LeakyRelu":return[Cf(T("x",e,t,n),T("alpha",e,t,n))];case"Prelu":return[Df(T("x",e,t,n),T("alpha",e,t,n))];case"IsNan":return[hI(Bn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Yr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function fT(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jd(e,t,n){let r=I5(e,n),s=!fT(r);if(s&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(s&&t.forEach(a=>{r=I5(a.shape,r)}),!fT(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function I5(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&a>=0&&s!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=s>=0?s:a}return n}var ose=class{constructor(e,t,n,r,s,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Fe(0),Sn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, - because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Yr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Sn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ls(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to +2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(Zr))u[p]=Zr[p];for(let p of Object.keys(n))u[p]=n[p];let c=a.config;c.customObjects=u;let d={...Zr};for(let p of Object.keys(n))Zr[p]=n[p];pA(a.config);let h=l(i,a.config,n,s);return Zr={...d},h}else{let u={...Zr};for(let d of Object.keys(n))Zr[d]=n[d];let c=new i(a.config);return Zr={...u},c}}}function hee(e,t){return et?1:0}function Pf(e,t){return-1*hee(e,t)}function Ga(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function pee(e){if(e==null)throw new K(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function si(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new K(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function fA(e,t,n=0,r=1/0){return Fs(n>=0),Fs(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(s=>typeof s===t)}function yn(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>yn(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${UI(e)}.`)}function UI(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>UI(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function fee(e,t){let n=k.now(),r;return(...a)=>{let o=k.now();return o-nLn(Te(j(e,e),t,!0)))}var Dd=class extends ue.Serializable{getConfig(){return{}}},gA=class extends Dd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Y(()=>{let t=mA(e,this.axis),n=Cr(t,0,this.maxValue);return j(e,Re(n,de(un(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};gA.className="MaxNorm";ue.registerClass(gA);var yA=class extends Dd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Y(()=>Re(e,de(un(),mA(e,this.axis))))}getConfig(){return{axis:this.axis}}};yA.className="UnitNorm";ue.registerClass(yA);var AA=class extends Dd{apply(e){return ca(e)}};AA.className="NonNeg";ue.registerClass(AA);var xA=class extends Dd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Y(()=>{let t=mA(e,this.axis),n=de(j(this.rate,Cr(t,this.minValue,this.maxValue)),j(1-this.rate,t));return j(e,Re(n,de(un(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};xA.className="MinMaxNorm";ue.registerClass(xA);var GI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function cn(e){return hA(e)}function jI(e,t={}){return _d(e,ue.SerializationMap.getMap().classNameMap,t,"constraint")}function dn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in GI?GI[e]:e,config:{}};return jI(n)}else return e instanceof Dd?e:jI(e)}function mee(e){return new gA(e)}function gee(e){return new yA(e)}function yee(){return new AA}function Aee(e){return new xA(e)}var qI={};_e(qI,{constant:()=>Wee,glorotNormal:()=>Kee,glorotUniform:()=>qee,heNormal:()=>Xee,heUniform:()=>Zee,identity:()=>Gee,leCunNormal:()=>Yee,leCunUniform:()=>Jee,ones:()=>Bee,orthogonal:()=>Qee,randomNormal:()=>Uee,randomUniform:()=>Vee,truncatedNormal:()=>Hee,varianceScaling:()=>jee,zeros:()=>Lee});var xee=["channelsFirst","channelsLast"],bee=["nearest","bilinear"],vee=["valid","same","causal"],wee=["max","avg"],kee=["sum","mul","concat","ave"],Ql=new Map;function Zt(e){si(xee,"DataFormat",e)}function Iee(e){si(bee,"InterpolationFormat",e)}function _r(e){si(vee,"PaddingMode",e)}function KI(e){si(wee,"PoolMode",e)}var Fd=[],XI="/";function ai(e,t){Fd.push(e);try{let n=t();return Fd.pop(),n}catch(n){throw Fd.pop(),n}}function See(){return Fd.length===0?"":Fd.join(XI)+XI}function ZI(e){if(!JI(e))throw new Error("Not a valid tensor name: '"+e+"'");return See()+e}function YI(e){if(!JI(e))throw new Error("Not a valid tensor name: '"+e+"'");Ql.has(e)||Ql.set(e,0);let t=Ql.get(e);if(Ql.set(e,Ql.get(e)+1),t>0){let n=`${e}_${t}`;return Ql.set(n,1),n}else return e}var Tee=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function JI(e){return!!e.match(Tee)}function Nee(e){return e===parseInt(e.toString(),10)}function ja(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let s=t;st&&(t=r)}return t}function cs(e,t){if(t{if(e.shape.length!==2)throw new K(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Md(e,1);return wA(n,[1,t,1])})}function Eee(e){let t=[ja(e.shape)];return Z(e,t)}function $ee(e){if(e.rank<=1)throw new K(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ja(e.shape,1)];return Z(e,t)}function oi(e,t,n){return Y(()=>{switch(e.rank){case 1:return Ky(e,t,n);case 2:return cI(e,[t,0],[n,e.shape[1]]);case 3:return Xy(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Ef(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return at(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return at(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new K(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function bA(e,t,n){return Y(()=>{switch(e.rank){case 1:return Ky(e,t,n);case 2:return cI(e,[0,t],[e.shape[0],n]);case 3:return Xy(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Ef(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new K(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Lf(e,t,n,r){return Y(()=>{switch(e.rank){case 1:return Ky(e,t,n);case 2:switch(r){case 1:return oi(e,t,n);case 2:return bA(e,t,n);default:throw new K(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return oi(e,t,n);case 2:return Xy(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return bA(e,t,n);default:throw new K(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return oi(e,t,n);case 2:return Ef(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Ef(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return bA(e,t,n);default:throw new K(`The axis is not within the rank of the tensor ${r}`)}default:throw new K(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function vA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),an(e,t)}function QI(e,t){switch(e.rank){case 1:return Pj([e,t]);case 2:return Lj([e,t],0);case 3:return Wj([e,t],0);case 4:return Uj([e,t],0);default:throw new K(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function wA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new K(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return $s(e,t)}function Bf(e,t=0,n=1,r,s){return UK(e,t,n,r,s)}function Ms(e,t,n,r){if(e.rank<2||t.rank<2)throw new He(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let s=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(s!==a)throw new He(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let s=!1,a=!1;return ei.matMul({a:e,b:t,transposeA:s,transposeB:a,bias:r?kA(e.rank,r,ls()):null,activation:n})}else{let s=e.shape.slice(),a=s.pop();e=Z(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=Z(st(t,c),[l,-1]);let d=[...s,...u],h=!1,p=!1;return Z(ei.matMul({a:e,b:t,transposeA:h,transposeB:p,bias:r?kA(e.rank,r,ls()):null,activation:n}),d)}}function eS(e,t,n){return Y(()=>(Array.isArray(t)?t=En(t,"int32"):t=xe(t,"int32"),Tf(e,t,n)))}function Od(e){return j(e,e)}function kA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new K(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?Z(t,[1,r[0],1,1,1]):Z(t,[1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?Z(t,[1,1,1,1,r[0]]):Z(t,[1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?Z(t,[1,r[0],1,1]):Z(t,[1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?Z(t,[1,1,1,r[0]]):Z(t,[1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?Z(t,[1,r[0],1]):Z(t,[1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?Z(t,[1,1,r[0]]):Z(t,[1].concat(r))}else if(e<3)return t;throw new K(`Unsupported input rank by biasAdd: ${t.rank}`)}function ds(e,t,n){return Y(()=>(n==null&&(n=ls()),Zt(n),de(e,kA(e.rank,t,n))))}function Ree(e,t=1){if(t!==1)throw new He(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return If(e)}function _ee(e){return Y(()=>Re(e,de(gn(e),1)))}function tS(e,t,n,r){return Y(()=>JX(e,t,n,r))}function Dee(e){return Y(()=>{let t=de(.5,j(.2,e));return Cr(t,0,1)})}function Pd(e,t,n=!1){return n?e():t()}var Fee=["fanIn","fanOut","fanAvg"],Mee=["normal","uniform","truncatedNormal"];function Oee(e){si(Fee,"FanMode",e)}function Pee(e){si(Mee,"Distribution",e)}var Yr=class extends ue.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},IA=class extends Yr{apply(e,t){return ln(e,t)}};IA.className="Zeros";ue.registerClass(IA);var Wf=class extends Yr{apply(e,t){return ua(e,t)}};Wf.className="Ones";ue.registerClass(Wf);var SA=class extends Yr{constructor(e){super();if(typeof e!="object")throw new K(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new K(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Y(()=>j(De(this.value),ua(e,t)))}getConfig(){return{value:this.value}}};SA.className="Constant";ue.registerClass(SA);var TA=class extends Yr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return $d(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};TA.className="RandomUniform";ue.registerClass(TA);var NA=class extends Yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`randomNormal does not support dType ${t}.`);return Bf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};NA.className="RandomNormal";ue.registerClass(NA);var CA=class extends Yr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`truncatedNormal does not support dType ${t}.`);return Jy(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};CA.className="TruncatedNormal";ue.registerClass(CA);var EA=class extends Yr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return Y(()=>{if(e.length!==2||e[0]!==e[1])throw new K("Identity matrix initializer can only be used for 2D square matrices.");return j(this.gain,X6(e[0]))})}getConfig(){return{gain:this.gain}}};EA.className="Identity";ue.registerClass(EA);function zee(e,t="channelsLast"){let n,r;if(Zt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let s=ja(e,2);n=e[1]*s,r=e[0]*s}else if(t==="channelsLast"){let s=ja(e,0,e.length-2);n=e[e.length-2]*s,r=e[e.length-1]*s}}else{let s=ja(e);n=Math.sqrt(s),r=Math.sqrt(s)}return[n,r]}var Qn=class extends Yr{constructor(e){super();if(e.scale<0)throw new K(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Oee(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Pee(this.distribution),this.seed=e.seed}apply(e,t){let n=zee(e),r=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,r):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(r+s)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`${this.getClassName()} does not support dType ${t}.`);return Jy(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return $d(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Qn.className="VarianceScaling";ue.registerClass(Qn);var Vf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Vf.className="GlorotUniform";ue.registerClass(Vf);var Uf=class extends Qn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Uf.className="GlorotNormal";ue.registerClass(Uf);var Hf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Hf.className="HeNormal";ue.registerClass(Hf);var Gf=class extends Qn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};Gf.className="HeUniform";ue.registerClass(Gf);var jf=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};jf.className="LeCunNormal";ue.registerClass(jf);var qf=class extends Qn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Qn.className}};qf.className="LeCunNormal";ue.registerClass(qf);var $A=class extends Yr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new He("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Y(()=>{if(e.length<2)throw new He("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Bf(n,0,1,"float32"),s=SY.gramSchmidt(r);return e[0]>e[1]&&(s=st(s)),j(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};$A.className="Orthogonal";ue.registerClass($A);var nS={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function rS(e,t={}){return _d(e,ue.SerializationMap.getMap().classNameMap,t,"initializer")}function Ut(e){return hA(e)}function Pt(e){if(typeof e=="string"){let t=e in nS?nS[e]:e;if(t==="GlorotNormal")return new Uf;if(t==="GlorotUniform")return new Vf;if(t==="HeNormal")return new Hf;if(t==="HeUniform")return new Gf;if(t==="LeCunNormal")return new jf;if(t==="LeCunUniform")return new qf;{let n={};return n.className=t,n.config={},rS(n)}}else return e instanceof Yr?e:rS(e)}function Lee(){return new IA}function Bee(){return new Wf}function Wee(e){return new SA(e)}function Vee(e){return new TA(e)}function Uee(e){return new NA(e)}function Hee(e){return new CA(e)}function Gee(e){return new EA(e)}function jee(e){return new Qn(e)}function qee(e){return new Vf(e)}function Kee(e){return new Uf(e)}function Xee(e){return new Hf(e)}function Zee(e){return new Gf(e)}function Yee(e){return new jf(e)}function Jee(e){return new qf(e)}function Qee(e){return new $A(e)}var sS={};_e(sS,{Layer:()=>tt,RNN:()=>ma,RNNCell:()=>Hd,activation:()=>Fne,add:()=>Une,alphaDropout:()=>Tre,average:()=>Hne,averagePooling1d:()=>Yx,averagePooling2d:()=>Jx,averagePooling3d:()=>Qx,avgPool1d:()=>Qne,avgPool2d:()=>tre,avgPool3d:()=>rre,avgPooling1d:()=>ere,avgPooling2d:()=>nre,avgPooling3d:()=>sre,batchNormalization:()=>Zne,bidirectional:()=>Are,concatenate:()=>Gne,conv1d:()=>Sne,conv2d:()=>Tne,conv2dTranspose:()=>Nne,conv3d:()=>Cne,conv3dTranspose:()=>Ene,convLstm2d:()=>fre,convLstm2dCell:()=>mre,cropping2D:()=>Rne,dense:()=>Mne,depthwiseConv2d:()=>Dne,dot:()=>Xne,dropout:()=>One,elu:()=>xne,embedding:()=>Vne,flatten:()=>zne,gaussianDropout:()=>Sre,gaussianNoise:()=>Ire,globalAveragePooling1d:()=>are,globalAveragePooling2d:()=>ore,globalMaxPool1d:()=>bre,globalMaxPool2d:()=>vre,globalMaxPooling1d:()=>y8,globalMaxPooling2d:()=>A8,gru:()=>lre,gruCell:()=>ure,input:()=>PS,inputLayer:()=>Ane,layerNormalization:()=>Yne,leakyReLU:()=>vne,lstm:()=>cre,lstmCell:()=>dre,masking:()=>Nre,maxPool1d:()=>wre,maxPool2d:()=>kre,maxPooling1d:()=>x8,maxPooling2d:()=>b8,maxPooling3d:()=>ire,maximum:()=>jne,minimum:()=>qne,multiply:()=>Kne,permute:()=>Wne,prelu:()=>wne,reLU:()=>bne,repeatVector:()=>Lne,reshape:()=>Bne,rnn:()=>gre,separableConv2d:()=>$ne,simpleRNN:()=>hre,simpleRNNCell:()=>pre,softmax:()=>kne,spatialDropout1d:()=>Pne,stackedRNNCells:()=>yre,thresholdedReLU:()=>Ine,timeDistributed:()=>xre,upSampling2d:()=>_ne,zeroPadding2d:()=>Jne});var ete=0;function aS(){return ete++}var Kf={};function Xf(e=""){return e in Kf||(Kf[e]=0),Kf[e]+=1,e+Kf[e].toString()}function RA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Zf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function qe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new K(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function yt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new K(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Yf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,s)=>r*s);return t}var oS="Variable",iS=class{constructor(e,t="float32",n=oS,r=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=aS(),n=n==null?oS:n,this.originalName=ZI(n),this.name=YI(this.originalName),this.trainable_=r,this.constraint=s,this.val=LX(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),tte(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function tte(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function _A(e){return e.map(t=>t.read())}function DA(e){e.forEach(t=>{t[0].write(t[1])})}var Qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},hs=class{constructor(e,t,n,r,s,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=s,this.outputTensorIndex=o,this.id=aS(),a!=null&&(this.originalName=ZI(a),this.name=YI(this.originalName)),this.rank=t.length}},nte=0,Jf=class{constructor(e,t){this.callArgs=t,this.id=nte++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},rte=0,tt=class extends ue.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=rte++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=pa(n)+"_"+Xf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new us(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new K(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Jn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Jn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ha(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ha(`Layer ${this.name} is not connected, no input to return.`);return Jn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ha(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ha(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Jn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Rt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Rt(this.inputSpec);if(e.length!==t.length)throw new K(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;ns.maxNDim)throw new K(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new K(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(s.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Rt(e))a.push(o.shape);this.build(Jn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),o=Rt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=Jn(i),this.activityRegularizer!=null)throw new He("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=ste(e),o=this.computeOutputShape(a),i,l=ate(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new hs(l,u,this,Rt(e),t,this.name,c)):i=new hs(l,o,this,Rt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new He("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ha(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ha(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new us(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Yf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return _A(e?this.trainableWeights:this.weights)}setWeights(e){Y(()=>{let t=this.weights;if(t.length!==e.length)throw new K(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=_A(t);for(let s=0;ss.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Rt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,s,a,o=null){let i=Rt(e);t=Rt(t),n=Rt(n),r=Rt(r),s=Zf(s),a=Zf(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new Jf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:s,outputShapes:a},o);for(let d=0;de.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function ste(e){e=Rt(e);let t=[];for(let n of e)t.push(n.shape);return Jn(t)}function ate(e){return"float32"}function lS(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let s=[];for(let a=0;a0){let s=await Promise.all(t);for(let a=0;ade(this.totals[r],j(s,n)));this.totals[r]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Y(()=>{let r=j(Re(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),In(t[n])}))}},pS=class extends nu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let o=0;onew fS(r,t))}var Os=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Os.checkForDuplicate(t),Os.constructors[e]==null&&(Os.constructors[e]=[]),Os.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Os.constructors)Os.constructors[+t].forEach(r=>{if(r===e)throw new K("Duplicate callback constructor.")})}static clear(){Os.constructors={}}static createCallbacks(e){let t=[];for(let n in Os.constructors){let r=+n;e>=r&&t.push(...Os.constructors[r])}return t.map(n=>new n)}},FA=Os;FA.constructors={};function gS(e,t,n,r,s,a,o,i,l){let u=new pS,c=[new ite,...FA.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new hS(c);return d.setParams({epochs:n,initialEpoch:r,samples:s,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function ps(e,t={},n=!1){return _d(e,ue.SerializationMap.getMap().classNameMap,t,"layer",n)}function Qf(e,t){return Y(()=>{e.dtype!=="float32"&&(e=xe(e,"float32"));let n=Te(Od(e),t,!0),r=Nd(n.shape,un()),s=Ln(Va(n,r));return Re(e,s)})}function ii(e,t){return Y(()=>Xt(Od(ke(t,e)),-1))}function em(e,t){return Y(()=>Xt(gn(ke(t,e)),-1))}function ru(e,t){return Y(()=>{let n=ke(e,t),r=Cr(gn(e),un(),Number.MAX_VALUE),s=gn(Re(n,r));return j(100,Xt(s,-1))})}function lte(e,t){return Y(()=>{let n=Cr(t,un(),Number.MAX_VALUE),r=jr(de(1,n)),s=Cr(e,un(),Number.MAX_VALUE),a=jr(de(1,s));return Xt(Od(ke(r,a)),-1)})}function ute(e,t){return Y(()=>{let n=Va(0,ke(1,j(e,t)));return Xt(Od(n),-1)})}function cte(e,t){return Y(()=>{let n=Va(0,ke(1,j(e,t)));return Xt(n,-1)})}function dte(e,t){return Y(()=>{let n=Te(j(e,t),-1),r=Rs(j(ke(1,e),t),-1);return Va(0,de(1,ke(r,n)))})}function hte(e,t){return Y(()=>{let n=Math.log(2),r=ke(t,e),s=ke(de(r,Cd(j(-2,r))),n);return Xt(s,-1)})}function zd(e,t,n=!1){return Y(()=>{if(n)t=Zy(t);else{let r=Te(t,t.shape.length-1,!0);t=Re(t,r)}return t=Cr(t,un(),1-un()),qt(Te(j(xe(e,"float32"),jr(t)),t.shape.length-1))})}function tm(e,t,n=!1){return Y(()=>{let r=xe(Sf(Eee(e)),"int32");t=Cr(t,un(),1-un());let s=t.shape,a=Z(xf(r,s[s.length-1]),s);return zd(a,t,n)})}function pte(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new K(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Y(()=>{let n=ca(t),r=qt(gn(t));return de(ke(n,j(t,e)),Py(Gr(r)))})}function nm(e,t){return Y(()=>{let n;return n=Cr(t,un(),1-un()),n=jr(Re(n,ke(1,n))),Xt(pte(e,n),-1)})}function fte(e,t){return Y(()=>{let n=Cr(e,un(),1),r=Cr(t,un(),1);return Te(j(e,jr(Re(n,r))),-1)})}function mte(e,t){return Y(()=>{let n=jr(de(un(),t));return Xt(ke(t,j(e,n)),-1)})}function MA(e,t){return Y(()=>{let n=Qf(e,-1),r=Qf(t,-1),s=j(n,r);return qt(Te(s,-1))})}var rm={meanSquaredError:ii,meanAbsoluteError:em,meanAbsolutePercentageError:ru,meanSquaredLogarithmicError:lte,squaredHinge:ute,hinge:cte,categoricalHinge:dte,logcosh:hte,categoricalCrossentropy:zd,sparseCategoricalCrossentropy:tm,binaryCrossentropy:nm,kullbackLeiblerDivergence:fte,poisson:mte,cosineProximity:MA};function OA(e){if(typeof e=="string"){if(e in rm)return rm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new K(t)}else return e}function PA(e,t){return Y(()=>{let n=j(.5,qr(t)),r=zf($r(t,n),e.dtype);return Xt(Hr(e,r),-1)})}function zA(e,t){return Y(()=>zf(Hr(kd(e,-1),kd(t,-1)),"float32"))}function yS(e,t){return Y(()=>xe(Te(_s(Hr(e,1),Hr(t,1))),"float32"))}function gte(e,t){return Y(()=>xe(Te(_s(Hr(e,1),Hr(t,0))),"float32"))}function yte(e,t){return Y(()=>xe(Te(_s(Hr(e,0),Hr(t,1))),"float32"))}function AS(e,t){return Y(()=>{let n=yS(e,t),r=yte(e,t),s=de(n,r);return xe(Zn($r(s,0),Re(n,s),0),"float32")})}function Ate(e,t){return Y(()=>{let n=yS(e,t),r=gte(e,t),s=de(n,r);return xe(Zn($r(s,0),Re(n,s),0),"float32")})}function xS(e,t){return nm(e,t)}function bS(e,t){return e.rank===t.rank&&(e=Qo(e,[e.rank-1])),t=kd(t,-1),t.dtype!==e.dtype&&(t=xe(t,e.dtype)),xe(Hr(e,t),"float32")}var xte=ii,bte=ii,vte=em,wte=em,kte=ru,Ite=ru,LA=zd,Ste=MA,vS=tm,sm={binaryAccuracy:PA,categoricalAccuracy:zA,precision:AS,categoricalCrossentropy:LA,sparseCategoricalCrossentropy:vS,mse:xte,MSE:bte,mae:vte,MAE:wte,mape:kte,MAPE:Ite,cosine:Ste};function Tte(e){if(typeof e=="string"&&e in sm)return sm[e];if(typeof e!="string"&&e!=null)return e;throw new K(`Unknown metric ${e}`)}function am(e){if(Fs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(rm))if(rm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(sm))if(sm[n]===e){t=n;break}return t!==void 0?t:e.name}}function Nte(e){let t={Adagrad:()=>Jl.adagrad(.01),Adadelta:()=>Jl.adadelta(1,.95,un()),Adam:()=>Jl.adam(.001,.9,.999,un()),Adamax:()=>Jl.adamax(.002,.9,.999,un(),0),RMSProp:()=>Jl.rmsprop(.001,.9,0,un()),SGD:()=>Jl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new K(`Unknown Optimizer ${e}`)}var wS=1*1024*1024;function kS(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!BA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>wS&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${wS}.`)}}function BA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!BA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!BA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Cte(e,t,n,r=console.log){let s=$te(e),a=["Layer (type)","Output shape","Param #"];s?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!s){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}r("_".repeat(t)),om(a,n,r),r("=".repeat(t));let i=e.layers;for(let c=0;c1||s.length===1&&s[0].inboundLayers.length>1){t=!1;break}r.push(...s)}if(t)for(let s of e.layers){let a=!1;for(let o of s.inboundNodes)if(r.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function om(e,t,n=console.log){let r="";for(let s=0;s0&&(r=r.slice(0,r.length-1)+" "),r+=e[s],r=r.slice(0,t[s]),r+=" ".repeat(t[s]-r.length);n(r)}function Rte(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(i){r="multiple"}let s=e.name,a=e.getClassName(),o=[`${s} (${a})`,r,e.countParams().toString()];om(o,t,n)}function _te(e,t,n,r){let s;try{s=JSON.stringify(e.outputShape)}catch(c){s="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;df.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-1/0,r.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,h;if(UA[c]==null){let f=Fte(o,t);d=f.sorted,h=f.recipientCounts,UA[c]=d,SS[c]=h}d=UA[c],h={},s||Object.assign(h,SS[c]);let p=new li(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=E),E0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let s=TS(e[0],t);n=s.sorted,r=s.recipientMap}else{let s=new Set;for(let a of e){let{sorted:o,recipientMap:i}=TS(a,t);for(let l of o)s.has(l.name)||(n.push(l),s.add(l.name));for(let l in i)r[l]==null&&(r[l]=new Set),i[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Mte(r)}}function Mte(e){let t={};for(let n in e)t[n]=e[n].size;return t}function TS(e,t){let n=new Set,r=[],s={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),r.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)s[u.name]==null&&(s[u.name]=new Set),s[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:r,recipientMap:s}}function Ote(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;ry.name)}`);Ga(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,b=y.tensorIndex;Fs(x===0,"input layer has >1 nodes"),Fs(b===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},s={},a={},o=[],i=(y,A,x,b,v,I)=>{(b==null||v==null||I==null)&&(b=y.sourceLayer,v=y.nodeIndex,I=y.tensorIndex);let w=b.inboundNodes[v];if(x.indexOf(w)!==-1)throw new us(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(A.indexOf(w)!==-1)return;this.containerNodes.add(Ps.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(w)===-1&&x.push(w);let S=w.inboundLayers.length;for(let E=0;E=0;)x.splice(x.indexOf(w),1);o.push(w)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];A=Math.max(A,x),r[y.outboundLayer.id]=A,s[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let b=0;bparseInt(y,10)).sort(Pf);this.layers=[];for(let y of p){let A=h[y];A.sort((x,b)=>{let v=a[x.id],I=a[b.id];return vI?1:0});for(let x of A)x instanceof Ps&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=h,p=Object.keys(d).map(y=>parseInt(y,10)).sort(Pf);let f=this.inputs.slice(),m=[];for(let y of p)for(let A of d[y]){let x=A.outboundLayer;if(x!=null){for(let b of A.inputTensors)if(f.indexOf(b)===-1)throw new us(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of A.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new us(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Jf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new K("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new K(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,r++}let s=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)s.push([n[o],e[a]]);else if(t)throw new K(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new K(`${a.length} of ${r} weights are not set: ${a}`)}DA(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${VA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=WA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Y(()=>{e=Rt(e);let n=new li;for(let r=0;r{e=Rt(e);let n;return t==null?n=ni(null,e.length):n=Rt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Zf(e);if(t.length!==this.inputLayers.length)throw new K(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(Pf);if(r.length>1)for(let o of r){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;fparseInt(i,10)).sort(Pf);for(let i of r){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,h=u.outputTensors,p=new Array;for(let f of d)f.id in n&&p.push(n[f.id]);if(p.length===d.length){let f={},m,g,y,A;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[x,b]=p[0];f.mask==null&&(f.mask=b),y=Rt(c.call(x,f)),A=Rt(c.computeMask(x,b)),m=[x],g=[b]}else m=p.map(x=>x[0]),g=p.map(x=>x[1]),f.mask==null&&(f.mask=g),y=Rt(c.call(m,f)),A=Rt(c.computeMask(m,g));if(c.activityRegularizer)throw new He("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(Jn(y),A)}function l(m){let g=m.name,y=ps(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),s[g]=y,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new K(`Corrupted configuration, expected array for nodeData: ${x}`);o(y,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!pee(a);)for(let m of c){let g=s[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let A of y)i(g,A)}}let d=[],h=[],p=t.inputLayers;for(let m of p){let g=m[0],y=m[1],A=m[2];Fs(g in s);let b=s[g].inboundNodes[y].outputTensors;d.push(b[A])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],A=m[2];Fs(g in s);let b=s[g].inboundNodes[y].outputTensors;h.push(b[A])}return new e({inputs:d,outputs:h,name:u})}get stateful(){if(this._stateful)throw new K("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Y(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Pte(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let s=[];return t.forEach(a=>{a in e?s.push(e[a]):s.push(null)}),s}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function NS(e,t){return Pte(e,t,"classWeight")}async function CS(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let s=Y(()=>{if(e.shape.length===1)return za(e);if(e.shape.length===2){if(e.shape[1]>1)return kd(e,1);if(e.shape[1]===1)return Z(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await s.data());Ge(s);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),En(o,"float32")}else return null}function zte(e,t){return j(e,t)}var Lte=32;function ES(e,t){let n,r,s=t;n=s.xs,r=s.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=$S("input",e.inputNames,n),o=$S("output",e.outputNames,r),i=a[0].shape[0];k.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function $S(e,t,n){if(n instanceof Ot)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let s of t){if(n[s]==null)throw new K(`The feature data generated by the dataset lacks the required ${e} key '${s}'.`);r.push(n[s])}return r}}function Bte(e){if(e.length===3)throw new He("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Wte(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let s=n.validationData!=null,a,o;if(s)if(RS(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=Bte(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;s?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=mS(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:h,history:p}=gS(c,d,n.epochs,null,null,Vte(t,n),null,s,u);h.setModel(e),e.history=p,await h.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:x.done){if(s){let b;RS(n.validationData)?b=Rt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Rt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?Lte:n.validationBatchSize,verbose:0}));for(let v=0;v0)throw new He("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=Ute(t)?t:await t.iterator(),i=0,l=0;for(;r?l{if(u.value){let{xs:c,ys:d}=ES(e,u.value),h=c.concat(d),p=Y(()=>s(h));if(Ge(h),l===0)for(let m=0;mde(a[m],j(f,g))),l>0&&Ge(y)}Ge(p),i+=f,++l}return a}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Wd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>oi(r,t,n-t)):oi(e,t,n-t)}function GA(e,t){return Y(()=>e==null?null:Array.isArray(e)?e.map(n=>GA(n,t)):eS(e,t.dtype==="int32"?t:xe(t,"int32")))}function jA(e,t){let n=[],r=0,s=null;for(;r=e&&(s=e),n.push([r,s]),r=s;return n}async function Gte(e,t,n,r,s,a,o,i,l,u,c,d,h,p,f){s==null&&(s=32),a==null&&(a=1),c==null&&(c=!0),h==null&&(h=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new K("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,s,p,"steps_per_epoch"),y;g!=null&&(y=cs(0,g)),o==null&&(o=1);let{callbackList:A,history:x}=gS(i,o,a,h,g,p,s,m,d);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let b=h;b{let D=w[S][0],$=w[S][1],R=oi(I,D,$-D);E.batch=S,E.size=$-D;let N=GA(n,R),M=t(N);for(let B=0;B0){if(f=!0,r.validationData.length===2)o=r.validationData[0],i=r.validationData[1];else throw r.validationData.length===3?new He("validationData including sample weights is not supported yet."):new K(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let w=!0,S=await e.standardizeUserData(o,i,null,null,w,d);l=S[0],u=S[1],m=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let w=Math.floor(s[0].shape[0]*(1-r.validationSplit)),S=s[0].shape[0];l=Wd(s,w,S),s=Wd(s,0,w),u=Wd(a,w,S),a=Wd(a,0,w),m=l.concat(u)}else r.validationSteps!=null&&(f=!0);let g=s.concat(a).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),A=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=A.slice().concat(A.map(w=>"val_"+w))):(x=null,m=[],b=A.slice());let v=mS(r.callbacks,r.yieldEvery);return await Gte(e,y,g,A,d,r.epochs,r.verbose,v,x,m,r.shuffle,b,r.initialEpoch,null,null)}finally{e.isTraining=!1,ui(s,t),ui(a,n),ui(l,o),ui(u,i),c!=null&&Ge(c)}}function _S(e){let t=[];e instanceof Ot&&(e=[e]);for(let n=0;nn.push(s.id));else if(t!=null)for(let s in t){let a=t[s];n.push(a.id)}let r=[];if(e instanceof Ot)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(s=>{n.indexOf(s.id)===-1&&r.push(s)});else if(e!=null)for(let s in e){let a=e[s];n.indexOf(a.id)===-1&&r.push(a)}r.forEach(s=>{s.isDisposed||s.dispose()})}function qte(e){return e instanceof Ot}function qA(e){return Array.isArray(e)}function DS(e){return!qte(e)&&!qA(e)}function FS(e,t,n,r=!0,s=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(qA(e)&&e.length>0)o=!0;else if(DS(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new K(`Error when checking model ${s} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(DS(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new K(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(qA(e)){if(e=e,e.length!==t.length)throw new K(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new K(`The model ${s} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=_S(a),n!=null)for(let o=0;o=0&&u!==c)throw new K(`Error when checking ${s}: expected ${t[o]} to have shape [${n[o]}], but got array with shape [${i.shape}].`)}}return a}function Kte(e,t,n){let r=Ga(e.map(a=>a.shape[0]));r.sort();let s=Ga(t.map(a=>a.shape[0]));if(s.sort(),r.length>1)throw new K(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(s.length>1)throw new K(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(r.length>0&&s.length>0&&!k.arraysEqual(r,s))throw new K(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${s[0]} target sample(s).`)}function Xte(e,t,n){let r=[ii,nm,zd];for(let s=0;s1)throw new K(`The model expects ${t.length} ${s} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let s of t){let a=n.hasOwnProperty(s)?n[s]:[];Array.isArray(a)||(a=[a]),r.push(a)}return r}}var Yte="layers-model",fa=class extends Ps{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new K("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Cte(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Nte(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ha))throw new K("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new K(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(OA(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new K(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>OA(o))}else{let a=OA(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let r=Zte(e.metrics,this.outputNames),s=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ai("metric",()=>{for(let a=0;a{let u="",c,d,h;for(let p of l){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===nm?["accuracy","acc"].indexOf(p)!==-1?d=PA:["crossentropy","ce"].indexOf(p)!==-1&&(d=xS):this.lossFunctions[a]===tm?["accuracy","acc"].indexOf(p)!==-1?d=bS:["crossentropy","ce"].indexOf(p)!==-1&&(d=vS):["accuracy","acc"].indexOf(p)!==-1?d=zA:["crossentropy","ce"].indexOf(p)!==-1&&(d=LA);let g;["accuracy","acc"].indexOf(p)!==-1?g="acc":["crossentropy","ce"].indexOf(p)!==-1&&(g="ce"),h=d,c=u+g}else h=Tte(p),c=u+am(p);let f;ai(c,()=>{f=h}),s(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;HA(r);let s=!0,a=this.standardizeUserDataXY(e,t,s,r);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,r,n.verbose,n.steps);return Jn(l)}finally{ui(a[0],e),ui(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Hte(this,e,t)}checkNumSamples(e,t,n,r="steps"){let s;if(n!=null){if(s=null,t!=null)throw new K(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new K(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new K("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],s=this.retrieveSymbolicTensors(r),a=new li;if(e instanceof Ot&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new K(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let r=[];throw t.forEach((s,a)=>{s==null&&r.push(e[a])}),new K(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return Y(()=>{let r=this.checkNumSamples(e);if(n)throw new He("Verbose predictLoop() is not implemented yet.");let s=jA(r,t),a=this.outputs.map(o=>[]);for(let o=0;o{let l=s[o][0],u=s[o][1],c=Wd(e,l,u),d=[];if(Array.isArray(c))for(let p=0;pa[u].push(l));return Jn(a.map(o=>an(o,0)))})}predict(e,t={}){let n=_S(e);MS(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return HA(r),this.predictLoop(n,r)}finally{ui(n,e)}}predictOnBatch(e){MS(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new us("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a0&&e[0].shape[0]%r!=0)throw new K(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,s=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=NS(r,this.outputNames);l=[];for(let c=0;c{let a=this.checkNumSamples(t,n,s,"steps"),o=[];if(r>0)throw new He("Verbose mode is not implemented yet.");if(s!=null)throw new He("steps mode in testLoop() is not implemented yet");{let i=jA(a,n),l=En(cs(0,a));for(let u=0;u1&&(s+=`_${VI(e.slice(0,n),r)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f1&&f{p=de(p,f)}),p},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>Y(()=>{let t=[],n,r=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;lpa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=pa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[pa(am(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>pa(am(e)));{let e={};for(let t in this.metrics)e[t]=pa(am(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ld(e.optimizer_config),n=ps(t),r;if(typeof e.loss=="string")r=ri(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(a=>ri(a));else if(e.loss!=null){r={};for(let a in e.loss)r[a]=ri(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>ri(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=ri(e.metrics[a])}this.compile({loss:r,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=cr.getSaveHandlers(e);if(l.length===0)throw new K(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new K(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new K("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await cr.encodeWeights(this.getNamedWeights(t)),r=!1,s=null,o={modelTopology:this.toJSON(s,r),format:Yte,generatedBy:`TensorFlow.js tfjs-layers v${VA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await cr.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=cr.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;kS(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){kS(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};fa.className="Model";ue.registerClass(fa);var OS=class extends fa{};OS.className="Functional";ue.registerClass(OS);async function Jte(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Ld(n),s=ps(r,t);if(e.weightsManifest!=null){let a=await cr.loadWeights(e.weightsManifest,e.pathPrefix,s.weights.map(i=>i.originalName)),o={};for(let i of s.weights)o[i.originalName]=a[i.originalName];s.loadWeights(o),Ge(a)}return s}async function Qte(e,t){if(t==null&&(t={}),typeof e=="string"){let n=cr.getLoadHandlers(e,t);if(n.length===0)n.push(cr.browserHTTPRequest(e,t));else if(n.length>1)throw new K(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return ene(e,void 0,t)}async function ene(e,t,n){if(n==null&&(n={}),e.load==null)throw new K("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),s=r.modelTopology;s.model_config!=null&&(s=s.model_config);let a=n.strict==null?!0:n.strict,o=r.weightData!=null&&r.weightSpecs!=null&&a,i=ps(Ld(s),t,o),l=r.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),r.userDefinedMetadata!=null&&i.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new K("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=tne(r.weightData,r.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ge(u),Ge(c.map(d=>d.tensor))}return i}function tne(e,t){let n=cr.decodeWeights(e,t),r={},s=[];return t.forEach(a=>{a.group==="optimizer"?s.push({name:a.name,tensor:n[a.name]}):r[a.name]=n[a.name]}),{modelWeights:r,optimizerWeights:s}}var KA=class extends fa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Xf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new K(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof KA||e instanceof fa,n;if(t){if(n=e,n.outputs.length!==1)throw new K("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new K("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new K("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=uS({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new K(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new K("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=lS(this.outputs[0])}this.inboundNodes=[],new Jf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ni(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(yt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new fa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new us("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new us("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new us("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new us("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new K("Legacy serialization format not supported yet.");s=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof KA))throw new He(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of s){let u=ps(i,void 0,r);r&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new K("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new K("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},im=KA;im.className="Sequential";ue.registerClass(im);function nne(e){return new fa(e)}function rne(e){return new im(e)}function sne(e,t){return t==null&&(t={}),Qte(e,t)}function PS(e){return uS(e)}function ane(e,t){FA.registerCallbackConstructor(e,t)}var er=class extends ue.Serializable{getConfig(){return{}}},zS=class extends er{apply(e,t=1){return Ree(e,t)}};zS.className="elu";ue.registerClass(zS);var LS=class extends er{apply(e){return iI(e)}};LS.className="selu";ue.registerClass(LS);var BS=class extends er{apply(e){return ca(e)}};BS.className="relu";ue.registerClass(BS);var WS=class extends er{apply(e){return Y(()=>Nf(6,ca(e)))}};WS.className="relu6";ue.registerClass(WS);var VS=class extends er{apply(e){return e}};VS.className="linear";ue.registerClass(VS);var US=class extends er{apply(e){return ia(e)}};US.className="sigmoid";ue.registerClass(US);var HS=class extends er{apply(e){return Dee(e)}};HS.className="hardSigmoid";ue.registerClass(HS);var GS=class extends er{apply(e){return Cd(e)}};GS.className="softplus";ue.registerClass(GS);var jS=class extends er{apply(e){return _ee(e)}};jS.className="softsign";ue.registerClass(jS);var qS=class extends er{apply(e){return Sd(e)}};qS.className="tanh";ue.registerClass(qS);var XA=class extends er{apply(e,t=-1){return Zy(e,t)}};XA.className="softmax";ue.registerClass(XA);var KS=class extends er{apply(e,t=-1){return Y6(e,t)}};KS.className="logSoftmax";ue.registerClass(KS);var XS=class extends er{apply(e,t=1){return Y(()=>j(ia(j(e,t)),e))}};XS.className="swish";ue.registerClass(XS);var ZS=class extends er{apply(e){return Y(()=>j(e,Sd(Cd(e))))}};ZS.className="mish";ue.registerClass(ZS);function Xa(e){return e.getClassName()}function ZA(e,t={}){return _d(e,ue.SerializationMap.getMap().classNameMap,t,"activation")}function Za(e){if(e==null){let t={};return t.className="linear",t.config={},ZA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},ZA(t)}else return e instanceof er?e:ZA(e)}function YA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var YS=class extends ue.Serializable{},Vd=class extends YS{constructor(e){super();YA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Y(()=>{let t=ln([1]);return this.hasL1&&(t=de(t,Te(j(this.l1,gn(e))))),this.hasL2&&(t=de(t,Te(j(this.l2,Od(e))))),Z(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Vd.className="L1L2";ue.registerClass(Vd);function one(e){return YA(e),new Vd({l1:e!=null?e.l1:null,l2:0})}function ine(e){return YA(e),new Vd({l2:e!=null?e.l2:null,l1:0})}var JS={l1l2:"L1L2"};function vt(e){return hA(e)}function QS(e,t={}){return _d(e,ue.SerializationMap.getMap().classNameMap,t,"regularizer")}function zt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in JS?JS[e]:e,config:{}};return QS(n)}else return e instanceof YS?e:QS(e)}var JA=class extends tt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=qe(e);let n=ca(e);return this.maxValue!=null&&(n=Cr(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};JA.className="ReLU";ue.registerClass(JA);var QA=class extends tt{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=qe(e);return Oy(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};QA.className="LeakyReLU";ue.registerClass(QA);var ex=class extends tt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=zt(e.alphaRegularizer),this.alphaConstraint=dn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new K(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=yt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Zt(t),t==="channelsFirst"?st(e,[0,2,3,1]):e))}function e8(e,t){return Y(()=>(Zt(t),t==="channelsFirst"?st(e,[0,2,3,4,1]):e))}function lne(e,t,n,r=1,s="valid",a,o=1){return Y(()=>{if(a==null&&(a=ls()),Zt(a),e.shape.length!==3)throw new K(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new K(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new K(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=st(e,[0,2,1])),s==="causal")throw new He("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=U6(e,t,r,s==="same"?"same":"valid","NWC",o);return n!=null&&(i=ds(i,n)),i})}function t8(e,t,n,r=[1,1],s="valid",a,o,i=null){return Y(()=>{if(a==null&&(a=ls()),Zt(a),e.rank!==3&&e.rank!==4)throw new K(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new K(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=sx(e,a);if(s==="causal")throw new He("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ei.conv2d({x:l,filter:t,strides:r,pad:s==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=st(l,[0,3,1,2])),l})}function une(e,t,n,r=[1,1,1],s="valid",a,o){return Y(()=>{if(a==null&&(a=ls()),Zt(a),e.rank!==4&&e.rank!==5)throw new K(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new K(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=e8(e,a);if(s==="causal")throw new He("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=G6(i,t,r,s==="same"?"same":"valid","NDHWC",o),n!=null&&(i=ds(i,n)),a==="channelsFirst"&&(i=st(i,[0,4,1,2,3])),i})}var ax=class extends tt{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",ax.verifyArgs(t),this.rank=e,yn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new He(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=su(t.kernelSize,e,"kernelSize"),this.strides=su(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,_r(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Zt(this.dataFormat),this.activation=Za(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=dn(t.biasConstraint),this.biasRegularizer=zt(t.biasRegularizer),this.activityRegularizer=zt(t.activityRegularizer),this.dilationRate=su(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new K(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new K(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new K(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Fs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!fA(e.kernelSize,"number",1,3))throw new K(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Xa(this.activation),useBias:this.useBias,biasInitializer:Ut(this.biasInitializer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),biasConstraint:cn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Ud=class extends ax{constructor(e,t){super(e,t);this.kernel=null,Ud.verifyArgs(t),this.filters=t.filters,yn(this.filters,"filters"),this.kernelInitializer=Pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=dn(t.kernelConstraint),this.kernelRegularizer=zt(t.kernelRegularizer)}build(e){e=yt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new K(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Y(()=>{e=qe(e);let n,r=this.bias==null?null:this.bias.read(),s=HI(this.activation.getClassName());if(s!=null&&this.rank===2)n=t8(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=lne(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=t8(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=une(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new He("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=yt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s 0 but got ${JSON.stringify(e.filters)}`)}},n8=class extends Ud{constructor(e){super(2,e);n8.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!fA(e.kernelSize,"number",1,2))throw new K(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},lm=n8;lm.className="Conv2D";ue.registerClass(lm);var r8=class extends Ud{constructor(e){super(3,e);r8.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new K(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},um=r8;um.className="Conv3D";ue.registerClass(um);var ox=class extends lm{constructor(e){super(e);if(this.inputSpec=[new Qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new K(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=yt(e),e.length!==4)throw new K("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new K("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Qt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Y(()=>{let n=qe(e);if(n.shape.length!==4)throw new K(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=r[a],l=r[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],h=this.strides[1],p=zs(i,d,u,this.padding),f=zs(l,h,c,this.padding),m=[s,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=st(n,[0,2,3,1]));let g=H6(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=st(g,[0,3,1,2])),this.bias!=null&&(g=ds(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=yt(e);let t=e.slice(),n,r,s;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3):(n=3,r=1,s=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=zs(t[r],i,a,this.padding),t[s]=zs(t[s],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ox.className="Conv2DTranspose";ue.registerClass(ox);var ix=class extends um{constructor(e){super(e);if(this.inputSpec=[new Qt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new K(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=yt(e),e.length!==5)throw new K("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new K("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Qt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Y(()=>{let n=qe(e);if(n.shape.length!==5)throw new K(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=r[i],u=r[a],c=r[o],d=this.kernelSize[0],h=this.kernelSize[1],p=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=zs(l,f,d,this.padding),A=zs(u,m,h,this.padding),x=zs(c,g,p,this.padding),b=[s,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(n=st(n,[0,2,3,4,1]));let v=Yj(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=st(v,[0,4,1,2,3])),this.bias!==null&&(v=ds(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=yt(e);let t=e.slice(),n,r,s,a;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3,a=4):(n=4,r=1,s=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[r]=zs(t[r],u,o,this.padding),t[s]=zs(t[s],c,i,this.padding),t[a]=zs(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ix.className="Conv3DTranspose";ue.registerClass(ix);var s8=class extends Ud{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new K("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new K("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new K(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=zt(t.depthwiseRegularizer),this.depthwiseConstraint=dn(t.depthwiseConstraint),this.pointwiseInitializer=Pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=zt(t.pointwiseRegularizer),this.pointwiseConstraint=dn(t.pointwiseConstraint)}build(e){if(e=yt(e),e.length{e=qe(e);let n;if(this.rank===1)throw new He("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=st(e,[0,2,3,1])),n=aX(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=ds(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=st(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.pointwiseInitializer=Ut(this.pointwiseInitializer),e.depthwiseRegularizer=vt(this.depthwiseRegularizer),e.pointwiseRegularizer=vt(this.pointwiseRegularizer),e.depthwiseConstraint=cn(this.depthwiseConstraint),e.pointwiseConstraint=cn(this.pointwiseConstraint),e}};s8.className="SeparableConv";var lx=class extends s8{constructor(e){super(2,e)}};lx.className="SeparableConv2D";ue.registerClass(lx);var a8=class extends Ud{constructor(e){super(1,e);a8.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!fA(e.kernelSize,"number",1,1))throw new K(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},ux=a8;ux.className="Conv1D";ue.registerClass(ux);var cx=class extends tt{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Y(()=>{if(e=qe(e),this.dataFormat==="channelsLast"){let n=Lf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Lf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Lf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Lf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};cx.className="Cropping2D";ue.registerClass(cx);var dx=class extends tt{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Zt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Iee(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Y(()=>{let n=qe(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=st(n,[0,2,3,1]);let s=this.size[0]*r[2],a=this.size[1]*r[3],o=this.interpolation==="nearest"?is.resizeNearestNeighbor(n,[s,a]):is.resizeBilinear(n,[s,a]);return st(o,[0,3,1,2])}else{let s=this.size[0]*r[1],a=this.size[1]*r[2];return this.interpolation==="nearest"?is.resizeNearestNeighbor(n,[s,a]):is.resizeBilinear(n,[s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};dx.className="UpSampling2D";ue.registerClass(dx);function cne(e,t,n=[1,1],r="valid",s,a){return Y(()=>{s==null&&(s=ls()),Zt(s);let o=sx(e,s);if(e.rank!==4)throw new K(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new K(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=kf(o,t,n,r==="same"?"same":"valid","NHWC",a),s==="channelsFirst"&&(o=st(o,[0,3,1,2])),o})}var hx=class extends ax{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=dn(e.depthwiseConstraint),this.depthwiseRegularizer=zt(e.depthwiseRegularizer)}build(e){if(e=yt(e),e.length<4)throw new K(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new K(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Y(()=>{e=qe(e);let n=cne(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=ds(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=yt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=fs(t,this.kernelSize[0],this.padding,this.strides[0]),a=fs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,s,a]:[e[0],s,a,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.depthwiseRegularizer=vt(this.depthwiseRegularizer),e.depthwiseConstraint=cn(this.depthwiseRegularizer),e}};hx.className="DepthwiseConv2D";ue.registerClass(hx);function o8(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new K("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function s(a){return a==null||Array.isArray(a)?a:[a]}return t=s(t),n=s(n),{inputs:e,initialState:t,constants:n}}function i8(e,t,n,r=!1,s,a,o=!1,i=!1){return Y(()=>{let l=t.shape.length;if(l<3)throw new K(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(cs(2,l));if(t=st(t,u),a!=null)throw new He("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),s!=null&&(s=xe(xe(s,"bool"),"float32"),s.rank===l-1&&(s=Er(s,-1)),s=st(s,u)),r&&(t=Kr(t,0),s!=null&&(s=Kr(s,0)));let c=[],d,h=n,p=t.shape[0],f=Ds(t),m;s!=null&&(m=Ds(s));for(let y=0;ye(A,h));if(s==null)d=x[0],h=x[1];else{let b=Y(()=>{let v=m[y],I=ke(qr(v),v),w=de(j(x[0],v),j(h[0],I)),S=h.map((E,D)=>de(j(x[1][D],v),j(E,I)));return{output:w,newStates:S}});d=b.output,h=b.newStates}i&&c.push(d)}let g;return i&&(g=Xr(c,1)),[d,g,h]})}var l8=class extends tt{constructor(e){super(e);let t;if(e.cell==null)throw new K("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new hm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new K("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return cs(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){RA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[r].concat(s)}else return r}computeMask(e,t){return Y(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(s=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new K(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Qt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Y(()=>{if(!this.stateful)throw new ha("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new K("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>ln([n,r])):this.states_=[ln([n,this.cell.stateSize])];else if(e==null)Ge(this.states_),this.keptStates!=null&&(Ge(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>ln([n,r])):this.states_[0]=ln([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new K(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ge(this.states_);for(let r=0;rIn(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=o8(e,n,r,this.numConstants);e=s.inputs,n=s.initialState,r=s.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Qt({shape:l.shape}));o=o.concat(this.stateSpec)}if(r!=null&&(t.constants=r,a=a.concat(r),this.numConstants=r.length),a[0]instanceof hs){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return Y(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;e=qe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new K(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:r},l=i8((p,f)=>{let m=this.cell.call([p].concat(f),o);return[m[0],m.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,r);let h=this.returnSequences?c:u;return this.returnState?[h].concat(d):h})}getInitialState(e){return Y(()=>{let t=ln(e.shape);return t=Te(t,[1,2]),t=Md(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?wA(t,[1,n]):t):this.cell.stateSize>1?[wA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===l8.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let r=t.cell,s=ps(r,n);return new e(Object.assign(t,{cell:s}))}},ma=l8;ma.className="RNN";ue.registerClass(ma);var Hd=class extends tt{},cm=class extends Hd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,yn(this.units,"units"),this.activation=Za(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=dn(e.kernelConstraint),this.recurrentConstraint=dn(e.recurrentConstraint),this.biasConstraint=dn(e.biasConstraint),this.dropout=eu([1,qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eu([1,qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=yt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Y(()=>{if(e=e,e.length!==2)throw new K(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0qr(e),rate:this.dropout,training:r})),0qr(n),rate:this.recurrentDropout,training:r}));let s,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?s=Ms(j(e,a),this.kernel.read()):s=Ms(e,this.kernel.read()),this.bias!=null&&(s=ds(s,this.bias.read())),o!=null&&(n=j(n,o));let i=de(s,Ms(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:vt(this.kernelRegularizer),recurrentRegularizer:vt(this.recurrentRegularizer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),kernelConstraint:cn(this.kernelConstraint),recurrentConstraint:cn(this.recurrentConstraint),biasConstraint:cn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};cm.className="SimpleRNNCell";ue.registerClass(cm);var px=class extends ma{constructor(e){e.cell=new cm(e),super(e)}call(e,t){return Y(()=>{this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return new e(t)}};px.className="SimpleRNN";ue.registerClass(px);var dm=class extends Hd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new K("GRUCell does not support reset_after parameter set to true.");this.units=e.units,yn(this.units,"units"),this.activation=Za(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Za(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=dn(e.kernelConstraint),this.recurrentConstraint=dn(e.recurrentConstraint),this.biasConstraint=dn(e.biasConstraint),this.dropout=eu([1,qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eu([1,qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=yt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Y(()=>{if(e=e,e.length!==2)throw new K(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0qr(e),rate:this.dropout,training:n,count:3})),0qr(r),rate:this.recurrentDropout,training:n,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0{this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};fx.className="GRU";ue.registerClass(fx);var Gd=class extends Hd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,yn(this.units,"units"),this.activation=Za(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Za(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=zt(e.kernelRegularizer),this.recurrentRegularizer=zt(e.recurrentRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.kernelConstraint=dn(e.kernelConstraint),this.recurrentConstraint=dn(e.recurrentConstraint),this.biasConstraint=dn(e.biasConstraint),this.dropout=eu([1,qa([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eu([1,qa([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=yt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;r=new(t=class extends Yr{apply(o,i){let l=s.apply([a]),u=new Wf().apply([a]),c=s.apply([a*2]);return QI(QI(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Y(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new K(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],s=e[2];e=e[0],0qr(e),rate:this.dropout,training:n,count:4})),0qr(r),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0{this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};mx.className="LSTM";ue.registerClass(mx);var hm=class extends Hd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Y(()=>{e=e;let n=e.slice(1),r=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?r.push(n.splice(0,o.stateSize.length)):r.push(n.splice(0,1));r.reverse();let s=[],a;for(let o=0;o{ai(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),r={cells:this.cells.map(t)};return{...e,...r}}static fromConfig(e,t,n={}){let r=[];for(let s of t.cells)r.push(ps(s,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return _A(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,s=e.splice(r);for(let a=0;atS(t(),n),o=()=>Pd(a,t,r);return!s||s<=1?In(o().clone()):Array(s).fill(void 0).map(o).map(l=>In(l.clone()))}var u8=class extends ma{constructor(e){if(e.unroll)throw new He("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new He("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Qt({ndim:5})]}call(e,t){return Y(()=>{if(this.cell.dropoutMask!=null&&(Ge(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ge(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new K("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Y(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)],a=ln(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){Y(()=>{if(!this.stateful)throw new ha("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)];if(n[0]==null)throw new K("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ln(s)):this.states_=[ln(s)];else if(e==null)Ge(this.states_),this.keptStates!=null&&(Ge(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ln(s)):this.states_[0]=ln(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new K(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ge(this.states_);for(let o=0;oIn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:s,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=fs(l,r[0],s,a[0],o[0]),d=fs(u,r[1],s,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};u8.className="ConvRNN2D";var pm=class extends Gd{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:s,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,yn(this.filters,"filters"),this.kernelSize=su(n,2,"kernelSize"),this.kernelSize.forEach(i=>yn(i,"kernelSize")),this.strides=su(r||1,2,"strides"),this.strides.forEach(i=>yn(i,"strides")),this.padding=s||"valid",_r(this.padding),this.dataFormat=a||"channelsLast",Zt(this.dataFormat),this.dilationRate=su(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>yn(i,"dilationRate"))}build(e){var t;e=yt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new K(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],s=4,a=this.kernelSize.concat([r,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Yr{apply(c,d){let h=l.apply([u]),p=ua([u]),f=l.apply([u*2]);return vA([h,p,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Y(()=>{if(e.length!==3)throw new K(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],s=e[1],a=e[2],o=4;0qr(r),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(ee,ae,se)=>!ae||!ae[se]?ee:j(ae[se],ee),u=l(r,i,0),c=l(r,i,1),d=l(r,i,2),h=l(r,i,3);0qr(s),rate:this.recurrentDropout,training:n,count:o}));let p=this.recurrentDropoutMask,f=l(s,p,0),m=l(s,p,1),g=l(s,p,2),y=l(s,p,3),A=3,[x,b,v,I]=Rr(this.kernel.read(),o,A),[w,S,E,D]=this.useBias?Rr(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,w,this.padding),c=this.inputConv(c,b,S,this.padding),d=this.inputConv(d,v,E,this.padding),h=this.inputConv(h,I,D,this.padding);let[$,R,N,M]=Rr(this.recurrentKernel.read(),o,A);f=this.recurrentConv(f,$),m=this.recurrentConv(m,R),g=this.recurrentConv(g,N),y=this.recurrentConv(y,M);let B=this.recurrentActivation.apply(de(u,f)),q=this.recurrentActivation.apply(de(c,m)),X=de(j(q,a),j(B,this.activation.apply(de(d,g)))),J=j(this.recurrentActivation.apply(de(h,y)),this.activation.apply(X));return[J,J,X]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,r){let s=Xo(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?ds(s,n,this.dataFormat):s}recurrentConv(e,t){return Xo(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};pm.className="ConvLSTM2DCell";ue.registerClass(pm);var gx=class extends u8{constructor(e){let t=new pm(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};gx.className="ConvLSTM2D";ue.registerClass(gx);var fm=class extends tt{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=qe(e);if(0tS(n,this.rate,s,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};fm.className="Dropout";ue.registerClass(fm);var yx=class extends fm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};yx.className="SpatialDropout1D";ue.registerClass(yx);var Ax=class extends tt{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,yn(this.units,"units"),this.activation=Za(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=dn(e.kernelConstraint),this.biasConstraint=dn(e.biasConstraint),this.kernelRegularizer=zt(e.kernelRegularizer),this.biasRegularizer=zt(e.biasRegularizer),this.activityRegularizer=zt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=yt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=yt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=qe(e),r=HI(this.activation.getClassName()),s;return r!=null?s=Ms(n,this.kernel.read(),r,this.bias?this.bias.read():null):(s=Ms(n,this.kernel.read()),this.bias!=null&&(s=ds(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Xa(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:vt(this.kernelRegularizer),biasRegularizer:vt(this.biasRegularizer),activityRegularizer:vt(this.activityRegularizer),kernelConstraint:cn(this.kernelConstraint),biasConstraint:cn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ax.className="Dense";ue.registerClass(Ax);var xx=class extends tt{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=yt(e);for(let t of e.slice(1))if(t==null)throw new K(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ja(e,1)]}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=qe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let s=2;s{this.invokeCallHook(e,t);let n=qe(e);return this.activation.apply(n)})}getConfig(){let e={activation:Xa(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};bx.className="Activation";ue.registerClass(bx);var vx=class extends tt{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Y(()=>(e=qe(e),Cee(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};vx.className="RepeatVector";ue.registerClass(vx);var wx=class extends tt{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=qe(e),r=n.shape,s=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return Z(n,s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};wx.className="Reshape";ue.registerClass(wx);var kx=class extends tt{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=cs(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=yt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return st(qe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};kx.className="Permute";ue.registerClass(kx);var Ix=class extends tt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=qe(e),r=-1;return Cy(Ed(n,this.maskValue),r)}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=qe(e),r=-1,s=!0,a=Cy(Ed(n,this.maskValue),r,s);return j(n,xe(a,n.dtype))})}};Ix.className="Masking";ue.registerClass(Ix);var Sx=class extends tt{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Rt(e.inputLength))}this.inputDim=e.inputDim,yn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,yn(this.outputDim,"outputDim"),this.embeddingsInitializer=Pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=zt(e.embeddingsRegularizer),this.activityRegularizer=zt(e.activityRegularizer),this.embeddingsConstraint=dn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Y(()=>this.maskZero?(e=qe(e),Ed(e,ot(e))):null)}computeOutputShape(e){if(e=yt(e),this.inputLength==null)return[...e,this.outputDim];let t=Rt(this.inputLength);if(t.length!==e.length-1)throw new K(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=qe(e);n.dtype!=="int32"&&(n=zf(n,"int32"));let r=eS(this.embeddings.read(),Z(n,[n.size]));return Z(r,yt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ut(this.embeddingsInitializer),embeddingsRegularizer:vt(this.embeddingsRegularizer),activityRegularizer:vt(this.activityRegularizer),embeddingsConstraint:cn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Sx.className="Embedding";ue.registerClass(Sx);var ci=class extends tt{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new He}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new K(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;ss.length);e.indexOf(null)===-1&&Ga(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Y(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(s=>s.rank);if(r.indexOf(null)===-1){let s=qa(r);for(let a of e){let o=a.rank;for(let i=0;i1){let u=cs(1,l).concat([0]);n.push(st(i,u)),s=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(s){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=Z(st(Z(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(cs(0,o-1));a=st(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new K("`mask` should be an Array");if(!Array.isArray(e))throw new K("`inputs` should be an Array");if(t.length!==e.length)throw new K(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Er(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new K("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Y(()=>vA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new K("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[r]==null||s[r]==null){n[r]=null;break}n[r]+=s[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new K("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new K("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new K(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Y(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let r=[];for(let a=0;a3||t.shape.length>3)throw new He("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new He("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,s=t.shape.length;n==null&&(n=[r-1,s-2]);let a=n;return Y(()=>{let o;if(r>s){o=r-s;let l=[];for(let u=0;ur){o=s-r;let l=[];for(let u=0;u0){let l;r>s?l=r+s-3:l=r-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new He("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new K(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new K(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((s,a)=>jd(s,e[a].shape.length)):r=[jd(this.axes,t.shape.length),jd(this.axes,n.shape.length)],this.normalize&&(t=Qf(t,r[0]),n=Qf(n,r[1])),dne(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[jd(this.axes,e.length),jd(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new He("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};_x.className="Dot";ue.registerClass(_x);var Dx=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=qe(e);return Pd(()=>de(Bf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Dx.className="GaussianNoise";ue.registerClass(Dx);var Fx=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=qe(e);return this.rate>0&&this.rate<1?Pd(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return j(n,Bf(n.shape,1,s))},()=>n,t.training||!1):n})}};Fx.className="GaussianDropout";ue.registerClass(Fx);var Mx=class extends tt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||qe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Y(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Pd(()=>{let s=qe(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Kl($d(n),this.rate);l=zf(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=de(j(s,l),j(de(l,-1),i));return de(j(d,u),c)},()=>qe(e),t.training||!1)}return e})}};Mx.className="AlphaDropout";ue.registerClass(Mx);function qd(e,t,n,r,s,a=.001){let o;if(e.rank===2)o=Tj(e,t,n,r,s,a);else if(e.rank===3)o=Cj(e,t,n,r,s,a);else if(e.rank===4)o=$j(e,t,n,r,s,a);else throw new He(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function hne(e,t,n,r,s=.001){return Y(()=>{let a=Uy(e,r),o=a.mean,i=a.variance;return[qd(e,o,i,n,t,s),o,i]})}function pne(e,t,n,r,s=.001){return Y(()=>{let a=Uy(e,r),o=a.mean,i=a.variance,l=[];for(let f of cs(0,e.rank))r.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=Z(o,l),c=Z(i,l),d=t==null?null:Z(t,l),h=n==null?null:Z(n,l);return[qd(e,u,c,h,d,s),o,i]})}function fne(e,t,n,r,s=.001){return k.arraysEqual(r.slice().sort(),cs(0,e.rank-1))?hne(e,t,n,r,s):pne(e,t,n,r,s)}var Ox=class extends tt{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=Pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=dn(e.betaConstraint),this.gammaConstraint=dn(e.gammaConstraint),this.betaRegularizer=zt(e.betaRegularizer),this.gammaRegularizer=zt(e.gammaRegularizer)}build(e){e=yt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new K(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Qt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Y(()=>{let n=t.training==null?!1:t.training,r=qe(e),s=r.shape,a=s.length,o=cs(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=ni(1,a);l[i]=s[i];let u=o.slice();u.sort();let c=!k.arraysEqual(u,cs(0,a).slice(0,a-1)),d=()=>{if(c){let y=Z(this.movingMean.read(),l),A=Z(this.movingVariance.read(),l),x=this.center?Z(this.beta.read(),l):null,b=this.scale?Z(this.gamma.read(),l):null;return qd(r,y,A,x,b,this.epsilon)}else return qd(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[h,p,f]=fne(r,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,A,x)=>{Y(()=>{let b=1-x,v=y.read(),I=j(ke(v,A),b);y.write(ke(v,I))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),h})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),movingMeanInitializer:Ut(this.movingMeanInitializer),movingVarianceInitializer:Ut(this.movingVarianceInitializer),betaRegularizer:vt(this.betaRegularizer),gammaRegularizer:vt(this.gammaRegularizer),betaConstraint:cn(this.betaConstraint),gammaConstraint:cn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ox.className="BatchNormalization";ue.registerClass(Ox);var Px=class extends tt{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Pt(e.betaInitializer||"zeros"),this.gammaInitializer=Pt(e.gammaInitializer||"ones"),this.betaRegularizer=zt(e.betaRegularizer),this.gammaRegularizer=zt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=yt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Ga(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=qe(e),r=n.shape,s=r.length;return Y(()=>{let a=!0,{mean:o,variance:i}=Uy(n,this.axis,a),l=ni(1,s);for(let f of this.axis)l[f]=r[f];let u=f=>f!=null&&f.shape.length!==s&&this.axis!==[s-1]?Z(f,l):f,c=u(this.gamma.read()),d=u(this.beta.read()),h=[],p=[];for(let f=0;f{if(e.rank!==4)throw new K(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new K("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=ls()),n!=="channelsLast"&&n!=="channelsFirst")throw new K(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Yo(e,r)})}var zx=class extends tt{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?ls():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new K(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new K(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new K(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){e=yt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Y(()=>mne(qe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};zx.className="ZeroPadding2D";ue.registerClass(zx);function mm(e,t,n,r,s,a){return Y(()=>{Zt(s),KI(a),_r(r),n==null&&(n=[1,1]),r==null&&(r="valid"),s==null&&(s=ls()),a==null&&(a="max"),e=sx(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=Wy(e,t,n,i):o=Ry(e,t,n,i),s==="channelsFirst"&&(o=st(o,[0,3,1,2])),o})}function c8(e,t,n,r,s,a){return Y(()=>{Zt(s),KI(a),_r(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),s==null&&(s=ls()),a==null&&(a="max"),e=e8(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=nI(e,t,n,i):o=W6(e,t,n,i),s==="channelsFirst"&&(o=st(o,[0,4,1,2,3])),o})}var d8=class extends tt{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new K(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(yn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new K(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);yn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,_r(this.padding),this.inputSpec=[new Qt({ndim:3})]}computeOutputShape(e){e=yt(e);let t=fs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Y(()=>{this.invokeCallHook(e,t),e=Md(qe(e),2);let n=this.poolingFunction(qe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Qo(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Lx=class extends d8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Zt(s),_r(r),mm(e,t,n,r,s,"max")}};Lx.className="MaxPooling1D";ue.registerClass(Lx);var Bx=class extends d8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Zt(s),_r(r),mm(e,t,n,r,s,"avg")}};Bx.className="AveragePooling1D";ue.registerClass(Bx);var h8=class extends tt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new K(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];yn(this.poolSize,"poolSize"),yn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Zt(this.dataFormat),_r(this.padding),this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){e=yt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=fs(t,this.poolSize[0],this.padding,this.strides[0]),n=fs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Y(()=>(this.invokeCallHook(e,t),this.poolingFunction(qe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Wx=class extends h8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Zt(s),_r(r),mm(e,t,n,r,s,"max")}};Wx.className="MaxPooling2D";ue.registerClass(Wx);var Vx=class extends h8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Zt(s),_r(r),mm(e,t,n,r,s,"avg")}};Vx.className="AveragePooling2D";ue.registerClass(Vx);var p8=class extends tt{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new K(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];yn(this.poolSize,"poolSize"),yn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Zt(this.dataFormat),_r(this.padding),this.inputSpec=[new Qt({ndim:5})]}computeOutputShape(e){e=yt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=fs(t,this.poolSize[0],this.padding,this.strides[0]),n=fs(n,this.poolSize[1],this.padding,this.strides[1]),r=fs(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return Y(()=>(this.invokeCallHook(e,t),this.poolingFunction(qe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ux=class extends p8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Zt(s),_r(r),c8(e,t,n,r,s,"max")}};Ux.className="MaxPooling3D";ue.registerClass(Ux);var Hx=class extends p8{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Zt(s),_r(r),c8(e,t,n,r,s,"avg")}};Hx.className="AveragePooling3D";ue.registerClass(Hx);var f8=class extends tt{constructor(e){super(e);this.inputSpec=[new Qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new He}},Gx=class extends f8{constructor(e){super(e||{})}call(e,t){return Y(()=>{let n=qe(e);return Xt(n,1)})}};Gx.className="GlobalAveragePooling1D";ue.registerClass(Gx);var jx=class extends f8{constructor(e){super(e||{})}call(e,t){return Y(()=>{let n=qe(e);return Rs(n,1)})}};jx.className="GlobalMaxPooling1D";ue.registerClass(jx);var m8=class extends tt{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Zt(this.dataFormat),this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new He}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},qx=class extends m8{call(e,t){return Y(()=>{let n=qe(e);return this.dataFormat==="channelsLast"?Xt(n,[1,2]):Xt(n,[2,3])})}};qx.className="GlobalAveragePooling2D";ue.registerClass(qx);var Kx=class extends m8{call(e,t){return Y(()=>{let n=qe(e);return this.dataFormat==="channelsLast"?Rs(n,[1,2]):Rs(n,[2,3])})}};Kx.className="GlobalMaxPooling2D";ue.registerClass(Kx);var g8=class extends tt{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,s=ps(r,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},Xx=class extends g8{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=yt(e),e.length<3)throw new K(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=yt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return Y(()=>(e=qe(e),i8((a,o)=>[qe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Xx.className="TimeDistributed";ue.registerClass(Xx);function gne(e){si(kee,"BidirectionalMergeMode",e)}var yne="concat",Zx=class extends g8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=ps(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=ps(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?yne:e.mergeMode,gne(this.mergeMode),e.weights)throw new He("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):Jn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=o8(e,n,r,this.numConstants);if(e=s.inputs,n=s.initialState,r=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new K("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Qt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(r!=null)throw new He("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof hs;for(let l of a)if(l instanceof hs!==i)throw new K("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return Y(()=>{let n=t.initialState,r,s;if(n==null)r=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(r)&&(a=r.slice(1).concat(s.slice(1))),r=r[0],s=s[0]),this.returnSequences&&(s=Kr(s,1));let o;return this.mergeMode==="concat"?o=vA([r,s]):this.mergeMode==="sum"?o=de(r,s):this.mergeMode==="ave"?o=j(.5,de(r,s)):this.mergeMode==="mul"?o=j(r,s):this.mergeMode==null&&(o=[r,s]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ai(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ai(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=ps(t.layer);if(delete t.layer,t.numConstants!=null)throw new He("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Zx.className="Bidirectional";ue.registerClass(Zx);function Ane(e){return new tu(e)}function xne(e){return new tx(e)}function bne(e){return new JA(e)}function vne(e){return new QA(e)}function wne(e){return new ex(e)}function kne(e){return new rx(e)}function Ine(e){return new nx(e)}function Sne(e){return new ux(e)}function Tne(e){return new lm(e)}function Nne(e){return new ox(e)}function Cne(e){return new um(e)}function Ene(e){return new ix(e)}function $ne(e){return new lx(e)}function Rne(e){return new cx(e)}function _ne(e){return new dx(e)}function Dne(e){return new hx(e)}function Fne(e){return new bx(e)}function Mne(e){return new Ax(e)}function One(e){return new fm(e)}function Pne(e){return new yx(e)}function zne(e){return new xx(e)}function Lne(e){return new vx(e)}function Bne(e){return new wx(e)}function Wne(e){return new kx(e)}function Vne(e){return new Sx(e)}function Une(e){return new Tx(e)}function Hne(e){return new Cx(e)}function Gne(e){return new Rx(e)}function jne(e){return new Ex(e)}function qne(e){return new $x(e)}function Kne(e){return new Nx(e)}function Xne(e){return new _x(e)}function Zne(e){return new Ox(e)}function Yne(e){return new Px(e)}function Jne(e){return new zx(e)}function Yx(e){return new Bx(e)}function Qne(e){return Yx(e)}function ere(e){return Yx(e)}function Jx(e){return new Vx(e)}function tre(e){return Jx(e)}function nre(e){return Jx(e)}function Qx(e){return new Hx(e)}function rre(e){return Qx(e)}function sre(e){return Qx(e)}function are(e){return new Gx(e)}function ore(e){return new qx(e)}function y8(e){return new jx(e)}function A8(e){return new Kx(e)}function x8(e){return new Lx(e)}function b8(e){return new Wx(e)}function ire(e){return new Ux(e)}function lre(e){return new fx(e)}function ure(e){return new dm(e)}function cre(e){return new mx(e)}function dre(e){return new Gd(e)}function hre(e){return new px(e)}function pre(e){return new cm(e)}function fre(e){return new gx(e)}function mre(e){return new pm(e)}function gre(e){return new ma(e)}function yre(e){return new hm(e)}function Are(e){return new Zx(e)}function xre(e){return new Xx(e)}var bre=y8,vre=A8,wre=x8,kre=b8;function Ire(e){return new Dx(e)}function Sre(e){return new Fx(e)}function Tre(e){return new Mx(e)}function Nre(e){return new Ix(e)}var v8={};_e(v8,{MAPE:()=>zre,MSE:()=>Wre,binaryAccuracy:()=>Cre,binaryCrossentropy:()=>Ere,categoricalAccuracy:()=>Rre,categoricalCrossentropy:()=>_re,cosineProximity:()=>Mre,mape:()=>Lre,meanAbsoluteError:()=>Ore,meanAbsolutePercentageError:()=>Pre,meanSquaredError:()=>Bre,mse:()=>Vre,precision:()=>Dre,recall:()=>Fre,sparseCategoricalAccuracy:()=>$re});function Cre(e,t){return PA(e,t)}function Ere(e,t){return xS(e,t)}function $re(e,t){return bS(e,t)}function Rre(e,t){return zA(e,t)}function _re(e,t){return LA(e,t)}function Dre(e,t){return AS(e,t)}function Fre(e,t){return Ate(e,t)}function Mre(e,t){return MA(e,t)}function Ore(e,t){return em(e,t)}function Pre(e,t){return ru(e,t)}function zre(e,t){return ru(e,t)}function Lre(e,t){return ru(e,t)}function Bre(e,t){return ii(e,t)}function Wre(e,t){return ii(e,t)}function Vre(e,t){return ii(e,t)}var w8={};_e(w8,{modelFromJSON:()=>Jte});var k8={};_e(k8,{l1:()=>Hre,l1l2:()=>Ure,l2:()=>Gre});function Ure(e){return new Vd(e)}function Hre(e){return one(e)}function Gre(e){return ine(e)}var I8=class extends nu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof fa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function gm(e,t){return et}var T8=class extends I8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new He("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=gm:this.mode==="max"?this.monitorFunc=S8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=S8:this.monitorFunc=gm,this.monitorFunc===gm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===gm?1/0:-1/0}async onEpochEnd(e,t){await Ka(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function jre(e){return new T8(e)}var qre={earlyStopping:jre},ms;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(ms||(ms={}));var N8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(N8||(N8={}));var e5={};function Kre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};e5[e]=n}function C8(e){return e5[e]}function Xre(e){delete e5[e]}function T(e,t,n,r,s){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Bn(t.inputNames[a.inputIndexStart],n,r,s);if(a.type==="tensors")return t.inputNames.slice(i,l).map(h=>Bn(h,n,r,s));let u=Bn(t.inputNames.slice(i)[0],n,r,s),c=u.dataSync();return a.type==="number"?c[0]:k.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function Bn(e,t,n,r){let[s,a]=dr(e);if(r!=null){let i=r.getHashTableHandleByName(s);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[ym(s,i)]);return o!==void 0?t[ym(s,o)][a]:void 0}function Zre(e,t,n){return t[ym(e,n.currentContextId)]}function ga(e,t){let[n,r,s]=dr(e);return[ym(n,t&&t.currentContextId),r,s]}function ym(e,t){return t?`${e}-${t}`:e}function dr(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],r=t.length===3?t[1]:void 0,s=Number(t[t.length-1]);return[n,s,r]}function Am(e,t,n){let r=T("pad",e,t,n);if(r==="explicit"){r=T("explicitPaddings",e,t,n);let s=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)s[a][0]=r[a*2],s[a][1]=r[a*2+1];return s}return r}function ya(e){return e.kept?e:za(e)}var E8={};_e(E8,{json:()=>Yre});var Yre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],$8={};_e($8,{json:()=>Jre});var Jre=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],R8={};_e(R8,{json:()=>Qre});var Qre=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],_8={};_e(_8,{json:()=>ese});var ese=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],D8={};_e(D8,{json:()=>tse});var tse=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],F8={};_e(F8,{json:()=>nse});var nse=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],M8={};_e(M8,{json:()=>rse});var rse=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],O8={};_e(O8,{json:()=>sse});var sse=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],P8={};_e(P8,{json:()=>ase});var ase=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],z8={};_e(z8,{json:()=>ose});var ose=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],L8={};_e(L8,{json:()=>ise});var ise=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],B8={};_e(B8,{json:()=>lse});var lse=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],W8={};_e(W8,{json:()=>use});var use=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],V8={};_e(V8,{json:()=>cse});var cse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],U8={};_e(U8,{json:()=>dse});var dse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],H8={};_e(H8,{json:()=>hse});var hse=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],G8={};_e(G8,{json:()=>pse});var pse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],j8={};_e(j8,{json:()=>fse});var fse=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],q8={};_e(q8,{json:()=>mse});var mse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],K8=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[E8,$8,R8,_8,D8,F8,M8,O8,P8,z8,L8,B8,W8,V8,U8,H8,G8,j8,q8],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],s=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?s.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[A,,x]=ga(g),b=o[A];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let I=`${A}:${v}`;m.inputNames[y]=I}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=ga(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=ga(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=r;let h={};e.library!=null&&e.library.function!=null&&(h=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:o,inputs:i,outputs:l,weights:s,placeholders:r,signature:t,functions:h};return a.length>0&&(p.initNodes=a),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=C8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,s)=>(r[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,s)=>{let a=s.type,o;switch(s.type){case"string":o=t5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=t5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":o=u5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=u5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":o=r5(e.attr,s.tfName,s.defaultValue||0),o===void 0&&!!s.tfDeprecatedName&&(o=r5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":o=l5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=l5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":o=n5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=n5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":o=d5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=d5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":o=i5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=i5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":o=c5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=c5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":o=a5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=a5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":o=o5(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=o5(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":o=Z8(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Z8(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return r[s.name]={value:o,type:a},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],s={};t!=null&&(s=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&r.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=ga(c.name),h={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:s5(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,a.push(h),s[d]=h}),Object.keys(s).forEach(c=>{let d=s[c];d.inputNames.forEach((h,p)=>{let[f,,m]=ga(h),g=s[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let A=`${f}:${y}`;d.inputNames[p]=A}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,h]=ga(l[c.name]),p=s[d];p!=null&&(p.defaultOutput=h,o.push(p))});let u=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:o,weights:r,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function gse(e){let t=re().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function X8(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):gse(e);return t?n:n.toLowerCase()}function t5(e,t,n,r=!1){let s=e[t];return s!=null?X8(s.s,r):n}function n5(e,t,n){let r=e[t];return r?r.b:n}function r5(e,t,n){let r=e[t]||{},s=r.i!=null?r.i:r.f!=null?r.f:n;return typeof s=="number"?s:parseInt(s,10)}function s5(e){switch(typeof e=="string"&&(e=ms[e]),e){case ms.DT_FLOAT:return"float32";case ms.DT_INT32:case ms.DT_INT64:case ms.DT_INT8:case ms.DT_UINT8:return"int32";case ms.DT_BOOL:return"bool";case ms.DT_DOUBLE:return"float32";case ms.DT_STRING:return"string";default:return null}}function Z8(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function a5(e,t,n){let r=e[t];return r&&r.type?s5(r.type):n}function o5(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(s=>s5(s)):n}function Y8(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function i5(e,t,n){let r=e[t];return r&&r.shape?Y8(r.shape):n}function l5(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(s=>typeof s=="number"?s:parseInt(s,10)):n}function u5(e,t,n,r=!1){let s=e[t];return s&&s.list&&s.list.s?s.list.s.map(a=>X8(a,r)):n}function c5(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(s=>Y8(s)):n}function d5(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var yse=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,s)=>(r[s]=this.getAttr(s),r),{}))}getInput(e){return Bn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Bn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return r5(this.node.rawAttrs,e,t);if(n.s!=null)return t5(this.node.rawAttrs,e,t);if(n.b!=null)return n5(this.node.rawAttrs,e,t);if(n.shape!=null)return i5(this.node.rawAttrs,e,t);if(n.type!=null)return a5(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return l5(this.node.rawAttrs,e,t);if(n.list.s!=null)return u5(this.node.rawAttrs,e,t);if(n.list.shape!=null)return c5(this.node.rawAttrs,e,t);if(n.list.b!=null)return d5(this.node.rawAttrs,e,t);if(n.list.type!=null)return o5(this.node.rawAttrs,e,t)}return t}},Ase=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[de(T("a",e,t,n),T("b",e,t,n))];case"AddN":return[jG(T("tensors",e,t,n))];case"FloorMod":case"Mod":return[yK(T("a",e,t,n),T("b",e,t,n))];case"Mul":return[j(T("a",e,t,n),T("b",e,t,n))];case"RealDiv":case"Div":return[Re(T("a",e,t,n),T("b",e,t,n))];case"DivNoNan":return[fq(T("a",e,t,n),T("b",e,t,n))];case"FloorDiv":return[O6(T("a",e,t,n),T("b",e,t,n))];case"Sub":return[ke(T("a",e,t,n),T("b",e,t,n))];case"Minimum":return[Nf(T("a",e,t,n),T("b",e,t,n))];case"Maximum":return[Va(T("a",e,t,n),T("b",e,t,n))];case"Pow":return[Jo(T("a",e,t,n),T("b",e,t,n))];case"SquaredDifference":return[pI(T("a",e,t,n),T("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[gn(T("x",e,t,n))];case"Acos":return[VG(T("x",e,t,n))];case"Acosh":return[HG(T("x",e,t,n))];case"Asin":return[QG(T("x",e,t,n))];case"Asinh":return[tj(T("x",e,t,n))];case"Atan":return[rj(T("x",e,t,n))];case"Atan2":return[aj(T("x",e,t,n),T("y",e,t,n))];case"Atanh":return[ij(T("x",e,t,n))];case"Ceil":return[Fj(T("x",e,t,n))];case"Complex":return[Uo(T("real",e,t,n),T("imag",e,t,n))];case"Cos":return[Fy(T("x",e,t,n))];case"Cosh":return[q6(T("x",e,t,n))];case"Elu":return[If(T("x",e,t,n))];case"Erf":return[bq(T("x",e,t,n))];case"Exp":return[Gr(T("x",e,t,n))];case"Expm1":return[Iq(T("x",e,t,n))];case"Floor":return[Sf(T("x",e,t,n))];case"Log":return[jr(T("x",e,t,n))];case"Log1p":return[Py(T("x",e,t,n))];case"Imag":return[My(T("x",e,t,n))];case"Neg":return[qt(T("x",e,t,n))];case"Reciprocal":return[qK(T("x",e,t,n))];case"Real":return[Cf(T("x",e,t,n))];case"Relu":return[ca(T("x",e,t,n))];case"Round":return[aI(T("x",e,t,n))];case"Selu":return[iI(T("x",e,t,n))];case"Sigmoid":return[ia(T("x",e,t,n))];case"Sin":return[lI(T("x",e,t,n))];case"Sign":return[uX(T("x",e,t,n))];case"Sinh":return[uI(T("x",e,t,n))];case"Softplus":return[Cd(T("x",e,t,n))];case"Sqrt":return[Ln(T("x",e,t,n))];case"Square":return[Tt(T("x",e,t,n))];case"Tanh":return[Sd(T("x",e,t,n))];case"Tan":return[RX(T("x",e,t,n))];case"ClipByValue":return[Cr(T("x",e,t,n),T("clipValueMin",e,t,n),T("clipValueMax",e,t,n))];case"Relu6":return[sI(T("x",e,t,n))];case"Rsqrt":return[oI(Bn(e.inputNames[0],t,n))];case"Prod":return[rI(T("x",e,t,n),T("axes",e,t,n))];case"LeakyRelu":return[Oy(T("x",e,t,n),T("alpha",e,t,n))];case"Prelu":return[Gy(T("x",e,t,n),T("alpha",e,t,n))];case"IsNan":return[Mq(Bn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Jr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function J8(e){return!(typeof e=="number"||e.some(t=>t<0))}function Kd(e,t,n){let r=h5(e,n),s=!J8(r);if(s&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(s&&t.forEach(a=>{r=h5(a.shape,r)}),!J8(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function h5(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&a>=0&&s!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=s>=0?s:a}return n}var bse=class{constructor(e,t,n,r,s,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=De(0),In(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, + because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Jr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,In(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Ds(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];Z(()=>{t=J(t,[1,n,s]);for(let i=0;i{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Yr(t,s.shape,"TensorList shape mismatch: "),Sn(s)}),this.idTensor=Fe(0),this.maxNumElements=r,Sn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Yr(e,this.elementShape,"TensorList shape mismatch: ");let r=Jd(this.elementShape,this.tensors,e);return Z(()=>{let s=this.tensors.map(a=>J(a,r));return Mr(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jd(this.elementShape,this.tensors,e),r=this.tensors.pop();return Yr(r.shape,e,"TensorList shape mismatch: "),J(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Yr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Sn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Yr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Jd(this.elementShape,this.tensors,t);return J(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Yr(this.elementShape,t.shape,"TensorList shape mismatch: "),Sn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Yr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Jd(this.elementShape,this.tensors,n);return e.length===0?$s([],[0].concat(r)):Z(()=>{let s=e.map(a=>J(this.tensors[a],r));return Mr(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Yr(this.elementShape,t,"TensorList shape mismatch: ");let n=Jd(this.elementShape,this.tensors,t);return this.size()===0?$s([],[0].concat(n)):Z(()=>{let r=this.tensors.map(s=>J(s,n));return en(r,0)})}};function ise(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let s=e.shape.slice(1);Yr(s,t,"TensorList shape mismatch: ");let a=ls(e);return new Qd(a,t,r)}function lse(e,t,n){return new Qd([],e,t,n)}function use(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let s=Math.max(...t);if(r!=null&&r!==-1&&s>=r)throw new Error(`Max index must be < array size (${s} vs. ${r})`);let a=new Qd([],n,e.dtype,r),o=ls(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function cse(e,t,n){let r=0,s=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to + ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];Y(()=>{t=Z(t,[1,n,s]);for(let i=0;i{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Jr(t,s.shape,"TensorList shape mismatch: "),In(s)}),this.idTensor=De(0),this.maxNumElements=r,In(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Xd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Jr(e,this.elementShape,"TensorList shape mismatch: ");let r=Kd(this.elementShape,this.tensors,e);return Y(()=>{let s=this.tensors.map(a=>Z(a,r));return Xr(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Kd(this.elementShape,this.tensors,e),r=this.tensors.pop();return Jr(r.shape,e,"TensorList shape mismatch: "),Z(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Jr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");In(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Jr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Kd(this.elementShape,this.tensors,t);return Z(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Jr(this.elementShape,t.shape,"TensorList shape mismatch: "),In(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Jr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Kd(this.elementShape,this.tensors,n);return e.length===0?Cs([],[0].concat(r)):Y(()=>{let s=e.map(a=>Z(this.tensors[a],r));return Xr(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Jr(this.elementShape,t,"TensorList shape mismatch: ");let n=Kd(this.elementShape,this.tensors,t);return this.size()===0?Cs([],[0].concat(n)):Y(()=>{let r=this.tensors.map(s=>Z(s,n));return an(r,0)})}};function vse(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let s=e.shape.slice(1);Jr(s,t,"TensorList shape mismatch: ");let a=Ds(e);return new Xd(a,t,r)}function wse(e,t,n){return new Xd([],e,t,n)}function kse(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let s=Math.max(...t);if(r!=null&&r!==-1&&s>=r)throw new Error(`Max index must be < array size (${s} vs. ${r})`);let a=new Xd([],n,e.dtype,r),o=Ds(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function Ise(e,t,n){let r=0,s=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is - ${r}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=I5(a,n),i=r===0?0:e.size/r,l=Z(()=>{let c=[];e=J(e,[1,r,i]);for(let d=0;d{switch(e.op){case"If":case"StatelessIf":{let r=T("thenBranch",e,t,n),s=T("elseBranch",e,t,n),a=T("cond",e,t,n),o=T("args",e,t,n);return(await a.data())[0]?n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=T("body",e,t,n),s=T("cond",e,t,n),a=T("args",e,t,n),o=await n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(p=>p.id);c.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()});let h=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await h[0].data(),h.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=T("pred",e,t,n);return[ga(r)]}case"Switch":{let r=T("pred",e,t,n),s=T("data",e,t,n);return s.kept||(s=ga(s)),(await r.data())[0]?[void 0,s]:[s,void 0]}case"Merge":{let r=e.inputNames.find(s=>Bn(s,t,n)!==void 0);if(r){let s=Bn(r,t,n);return[ga(s)]}return}case"Enter":{let r=T("frameName",e,t,n),s=T("tensor",e,t,n);return n.enterFrame(r),[ga(s)]}case"Exit":{let r=T("tensor",e,t,n);return n.exitFrame(),[ga(r)]}case"NextIteration":{let r=T("tensor",e,t,n);return n.nextIteration(),[ga(r)]}case"TensorArrayV3":{let r=T("size",e,t,n),s=T("dtype",e,t,n),a=T("elementShape",e,t,n),o=T("dynamicSize",e,t,n),i=T("clearAfterRead",e,t,n),l=T("identicalElementShapes",e,t,n),u=T("name",e,t,n),c=new ose(u,s,r,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Fe(1)]}case"TensorArrayWriteV3":{let r=T("tensorArrayId",e,t,n),s=T("index",e,t,n),a=T("tensor",e,t,n),o=n.getTensorArray(r.id);return o.write(s,a),[o.idTensor]}case"TensorArrayReadV3":{let r=T("tensorArrayId",e,t,n),s=T("index",e,t,n);return[n.getTensorArray(r.id).read(s)]}case"TensorArrayGatherV3":{let r=T("tensorArrayId",e,t,n),s=T("indices",e,t,n),a=T("dtype",e,t,n);return[n.getTensorArray(r.id).gather(s,a)]}case"TensorArrayScatterV3":{let r=T("tensorArrayId",e,t,n),s=T("indices",e,t,n),a=T("tensor",e,t,n),o=n.getTensorArray(r.id);return o.scatter(s,a),[o.idTensor]}case"TensorArrayConcatV3":{let r=T("tensorArrayId",e,t,n),s=n.getTensorArray(r.id),a=T("dtype",e,t,n);return[s.concat(a)]}case"TensorArraySplitV3":{let r=T("tensorArrayId",e,t,n),s=T("tensor",e,t,n),a=T("lengths",e,t,n),o=n.getTensorArray(r.id);return o.split(a,s),[o.idTensor]}case"TensorArraySizeV3":{let r=T("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return[Fe(s.size(),"int32")]}case"TensorArrayCloseV3":{let r=T("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return s.clearAndClose(),[s.idTensor]}case"TensorListSetItem":{let r=T("tensorListId",e,t,n),s=T("index",e,t,n),a=T("tensor",e,t,n),o=n.getTensorList(r.id);return o.setItem(s,a),[o.idTensor]}case"TensorListGetItem":{let r=T("tensorListId",e,t,n),s=T("index",e,t,n),a=T("elementShape",e,t,n),o=T("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(s,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let r=T("indices",e,t,n),s=T("tensor",e,t,n),a=T("elementShape",e,t,n),o=T("numElements",e,t,n),i=use(s,r,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=T("elementShape",e,t,n),s=T("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=T(a,e,t,n),i=lse(r,s,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let r=T("tensorListId",e,t,n),s=T("indices",e,t,n),a=T("elementShape",e,t,n),o=T("elementDType",e,t,n);return[n.getTensorList(r.id).gather(s,o,a)]}case"TensorListStack":{let r=T("tensorListId",e,t,n),s=T("elementShape",e,t,n),a=T("elementDType",e,t,n),o=T("numElements",e,t,n);return[n.getTensorList(r.id).stack(s,a,o)]}case"TensorListFromTensor":{let r=T("tensor",e,t,n),s=T("elementShape",e,t,n),a=T("elementDType",e,t,n),o=ise(r,s,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let r=T("tensorListId",e,t,n),s=n.getTensorList(r.id),a=T("dtype",e,t,n),o=T("elementShape",e,t,n);return[s.concat(a,o)]}case"TensorListPushBack":{let r=T("tensorListId",e,t,n),s=T("tensor",e,t,n),a=n.getTensorList(r.id);return a.pushBack(s),[a.idTensor]}case"TensorListPopBack":{let r=T("tensorListId",e,t,n),s=T("elementShape",e,t,n),a=T("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(s,a)]}case"TensorListSplit":{let r=T("tensor",e,t,n),s=T("elementShape",e,t,n),a=T("lengths",e,t,n),o=cse(r,a,s);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function mT(e,t,n){let[r,s]=T("fusedOps",e,t,n),a=r==="biasadd",o=!a,i=s==="prelu",l=r==="fusedbatchnorm",u=T("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=T("strides",e,t,n),d=Im(e,t,n),h=T("dataFormat",e,t,n).toUpperCase(),p=T("dilations",e,t,n),[f,m]=T("args",e,t,n);o&&(m=f,f=void 0);let g=T("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:h,dilations:p,biasArg:f,preluArg:m,activationFunc:s,leakyreluAlpha:g}}var hse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=T("stride",e,t,n),s=T("pad",e,t,n),a=T("dataFormat",e,t,n).toUpperCase(),o=T("dilation",e,t,n);return[MA(T("x",e,t,n),T("filter",e,t,n),r,s,a,o)]}case"Conv2D":{let r=T("strides",e,t,n),s=Im(e,t,n),a=T("dataFormat",e,t,n).toUpperCase(),o=T("dilations",e,t,n);return[Ba(T("x",e,t,n),T("filter",e,t,n),[r[1],r[2]],s,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=mT(e,t,n);return[ti.conv2d({x:T("x",e,t,n),filter:T("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=mT(e,t,n);return[ti.depthwiseConv2d({x:T("x",e,t,n),filter:T("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=T("outputShape",e,t,n),s=T("strides",e,t,n),a=Im(e,t,n);return[PA(T("x",e,t,n),T("filter",e,t,n),r,[s[1],s[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=T("strides",e,t,n),s=Im(e,t,n),a=T("dilations",e,t,n),o=T("dataFormat",e,t,n).toUpperCase();return[Td(T("input",e,t,n),T("filter",e,t,n),[r[1],r[2]],s,o,[a[1],a[2]])]}case"Conv3D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("dataFormat",e,t,n).toUpperCase(),o=T("dilations",e,t,n);return[sI(T("x",e,t,n),T("filter",e,t,n),[r[1],r[2],r[3]],s,a,[o[1],o[2],o[3]])]}case"AvgPool":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[Sf(T("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[$f(T("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n),o=T("includeBatchInIndex",e,t,n),{result:i,indexes:l}=oK(T("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s,o);return[i,l]}case"AvgPool3D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[tI(T("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[AI(T("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("dilations",e,t,n),o=r[1],i=r[2],l=a[1],u=a[2];return[iI(T("x",e,t,n),T("filter",e,t,n),[o,i],s,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},pse=(e,t,n)=>{switch(e.op){case"Fill":{let r=T("shape",e,t,n),s=T("dtype",e,t,n),a=T("value",e,t,n);return[Cd(r,a,s)]}case"LinSpace":{let r=T("start",e,t,n),s=T("stop",e,t,n),a=T("num",e,t,n);return[Oq(r,s,a)]}case"Multinomial":{let r=T("logits",e,t,n),s=T("numSamples",e,t,n),a=T("seed",e,t,n);return[yK(r,s,a)]}case"OneHot":{let r=T("indices",e,t,n),s=T("depth",e,t,n),a=T("onValue",e,t,n),o=T("offValue",e,t,n);return[kd(r,s,a,o)]}case"Ones":return[la(T("shape",e,t,n),T("dtype",e,t,n))];case"OnesLike":return[Dr(T("x",e,t,n))];case"RandomUniform":return[Rd(T("shape",e,t,n),T("minval",e,t,n),T("maxval",e,t,n),T("dtype",e,t,n))];case"Range":{let r=T("start",e,t,n),s=T("stop",e,t,n),a=T("step",e,t,n);return[Dd(r,s,a,T("dtype",e,t,n))]}case"TruncatedNormal":{let r=T("shape",e,t,n),s=T("mean",e,t,n),a=T("stdDev",e,t,n),o=T("seed",e,t,n);return[l1(r,s,a,T("dtype",e,t,n),o)]}case"Zeros":return[un(T("shape",e,t,n),T("dtype",e,t,n))];case"ZerosLike":return[rt(T("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function S5(e,t,n){let r=T("boxes",e,t,n),s=T("scores",e,t,n),a=T("maxOutputSize",e,t,n),o=T("iouThreshold",e,t,n),i=T("scoreThreshold",e,t,n),l=T("softNmsSigma",e,t,n);return{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var fse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=S5(e,t,n),u=await ni.nonMaxSuppressionWithScoreAsync(r,s,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=S5(e,t,n),l=T("padToMaxOutputSize",e,t,n),u=await ni.nonMaxSuppressionPaddedAsync(r,s,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=S5(e,t,n);return[await ni.nonMaxSuppressionAsync(r,s,a,o,i)]}case"Where":{let r=ke(T("condition",e,t,n),"bool"),s=[await EX(r)];return r.dispose(),s}case"ListDiff":return tX(T("x",e,t,n),T("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},mse=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=T("x",e,t,n),s=T("k",e,t,n),a=T("sorted",e,t,n),o=CI(r,s,a);return[o.values,o.indices]}case"Unique":{let r=T("x",e,t,n),s=u1(r);return[s.values,s.indices]}case"UniqueV2":{let r=T("x",e,t,n),s=T("axis",e,t,n),a=u1(r,s);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},gse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=T("default",e,t,n);return[Bn(e.name,t,n)||r];case"Placeholder":return[Bn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=T("x",e,t,n);return[ga(u)]}case"IdentityN":return T("x",e,t,n).map(u=>ga(u));case"Snapshot":let s=T("x",e,t,n);return[ga(s)];case"Shape":return[_n(T("x",e,t,n).shape,"int32")];case"ShapeN":return T("x",e,t,n).map(u=>_n(u.shape));case"Size":return[Fe(T("x",e,t,n).size,"int32")];case"Rank":return[Fe(T("x",e,t,n).rank,"int32")];case"NoOp":return[Fe(1)];case"Print":let a=T("x",e,t,n),o=T("data",e,t,n),i=T("message",e,t,n),l=T("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;ue.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Fe(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),Z(()=>{let r=ls(t),s=n.length,a=r.length;k.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let o=0;o{let r=[];for(let s=0;s{switch(e.op){case"HashTable":case"HashTableV2":{let s=T("keyDType",e,t,n),a=T("valueDType",e,t,n),o=new yse(s,a);return r.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let s=T("tableHandle",e,t,n,r),a=T("keys",e,t,n),o=T("values",e,t,n);return[await r.getHashTableById(s.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let s=T("tableHandle",e,t,n,r),a=T("keys",e,t,n),o=T("defaultValue",e,t,n);return[await r.getHashTableById(s.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let s=T("tableHandle",e,t,n,r);return[r.getHashTableById(s.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=T("images",e,t,n),s=T("size",e,t,n),a=T("alignCorners",e,t,n),o=T("halfPixelCenters",e,t,n);return[ni.resizeBilinear(r,[s[0],s[1]],a,o)]}case"ResizeNearestNeighbor":{let r=T("images",e,t,n),s=T("size",e,t,n),a=T("alignCorners",e,t,n),o=T("halfPixelCenters",e,t,n);return[ni.resizeNearestNeighbor(r,[s[0],s[1]],a,o)]}case"CropAndResize":{let r=T("image",e,t,n),s=T("boxes",e,t,n),a=T("boxInd",e,t,n),o=T("cropSize",e,t,n),i=T("method",e,t,n),l=T("extrapolationValue",e,t,n);return[ni.cropAndResize(r,s,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bse=(e,t,n)=>{switch(e.op){case"Equal":return[Zo(T("a",e,t,n),T("b",e,t,n))];case"NotEqual":return[Yl(T("a",e,t,n),T("b",e,t,n))];case"Greater":return[_r(T("a",e,t,n),T("b",e,t,n))];case"GreaterEqual":return[Jo(T("a",e,t,n),T("b",e,t,n))];case"Less":return[WA(T("a",e,t,n),T("b",e,t,n))];case"LessEqual":return[Qo(T("a",e,t,n),T("b",e,t,n))];case"LogicalAnd":return[is(T("a",e,t,n),T("b",e,t,n))];case"LogicalNot":return[Ef(T("a",e,t,n))];case"LogicalOr":return[jA(T("a",e,t,n),T("b",e,t,n))];case"Select":case"SelectV2":return[Ln(T("condition",e,t,n),T("a",e,t,n),T("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ot(T("a",e,t,n),T("b",e,t,n),T("transposeA",e,t,n),T("transposeB",e,t,n))];case"Einsum":return[mq(T("equation",e,t,n),...T("tensors",e,t,n))];case"Transpose":return[pt(T("x",e,t,n),T("perm",e,t,n))];case"_FusedMatMul":let[r,s]=T("fusedOps",e,t,n),a=r==="biasadd",o=s==="prelu",i=T("numArgs",e,t,n),l=T("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=T("args",e,t,n);return[ti.matMul({a:T("a",e,t,n),b:T("b",e,t,n),transposeA:T("transposeA",e,t,n),transposeB:T("transposeB",e,t,n),bias:u,activation:s,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Xl(T("x",e,t,n),T("mean",e,t,n),T("variance",e,t,n),T("offset",e,t,n),T("scale",e,t,n),T("epsilon",e,t,n))];case"FusedBatchNormV3":return[Xl(T("x",e,t,n),T("mean",e,t,n),T("variance",e,t,n),T("offset",e,t,n),T("scale",e,t,n),T("epsilon",e,t,n))];case"LRN":return[pI(T("x",e,t,n),T("radius",e,t,n),T("bias",e,t,n),T("alpha",e,t,n),T("beta",e,t,n))];case"Softmax":return[Of(T("x",e,t,n))];case"LogSoftmax":return[UA(T("x",e,t,n))];case"SparseToDense":return[RI(T("sparseIndices",e,t,n),T("outputShape",e,t,n),T("sparseValues",e,t,n),T("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"Max":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[os(T("x",e,t,n),o,i)]}case"Mean":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[Xt(T("x",e,t,n),o,i)]}case"Min":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[_f(T("x",e,t,n),o,i)]}case"Sum":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[_e(T("x",e,t,n),o,i)]}case"All":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[RA(T("x",e,t,n),o,i)]}case"Any":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[wf(T("x",e,t,n),o,i)]}case"ArgMax":{let o=T("axis",e,t,n);return[kf(T("x",e,t,n),o)]}case"ArgMin":{let o=T("axis",e,t,n);return[j6(T("x",e,t,n),o)]}case"Prod":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[KA(T("x",e,t,n),o,i)]}case"Cumsum":{let o=T("axis",e,t,n),i=T("exclusive",e,t,n),l=T("reverse",e,t,n);return[LA(T("x",e,t,n),o,i,l)]}case"Bincount":let r=T("x",e,t,n),s=T("weights",e,t,n),a=T("size",e,t,n);return[nI(r,s,a)];case"DenseBincount":{let o=T("x",e,t,n),i=T("weights",e,t,n),l=T("size",e,t,n),u=T("binaryOutput",e,t,n);return[nq(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=T("n",e,t,n),s=T("axis",e,t,n),a=T("tensors",e,t,n);return a=a.slice(0,r),[en(a,s)]}case"Gather":{let r=T("x",e,t,n),s=T("indices",e,t,n);return[$d(r,ke(s,"int32"),0)]}case"GatherV2":{let r=T("axis",e,t,n),s=T("batchDims",e,t,n),a=T("x",e,t,n),o=T("indices",e,t,n);return[$d(a,ke(o,"int32"),r,s)]}case"Reverse":{let r=T("dims",e,t,n),s=[];for(let o=0;o{let r=T("axis",e,t,n),s=T("tensors",e,t,n),a=s[0].shape,o=Jl(s[0]).shape,i=s.map(l=>{let u=k.arraysEqual(l.shape,a);if(!u&&!k.arraysEqual(Jl(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:J(l,a)});return[Mr(i,r)]});case"Unpack":{let r=T("axis",e,t,n),s=T("tensor",e,t,n);return ls(s,r)}case"Tile":{let r=T("reps",e,t,n);return[Yo(T("x",e,t,n),r)]}case"Split":case"SplitV":{let r=T("axis",e,t,n),s=T("numOrSizeSplits",e,t,n),a=T("x",e,t,n);return hr(a,s,r)}case"ScatterNd":{let r=T("indices",e,t,n),s=T("values",e,t,n),a=T("shape",e,t,n);return[DX(r,s,a)]}case"GatherNd":{let r=T("x",e,t,n),s=T("indices",e,t,n);return[PX(r,s)]}case"SparseToDense":{let r=T("sparseIndices",e,t,n),s=T("outputShape",e,t,n),a=T("sparseValues",e,t,n),o=T("defaultValue",e,t,n);return[RI(r,a,s,a.dtype===o.dtype?o:ke(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sse=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:a,reverseIndexMap:o}=Vf.sparseFillEmptyRows(T("indices",e,t,n),T("values",e,t,n),T("denseShape",e,t,n),T("defaultValue",e,t,n));return[r,s,a,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=Vf.sparseReshape(T("inputIndices",e,t,n),T("inputShape",e,t,n),T("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[Vf.sparseSegmentMean(T("data",e,t,n),T("indices",e,t,n),T("segmentIds",e,t,n))];case"SparseSegmentSum":return[Vf.sparseSegmentSum(T("data",e,t,n),T("indices",e,t,n),T("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"FFT":return[a1(T("x",e,t,n))];case"IFFT":return[Pf(T("x",e,t,n))];case"RFFT":return[o1(T("x",e,t,n))];case"IRFFT":return[SI(T("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=p1.stringNGrams(T("data",e,t,n),T("dataSplits",e,t,n),T("separator",e,t,n),T("nGramWidths",e,t,n),T("leftPad",e,t,n),T("rightPad",e,t,n),T("padWidth",e,t,n),T("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:a}=p1.stringSplit(T("input",e,t,n),T("delimiter",e,t,n),T("skipEmpty",e,t,n));return[r,s,a]}case"StringToHashBucketFast":return[p1.stringToHashBucketFast(T("input",e,t,n),T("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"Cast":return[ke(T("x",e,t,n),T("dtype",e,t,n))];case"ExpandDims":{let r=T("axis",e,t,n);return[$r(T("x",e,t,n),r)]}case"Squeeze":{let r=T("axis",e,t,n);return[Jl(T("x",e,t,n),r)]}case"Reshape":return[J(T("x",e,t,n),T("shape",e,t,n))];case"MirrorPad":return[xI(T("x",e,t,n),T("padding",e,t,n),T("mode",e,t,n))];case"PadV2":case"Pad":return[Wa(T("x",e,t,n),T("padding",e,t,n),T("constantValue",e,t,n))];case"SpaceToBatchND":{let r=T("blockShape",e,t,n),s=T("paddings",e,t,n);return[Rf(T("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=T("blockShape",e,t,n),s=T("crops",e,t,n);return[Tf(T("x",e,t,n),r,s)]}case"DepthToSpace":{let r=T("blockSize",e,t,n),s=T("dataFormat",e,t,n).toUpperCase();return[oI(T("x",e,t,n),r,s)]}case"BroadcastTo":return[Sd(T("x",e,t,n),T("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function gT(e,t,n,r){let s=((a,o,i)=>{switch(a.category){case"arithmetic":return Z(()=>sse(a,o,i));case"basic_math":return Z(()=>ase(a,o,i));case"control":return dse(a,o,i);case"convolution":return Z(()=>hse(a,o,i));case"creation":return Z(()=>pse(a,o,i));case"dynamic":return fse(a,o,i);case"evaluation":return Z(()=>mse(a,o,i));case"image":return Z(()=>xse(a,o,i));case"graph":return Z(()=>gse(a,o,i));case"logical":return Z(()=>bse(a,o,i));case"matrices":return Z(()=>vse(a,o,i));case"normalization":return Z(()=>wse(a,o,i));case"reduction":return Z(()=>kse(a,o,i));case"slice_join":return Z(()=>Ise(a,o,i));case"sparse":return Z(()=>Sse(a,o,i));case"spectral":return Z(()=>Tse(a,o,i));case"string":return Z(()=>Nse(a,o,i));case"transformation":return Z(()=>Cse(a,o,i));case"hash_table":return Ase(a,o,i,r);case"custom":let l=H8(a.op);if(l&&l.customExecutor)return l.customExecutor(new rse(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(s)?s.then(a=>[].concat(a)):[].concat(s)}var yT=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function AT(e,t,n,r){let s=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(h=>pr(h)[0]),c=[];r!=null&&(c=r.map(h=>pr(h.name)[0]));let d=[...t];for(;d.length>0;){let h=d.pop();if((xT(h)||Dse(h)||Fse(h))&&o==null&&(o=h,i=o.children.map(p=>p.name).filter(p=>s.has(p))),s.add(h.name),n[h.name]==null&&u.indexOf(h.name)===-1&&c.indexOf(h.name)===-1){if(h.inputs.length===0){a.push(h.name);continue}h.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),d.push(p))})}}return{inputs:e,outputs:t,usedNodes:s,missingInputs:a,dynamicNode:o,syncInputs:i}}function Ese(e,t,n){let{usedNodes:r,inputs:s}=n,a=[],o=Object.keys(s).map(c=>pr(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{r.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{r.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&r.has(d.name)&&d.inputs.every(h=>l.has(h.name))&&a.push(d)})}return u}var $se=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],_se=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Rse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function xT(e){return $se.indexOf(e.op)>=0}function Dse(e){return _se.indexOf(e.op)>=0}function Fse(e){return Rse.indexOf(e.op)>=0}var T5=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new T5(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),r=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=AT(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(r.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${r}]`)}return Ese(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[pr(c)[0]]),s=t.map(c=>pr(c)[0]),a=s.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(r,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return Z(()=>{let c=new yT(this.weightMap,l,u,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=pr(f),y=[];y[g]=e[f],d[m]=y});let h=this.getFrozenTensorIds(d),p={};for(let f=0;fBn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,s,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Ore(i.name,n,r);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!s.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new yT(this.weightMap,r,s,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Bn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!c.has(p.id)&&p.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let r=e.reduce((s,a,o)=>(s[this.inputs[o].name]=a,s),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let s=Object.keys(e),a=s.map(A=>this.graph.nodes[pr(A)[0]]),o=n.map(A=>pr(A)[0]),i=o.map(A=>this.graph.nodes[A]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=AT(e,i,this.weightMap,this._initNodes),h=[...a,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),p={...this.weightMap};Object.keys(e).forEach(A=>{let[x,b]=pr(A),v=[];v[b]=e[A],p[x]=v});let f={},m=this.getFrozenTensorIds(p),g={};for(;h.length>0;){let A=this.processStack(a,h,t,p,g,m,o,f,l);await Promise.all(A)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(A=>!xT(A)&&!Bn(A.name,p,t)).map(A=>A.name);if(y.length>0){let A="";throw c!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${s}]. Consider providing the following inputs: [${u}]. ${A}`)}return p}processStack(e,t,n,r,s,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&T("isConstant",c.node,r,n)&&([d]=ma(c.node.name,n)),r[c.node.name]==null){let h=gT(c.node,r,n,this._resourceManager);d||([d]=ma(c.node.name,n));let p=n.currentContext;k.isPromise(h)?u.push(h.then(f=>(r[d]=f,n.currentContext=p,this.checkTensorForDisposal(d,c.node,r,n,a,o,i),this.processChildNodes(c.node,t,n,r,s,l),f))):(r[d]=h,this.checkTensorForDisposal(d,c.node,r,n,a,o,i),this.processChildNodes(c.node,t,n,r,s,l))}else this.processChildNodes(c.node,t,n,r,s,l)}return u}processChildNodes(e,t,n,r,s,a){e.children.forEach(o=>{let[i]=ma(o.name,n);s[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Bn(l,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Bn(l,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=pr(t),s=this.graph.nodes[r];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);k.assert(o,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&k.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=pr(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=pr(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Mse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Ose="?tfjs-format=file",Pse="model.json",bT=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Mse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=cr.browserHTTPRequest(e,this.loadOptions);else{let t=cr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(cr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=cr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new T5(cT.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=cT.Instance.transformGraph(e.modelInitializer);this.initializer=new T5(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=cr.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ct)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Et(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Pse}${Ose}`);let n=new bT(e,t);return await n.load(),n}var zse="3.7.0",vT={};De(vT,{CSVDataset:()=>MT,Dataset:()=>uu,FileDataSource:()=>VT,TextLineDataset:()=>RT,URLDataSource:()=>UT,array:()=>iae,csv:()=>Aae,func:()=>xae,generator:()=>bae,microphone:()=>wae,version_data:()=>kae,webcam:()=>vae,zip:()=>lae});var Lse=Ks(B3()),Bse=Ks(B3());function Wse(e,t){return Sm(e,t)}function Sm(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(s.recurse)if(lu(e)){let a=Array.isArray(e)?[]:{};r.add(e);for(let o in e){let i=e[o],l=Sm(i,t,n,r);a[o]=l}return r.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,s.value),s.value}function Vse(e,t=kT){return wT(e,t)}function wT(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(s.recurse)if(lu(r)){let a=Array.isArray(r)?[]:{};n.add(r);for(let o in r){let i=e.map(u=>u[o]),l=wT(i,t,n);a[o]=l}return n.delete(r),a}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return s.value}function kT(e){return e===null?null:lu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function IT(e,t){let n=new Map;Sm(e,t,n);for(let s of Array.from(n.keys())){let a=n.get(s);if(k.isPromise(a)){let o=await a;n.set(s,o)}}return Sm(e,t,n)}function lu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ct))}function Use(e){return e==null||Hse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ct||k.isTypedArray(e)}function Hse(e){return e===null||typeof e!="object"&&typeof e!="function"}function Gse(e){return Wse(e,jse)}function jse(e){return e instanceof Ct?{value:e.clone(),recurse:!1}:lu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var ST=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},TT=class extends ST{constructor(){super(TT.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new eae(this,e,t)}columnMajorBatch(e,t=!0,n=kT){return this.rowMajorBatch(e,t).map(s=>Vse(s,n))}concatenate(e,t){return new $T(CT([this,e]),t)}take(e){return e<0||e==null?this:new Qse(this,e)}skip(e){return e<0||e==null?this:new Jse(this,e)}prefetch(e){return new _T(this,e)}shuffle(e,t){return new oae(this,e,t)}serial(){return new Yse(this)}},Xse=class extends xn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Gse(e),done:!1}}},Zse=class extends xn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Yse=class extends xn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Jse=class extends xn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},eae=class extends xn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},tae=class extends xn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;je(e.value)}}},nae=class extends xn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Es.getTensorsInContainer(e.value),n=this.transform(e.value),r=Es.getTensorsInContainer(n);for(let s of t)Es.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},rae=class extends xn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},ET=class extends xn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Es.getTensorsInContainer(e.value),n=await this.transform(e.value),r=Es.getTensorsInContainer(n);for(let s of t)Es.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},C5=class extends xn{constructor(){super();this.outputQueue=new NT,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},sae=class extends C5{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Es.getTensorsInContainer(e.value),n=this.transform(e.value),r=Es.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Es.isTensorInList(s,r)||s.dispose();return!0}},$T=class extends xn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Tm;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Tm||(Tm={}));var aae=class extends xn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(a){return a instanceof xn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let s=await IT(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},_T=class extends xn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new ST(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},oae=class extends _T{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Bse.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},uu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is - ${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),fr(async()=>(await n.iterator()).columnMajorBatch(e,t,uae),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,fr(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,fr(async()=>(await t.iterator()).filter(r=>Z(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return fr(async()=>(await t.iterator()).map(n=>Z(()=>e(n))),this.size)}mapAsync(e){let t=this;return fr(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return fr(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,fr(async()=>{let r=N5(async()=>({value:await t.iterator(),done:!1}));return qse(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,s=Lse.alea(t||k.now().toString());return fr(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await r.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,fr(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};uu.MAX_BUFFER_SIZE=1e4;function fr(e,t=null){return new class extends uu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function iae(e){return fr(async()=>CT(e),e.length)}function lae(e){if(!lu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await IT(e,r=>{if(r instanceof uu)return{value:r.iterator(),recurse:!1};if(lu(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Kse(n,Tm.SHORTEST)},t)}function uae(e){if(e===null)return null;let t=e[0];return Use(t)?{value:cae(e),recurse:!1}:{value:null,recurse:!0}}function cae(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ct?Mr(e):$s(e)}var RT=class extends uu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` -`).map(r=>(r.endsWith("\r")&&(r=r.slice(0,-1)),r))}},Nm='"',eh=Symbol("out"),DT=Symbol("field"),Cm=Symbol("quote"),E5=Symbol("quoteafterquote"),FT=Symbol("quoteinquote"),MT=class extends uu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new RT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,s)=>(r[s]=r[s]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let s=0;s14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ae().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new OT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,s)=>n.set(r,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),$s(n,t)}},PT=class extends xn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=_n([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-r)/2,o=s+n,i=r+a;this.cropBox=Ql([a,s,i,o],[1,4])}else this.cropBox=Ql([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ae().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new PT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=S6.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Z(()=>{let t=$r(ke(e,"float32"),0),n;n=ni.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return J(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},zT=class{},LT=class extends xn{split(e){return new dae(this,e)}},dae=class extends LT{constructor(e,t){super();this.upstream=e,this.impl=new hae(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},hae=class extends C5{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},pae=class extends xn{decodeUTF8(){return new fae(this)}},fae=class extends LT{constructor(e){super();this.upstream=e,this.impl=new mae(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},mae=class extends C5{constructor(e){super();if(this.upstream=e,ae().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=kR();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ae().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},BT=class extends pae{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(ae().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,r)));else{let s=new FileReader;s.onload=o=>{let i=s.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},s.onabort=o=>n(new Error("Aborted")),s.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,r);s.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function gae(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=yae(e));let s=await k.fetch(n,r);if(s.ok){let a=new Uint8Array(await s.arrayBuffer());return new BT(a,t)}else throw new Error(s.statusText)}var yae=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function WT(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var VT=class extends zT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(WT(this.input)&&ae().get("IS_NODE")){let e=co("fs");this.input=e.readFileSync(this.input.substr(7))}return new BT(this.input,this.options)}},UT=class extends zT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return WT(this.url)?new VT(this.url,this.fileOptions).iterator():gae(this.url,this.fileOptions)}};function Aae(e,t={}){return new MT(new UT(e),t)}function xae(e){let t=N5(e);return fr(async()=>t)}function bae(e){return fr(async()=>{let t=await e();return N5(()=>t.next())})}async function vae(e,t){return PT.create(e,t)}async function wae(e){return OT.create(e)}var kae="3.7.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Iae=ca.whereImpl,HT=class extends Bp{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new fy(this,za())}nextDataId(){return HT.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,ae().get("IS_NODE")&&R.warn(` + ${r}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=h5(a,n),i=r===0?0:e.size/r,l=Y(()=>{let c=[];e=Z(e,[1,r,i]);for(let d=0;d{switch(e.op){case"If":case"StatelessIf":{let r=T("thenBranch",e,t,n),s=T("elseBranch",e,t,n),a=T("cond",e,t,n),o=T("args",e,t,n);return(await a.data())[0]?n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=T("body",e,t,n),s=T("cond",e,t,n),a=T("args",e,t,n),o=await n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(p=>p.id);c.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()});let h=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await h[0].data(),h.forEach(p=>{!p.kept&&i.indexOf(p.id)===-1&&d.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=T("pred",e,t,n);return[ya(r)]}case"Switch":{let r=T("pred",e,t,n),s=T("data",e,t,n);return s.kept||(s=ya(s)),(await r.data())[0]?[void 0,s]:[s,void 0]}case"Merge":{let r=e.inputNames.find(s=>Bn(s,t,n)!==void 0);if(r){let s=Bn(r,t,n);return[ya(s)]}return}case"Enter":{let r=T("frameName",e,t,n),s=T("tensor",e,t,n);return n.enterFrame(r),[ya(s)]}case"Exit":{let r=T("tensor",e,t,n);return n.exitFrame(),[ya(r)]}case"NextIteration":{let r=T("tensor",e,t,n);return n.nextIteration(),[ya(r)]}case"TensorArrayV3":{let r=T("size",e,t,n),s=T("dtype",e,t,n),a=T("elementShape",e,t,n),o=T("dynamicSize",e,t,n),i=T("clearAfterRead",e,t,n),l=T("identicalElementShapes",e,t,n),u=T("name",e,t,n),c=new bse(u,s,r,a,l,o,i);return n.addTensorArray(c),[c.idTensor,De(1)]}case"TensorArrayWriteV3":{let r=T("tensorArrayId",e,t,n),s=T("index",e,t,n),a=T("tensor",e,t,n),o=n.getTensorArray(r.id);return o.write(s,a),[o.idTensor]}case"TensorArrayReadV3":{let r=T("tensorArrayId",e,t,n),s=T("index",e,t,n);return[n.getTensorArray(r.id).read(s)]}case"TensorArrayGatherV3":{let r=T("tensorArrayId",e,t,n),s=T("indices",e,t,n),a=T("dtype",e,t,n);return[n.getTensorArray(r.id).gather(s,a)]}case"TensorArrayScatterV3":{let r=T("tensorArrayId",e,t,n),s=T("indices",e,t,n),a=T("tensor",e,t,n),o=n.getTensorArray(r.id);return o.scatter(s,a),[o.idTensor]}case"TensorArrayConcatV3":{let r=T("tensorArrayId",e,t,n),s=n.getTensorArray(r.id),a=T("dtype",e,t,n);return[s.concat(a)]}case"TensorArraySplitV3":{let r=T("tensorArrayId",e,t,n),s=T("tensor",e,t,n),a=T("lengths",e,t,n),o=n.getTensorArray(r.id);return o.split(a,s),[o.idTensor]}case"TensorArraySizeV3":{let r=T("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return[De(s.size(),"int32")]}case"TensorArrayCloseV3":{let r=T("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return s.clearAndClose(),[s.idTensor]}case"TensorListSetItem":{let r=T("tensorListId",e,t,n),s=T("index",e,t,n),a=T("tensor",e,t,n),o=n.getTensorList(r.id);return o.setItem(s,a),[o.idTensor]}case"TensorListGetItem":{let r=T("tensorListId",e,t,n),s=T("index",e,t,n),a=T("elementShape",e,t,n),o=T("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(s,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let r=T("indices",e,t,n),s=T("tensor",e,t,n),a=T("elementShape",e,t,n),o=T("numElements",e,t,n),i=kse(s,r,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=T("elementShape",e,t,n),s=T("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=T(a,e,t,n),i=wse(r,s,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let r=T("tensorListId",e,t,n),s=T("indices",e,t,n),a=T("elementShape",e,t,n),o=T("elementDType",e,t,n);return[n.getTensorList(r.id).gather(s,o,a)]}case"TensorListStack":{let r=T("tensorListId",e,t,n),s=T("elementShape",e,t,n),a=T("elementDType",e,t,n),o=T("numElements",e,t,n);return[n.getTensorList(r.id).stack(s,a,o)]}case"TensorListFromTensor":{let r=T("tensor",e,t,n),s=T("elementShape",e,t,n),a=T("elementDType",e,t,n),o=vse(r,s,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let r=T("tensorListId",e,t,n),s=n.getTensorList(r.id),a=T("dtype",e,t,n),o=T("elementShape",e,t,n);return[s.concat(a,o)]}case"TensorListPushBack":{let r=T("tensorListId",e,t,n),s=T("tensor",e,t,n),a=n.getTensorList(r.id);return a.pushBack(s),[a.idTensor]}case"TensorListPopBack":{let r=T("tensorListId",e,t,n),s=T("elementShape",e,t,n),a=T("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(s,a)]}case"TensorListSplit":{let r=T("tensor",e,t,n),s=T("elementShape",e,t,n),a=T("lengths",e,t,n),o=Ise(r,a,s);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Q8(e,t,n){let[r,s]=T("fusedOps",e,t,n),a=r==="biasadd",o=!a,i=s==="prelu",l=r==="fusedbatchnorm",u=T("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=T("strides",e,t,n),d=Am(e,t,n),h=T("dataFormat",e,t,n).toUpperCase(),p=T("dilations",e,t,n),[f,m]=T("args",e,t,n);o&&(m=f,f=void 0);let g=T("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:h,dilations:p,biasArg:f,preluArg:m,activationFunc:s,leakyreluAlpha:g}}var Tse=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=T("stride",e,t,n),s=T("pad",e,t,n),a=T("dataFormat",e,t,n).toUpperCase(),o=T("dilation",e,t,n);return[U6(T("x",e,t,n),T("filter",e,t,n),r,s,a,o)]}case"Conv2D":{let r=T("strides",e,t,n),s=Am(e,t,n),a=T("dataFormat",e,t,n).toUpperCase(),o=T("dilations",e,t,n);return[Xo(T("x",e,t,n),T("filter",e,t,n),[r[1],r[2]],s,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Q8(e,t,n);return[ei.conv2d({x:T("x",e,t,n),filter:T("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=Q8(e,t,n);return[ei.depthwiseConv2d({x:T("x",e,t,n),filter:T("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=T("outputShape",e,t,n),s=T("strides",e,t,n),a=Am(e,t,n);return[H6(T("x",e,t,n),T("filter",e,t,n),r,[s[1],s[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=T("strides",e,t,n),s=Am(e,t,n),a=T("dilations",e,t,n),o=T("dataFormat",e,t,n).toUpperCase();return[kf(T("input",e,t,n),T("filter",e,t,n),[r[1],r[2]],s,o,[a[1],a[2]])]}case"Conv3D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("dataFormat",e,t,n).toUpperCase(),o=T("dilations",e,t,n);return[G6(T("x",e,t,n),T("filter",e,t,n),[r[1],r[2],r[3]],s,a,[o[1],o[2],o[3]])]}case"AvgPool":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[Ry(T("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[Wy(T("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n),o=T("includeBatchInIndex",e,t,n),{result:i,indexes:l}=uK(T("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s,o);return[i,l]}case"AvgPool3D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[W6(T("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("kernelSize",e,t,n);return[nI(T("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=T("strides",e,t,n),s=T("pad",e,t,n),a=T("dilations",e,t,n),o=r[1],i=r[2],l=a[1],u=a[2];return[lq(T("x",e,t,n),T("filter",e,t,n),[o,i],s,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"Fill":{let r=T("shape",e,t,n),s=T("dtype",e,t,n),a=T("value",e,t,n);return[Nd(r,a,s)]}case"LinSpace":{let r=T("start",e,t,n),s=T("stop",e,t,n),a=T("num",e,t,n);return[Lq(r,s,a)]}case"Multinomial":{let r=T("logits",e,t,n),s=T("numSamples",e,t,n),a=T("seed",e,t,n);return[wK(r,s,a)]}case"OneHot":{let r=T("indices",e,t,n),s=T("depth",e,t,n),a=T("onValue",e,t,n),o=T("offValue",e,t,n);return[xf(r,s,a,o)]}case"Ones":return[ua(T("shape",e,t,n),T("dtype",e,t,n))];case"OnesLike":return[qr(T("x",e,t,n))];case"RandomUniform":return[$d(T("shape",e,t,n),T("minval",e,t,n),T("maxval",e,t,n),T("dtype",e,t,n))];case"Range":{let r=T("start",e,t,n),s=T("stop",e,t,n),a=T("step",e,t,n);return[Rd(r,s,a,T("dtype",e,t,n))]}case"TruncatedNormal":{let r=T("shape",e,t,n),s=T("mean",e,t,n),a=T("stdDev",e,t,n),o=T("seed",e,t,n);return[Jy(r,s,a,T("dtype",e,t,n),o)]}case"Zeros":return[ln(T("shape",e,t,n),T("dtype",e,t,n))];case"ZerosLike":return[ot(T("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function p5(e,t,n){let r=T("boxes",e,t,n),s=T("scores",e,t,n),a=T("maxOutputSize",e,t,n),o=T("iouThreshold",e,t,n),i=T("scoreThreshold",e,t,n),l=T("softNmsSigma",e,t,n);return{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var Cse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=p5(e,t,n),u=await is.nonMaxSuppressionWithScoreAsync(r,s,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=p5(e,t,n),l=T("padToMaxOutputSize",e,t,n),u=await is.nonMaxSuppressionPaddedAsync(r,s,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=p5(e,t,n);return[await is.nonMaxSuppressionAsync(r,s,a,o,i)]}case"Where":{let r=xe(T("condition",e,t,n),"bool"),s=[await WX(r)];return r.dispose(),s}case"ListDiff":return iX(T("x",e,t,n),T("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=T("x",e,t,n),s=T("k",e,t,n),a=T("sorted",e,t,n),o=DX(r,s,a);return[o.values,o.indices]}case"Unique":{let r=T("x",e,t,n),s=fI(r);return[s.values,s.indices]}case"UniqueV2":{let r=T("x",e,t,n),s=T("axis",e,t,n),a=fI(r,s);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$se=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=T("default",e,t,n);return[Bn(e.name,t,n)||r];case"Placeholder":return[Bn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=T("x",e,t,n);return[ya(u)]}case"IdentityN":return T("x",e,t,n).map(u=>ya(u));case"Snapshot":let s=T("x",e,t,n);return[ya(s)];case"Shape":return[En(T("x",e,t,n).shape,"int32")];case"ShapeN":return T("x",e,t,n).map(u=>En(u.shape));case"Size":return[De(T("x",e,t,n).size,"int32")];case"Rank":return[De(T("x",e,t,n).rank,"int32")];case"NoOp":return[De(1)];case"Print":let a=T("x",e,t,n),o=T("data",e,t,n),i=T("message",e,t,n),l=T("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;ue.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return De(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),Y(()=>{let r=Ds(t),s=n.length,a=r.length;k.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let o=0;o{let r=[];for(let s=0;s{switch(e.op){case"HashTable":case"HashTableV2":{let s=T("keyDType",e,t,n),a=T("valueDType",e,t,n),o=new Rse(s,a);return r.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let s=T("tableHandle",e,t,n,r),a=T("keys",e,t,n),o=T("values",e,t,n);return[await r.getHashTableById(s.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let s=T("tableHandle",e,t,n,r),a=T("keys",e,t,n),o=T("defaultValue",e,t,n);return[await r.getHashTableById(s.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let s=T("tableHandle",e,t,n,r);return[r.getHashTableById(s.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=T("images",e,t,n),s=T("size",e,t,n),a=T("alignCorners",e,t,n),o=T("halfPixelCenters",e,t,n);return[is.resizeBilinear(r,[s[0],s[1]],a,o)]}case"ResizeNearestNeighbor":{let r=T("images",e,t,n),s=T("size",e,t,n),a=T("alignCorners",e,t,n),o=T("halfPixelCenters",e,t,n);return[is.resizeNearestNeighbor(r,[s[0],s[1]],a,o)]}case"CropAndResize":{let r=T("image",e,t,n),s=T("boxes",e,t,n),a=T("boxInd",e,t,n),o=T("cropSize",e,t,n),i=T("method",e,t,n),l=T("extrapolationValue",e,t,n);return[is.cropAndResize(r,s,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fse=(e,t,n)=>{switch(e.op){case"Equal":return[Hr(T("a",e,t,n),T("b",e,t,n))];case"NotEqual":return[Ed(T("a",e,t,n),T("b",e,t,n))];case"Greater":return[$r(T("a",e,t,n),T("b",e,t,n))];case"GreaterEqual":return[Kl(T("a",e,t,n),T("b",e,t,n))];case"Less":return[Z6(T("a",e,t,n),T("b",e,t,n))];case"LessEqual":return[Xl(T("a",e,t,n),T("b",e,t,n))];case"LogicalAnd":return[_s(T("a",e,t,n),T("b",e,t,n))];case"LogicalNot":return[By(T("a",e,t,n))];case"LogicalOr":return[tI(T("a",e,t,n),T("b",e,t,n))];case"Select":case"SelectV2":return[Zn(T("condition",e,t,n),T("a",e,t,n),T("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[rt(T("a",e,t,n),T("b",e,t,n),T("transposeA",e,t,n),T("transposeB",e,t,n))];case"Einsum":return[yq(T("equation",e,t,n),...T("tensors",e,t,n))];case"Transpose":return[st(T("x",e,t,n),T("perm",e,t,n))];case"_FusedMatMul":let[r,s]=T("fusedOps",e,t,n),a=r==="biasadd",o=s==="prelu",i=T("numArgs",e,t,n),l=T("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=T("args",e,t,n);return[ei.matMul({a:T("a",e,t,n),b:T("b",e,t,n),transposeA:T("transposeA",e,t,n),transposeB:T("transposeB",e,t,n),bias:u,activation:s,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ose=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Td(T("x",e,t,n),T("mean",e,t,n),T("variance",e,t,n),T("offset",e,t,n),T("scale",e,t,n),T("epsilon",e,t,n))];case"FusedBatchNormV3":return[Td(T("x",e,t,n),T("mean",e,t,n),T("variance",e,t,n),T("offset",e,t,n),T("scale",e,t,n),T("epsilon",e,t,n))];case"LRN":return[Wq(T("x",e,t,n),T("radius",e,t,n),T("bias",e,t,n),T("alpha",e,t,n),T("beta",e,t,n))];case"Softmax":return[Zy(T("x",e,t,n))];case"LogSoftmax":return[Y6(T("x",e,t,n))];case"SparseToDense":return[AI(T("sparseIndices",e,t,n),T("outputShape",e,t,n),T("sparseValues",e,t,n),T("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pse=(e,t,n)=>{switch(e.op){case"Max":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[Rs(T("x",e,t,n),o,i)]}case"Mean":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[Xt(T("x",e,t,n),o,i)]}case"Min":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[Vy(T("x",e,t,n),o,i)]}case"Sum":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[Te(T("x",e,t,n),o,i)]}case"All":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[P6(T("x",e,t,n),o,i)]}case"Any":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[Cy(T("x",e,t,n),o,i)]}case"ArgMax":{let o=T("axis",e,t,n);return[kd(T("x",e,t,n),o)]}case"ArgMin":{let o=T("axis",e,t,n);return[YG(T("x",e,t,n),o)]}case"Prod":{let o=T("axis",e,t,n),i=T("keepDims",e,t,n);return[rI(T("x",e,t,n),o,i)]}case"Cumsum":{let o=T("axis",e,t,n),i=T("exclusive",e,t,n),l=T("reverse",e,t,n);return[K6(T("x",e,t,n),o,i,l)]}case"Bincount":let r=T("x",e,t,n),s=T("weights",e,t,n),a=T("size",e,t,n);return[V6(r,s,a)];case"DenseBincount":{let o=T("x",e,t,n),i=T("weights",e,t,n),l=T("size",e,t,n),u=T("binaryOutput",e,t,n);return[nq(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zse=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=T("n",e,t,n),s=T("axis",e,t,n),a=T("tensors",e,t,n);return a=a.slice(0,r),[an(a,s)]}case"Gather":{let r=T("x",e,t,n),s=T("indices",e,t,n);return[Tf(r,xe(s,"int32"),0)]}case"GatherV2":{let r=T("axis",e,t,n),s=T("batchDims",e,t,n),a=T("x",e,t,n),o=T("indices",e,t,n);return[Tf(a,xe(o,"int32"),r,s)]}case"Reverse":{let r=T("dims",e,t,n),s=[];for(let o=0;o{let r=T("axis",e,t,n),s=T("tensors",e,t,n),a=s[0].shape,o=Qo(s[0]).shape,i=s.map(l=>{let u=k.arraysEqual(l.shape,a);if(!u&&!k.arraysEqual(Qo(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:Z(l,a)});return[Xr(i,r)]});case"Unpack":{let r=T("axis",e,t,n),s=T("tensor",e,t,n);return Ds(s,r)}case"Tile":{let r=T("reps",e,t,n);return[$s(T("x",e,t,n),r)]}case"Split":case"SplitV":{let r=T("axis",e,t,n),s=T("numOrSizeSplits",e,t,n),a=T("x",e,t,n);return Rr(a,s,r)}case"ScatterNd":{let r=T("indices",e,t,n),s=T("values",e,t,n),a=T("shape",e,t,n);return[GX(r,s,a)]}case"GatherNd":{let r=T("x",e,t,n),s=T("indices",e,t,n);return[XX(r,s)]}case"SparseToDense":{let r=T("sparseIndices",e,t,n),s=T("outputShape",e,t,n),a=T("sparseValues",e,t,n),o=T("defaultValue",e,t,n);return[AI(r,a,s,a.dtype===o.dtype?o:xe(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lse=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:a,reverseIndexMap:o}=Mf.sparseFillEmptyRows(T("indices",e,t,n),T("values",e,t,n),T("denseShape",e,t,n),T("defaultValue",e,t,n));return[r,s,a,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=Mf.sparseReshape(T("inputIndices",e,t,n),T("inputShape",e,t,n),T("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[Mf.sparseSegmentMean(T("data",e,t,n),T("indices",e,t,n),T("segmentIds",e,t,n))];case"SparseSegmentSum":return[Mf.sparseSegmentSum(T("data",e,t,n),T("indices",e,t,n),T("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bse=(e,t,n)=>{switch(e.op){case"FFT":return[dI(T("x",e,t,n))];case"IFFT":return[Yy(T("x",e,t,n))];case"RFFT":return[hI(T("x",e,t,n))];case"IRFFT":return[bX(T("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wse=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=tA.stringNGrams(T("data",e,t,n),T("dataSplits",e,t,n),T("separator",e,t,n),T("nGramWidths",e,t,n),T("leftPad",e,t,n),T("rightPad",e,t,n),T("padWidth",e,t,n),T("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:a}=tA.stringSplit(T("input",e,t,n),T("delimiter",e,t,n),T("skipEmpty",e,t,n));return[r,s,a]}case"StringToHashBucketFast":return[tA.stringToHashBucketFast(T("input",e,t,n),T("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vse=(e,t,n)=>{switch(e.op){case"Cast":return[xe(T("x",e,t,n),T("dtype",e,t,n))];case"ExpandDims":{let r=T("axis",e,t,n);return[Er(T("x",e,t,n),r)]}case"Squeeze":{let r=T("axis",e,t,n);return[Qo(T("x",e,t,n),r)]}case"Reshape":return[Z(T("x",e,t,n),T("shape",e,t,n))];case"MirrorPad":return[mK(T("x",e,t,n),T("padding",e,t,n),T("mode",e,t,n))];case"PadV2":case"Pad":return[Yo(T("x",e,t,n),T("padding",e,t,n),T("constantValue",e,t,n))];case"SpaceToBatchND":{let r=T("blockShape",e,t,n),s=T("paddings",e,t,n);return[Hy(T("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=T("blockShape",e,t,n),s=T("crops",e,t,n);return[_y(T("x",e,t,n),r,s)]}case"DepthToSpace":{let r=T("blockSize",e,t,n),s=T("dataFormat",e,t,n).toUpperCase();return[sq(T("x",e,t,n),r,s)]}case"BroadcastTo":return[wf(T("x",e,t,n),T("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function eT(e,t,n,r){let s=((a,o,i)=>{switch(a.category){case"arithmetic":return Y(()=>Ase(a,o,i));case"basic_math":return Y(()=>xse(a,o,i));case"control":return Sse(a,o,i);case"convolution":return Y(()=>Tse(a,o,i));case"creation":return Y(()=>Nse(a,o,i));case"dynamic":return Cse(a,o,i);case"evaluation":return Y(()=>Ese(a,o,i));case"image":return Y(()=>Dse(a,o,i));case"graph":return Y(()=>$se(a,o,i));case"logical":return Y(()=>Fse(a,o,i));case"matrices":return Y(()=>Mse(a,o,i));case"normalization":return Y(()=>Ose(a,o,i));case"reduction":return Y(()=>Pse(a,o,i));case"slice_join":return Y(()=>zse(a,o,i));case"sparse":return Y(()=>Lse(a,o,i));case"spectral":return Y(()=>Bse(a,o,i));case"string":return Y(()=>Wse(a,o,i));case"transformation":return Y(()=>Vse(a,o,i));case"hash_table":return _se(a,o,i,r);case"custom":let l=C8(a.op);if(l&&l.customExecutor)return l.customExecutor(new yse(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(s)?s.then(a=>[].concat(a)):[].concat(s)}var tT=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function nT(e,t,n,r){let s=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(h=>dr(h)[0]),c=[];r!=null&&(c=r.map(h=>dr(h.name)[0]));let d=[...t];for(;d.length>0;){let h=d.pop();if((rT(h)||qse(h)||Kse(h))&&o==null&&(o=h,i=o.children.map(p=>p.name).filter(p=>s.has(p))),s.add(h.name),n[h.name]==null&&u.indexOf(h.name)===-1&&c.indexOf(h.name)===-1){if(h.inputs.length===0){a.push(h.name);continue}h.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),d.push(p))})}}return{inputs:e,outputs:t,usedNodes:s,missingInputs:a,dynamicNode:o,syncInputs:i}}function Use(e,t,n){let{usedNodes:r,inputs:s}=n,a=[],o=Object.keys(s).map(c=>dr(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{r.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{r.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&r.has(d.name)&&d.inputs.every(h=>l.has(h.name))&&a.push(d)})}return u}var Hse=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Gse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],jse=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function rT(e){return Hse.indexOf(e.op)>=0}function qse(e){return Gse.indexOf(e.op)>=0}function Kse(e){return jse.indexOf(e.op)>=0}var f5=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new f5(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),r=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=nT(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(r.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${r}]`)}return Use(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[dr(c)[0]]),s=t.map(c=>dr(c)[0]),a=s.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(r,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return Y(()=>{let c=new tT(this.weightMap,l,u,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=dr(f),y=[];y[g]=e[f],d[m]=y});let h=this.getFrozenTensorIds(d),p={};for(let f=0;fBn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,s,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=Zre(i.name,n,r);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!s.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new tT(this.weightMap,r,s,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Bn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(p=>{p&&!p.kept&&!p.isDisposed&&!c.has(p.id)&&p.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let r=e.reduce((s,a,o)=>(s[this.inputs[o].name]=a,s),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let s=Object.keys(e),a=s.map(A=>this.graph.nodes[dr(A)[0]]),o=n.map(A=>dr(A)[0]),i=o.map(A=>this.graph.nodes[A]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=nT(e,i,this.weightMap,this._initNodes),h=[...a,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),p={...this.weightMap};Object.keys(e).forEach(A=>{let[x,b]=dr(A),v=[];v[b]=e[A],p[x]=v});let f={},m=this.getFrozenTensorIds(p),g={};for(;h.length>0;){let A=this.processStack(a,h,t,p,g,m,o,f,l);await Promise.all(A)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(A=>!rT(A)&&!Bn(A.name,p,t)).map(A=>A.name);if(y.length>0){let A="";throw c!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${s}]. Consider providing the following inputs: [${u}]. ${A}`)}return p}processStack(e,t,n,r,s,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&T("isConstant",c.node,r,n)&&([d]=ga(c.node.name,n)),r[c.node.name]==null){let h=eT(c.node,r,n,this._resourceManager);d||([d]=ga(c.node.name,n));let p=n.currentContext;k.isPromise(h)?u.push(h.then(f=>(r[d]=f,n.currentContext=p,this.checkTensorForDisposal(d,c.node,r,n,a,o,i),this.processChildNodes(c.node,t,n,r,s,l),f))):(r[d]=h,this.checkTensorForDisposal(d,c.node,r,n,a,o,i),this.processChildNodes(c.node,t,n,r,s,l))}else this.processChildNodes(c.node,t,n,r,s,l)}return u}processChildNodes(e,t,n,r,s,a){e.children.forEach(o=>{let[i]=ga(o.name,n);s[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Bn(l,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Bn(l,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=dr(t),s=this.graph.nodes[r];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);k.assert(o,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&k.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=dr(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=dr(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Xse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Zse="?tfjs-format=file",Yse="model.json",sT=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Xse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=cr.browserHTTPRequest(e,this.loadOptions);else{let t=cr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(cr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=cr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new f5(K8.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=K8.Instance.transformGraph(e.modelInitializer);this.initializer=new f5(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=cr.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ot)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Nt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Yse}${Zse}`);let n=new sT(e,t);return await n.load(),n}var Jse="3.8.0",aT={};_e(aT,{CSVDataset:()=>xT,Dataset:()=>ou,FileDataSource:()=>TT,TextLineDataset:()=>gT,URLDataSource:()=>NT,array:()=>vae,csv:()=>_ae,func:()=>Dae,generator:()=>Fae,microphone:()=>Oae,version_data:()=>Pae,webcam:()=>Mae,zip:()=>wae});var Qse=Xs(C3()),eae=Xs(C3());function tae(e,t){return xm(e,t)}function xm(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(s.recurse)if(au(e)){let a=Array.isArray(e)?[]:{};r.add(e);for(let o in e){let i=e[o],l=xm(i,t,n,r);a[o]=l}return r.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,s.value),s.value}function nae(e,t=iT){return oT(e,t)}function oT(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(s.recurse)if(au(r)){let a=Array.isArray(r)?[]:{};n.add(r);for(let o in r){let i=e.map(u=>u[o]),l=oT(i,t,n);a[o]=l}return n.delete(r),a}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return s.value}function iT(e){return e===null?null:au(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function lT(e,t){let n=new Map;xm(e,t,n);for(let s of Array.from(n.keys())){let a=n.get(s);if(k.isPromise(a)){let o=await a;n.set(s,o)}}return xm(e,t,n)}function au(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ot))}function rae(e){return e==null||sae(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ot||k.isTypedArray(e)}function sae(e){return e===null||typeof e!="object"&&typeof e!="function"}function aae(e){return tae(e,oae)}function oae(e){return e instanceof Ot?{value:e.clone(),recurse:!1}:au(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var uT=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},cT=class extends uT{constructor(){super(cT.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new fae(this,e,t)}columnMajorBatch(e,t=!0,n=iT){return this.rowMajorBatch(e,t).map(s=>nae(s,n))}concatenate(e,t){return new fT(hT([this,e]),t)}take(e){return e<0||e==null?this:new pae(this,e)}skip(e){return e<0||e==null?this:new hae(this,e)}prefetch(e){return new mT(this,e)}shuffle(e,t){return new bae(this,e,t)}serial(){return new dae(this)}},uae=class extends An{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:aae(e),done:!1}}},cae=class extends An{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},dae=class extends An{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},hae=class extends An{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},fae=class extends An{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},mae=class extends An{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ge(e.value)}}},gae=class extends An{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ns.getTensorsInContainer(e.value),n=this.transform(e.value),r=Ns.getTensorsInContainer(n);for(let s of t)Ns.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},yae=class extends An{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},pT=class extends An{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ns.getTensorsInContainer(e.value),n=await this.transform(e.value),r=Ns.getTensorsInContainer(n);for(let s of t)Ns.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},g5=class extends An{constructor(){super();this.outputQueue=new dT,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Aae=class extends g5{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ns.getTensorsInContainer(e.value),n=this.transform(e.value),r=Ns.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)Ns.isTensorInList(s,r)||s.dispose();return!0}},fT=class extends An{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},bm;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(bm||(bm={}));var xae=class extends An{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(a){return a instanceof An?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let s=await lT(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},mT=class extends An{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new uT(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},bae=class extends mT{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=eae.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},ou=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is + ${e}`);let r;return this.size===1/0||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),hr(async()=>(await n.iterator()).columnMajorBatch(e,t,kae),r)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,hr(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,hr(async()=>(await t.iterator()).filter(r=>Y(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return hr(async()=>(await t.iterator()).map(n=>Y(()=>e(n))),this.size)}mapAsync(e){let t=this;return hr(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return hr(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,hr(async()=>{let r=m5(async()=>({value:await t.iterator(),done:!1}));return iae(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,s=Qse.alea(t||k.now().toString());return hr(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await r.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,hr(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};ou.MAX_BUFFER_SIZE=1e4;function hr(e,t=null){return new class extends ou{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function vae(e){return hr(async()=>hT(e),e.length)}function wae(e){if(!au(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await lT(e,r=>{if(r instanceof ou)return{value:r.iterator(),recurse:!1};if(au(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return lae(n,bm.SHORTEST)},t)}function kae(e){if(e===null)return null;let t=e[0];return rae(t)?{value:Iae(e),recurse:!1}:{value:null,recurse:!0}}function Iae(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ot?Xr(e):Cs(e)}var gT=class extends ou{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` +`).map(r=>(r.endsWith("\r")&&(r=r.slice(0,-1)),r))}},vm='"',Zd=Symbol("out"),yT=Symbol("field"),wm=Symbol("quote"),y5=Symbol("quoteafterquote"),AT=Symbol("quoteinquote"),xT=class extends ou{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new gT(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,s)=>(r[s]=r[s]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let s=0;s14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(re().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new bT(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,s)=>n.set(r,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Cs(n,t)}},vT=class extends An{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=En([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-r)/2,o=s+n,i=r+a;this.cropBox=Zl([a,s,i,o],[1,4])}else this.cropBox=Zl([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(re().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new vT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=y6.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Y(()=>{let t=Er(xe(e,"float32"),0),n;n=is.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return Z(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},wT=class{},kT=class extends An{split(e){return new Sae(this,e)}},Sae=class extends kT{constructor(e,t){super();this.upstream=e,this.impl=new Tae(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Tae=class extends g5{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Nae=class extends An{decodeUTF8(){return new Cae(this)}},Cae=class extends kT{constructor(e){super();this.upstream=e,this.impl=new Eae(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Eae=class extends g5{constructor(e){super();if(this.upstream=e,re().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=p_();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return re().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},IT=class extends Nae{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(re().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,r)));else{let s=new FileReader;s.onload=o=>{let i=s.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},s.onabort=o=>n(new Error("Aborted")),s.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,r);s.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function $ae(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Rae(e));let s=await k.fetch(n,r);if(s.ok){let a=new Uint8Array(await s.arrayBuffer());return new IT(a,t)}else throw new Error(s.statusText)}var Rae=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function ST(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var TT=class extends wT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(ST(this.input)&&re().get("IS_NODE")){let e=co("fs");this.input=e.readFileSync(this.input.substr(7))}return new IT(this.input,this.options)}},NT=class extends wT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return ST(this.url)?new TT(this.url,this.fileOptions).iterator():$ae(this.url,this.fileOptions)}};function _ae(e,t={}){return new xT(new NT(e),t)}function Dae(e){let t=m5(e);return hr(async()=>t)}function Fae(e){return hr(async()=>{let t=await e();return m5(()=>t.next())})}async function Mae(e,t){return vT.create(e,t)}async function Oae(e){return bT.create(e)}var Pae="3.8.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var zae=da.whereImpl,CT=class extends Lp{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new c1(this,Ba())}nextDataId(){return CT.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,re().get("IS_NODE")&&_.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. -============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let s=n.map(a=>k.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,s){this.data.set(e,{values:t,dtype:r,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(r,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return za().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return Iae(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},$5=HT;$5.nextDataId=0;var GT={};De(GT,{addImpl:()=>qT,bincountImpl:()=>R5,bincountReduceImpl:()=>KT,ceilImpl:()=>XT,concatImpl:()=>ZT,equalImpl:()=>YT,expImpl:()=>QT,expm1Impl:()=>tN,floorImpl:()=>nN,gatherNdImpl:()=>rN,gatherV2Impl:()=>sN,greaterEqualImpl:()=>oN,greaterImpl:()=>aN,lessEqualImpl:()=>lN,lessImpl:()=>iN,linSpaceImpl:()=>uN,logImpl:()=>cN,maxImpl:()=>dN,maximumImpl:()=>hN,minimumImpl:()=>pN,multiplyImpl:()=>D5,negImpl:()=>fN,notEqualImpl:()=>mN,prodImpl:()=>gN,rangeImpl:()=>yN,rsqrtImpl:()=>AN,simpleAbsImpl:()=>jT,sliceImpl:()=>xN,sparseFillEmptyRowsImpl:()=>bN,sparseReshapeImpl:()=>vN,sparseSegmentReductionImpl:()=>M5,squaredDifferenceImpl:()=>wN,stridedSliceImpl:()=>kN,stringNGramsImpl:()=>IN,stringSplitImpl:()=>SN,stringToHashBucketFastImpl:()=>TN,subImpl:()=>NN,tileImpl:()=>CN,topKImpl:()=>EN,transposeImpl:()=>F5,uniqueImpl:()=>$N});function jT(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),s=n.data.get(t.dataId).values;return r=jT(s),n.makeOutput(r,t.shape,"float32")},Tae={kernelName:xc,backendName:"cpu",kernelFunc:Sae};function nn(e){return(t,n,r,s,a)=>{let o=R.assertAndGetBroadcastShape(t,n),i=o.length,l=k.computeStrides(o),u=k.sizeFromShape(o),c=k.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=R.getBroadcastDims(t,o),g=R.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yx[S]=0);let b=k.locToIndex(x,d,p),v=A.slice(-h);g.forEach(S=>v[S]=0);let w=k.locToIndex(v,h,f);c[y]=e(r[b],s[w])}return[c,o]}}function mr(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}var Nae={kernelName:Iy,backendName:"cpu",kernelFunc:mr};function Em(e,t,n="float32"){if(n==="complex64"){let s=Em(e,t,"float32"),a=Em(e,t,"float32");return mr({inputs:{real:s,imag:a},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function zs(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var Cae={kernelName:hl,backendName:"cpu",kernelFunc:zs};function pi(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var Eae={kernelName:Gy,backendName:"cpu",kernelFunc:pi};function Ja(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return zs({inputs:{x:s},backend:n});let o=Em(n,s.shape,s.dtype),i=Ja({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),l=mr({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(s.dtype==="complex64"){let o=pi({inputs:{input:s},backend:n}),i=Ja({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=zs({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=k.toTypedArray([0],s.dtype),[l,u]=nn((c,d)=>c!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var $ae={kernelName:el,backendName:"cpu",kernelFunc:Ja};function bn(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;Te([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?R.fromUint8ToStringArray(u):u,h=o.dtype==="string"?R.fromUint8ToStringArray(c):c,p=r||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Ja({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=Ja({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[v,w,S]=n(o.shape,i.shape,p,f,x,b),I=l.makeTensorInfo(S,"float32",v),E=l.makeTensorInfo(S,"float32",w),F=mr({inputs:{real:I,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(I),l.disposeIntermediateTensorInfo(E),F}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=r||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function _5(e){return(t,n,r,s,a,o)=>{let i=R.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(i),u=i.length,c=k.computeStrides(i),d=k.getTypedArrayFromDType("float32",l),h=k.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,i),f=R.getBroadcastDims(n,i),m=R.mergeRealAndImagArrays(r,s),g=R.mergeRealAndImagArrays(a,o),y=t.length,A=k.computeStrides(t),x=n.length,b=k.computeStrides(n);if(p.length+f.length===0)for(let v=0;vS[_]=0);let I=k.locToIndex(S,y,A),E=w.slice(-x);f.forEach(_=>E[_]=0);let F=k.locToIndex(E,x,b),$=e(m[I*2],m[I*2+1],g[F*2],g[F*2+1]);d[v]=$.real,h[v]=$.imag}return[d,h,i]}}var qT=nn((e,t)=>e+t),_ae=_5((e,t,n,r)=>({real:e+n,imag:t+r})),th=bn(Fa,qT,_ae),Rae={kernelName:Fa,backendName:"cpu",kernelFunc:th};function R5(e,t,n,r,s){let a=k.sizeFromShape(r),o=k.makeZerosTypedArray(s,n);for(let i=0;i=s||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function KT(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=Le([s,n],t.dtype);for(let i=0;i=n||(r?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function cu(e){return(t,n,r)=>{let s=k.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=r;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=k.sizeFromShape(o.shape),c=n||o.dtype,d=k.getArrayFromDType(c,u);for(let h=0;h{let{x:o}=r;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,s);return i.makeTensorInfo(o.shape,u,c)}}var XT=cu(e=>Math.ceil(e)),Dae=du(No,XT),Fae={kernelName:No,backendName:"cpu",kernelFunc:Dae};function ZT(e,t,n,r){let s=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=k.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?R.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),JT=bn(il,YT,null,"bool"),Mae={kernelName:il,backendName:"cpu",kernelFunc:JT},QT=cu(e=>Math.exp(e)),eN=du(Eo,QT),Oae={kernelName:Eo,backendName:"cpu",kernelFunc:eN},tN=cu(e=>Math.expm1(e)),Pae=du(ll,tN),zae={kernelName:ll,backendName:"cpu",kernelFunc:Pae},nN=cu(e=>Math.floor(e)),Lae=du($o,nN),Bae={kernelName:$o,backendName:"cpu",kernelFunc:Lae};function rN(e,t,n,r,s,a,o,i,l){let u=Le([r,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;pe>t?1:0),Wae=bn(dl,aN,null,"bool"),Vae={kernelName:dl,backendName:"cpu",kernelFunc:Wae},oN=nn((e,t)=>e>=t?1:0),Uae=bn(_o,oN,null,"bool"),Hae={kernelName:_o,backendName:"cpu",kernelFunc:Uae},iN=nn((e,t)=>ee<=t?1:0),qae=bn(ml,lN,null,"bool"),Kae={kernelName:ml,backendName:"cpu",kernelFunc:qae};function uN(e,t,n){let r=(t-e)/(n-1),s=k.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;aMath.log(e)),Xae=du(Ro,cN),Zae={kernelName:Ro,backendName:"cpu",kernelFunc:Xae};function dN(e,t,n,r){let s=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let a=0;ai)&&(i=u)}s[a]=i}return s}var hN=nn((e,t)=>Math.max(e,t)),Yae=bn(Do,hN),Jae={kernelName:Do,backendName:"cpu",kernelFunc:Yae},pN=nn((e,t)=>Math.min(e,t)),Qae=bn(Fo,pN),eoe={kernelName:Fo,backendName:"cpu",kernelFunc:Qae},D5=nn((e,t)=>e*t),toe=_5((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),$m=bn(Mo,D5,toe),noe={kernelName:Mo,backendName:"cpu",kernelFunc:$m};function fN(e,t,n){let r=k.createScalarValue(-1,n);return D5([],t,r,e,n)}function roe(e){let{inputs:t,backend:n}=e,{x:r}=t;Te(r,"neg");let s=n.data.get(r.dataId).values,[a,o]=fN(s,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,a)}var soe={kernelName:Gc,backendName:"cpu",kernelFunc:roe},mN=nn((e,t)=>e!==t?1:0),aoe=bn(vl,mN,null,"bool"),ooe={kernelName:vl,backendName:"cpu",kernelFunc:aoe};function F5(e,t,n,r,s){let a=t.length,o=k.sizeFromShape(t),i=k.computeStrides(t),l=k.computeStrides(s),u=k.getTypedArrayFromDType(n,k.sizeFromShape(s));for(let c=0;cn.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(y,g,f)}var uoe={kernelName:Yc,backendName:"cpu",kernelFunc:loe};function yN(e,t,n,r){let s=e===t,a=e1;if(s||a||o)return k.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(i,r);t1/Math.sqrt(e)),coe=du(Oo,AN),doe={kernelName:Oo,backendName:"cpu",kernelFunc:coe};function xN(e,t,n,r,s){let a=En.isSliceContinous(r,t,n),o=k.sizeFromShape(n),i=k.computeStrides(r);if(a){let d=En.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=s==="string"?R.fromUint8ToStringArray(e):e,u=Le(r,s,l),c=Le(n,s);for(let d=0;df+t[m]);c.set(u.get(...p),...h)}return s==="string"?R.fromStringArrayToUint8(c.values):c.values}function fi(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r;Te(s,"slice");let[i,l]=En.parseSliceParams(s,a,o);En.assertParamsValid(s,i,l);let u=n.data.get(s.dataId).values,c=xN(u,i,l,s.shape,s.dtype);return n.makeTensorInfo(l,s.dtype,c)}var hoe={kernelName:rd,backendName:"cpu",kernelFunc:fi};function bN(e,t,n,r,s,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but - indices.shape[0] = ${i}`);let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(s,0);return[g,[0,d],y,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++f[y],h=h&&y>=p,p=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&h){let g=e,y=r;for(let A=0;A0){p[h-1]=1;for(let g=h-2;g>=0;--g)p[g]=p[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=k.getArrayFromDType(n,o*i);for(let g=0;g0?s[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=k.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,y=0,A=s[m];for(;;){let x=0;if(g=x)throw new Error("segment ids are not increasing")}if(A<0||A>=d)throw new Error(`Segment id ${A} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);A>y&&f.fill(o,y*u,A*u);for(let b=m;b=l[0])throw new Error(`Bad: indices[${b}] == ${r[b]} out of range [0, ${l[0]})`);for(let w=0;wi)break}return y{let n=e-t;return n*n}),poe=bn(Po,wN),foe={kernelName:Po,backendName:"cpu",kernelFunc:poe};function kN(e,t,n,r){let s=Le(e,t.dtype);for(let a=0;a0?0:o-i),h=0;h+=l*this.leftPad.length;for(let y=0;yy.forEach(A=>f[m++]=A);for(let y=0;y0){g(e[d+c-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=k.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let l=0;l<=s;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[s]);for(let i=0;i{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function IN(e,t,n,r,s,a,o,i){return new moe(n,r,s,a,o,i).compute(e,t)}function goe(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;oe-t),yoe=_5((e,t,n,r)=>({real:e-n,imag:t-r})),O5=bn(zo,NN,yoe),Aoe={kernelName:zo,backendName:"cpu",kernelFunc:O5};function CN(e,t){let n=new Array(e.rank);for(let s=0;sx.value-A.value);let m=d*r,g=l.subarray(m,m+r),y=u.subarray(m,m+r);for(let A=0;A{for(let g=0;gnew $5,1);var _N=xt(Dc,e=>e>=0?e:Math.exp(e)-1),boe={kernelName:Dc,backendName:"cpu",kernelFunc:_N};function RN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r;Te([s],"leakyRelu");let o=k.sizeFromShape(s.shape),i=n.data.get(s.dataId).values,l=k.getTypedArrayFromDType("float32",o);for(let u=0;ue<0?t*e:e);function DN(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t;Te([r,s],"prelu");let a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,[i,l]=woe(r.shape,s.shape,a,o,r.dtype);return n.makeTensorInfo(l,r.dtype,i)}var koe={kernelName:Sl,backendName:"cpu",kernelFunc:DN},FN=xt(Tl,e=>Math.max(0,e)),Ioe={kernelName:Tl,backendName:"cpu",kernelFunc:FN},MN=xt(Cl,e=>Math.min(Math.max(0,e),6)),Soe={kernelName:Cl,backendName:"cpu",kernelFunc:MN},ON=xt(Rl,e=>1/(1+Math.exp(-e))),Toe={kernelName:Rl,backendName:"cpu",kernelFunc:ON};function P5(e,t,n,r,s){if(n==="linear")return zs({inputs:{x:t},backend:e});if(n==="relu")return FN({inputs:{x:t},backend:e});if(n==="elu")return _N({inputs:{x:t},backend:e});if(n==="relu6")return MN({inputs:{x:t},backend:e});if(n==="prelu")return DN({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return RN({inputs:{x:t},backend:e,attrs:{alpha:s}});if(n==="sigmoid")return ON({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Ft(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=k.sizeFromShape(s.shape),i=k.inferFromImplicitShape(a,o),l=k.sizeFromShape(i);k.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${s.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(s.dataId);let u=n.data.get(s.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:s.dataId,shape:i,dtype:s.dtype}}var Noe={kernelName:Qc,backendName:"cpu",kernelFunc:Ft};function PN(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;Te([s,a],"matMul");let l=s.shape.length,u=a.shape.length,c=o?s.shape[l-2]:s.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?s.shape[l-1]:s.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=k.sizeFromShape(f),y=k.sizeFromShape(m),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);k.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],w=i?[y,p,d]:[y,d,p],S=Ft({inputs:{x:s},backend:n,attrs:{shape:v}}),I=Ft({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?S.shape[1]:S.shape[2],F=o?S.shape[2]:S.shape[1],$=i?I.shape[1]:I.shape[2],_=Math.max(g,y),N=n.data.get(S.dataId).values,P=n.data.get(I.dataId).values,B=k.computeStrides(S.shape),j=k.computeStrides(I.shape),[X,Y,ee]=o?[B[0],1,B[1]]:[B[0],B[1],1],[oe,se,ie]=i?[1,j[1],j[0]]:[j[1],1,j[0]],ne=F*$,de=Le([_,F,$],S.dtype),he=de.values,ge=n.blockSize;for(let be=0;be<_;be++)for(let Ee=0;EeMath.acos(e)),Roe={kernelName:bc,backendName:"cpu",kernelFunc:_oe},Doe=xt(vc,e=>Math.acosh(e)),Foe={kernelName:vc,backendName:"cpu",kernelFunc:Doe};function Moe(e){let{inputs:t,backend:n}=e,r=t;Te(t,"addN");let s=r.map(i=>n.data.get(i.dataId).values),a=Le(r[0].shape,r[0].dtype),o=a.values;for(let i=0;iA&&(A=v,x=b)}p[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var Voe={kernelName:Yi,backendName:"cpu",kernelFunc:Woe};function Uoe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;Te(s,"argMin");let o=k.parseAxisParam(a,s.shape),i=R.getAxesPermutation(o,s.shape.length),l=s,u=[];i!=null&&(l=Pr({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],R.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=R.computeOutAndReduceShapes(l.shape,o),h=k.sizeFromShape(c),p=k.makeZerosTypedArray(h,"int32"),f=k.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var Hoe={kernelName:qp,backendName:"cpu",kernelFunc:Uoe},Goe=xt(Ic,e=>Math.asin(e)),joe={kernelName:Ic,backendName:"cpu",kernelFunc:Goe},qoe=xt(Sc,e=>Math.asinh(e)),Koe={kernelName:Sc,backendName:"cpu",kernelFunc:qoe},Xoe=xt(Tc,e=>Math.atan(e)),Zoe={kernelName:Tc,backendName:"cpu",kernelFunc:Xoe},Yoe=nn((e,t)=>Math.atan2(e,t)),Joe=bn(Cc,Yoe),Qoe={kernelName:Cc,backendName:"cpu",kernelFunc:Joe},eie=xt(Nc,e=>Math.atanh(e)),tie={kernelName:Nc,backendName:"cpu",kernelFunc:eie};function z5(e,t,n,r,s,a){let o=s.strideHeight,i=s.strideWidth,l=s.dilationHeight,u=s.dilationWidth,c=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,p=s.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Le(s.outShape,n),g=m.values,y=s.outShape[1]*s.outShape[2]*s.outShape[3],A=s.outShape[2]*s.outShape[3],x=s.outShape[3];for(let b=0;bX?X=he:a==="avg"&&(Y+=he,ee++)}if(isNaN(X))break}let oe=_+N*x+S;g[oe]=a==="avg"?Y/ee:X}}}return m}function zN(e,t,n,r,s=!1,a=!1){let o=Le(r.outShape,"int32"),i=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,d=r.effectiveFilterHeight,h=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Le(t,n,e);for(let g=0;gF&&(F=j,s?$=a?((g*r.inHeight+_)*r.inWidth+P)*r.inChannels+y:(_*r.inWidth+P)*r.inChannels+y:$=N*h+B)}}o.set($,g,A,w,y)}}return o}function LN(e,t,n,r,s,a){let o=s.strideDepth,i=s.strideHeight,l=s.strideWidth,u=s.dilationDepth,c=s.dilationHeight,d=s.dilationWidth,h=s.effectiveFilterDepth,p=s.effectiveFilterHeight,f=s.effectiveFilterWidth,m=s.padInfo.front,g=s.padInfo.top,y=s.padInfo.left,A=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Le(s.outShape,n),b=x.values,v=s.outShape[1]*s.outShape[2]*s.outShape[3]*s.outShape[4],w=s.outShape[2]*s.outShape[3]*s.outShape[4],S=s.outShape[3]*s.outShape[4],I=s.outShape[4];for(let E=0;EEe?Ee=Je:a==="avg"&&($e+=Je,ze++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let qe=be+_;b[qe]=a==="avg"?$e/ze:Ee}}}}return x}function nie(e,t){let n=Le(t.outShape,"int32"),r=t.strideDepth,s=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,h=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=N&&(N=se,P=j*c*d+Y*c+oe)}}}n.set(P,m,y,v,E,g)}}}return n}function rie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Te(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=R.computePool2DInfo(s.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))d=zs({inputs:{x:s},backend:n});else{let h=n.data.get(s.dataId).values,p=k.computeStrides(s.shape),f=z5(h,s.shape,s.dtype,p,c,"avg");d=n.makeTensorInfo(c.outShape,s.dtype,f.values)}return d}var sie={kernelName:Ji,backendName:"cpu",kernelFunc:rie};function aie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=r;Te(s,"avgPool3d");let c=R.computePool3DInfo(s.shape,a,o,1,i,l,u),d=n.data.get(s.dataId).values,h=LN(d,s.shape,s.dtype,k.computeStrides(s.shape),c,"avg");return n.makeTensorInfo(h.shape,"float32",h.values)}var oie={kernelName:Kp,backendName:"cpu",kernelFunc:aie};function iie(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=r;Te([s,a],"avgPool3DGrad");let c=R.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,h=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,A=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,w=c.effectiveFilterWidth,S=b-1-c.padInfo.front,I=w-1-c.padInfo.left,E=v-1-c.padInfo.top,F=Le(a.shape,"float32"),$=1/(f*m*g),_=n.bufferSync(s);for(let N=0;N=c.outDepth||Math.floor(ne)!==ne))for(let de=0;de=c.outHeight||Math.floor(he)!==he))for(let ge=0;ge=c.outWidth||Math.floor(be)!==be)continue;se+=_.get(N,ne,he,be,P)}}}F.set(se*$,N,B,j,X,P)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var lie={kernelName:wy,backendName:"cpu",kernelFunc:iie};function uie(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;Te([s,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=r,c=R.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,h=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,A=c.effectiveFilterWidth,x=A-1-c.padInfo.left,b=y-1-c.padInfo.top,v=Le(o.shape,"float32"),w=1/(p*f),S=n.data.get(s.dataId).values,I=Le(s.shape,"float32",S);for(let E=0;E=c.outHeight||Math.floor(X)!==X))for(let Y=0;Y=c.outWidth||Math.floor(ee)!==ee)continue;B+=I.get(E,X,ee,F)}}v.set(B*w,E,$,_,F)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var cie={kernelName:vy,backendName:"cpu",kernelFunc:uie};function die(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,scale:a,offset:o,mean:i,variance:l}=t;k.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([s,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,h=n.data.get(l.dataId).values,p=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=p.length,A=h.length,x=d.length,b=0,v=0,w=0,S=0;for(let I=0;I=g&&(b=0),v>=x&&(v=0),w>=y&&(w=0),S>=A&&(S=0);return n.makeTensorInfo(s.shape,s.dtype,m)}var hie={kernelName:cl,backendName:"cpu",kernelFunc:die};function pie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;Te([s],"batchToSpaceND");let i=a.reduce((y,A)=>y*A),l=R.getReshaped(s.shape,a,i),u=R.getPermuted(l.length,a.length),c=R.getReshapedPermuted(s.shape,a,i),d=R.getSliceBeginCoords(o,a.length),h=R.getSliceSize(c,o,a.length),p=Ft({inputs:{x:s},backend:n,attrs:{shape:l}}),f=Pr({inputs:{x:p},backend:n,attrs:{perm:u}}),m=Ft({inputs:{x:f},backend:n,attrs:{shape:c}}),g=fi({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var fie={kernelName:Xp,backendName:"cpu",kernelFunc:pie};function mie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,u=R5(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var gie={kernelName:ky,backendName:"cpu",kernelFunc:mie},yie=xt(Co,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),s=n.data.get(t.dataId),a=s.complexTensorInfos.real,o=s.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;um.shape),a);if(k.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>k.sizeFromShape(m.shape)>0);if(i.length===1)return zs({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(R.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>pi({inputs:{input:b},backend:n})),g=i.map(b=>hu({inputs:{input:b},backend:n})),y=pu({inputs:m,backend:n,attrs:{axis:a}}),A=pu({inputs:g,backend:n,attrs:{axis:a}}),x=mr({inputs:{real:y,imag:A},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),x}let u=i.map(m=>{let g=k.sizeFromShape(m.shape.slice(a));return Ft({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=R.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,h=ZT(c,o,t[0].dtype,d),p=R.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(p,t[0].dtype,h);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var wie={kernelName:Ec,backendName:"cpu",kernelFunc:pu};function BN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=r;Te([s,a],"conv2d");let d=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(s.shape,a.shape,o,u,i,c,!1,d),p=h.filterHeight,f=h.filterWidth,m=h.dilationHeight,g=h.dilationWidth,y=h.padInfo.left,A=h.padInfo.top,x=h.dataFormat==="channelsLast",b=new Qt(h.outShape,s.dtype),v=k.computeStrides(s.shape),w=k.computeStrides(a.shape),S=v[0],I=x?v[1]:v[2],E=x?v[2]:1,F=x?1:v[1],$=b.strides[0],_=x?b.strides[1]:b.strides[2],N=x?b.strides[2]:1,P=x?1:b.strides[1],B=n.data.get(s.dataId).values,j=n.data.get(a.dataId).values,X=b.values;for(let Y=0;Y=h.inHeight)continue;let ge=de*w[0],be=ee+he*I;for(let Ee=0;Ee=h.inWidth)continue;let vt=ge+qe*w[1],ft=be+We*E,mt=vt;for(let dt=0;dt=u.inDepth)continue;let Y=j*E[0],ee=$+X*I[1];for(let oe=0;oe=u.inHeight)continue;let he=Y+ne*E[1],ge=ee+de*I[2];for(let be=0;be=u.inWidth)continue;let We=he+ze*E[2],vt=ge+qe*u.inChannels,ft=We;for(let mt=0;mtMath.cos(e)),Mie={kernelName:rl,backendName:"cpu",kernelFunc:Fie},Oie=xt($c,e=>Math.cosh(e)),Pie={kernelName:$c,backendName:"cpu",kernelFunc:Oie};function zie(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=r,[c,d,h,p]=s.shape,f=a.shape[0],[m,g]=i,y=Le([f,m,g,p],"float32"),A=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(s.dataId).values,v=k.computeStrides(s.shape),w=k.computeStrides(y.shape);for(let S=0;S=c)continue;let P=m>1?($-E)*(d-1)/(m-1):0,B=g>1?(_-F)*(h-1)/(g-1):0;for(let j=0;j1?E*(d-1)+j*P:.5*(E+$)*(d-1);if(X<0||X>d-1){for(let Y=0;Y1?F*(h-1)+se*B:.5*(F+_)*(h-1);if(ie<0||ie>h-1){for(let ge=0;ge1?F*(h-1)+Y*B:.5*(F+_)*(h-1);if(ee<0||ee>h-1){for(let ie=0;iey+f-A-1:(y,A)=>y+A;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),k.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],l=s.shape[1],u=s.shape[2],c=s.shape[3],d=l*a,h=u*a,p=c/(a*a),f=n.data.get(s.dataId).values,m=new Float32Array(i*d*h*p),g=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${h}'`);let p=R.computeConv2DInfo(s.shape,a.shape,o,h,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:A}=p,x=A.left,b=A.top,v=p.outChannels/p.inChannels,w=new Qt(p.outShape,s.dtype),S=n.data.get(s.dataId).values,I=n.data.get(a.dataId).values,E=w.values;for(let F=0;F=p.inHeight)continue;let Y=j*d[0],ee=$+X*c[1];for(let oe=0;oe=p.inWidth)continue;let he=Y+ne*d[1],ge=ee+de*p.inChannels,be=se,Ee=he;for(let $e=0;$e{let{x:r,filter:s}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,d=l.data.get(s.dataId).values,h=s.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:w,filterWidth:S,dilationHeight:I,dilationWidth:E,outShape:F}=R.computeDilation2DInfo(r.shape,s.shape,a,o,"NHWC",i),$=k.sizeFromShape(F),_=F.length,N=k.getArrayFromDType(r.dtype,$);for(let B=0;B=0&&de=0&&gese&&(se=$e)}}}let ie=k.locToIndex([B,j,Y,oe],_,k.computeStrides(F));N[ie]=se}}}return{dataId:l.write(k.toTypedArray(N,r.dtype),F,r.dtype),shape:F,dtype:r.dtype}}},ele={kernelName:Dy,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),d=k.toNestedArray(s.shape,u.data.get(s.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:w,dilationHeight:S,dilationWidth:I,outShape:E}=R.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",l);k.assert(a.rank===E.length,()=>`Error in ${Dy}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let F=k.toNestedArray(E,u.data.get(a.dataId).values),$=k.makeZerosNestedTypedArray(s.shape,s.dtype);for(let N=0;N=0&&ne=0&&heee&&(ee=ge,oe=ie,se=de)}}}$[oe][se][Y]+=F[N][P][j][Y]}}}return{dataId:u.write(k.toTypedArray($,r.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},tle={kernelName:Ry,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),d=k.toNestedArray(s.shape,u.data.get(s.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:w,dilationHeight:S,dilationWidth:I,outShape:E}=R.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",l);k.assert(a.rank===E.length,()=>`Error in ${Ry}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let F=k.toNestedArray(E,u.data.get(a.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let N=0;N=0&&ne=0&&heee&&(ee=ge,oe=ne,se=he)}}}$[N][oe][se][Y]+=F[N][P][j][Y]}}}return{dataId:u.write(k.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function nh(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;Te(s,"sum");let i;s.dtype==="bool"?i=Ja({inputs:{x:s},backend:n,attrs:{dtype:"int32"}}):i=zs({inputs:{x:s},backend:n});let l=i.shape.length,u=k.parseAxisParam(a,i.shape),c=R.getAxesPermutation(u,l),d=u,h=i;c!=null&&(h=Pr({inputs:{x:i},backend:n,attrs:{perm:c}}),d=R.getInnerMostAxes(d.length,l)),R.assertAxesAreInnerMostDims("sum",d,h.shape.length);let[p,f]=R.computeOutAndReduceShapes(h.shape,d),m=R.upcastType(h.dtype,"int32"),g=Em(n,p,m),y=k.sizeFromShape(f),A=n.data.get(g.dataId).values,x=n.data.get(h.dataId).values;for(let b=0;b=0&&(h=nh({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var sle={kernelName:Fy,backendName:"cpu",kernelFunc:rle};function ale(e){let{inputs:t,backend:n}=e,{dy:r,y:s}=t;Te([r,s],"eluGrad");let a=new Float32Array(k.sizeFromShape(s.shape)),o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values;for(let l=0;l=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(s.shape,"float32",a)}var ole={kernelName:My,backendName:"cpu",kernelFunc:ale},ile=R.ERF_P,lle=R.ERF_A1,ule=R.ERF_A2,cle=R.ERF_A3,dle=R.ERF_A4,hle=R.ERF_A5,ple=xt(Fc,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+ile*n);return t*(1-((((hle*r+dle)*r+cle)*r+ule)*r+lle)*r*Math.exp(-n*n))}),fle={kernelName:Fc,backendName:"cpu",kernelFunc:ple};function _m(e){let{inputs:t,backend:n,attrs:r}=e,{input:s}=t,{dim:a}=r,o=s.shape.length,i=s.shape.slice(),l=a;return a<0&&(k.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Ft({inputs:{x:s},backend:n,attrs:{shape:i}})}var mle={kernelName:Mc,backendName:"cpu",kernelFunc:_m},gle=nn((e,t)=>e/t),L5=bn(ol,gle),B5={kernelName:ol,backendName:"cpu",kernelFunc:L5};function VN(e,t,n){let r=e.shape,s=r[0],a=r[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[s,a],c=k.sizeFromShape(u),d=k.getTypedArrayFromDType("float32",c),h=k.getTypedArrayFromDType("float32",c);for(let g=0;g{let{image:r}=e,s=n,a=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[o,i,l,u]=r.shape,c=s.data.get(r.dataId).values;for(let h=0;h=0&&vMath.floor(e/t)),Tle=bn(ul,Sle,null,"int32"),Nle={kernelName:ul,backendName:"cpu",kernelFunc:Tle};function Cle(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=r,m=BN({inputs:{x:s,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=th({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=P5(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Ele={kernelName:Bl,backendName:"cpu",kernelFunc:Cle};function $le(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=r,m=WN({inputs:{x:s,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=th({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=P5(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var _le={kernelName:Wl,backendName:"cpu",kernelFunc:$le};function Rle(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=k.sizeFromShape(r.shape),o=s.shape,i=o[o.length-1],[l,u,c,d]=R.prepareAndValidate(r,s);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let h=n.data.get(s.dataId).values,p=n.bufferSync(r),f=rN(h,p,r.dtype,u,i,c,d,r.shape,a);return n.makeTensorInfo(l,r.dtype,f.values)}var Dle={kernelName:zc,backendName:"cpu",kernelFunc:Rle};function Fle(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r;Te([s,a],"gatherV2");let l=i;i==null&&(l=0);let u=k.sizeFromShape(a.shape),c=k.parseAxisParam(o,s.shape)[0],d=R.segment_util.collectGatherOpShapeInfo(s,a,c,l),h=Ft({inputs:{x:s},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),p=Ft({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(p),g=n.bufferSync(h),y=sN(g,m,f);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(d.outputShape,y.dtype,y.values)}var Mle={kernelName:Pc,backendName:"cpu",kernelFunc:Fle};function Ole(e){let{inputs:t,backend:n}=e,{input:r}=t,s=k.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=Ft({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),l=VN(i,!0,n),u=Ft({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var Ple={kernelName:Py,backendName:"cpu",kernelFunc:Ole},zle=xt(Lc,e=>Number.isFinite(e)?1:0,"bool"),Lle={kernelName:Lc,backendName:"cpu",kernelFunc:zle},Ble=xt(Bc,e=>Math.abs(e)===Infinity?1:0,"bool"),Wle={kernelName:Bc,backendName:"cpu",kernelFunc:Ble},Vle=xt(Wc,e=>Number.isNaN(e)?1:0,"bool"),Ule={kernelName:Wc,backendName:"cpu",kernelFunc:Vle};function Hle(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=uN(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var Gle={kernelName:Ly,backendName:"cpu",kernelFunc:Hle},jle=xt(Vc,e=>Math.log1p(e)),qle={kernelName:Vc,backendName:"cpu",kernelFunc:jle},Kle=nn((e,t)=>e&&t),Xle=bn(Uc,Kle,null,"bool"),Zle={kernelName:Uc,backendName:"cpu",kernelFunc:Xle},Yle=xt(ef,e=>e?0:1,"bool"),Jle={kernelName:ef,backendName:"cpu",kernelFunc:Yle},Qle=nn((e,t)=>e||t),eue=bn(tf,Qle,null,"bool"),tue={kernelName:tf,backendName:"cpu",kernelFunc:eue};function nue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=r;Te(s,"LRN");let u=s.shape[3],c=u-1,d=n.data.get(s.dataId).values,h=k.sizeFromShape(s.shape),p=new Float32Array(h);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),A=m-g+Math.min(g+a,c),x=0;for(;y<=A;y++){let b=d[y];x+=b*b}return x}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=R.computePool2DInfo(s.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))d=zs({inputs:{x:s},backend:n});else{let h=n.data.get(s.dataId).values,p=k.computeStrides(s.shape),f=z5(h,s.shape,s.dtype,p,c,"max");d=n.makeTensorInfo(c.outShape,s.dtype,f.values)}return d}var lue={kernelName:yl,backendName:"cpu",kernelFunc:iue};function uue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=r;Te(s,"maxPool3d");let c=R.computePool3DInfo(s.shape,a,o,1,i,l,u),d=n.data.get(s.dataId).values,h=LN(d,s.shape,s.dtype,k.computeStrides(s.shape),c,"max");return n.makeTensorInfo(h.shape,"float32",h.values)}var cue={kernelName:rf,backendName:"cpu",kernelFunc:uue};function due(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=r;Te([s,a],"maxPool3DGrad");let c=R.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),h=nie(d,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,A=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,w=x-1-c.padInfo.front,S=v-1-c.padInfo.left,I=b-1-c.padInfo.top,E=Le(a.shape,"float32"),F=n.bufferSync(s);for(let $=0;$=c.outDepth||Math.floor(se)!==se))for(let ie=0;ie=c.outHeight||Math.floor(ne)!==ne))for(let de=0;de=c.outWidth||Math.floor(he)!==he)continue;let ge=x*b*v-1-h.get($,se,ne,he,_),be=oe*b*v+ie*v+de,Ee=ge===be?1:0;if(Ee===0)continue;ee+=F.get($,se,ne,he,_)*Ee}}}E.set(ee,$,N,P,B,_)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var hue={kernelName:Vy,backendName:"cpu",kernelFunc:due};function pue(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=r,h=R.computePool2DInfo(i.shape,l,u,1,c,d),p=n.data.get(i.dataId).values,f=Le(h.outShape,i.dtype,zN(p,i.shape,i.dtype,h).values),m=h.strideHeight,g=h.strideWidth,y=h.dilationHeight,A=h.dilationWidth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,v=b-1-h.padInfo.left,w=x-1-h.padInfo.top,S=Le(i.shape,"float32"),I=n.data.get(s.dataId).values,E=Le(s.shape,"float32",I);for(let F=0;F=h.outHeight||Math.floor(Y)!==Y))for(let ee=0;ee=h.outWidth||Math.floor(oe)!==oe)continue;let se=x*b-1-f.get(F,Y,oe,$),ie=X*b+ee,ne=se===ie?1:0;if(ne===0)continue;j+=E.get(F,Y,oe,$)*ne}}S.set(j,F,_,N,$)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var fue={kernelName:Wy,backendName:"cpu",kernelFunc:pue};function mue(e,t,n,r,s){let a=k.computeStrides(t),o=z5(e,t,n,a,s,"max"),i=zN(e,t,n,s,!0,r);return[o.values,i.values]}var gue={kernelName:Uy,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=R.computePool2DInfo(r.shape,s,a,[1,1],o),[d,h]=mue(u,r.shape,r.dtype,i,c),p=l.write(d,c.outShape,r.dtype),f=l.write(h,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function yue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=k.parseAxisParam(a,s.shape),u=R.computeOutAndReduceShapes(s.shape,i)[1],c=k.sizeFromShape(u),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(h);let p=Ja({inputs:{x:s},backend:n,attrs:{dtype:"float32"}});d.push(p);let f=L5({inputs:{a:p,b:h},backend:n});d.push(f);let m=nh({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Aue={kernelName:Al,backendName:"cpu",kernelFunc:yue};function xue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;Te(s,"min");let i=k.parseAxisParam(a,s.shape),l=i,u=R.getAxesPermutation(l,s.shape.length),c=s;u!=null&&(c=Pr({inputs:{x:s},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,s.shape.length)),R.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,h]=R.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(h),f=k.makeZerosTypedArray(k.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;yx[0]+s.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+s.shape[b]),c=o==="reflect"?0:1,d=n.data.get(s.dataId).values,h=s.shape.length,p=k.computeStrides(s.shape),f=k.sizeFromShape(i),m=i.length,g=k.computeStrides(i),y=k.getTypedArrayFromDType(s.dtype,f);for(let x=0;x=u[w]&&(b[w]=(u[w]-1)*2-b[w]+c);b=b.map((w,S)=>w-l[S]);let v=k.locToIndex(b,h,p);y[x]=d[v]}return{dataId:n.write(y,i,s.dtype),shape:i,dtype:s.dtype}}var wue={kernelName:bl,backendName:"cpu",kernelFunc:vue},kue=nn((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Iue=bn(Hc,kue),Sue={kernelName:Hc,backendName:"cpu",kernelFunc:Iue},Tue=Ks(e2());function HN(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=s.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=k.parseAxisParam([i],s.shape),u=UN({inputs:{x:s},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=R.expandShapeToKeepDim(u.shape,l),d=Ft({inputs:{x:u},backend:n,attrs:{shape:c}}),h=O5({inputs:{a:s,b:d},backend:n}),p=eN({inputs:{x:h},backend:n}),f=nh({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=Ft({inputs:{x:f},backend:n,attrs:{shape:c}}),g=L5({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Nue={kernelName:Ml,backendName:"cpu",kernelFunc:HN};function Cue(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r;Te(s,"multinomial");let l=i?s:HN({inputs:{logits:s},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,h=[u,a],p=k.makeZerosTypedArray(k.sizeFromShape(h),"int32");for(let f=0;f=0&&c[d]{k.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=_m({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),u=pu({inputs:l,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Uue={kernelName:Zc,backendName:"cpu",kernelFunc:jN};function Hue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;Te(s,"pad");let i=a.map((A,x)=>A[0]+s.shape[x]+A[1]),l=a.map(A=>A[0]),u=n.data.get(s.dataId).values,c=k.sizeFromShape(s.shape),d=s.shape.length,h=k.computeStrides(s.shape),p=k.sizeFromShape(i),f=i.length,m=k.computeStrides(i),g=k.getTypedArrayFromDType(s.dtype,p);o!==0&&g.fill(o);for(let A=0;Aw+l[S]),v=k.locToIndex(b,f,m);g[v]=u[A]}return{dataId:n.write(g,i,s.dtype),shape:i,dtype:s.dtype}}var qN={kernelName:kl,backendName:"cpu",kernelFunc:Hue},Gue=nn((e,t)=>Math.pow(e,t)),jue=bn(Il,Gue),que={kernelName:Il,backendName:"cpu",kernelFunc:jue};function Kue(e){let{backend:t,attrs:n}=e,{start:r,stop:s,dtype:a,step:o}=n,i=yN(r,s,o,a);return t.makeTensorInfo([i.length],a,i)}var Xue={kernelName:sf,backendName:"cpu",kernelFunc:Kue},Zue=xt(Jc,e=>1/e),Yue={kernelName:Jc,backendName:"cpu",kernelFunc:Zue};function Jue(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;Te(s,"resizeBilinear");let l=k.computeStrides(s.shape),[u,c]=i,[d,h,p,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(k.sizeFromShape([d,u,c,f])),y=[a&&u>1?h-1:h,a&&c>1?p-1:p],A=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=y[0]/A[0],v=y[1]/A[1];for(let w=0;w1?u-1:u,o&&p>1?c-1:c],g=[o&&h>1?h-1:h,o&&p>1?p-1:p],y=m[0]/g[0],A=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v1?h-1:h,a&&c>1?p-1:p],A=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=y[0]/A[0],b=y[1]/A[1],v=0;for(let w=0;w1?c-1:c,o&&f>1?d-1:d],A=[o&&p>1?p-1:p,o&&f>1?f-1:f],x=y[0]/A[0],b=y[1]/A[1],v=1/x,w=1/b,S=Math.ceil(v)*2+2,I=Math.ceil(w)*2+2;for(let E=0;E=p)continue;let ne=F+ie*l[1],de=ie*x,he=Math.min(c-1,o?Math.round(de):Math.floor(de));if($===he)for(let ge=0;ge=f)continue;let Ee=ne+be*l[2],$e=be*b,ze=Math.min(d-1,o?Math.round($e):Math.floor($e));B===ze&&(oe+=g[Ee+ee])}}m[j+ee]=oe}}}}return n.makeTensorInfo(s.shape,s.dtype,m)}var ace={kernelName:jy,backendName:"cpu",kernelFunc:sce};function oce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r;Te(s,"reverse");let o=s.shape.length,i=k.parseAxisParam(a,s.shape);if(o===0)return zs({inputs:{x:s},backend:n});let l=new Qt(s.shape,s.dtype),u=n.bufferSync(s);for(let c=0;ch[p]=s.shape[p]-1-h[p]),l.set(u.get(...h),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var ice={kernelName:El,backendName:"cpu",kernelFunc:oce},lce={kernelName:pd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[u,c,d,h]=r.shape,[p,f]=R.getImageCenter(o,c,d),m=255,g=Math.sin(s),y=Math.cos(s),A=i.data.get(r.dataId).values;for(let b=0;b=0&&P=0&&B{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),cce={kernelName:$l,backendName:"cpu",kernelFunc:uce};function KN(e,t,n,r,s,a,o,i,l,u){let c=[r/s,s],d=e.values,h=t.values;if(r===0)return Le(n,t.dtype);let p=Le(c,t.dtype);p.values.fill(l);for(let f=0;f=r/s)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||s.shape.length===1?1:k.sizeFromShape(s.shape.slice(1));for(let f=0;fe>=0?gce*e:mce*(Math.exp(e)-1)),Ace={kernelName:nd,backendName:"cpu",kernelFunc:yce},xce=xt(ad,e=>e<0?-1:e>0?1:0),bce={kernelName:ad,backendName:"cpu",kernelFunc:xce},vce=xt(_l,e=>Math.sin(e)),wce={kernelName:_l,backendName:"cpu",kernelFunc:vce},kce=xt(sd,e=>Math.sinh(e)),Ice={kernelName:sd,backendName:"cpu",kernelFunc:kce},Sce=11920928955078125e-23,XN=Math.log(Sce)+2,Tce=xt(od,e=>{let t=e>-XN,n=e0&&k.isString(n[0])){let s=n.map(a=>k.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,s){this.data.set(e,{values:t,dtype:r,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(r,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Ba().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return zae(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},A5=CT;A5.nextDataId=0;var ET={};_e(ET,{addImpl:()=>RT,bincountImpl:()=>b5,bincountReduceImpl:()=>_T,ceilImpl:()=>DT,concatImpl:()=>FT,equalImpl:()=>MT,expImpl:()=>PT,expm1Impl:()=>LT,floorImpl:()=>BT,gatherNdImpl:()=>WT,gatherV2Impl:()=>VT,greaterEqualImpl:()=>HT,greaterImpl:()=>UT,lessEqualImpl:()=>jT,lessImpl:()=>GT,linSpaceImpl:()=>qT,logImpl:()=>KT,maxImpl:()=>XT,maximumImpl:()=>ZT,minimumImpl:()=>YT,multiplyImpl:()=>v5,negImpl:()=>JT,notEqualImpl:()=>QT,prodImpl:()=>eN,rangeImpl:()=>tN,rsqrtImpl:()=>nN,simpleAbsImpl:()=>$T,sliceImpl:()=>rN,sparseFillEmptyRowsImpl:()=>sN,sparseReshapeImpl:()=>aN,sparseSegmentReductionImpl:()=>k5,squaredDifferenceImpl:()=>oN,stridedSliceImpl:()=>iN,stringNGramsImpl:()=>lN,stringSplitImpl:()=>uN,stringToHashBucketFastImpl:()=>cN,subImpl:()=>dN,tileImpl:()=>hN,topKImpl:()=>fN,transposeImpl:()=>w5,uniqueImpl:()=>mN});function $T(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),s=n.data.get(t.dataId).values;return r=$T(s),n.makeOutput(r,t.shape,"float32")},Bae={kernelName:Ac,backendName:"cpu",kernelFunc:Lae};function en(e){return(t,n,r,s,a)=>{let o=_.assertAndGetBroadcastShape(t,n),i=o.length,l=k.computeStrides(o),u=k.sizeFromShape(o),c=k.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=_.getBroadcastDims(t,o),g=_.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yx[w]=0);let b=k.locToIndex(x,d,p),v=A.slice(-h);g.forEach(w=>v[w]=0);let I=k.locToIndex(v,h,f);c[y]=e(r[b],s[I])}return[c,o]}}function pr(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}var Wae={kernelName:b1,backendName:"cpu",kernelFunc:pr};function km(e,t,n="float32"){if(n==="complex64"){let s=km(e,t,"float32"),a=km(e,t,"float32");return pr({inputs:{real:s,imag:a},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Ls(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var Vae={kernelName:hl,backendName:"cpu",kernelFunc:Ls};function di(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var Uae={kernelName:W1,backendName:"cpu",kernelFunc:di};function Ja(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return Ls({inputs:{x:s},backend:n});let o=km(n,s.shape,s.dtype),i=Ja({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),l=pr({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(s.dtype==="complex64"){let o=di({inputs:{input:s},backend:n}),i=Ja({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=Ls({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=k.toTypedArray([0],s.dtype),[l,u]=en((c,d)=>c!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var Hae={kernelName:Qi,backendName:"cpu",kernelFunc:Ja};function xn(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;Ne([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?_.fromUint8ToStringArray(u):u,h=o.dtype==="string"?_.fromUint8ToStringArray(c):c,p=r||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Ja({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=Ja({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[v,I,w]=n(o.shape,i.shape,p,f,x,b),S=l.makeTensorInfo(w,"float32",v),E=l.makeTensorInfo(w,"float32",I),D=pr({inputs:{real:S,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(S),l.disposeIntermediateTensorInfo(E),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=r||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function x5(e){return(t,n,r,s,a,o)=>{let i=_.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(i),u=i.length,c=k.computeStrides(i),d=k.getTypedArrayFromDType("float32",l),h=k.getTypedArrayFromDType("float32",l),p=_.getBroadcastDims(t,i),f=_.getBroadcastDims(n,i),m=_.mergeRealAndImagArrays(r,s),g=_.mergeRealAndImagArrays(a,o),y=t.length,A=k.computeStrides(t),x=n.length,b=k.computeStrides(n);if(p.length+f.length===0)for(let v=0;vw[R]=0);let S=k.locToIndex(w,y,A),E=I.slice(-x);f.forEach(R=>E[R]=0);let D=k.locToIndex(E,x,b),$=e(m[S*2],m[S*2+1],g[D*2],g[D*2+1]);d[v]=$.real,h[v]=$.imag}return[d,h,i]}}var RT=en((e,t)=>e+t),Gae=x5((e,t,n,r)=>({real:e+n,imag:t+r})),Yd=xn(Ma,RT,Gae),jae={kernelName:Ma,backendName:"cpu",kernelFunc:Yd};function b5(e,t,n,r,s){let a=k.sizeFromShape(r),o=k.makeZerosTypedArray(s,n);for(let i=0;i=s||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function _T(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=ze([s,n],t.dtype);for(let i=0;i=n||(r?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function iu(e){return(t,n,r)=>{let s=k.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=r;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=k.sizeFromShape(o.shape),c=n||o.dtype,d=k.getArrayFromDType(c,u);for(let h=0;h{let{x:o}=r;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,s);return i.makeTensorInfo(o.shape,u,c)}}var DT=iu(e=>Math.ceil(e)),qae=lu(No,DT),Kae={kernelName:No,backendName:"cpu",kernelFunc:qae};function FT(e,t,n,r){let s=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=k.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?_.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),OT=xn(il,MT,null,"bool"),Xae={kernelName:il,backendName:"cpu",kernelFunc:OT},PT=iu(e=>Math.exp(e)),zT=lu(Eo,PT),Zae={kernelName:Eo,backendName:"cpu",kernelFunc:zT},LT=iu(e=>Math.expm1(e)),Yae=lu(ll,LT),Jae={kernelName:ll,backendName:"cpu",kernelFunc:Yae},BT=iu(e=>Math.floor(e)),Qae=lu($o,BT),eoe={kernelName:$o,backendName:"cpu",kernelFunc:Qae};function WT(e,t,n,r,s,a,o,i,l){let u=ze([r,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;pe>t?1:0),toe=xn(dl,UT,null,"bool"),noe={kernelName:dl,backendName:"cpu",kernelFunc:toe},HT=en((e,t)=>e>=t?1:0),roe=xn(Ro,HT,null,"bool"),soe={kernelName:Ro,backendName:"cpu",kernelFunc:roe},GT=en((e,t)=>ee<=t?1:0),ioe=xn(ml,jT,null,"bool"),loe={kernelName:ml,backendName:"cpu",kernelFunc:ioe};function qT(e,t,n){let r=(t-e)/(n-1),s=k.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;aMath.log(e)),uoe=lu(_o,KT),coe={kernelName:_o,backendName:"cpu",kernelFunc:uoe};function XT(e,t,n,r){let s=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let a=0;ai)&&(i=u)}s[a]=i}return s}var ZT=en((e,t)=>Math.max(e,t)),doe=xn(Do,ZT),hoe={kernelName:Do,backendName:"cpu",kernelFunc:doe},YT=en((e,t)=>Math.min(e,t)),poe=xn(Fo,YT),foe={kernelName:Fo,backendName:"cpu",kernelFunc:poe},v5=en((e,t)=>e*t),moe=x5((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),Im=xn(Mo,v5,moe),goe={kernelName:Mo,backendName:"cpu",kernelFunc:Im};function JT(e,t,n){let r=k.createScalarValue(-1,n);return v5([],t,r,e,n)}function yoe(e){let{inputs:t,backend:n}=e,{x:r}=t;Ne(r,"neg");let s=n.data.get(r.dataId).values,[a,o]=JT(s,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,a)}var Aoe={kernelName:Hc,backendName:"cpu",kernelFunc:yoe},QT=en((e,t)=>e!==t?1:0),xoe=xn(vl,QT,null,"bool"),boe={kernelName:vl,backendName:"cpu",kernelFunc:xoe};function w5(e,t,n,r,s){let a=t.length,o=k.sizeFromShape(t),i=k.computeStrides(t),l=k.computeStrides(s),u=k.getTypedArrayFromDType(n,k.sizeFromShape(s));for(let c=0;cn.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(y,g,f)}var koe={kernelName:Zc,backendName:"cpu",kernelFunc:woe};function tN(e,t,n,r){let s=e===t,a=e1;if(s||a||o)return k.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(i,r);t1/Math.sqrt(e)),Ioe=lu(Oo,nN),Soe={kernelName:Oo,backendName:"cpu",kernelFunc:Ioe};function rN(e,t,n,r,s){let a=Cn.isSliceContinous(r,t,n),o=k.sizeFromShape(n),i=k.computeStrides(r);if(a){let d=Cn.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=s==="string"?_.fromUint8ToStringArray(e):e,u=ze(r,s,l),c=ze(n,s);for(let d=0;df+t[m]);c.set(u.get(...p),...h)}return s==="string"?_.fromStringArrayToUint8(c.values):c.values}function hi(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r;Ne(s,"slice");let[i,l]=Cn.parseSliceParams(s,a,o);Cn.assertParamsValid(s,i,l);let u=n.data.get(s.dataId).values,c=rN(u,i,l,s.shape,s.dtype);return n.makeTensorInfo(l,s.dtype,c)}var Toe={kernelName:nd,backendName:"cpu",kernelFunc:hi};function sN(e,t,n,r,s,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but + indices.shape[0] = ${i}`);let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(s,0);return[g,[0,d],y,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++f[y],h=h&&y>=p,p=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&h){let g=e,y=r;for(let A=0;A0){p[h-1]=1;for(let g=h-2;g>=0;--g)p[g]=p[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=k.getArrayFromDType(n,o*i);for(let g=0;g0?s[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=k.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,y=0,A=s[m];for(;;){let x=0;if(g=x)throw new Error("segment ids are not increasing")}if(A<0||A>=d)throw new Error(`Segment id ${A} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);A>y&&f.fill(o,y*u,A*u);for(let b=m;b=l[0])throw new Error(`Bad: indices[${b}] == ${r[b]} out of range [0, ${l[0]})`);for(let I=0;Ii)break}return y{let n=e-t;return n*n}),Noe=xn(Po,oN),Coe={kernelName:Po,backendName:"cpu",kernelFunc:Noe};function iN(e,t,n,r){let s=ze(e,t.dtype);for(let a=0;a0?0:o-i),h=0;h+=l*this.leftPad.length;for(let y=0;yy.forEach(A=>f[m++]=A);for(let y=0;y0){g(e[d+c-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=k.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let l=0;l<=s;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[s]);for(let i=0;i{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function lN(e,t,n,r,s,a,o,i){return new Eoe(n,r,s,a,o,i).compute(e,t)}function $oe(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;oe-t),Roe=x5((e,t,n,r)=>({real:e-n,imag:t-r})),I5=xn(zo,dN,Roe),_oe={kernelName:zo,backendName:"cpu",kernelFunc:I5};function hN(e,t){let n=new Array(e.rank);for(let s=0;s{let n=t.value-e.value;return n===0?e.index-t.index:n};function pN(e,t,n=0,r=e.length-1){for(;r>n;){if(r-n>600){let i=r-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),h=Math.max(n,Math.floor(t-l*c/i+d)),p=Math.min(r,Math.floor(t+(i-l)*c/i+d));pN(e,t,h,p)}let s=e[t],a=n,o=r;for(k.swap(e,n,t),Jd(e[r],s)>0&&k.swap(e,n,r);a0;)o=o-1}Jd(e[n],s)===0?k.swap(e,n,o):(o=o+1,k.swap(e,o,r)),o<=t&&(n=o+1),t<=o&&(r=o-1)}}function fN(e,t,n,r,s){let a=t[t.length-1],[o,i]=[e.length/a,a],l=k.getTypedArrayFromDType(n,o*r),u=k.getTypedArrayFromDType("int32",o*r);for(let d=0;df[x]={value:A,index:x}),r{for(let g=0;gnew A5,1);var gN=At(_c,e=>e>=0?e:Math.exp(e)-1),Foe={kernelName:_c,backendName:"cpu",kernelFunc:gN};function yN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r;Ne([s],"leakyRelu");let o=k.sizeFromShape(s.shape),i=n.data.get(s.dataId).values,l=k.getTypedArrayFromDType("float32",o);for(let u=0;ue<0?t*e:e);function AN(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t;Ne([r,s],"prelu");let a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,[i,l]=Ooe(r.shape,s.shape,a,o,r.dtype);return n.makeTensorInfo(l,r.dtype,i)}var Poe={kernelName:Sl,backendName:"cpu",kernelFunc:AN},xN=At(Tl,e=>Math.max(0,e)),zoe={kernelName:Tl,backendName:"cpu",kernelFunc:xN},bN=At(Cl,e=>Math.min(Math.max(0,e),6)),Loe={kernelName:Cl,backendName:"cpu",kernelFunc:bN},vN=At(_l,e=>1/(1+Math.exp(-e))),Boe={kernelName:_l,backendName:"cpu",kernelFunc:vN};function S5(e,t,n,r,s){if(n==="linear")return Ls({inputs:{x:t},backend:e});if(n==="relu")return xN({inputs:{x:t},backend:e});if(n==="elu")return gN({inputs:{x:t},backend:e});if(n==="relu6")return bN({inputs:{x:t},backend:e});if(n==="prelu")return AN({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return yN({inputs:{x:t},backend:e,attrs:{alpha:s}});if(n==="sigmoid")return vN({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function _t(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=k.sizeFromShape(s.shape),i=k.inferFromImplicitShape(a,o),l=k.sizeFromShape(i);k.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${s.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(s.dataId);let u=n.data.get(s.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:s.dataId,shape:i,dtype:s.dtype}}var Woe={kernelName:Jc,backendName:"cpu",kernelFunc:_t};function wN(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;Ne([s,a],"matMul");let l=s.shape.length,u=a.shape.length,c=o?s.shape[l-2]:s.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?s.shape[l-1]:s.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=k.sizeFromShape(f),y=k.sizeFromShape(m),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);k.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],I=i?[y,p,d]:[y,d,p],w=_t({inputs:{x:s},backend:n,attrs:{shape:v}}),S=_t({inputs:{x:a},backend:n,attrs:{shape:I}}),E=o?w.shape[1]:w.shape[2],D=o?w.shape[2]:w.shape[1],$=i?S.shape[1]:S.shape[2],R=Math.max(g,y),N=n.data.get(w.dataId).values,M=n.data.get(S.dataId).values,B=k.computeStrides(w.shape),q=k.computeStrides(S.shape),[X,J,ee]=o?[B[0],1,B[1]]:[B[0],B[1],1],[ae,se,oe]=i?[1,q[1],q[0]]:[q[1],1,q[0]],ne=D*$,ce=ze([R,D,$],w.dtype),he=ce.values,me=n.blockSize;for(let be=0;beMath.acos(e)),joe={kernelName:xc,backendName:"cpu",kernelFunc:Goe},qoe=At(bc,e=>Math.acosh(e)),Koe={kernelName:bc,backendName:"cpu",kernelFunc:qoe};function Xoe(e){let{inputs:t,backend:n}=e,r=t;Ne(t,"addN");let s=r.map(i=>n.data.get(i.dataId).values),a=ze(r[0].shape,r[0].dtype),o=a.values;for(let i=0;iA&&(A=v,x=b)}p[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var nie={kernelName:Zi,backendName:"cpu",kernelFunc:tie};function rie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;Ne(s,"argMin");let o=k.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),l=s,u=[];i!=null&&(l=Dr({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=_.computeOutAndReduceShapes(l.shape,o),h=k.sizeFromShape(c),p=k.makeZerosTypedArray(h,"int32"),f=k.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",p)}var sie={kernelName:qp,backendName:"cpu",kernelFunc:rie},aie=At(kc,e=>Math.asin(e)),oie={kernelName:kc,backendName:"cpu",kernelFunc:aie},iie=At(Ic,e=>Math.asinh(e)),lie={kernelName:Ic,backendName:"cpu",kernelFunc:iie},uie=At(Sc,e=>Math.atan(e)),cie={kernelName:Sc,backendName:"cpu",kernelFunc:uie},die=en((e,t)=>Math.atan2(e,t)),hie=xn(Nc,die),pie={kernelName:Nc,backendName:"cpu",kernelFunc:hie},fie=At(Tc,e=>Math.atanh(e)),mie={kernelName:Tc,backendName:"cpu",kernelFunc:fie};function T5(e,t,n,r,s,a){let o=s.strideHeight,i=s.strideWidth,l=s.dilationHeight,u=s.dilationWidth,c=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,p=s.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=ze(s.outShape,n),g=m.values,y=s.outShape[1]*s.outShape[2]*s.outShape[3],A=s.outShape[2]*s.outShape[3],x=s.outShape[3];for(let b=0;bX?X=he:a==="avg"&&(J+=he,ee++)}if(isNaN(X))break}let ae=R+N*x+w;g[ae]=a==="avg"?J/ee:X}}}return m}function kN(e,t,n,r,s=!1,a=!1){let o=ze(r.outShape,"int32"),i=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,d=r.effectiveFilterHeight,h=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=ze(t,n,e);for(let g=0;gD&&(D=q,s?$=a?((g*r.inHeight+R)*r.inWidth+M)*r.inChannels+y:(R*r.inWidth+M)*r.inChannels+y:$=N*h+B)}}o.set($,g,A,I,y)}}return o}function IN(e,t,n,r,s,a){let o=s.strideDepth,i=s.strideHeight,l=s.strideWidth,u=s.dilationDepth,c=s.dilationHeight,d=s.dilationWidth,h=s.effectiveFilterDepth,p=s.effectiveFilterHeight,f=s.effectiveFilterWidth,m=s.padInfo.front,g=s.padInfo.top,y=s.padInfo.left,A=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=ze(s.outShape,n),b=x.values,v=s.outShape[1]*s.outShape[2]*s.outShape[3]*s.outShape[4],I=s.outShape[2]*s.outShape[3]*s.outShape[4],w=s.outShape[3]*s.outShape[4],S=s.outShape[4];for(let E=0;EEe?Ee=Ye:a==="avg"&&($e+=Ye,Pe++),isNaN(Ee))break}if(isNaN(Ee))break}if(isNaN(Ee))break}let je=be+R;b[je]=a==="avg"?$e/Pe:Ee}}}}return x}function gie(e,t){let n=ze(t.outShape,"int32"),r=t.strideDepth,s=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,h=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=N&&(N=se,M=q*c*d+J*c+ae)}}}n.set(M,m,y,v,E,g)}}}return n}function yie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Ne(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=r,u=1;k.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(s.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))d=Ls({inputs:{x:s},backend:n});else{let h=n.data.get(s.dataId).values,p=k.computeStrides(s.shape),f=T5(h,s.shape,s.dtype,p,c,"avg");d=n.makeTensorInfo(c.outShape,s.dtype,f.values)}return d}var Aie={kernelName:Yi,backendName:"cpu",kernelFunc:yie};function xie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=r;Ne(s,"avgPool3d");let c=_.computePool3DInfo(s.shape,a,o,1,i,l,u),d=n.data.get(s.dataId).values,h=IN(d,s.shape,s.dtype,k.computeStrides(s.shape),c,"avg");return n.makeTensorInfo(h.shape,"float32",h.values)}var bie={kernelName:Kp,backendName:"cpu",kernelFunc:xie};function vie(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=r;Ne([s,a],"avgPool3DGrad");let c=_.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,h=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,A=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,I=c.effectiveFilterWidth,w=b-1-c.padInfo.front,S=I-1-c.padInfo.left,E=v-1-c.padInfo.top,D=ze(a.shape,"float32"),$=1/(f*m*g),R=n.bufferSync(s);for(let N=0;N=c.outDepth||Math.floor(ne)!==ne))for(let ce=0;ce=c.outHeight||Math.floor(he)!==he))for(let me=0;me=c.outWidth||Math.floor(be)!==be)continue;se+=R.get(N,ne,he,be,M)}}}D.set(se*$,N,B,q,X,M)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var wie={kernelName:A1,backendName:"cpu",kernelFunc:vie};function kie(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;Ne([s,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=r,c=_.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,h=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,A=c.effectiveFilterWidth,x=A-1-c.padInfo.left,b=y-1-c.padInfo.top,v=ze(o.shape,"float32"),I=1/(p*f),w=n.data.get(s.dataId).values,S=ze(s.shape,"float32",w);for(let E=0;E=c.outHeight||Math.floor(X)!==X))for(let J=0;J=c.outWidth||Math.floor(ee)!==ee)continue;B+=S.get(E,X,ee,D)}}v.set(B*I,E,$,R,D)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var Iie={kernelName:y1,backendName:"cpu",kernelFunc:kie};function Sie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,scale:a,offset:o,mean:i,variance:l}=t;k.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([s,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,h=n.data.get(l.dataId).values,p=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=p.length,A=h.length,x=d.length,b=0,v=0,I=0,w=0;for(let S=0;S=g&&(b=0),v>=x&&(v=0),I>=y&&(I=0),w>=A&&(w=0);return n.makeTensorInfo(s.shape,s.dtype,m)}var Tie={kernelName:cl,backendName:"cpu",kernelFunc:Sie};function Nie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;Ne([s],"batchToSpaceND");let i=a.reduce((y,A)=>y*A),l=_.getReshaped(s.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),h=_.getSliceSize(c,o,a.length),p=_t({inputs:{x:s},backend:n,attrs:{shape:l}}),f=Dr({inputs:{x:p},backend:n,attrs:{perm:u}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:c}}),g=hi({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Cie={kernelName:Cc,backendName:"cpu",kernelFunc:Nie};function Eie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,u=b5(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var $ie={kernelName:x1,backendName:"cpu",kernelFunc:Eie},Rie=At(Co,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),s=n.data.get(t.dataId),a=s.complexTensorInfos.real,o=s.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;um.shape),a);if(k.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>k.sizeFromShape(m.shape)>0);if(i.length===1)return Ls({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(_.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>di({inputs:{input:b},backend:n})),g=i.map(b=>uu({inputs:{input:b},backend:n})),y=cu({inputs:m,backend:n,attrs:{axis:a}}),A=cu({inputs:g,backend:n,attrs:{axis:a}}),x=pr({inputs:{real:y,imag:A},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),x}let u=i.map(m=>{let g=k.sizeFromShape(m.shape.slice(a));return _t({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=_.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,h=FT(c,o,t[0].dtype,d),p=_.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(p,t[0].dtype,h);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Oie={kernelName:Ec,backendName:"cpu",kernelFunc:cu};function SN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=r;Ne([s,a],"conv2d");let d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(s.shape,a.shape,o,u,i,c,!1,d),p=h.filterHeight,f=h.filterWidth,m=h.dilationHeight,g=h.dilationWidth,y=h.padInfo.left,A=h.padInfo.top,x=h.dataFormat==="channelsLast",b=new Jt(h.outShape,s.dtype),v=k.computeStrides(s.shape),I=k.computeStrides(a.shape),w=v[0],S=x?v[1]:v[2],E=x?v[2]:1,D=x?1:v[1],$=b.strides[0],R=x?b.strides[1]:b.strides[2],N=x?b.strides[2]:1,M=x?1:b.strides[1],B=n.data.get(s.dataId).values,q=n.data.get(a.dataId).values,X=b.values;for(let J=0;J=h.inHeight)continue;let me=ce*I[0],be=ee+he*S;for(let Ee=0;Ee=h.inWidth)continue;let bt=me+je*I[1],pt=be+Be*E,ft=bt;for(let dt=0;dt=u.inDepth)continue;let J=q*E[0],ee=$+X*S[1];for(let ae=0;ae=u.inHeight)continue;let he=J+ne*E[1],me=ee+ce*S[2];for(let be=0;be=u.inWidth)continue;let Be=he+Pe*E[2],bt=me+je*u.inChannels,pt=Be;for(let ft=0;ftMath.cos(e)),Xie={kernelName:nl,backendName:"cpu",kernelFunc:Kie},Zie=At(rl,e=>Math.cosh(e)),Yie={kernelName:rl,backendName:"cpu",kernelFunc:Zie};function Jie(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=r,[c,d,h,p]=s.shape,f=a.shape[0],[m,g]=i,y=ze([f,m,g,p],"float32"),A=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(s.dataId).values,v=k.computeStrides(s.shape),I=k.computeStrides(y.shape);for(let w=0;w=c)continue;let M=m>1?($-E)*(d-1)/(m-1):0,B=g>1?(R-D)*(h-1)/(g-1):0;for(let q=0;q1?E*(d-1)+q*M:.5*(E+$)*(d-1);if(X<0||X>d-1){for(let J=0;J1?D*(h-1)+se*B:.5*(D+R)*(h-1);if(oe<0||oe>h-1){for(let me=0;me1?D*(h-1)+J*B:.5*(D+R)*(h-1);if(ee<0||ee>h-1){for(let oe=0;oey+f-A-1:(y,A)=>y+A;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),k.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],l=s.shape[1],u=s.shape[2],c=s.shape[3],d=l*a,h=u*a,p=c/(a*a),f=n.data.get(s.dataId).values,m=new Float32Array(i*d*h*p),g=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${h}'`);let p=_.computeConv2DInfo(s.shape,a.shape,o,h,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:A}=p,x=A.left,b=A.top,v=p.outChannels/p.inChannels,I=new Jt(p.outShape,s.dtype),w=n.data.get(s.dataId).values,S=n.data.get(a.dataId).values,E=I.values;for(let D=0;D=p.inHeight)continue;let J=q*d[0],ee=$+X*c[1];for(let ae=0;ae=p.inWidth)continue;let he=J+ne*d[1],me=ee+ce*p.inChannels,be=se,Ee=he;for(let $e=0;$e{let{x:r,filter:s}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,d=l.data.get(s.dataId).values,h=s.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:I,filterWidth:w,dilationHeight:S,dilationWidth:E,outShape:D}=_.computeDilation2DInfo(r.shape,s.shape,a,o,"NHWC",i),$=k.sizeFromShape(D),R=D.length,N=k.getArrayFromDType(r.dtype,$);for(let B=0;B=0&&ce=0&&mese&&(se=$e)}}}let oe=k.locToIndex([B,q,J,ae],R,k.computeStrides(D));N[oe]=se}}}return{dataId:l.write(k.toTypedArray(N,r.dtype),D,r.dtype),shape:D,dtype:r.dtype}}},fle={kernelName:E1,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),d=k.toNestedArray(s.shape,u.data.get(s.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:I,dilationHeight:w,dilationWidth:S,outShape:E}=_.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",l);k.assert(a.rank===E.length,()=>`Error in ${E1}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let D=k.toNestedArray(E,u.data.get(a.dataId).values),$=k.makeZerosNestedTypedArray(s.shape,s.dtype);for(let N=0;N=0&&ne=0&&heee&&(ee=me,ae=oe,se=ce)}}}$[ae][se][J]+=D[N][M][q][J]}}}return{dataId:u.write(k.toTypedArray($,r.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},mle={kernelName:C1,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=k.toNestedArray(r.shape,u.data.get(r.dataId).values),d=k.toNestedArray(s.shape,u.data.get(s.dataId).values),{batchSize:h,inHeight:p,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:I,dilationHeight:w,dilationWidth:S,outShape:E}=_.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",l);k.assert(a.rank===E.length,()=>`Error in ${C1}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let D=k.toNestedArray(E,u.data.get(a.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let N=0;N=0&&ne=0&&heee&&(ee=me,ae=ne,se=he)}}}$[N][ae][se][J]+=D[N][M][q][J]}}}return{dataId:u.write(k.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function Qd(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;Ne(s,"sum");let i;s.dtype==="bool"?i=Ja({inputs:{x:s},backend:n,attrs:{dtype:"int32"}}):i=Ls({inputs:{x:s},backend:n});let l=i.shape.length,u=k.parseAxisParam(a,i.shape),c=_.getAxesPermutation(u,l),d=u,h=i;c!=null&&(h=Dr({inputs:{x:i},backend:n,attrs:{perm:c}}),d=_.getInnerMostAxes(d.length,l)),_.assertAxesAreInnerMostDims("sum",d,h.shape.length);let[p,f]=_.computeOutAndReduceShapes(h.shape,d),m=_.upcastType(h.dtype,"int32"),g=km(n,p,m),y=k.sizeFromShape(f),A=n.data.get(g.dataId).values,x=n.data.get(h.dataId).values;for(let b=0;b=0&&(h=Qd({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var Ale={kernelName:$1,backendName:"cpu",kernelFunc:yle};function xle(e){let{inputs:t,backend:n}=e,{dy:r,y:s}=t;Ne([r,s],"eluGrad");let a=new Float32Array(k.sizeFromShape(s.shape)),o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values;for(let l=0;l=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(s.shape,"float32",a)}var ble={kernelName:R1,backendName:"cpu",kernelFunc:xle},vle=_.ERF_P,wle=_.ERF_A1,kle=_.ERF_A2,Ile=_.ERF_A3,Sle=_.ERF_A4,Tle=_.ERF_A5,Nle=At(Dc,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+vle*n);return t*(1-((((Tle*r+Sle)*r+Ile)*r+kle)*r+wle)*r*Math.exp(-n*n))}),Cle={kernelName:Dc,backendName:"cpu",kernelFunc:Nle};function Sm(e){let{inputs:t,backend:n,attrs:r}=e,{input:s}=t,{dim:a}=r,o=s.shape.length,i=s.shape.slice(),l=a;return a<0&&(k.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),_t({inputs:{x:s},backend:n,attrs:{shape:i}})}var Ele={kernelName:Fc,backendName:"cpu",kernelFunc:Sm},$le=en((e,t)=>e/t),N5=xn(ol,$le),C5={kernelName:ol,backendName:"cpu",kernelFunc:N5};function NN(e,t,n){let r=e.shape,s=r[0],a=r[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[s,a],c=k.sizeFromShape(u),d=k.getTypedArrayFromDType("float32",c),h=k.getTypedArrayFromDType("float32",c);for(let g=0;g{let{image:r}=e,s=n,a=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[o,i,l,u]=r.shape,c=s.data.get(r.dataId).values;for(let h=0;h=0&&xMath.floor(e/t)),Ble=xn(ul,Lle,null,"int32"),Wle={kernelName:ul,backendName:"cpu",kernelFunc:Ble};function Vle(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=r,m=SN({inputs:{x:s,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=Yd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=S5(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Ule={kernelName:Bl,backendName:"cpu",kernelFunc:Vle};function Hle(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=r,m=TN({inputs:{x:s,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h}});if(o){let g=m;m=Yd({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(p){let g=m;m=S5(n,m,p,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Gle={kernelName:Wl,backendName:"cpu",kernelFunc:Hle};function jle(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=k.sizeFromShape(r.shape),o=s.shape,i=o[o.length-1],[l,u,c,d]=_.prepareAndValidate(r,s);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let h=n.data.get(s.dataId).values,p=n.bufferSync(r),f=WT(h,p,r.dtype,u,i,c,d,r.shape,a);return n.makeTensorInfo(l,r.dtype,f.values)}var qle={kernelName:Pc,backendName:"cpu",kernelFunc:jle};function Kle(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r;Ne([s,a],"gatherV2");let l=i;i==null&&(l=0);let u=k.sizeFromShape(a.shape),c=k.parseAxisParam(o,s.shape)[0],d=_.segment_util.collectGatherOpShapeInfo(s,a,c,l),h=_t({inputs:{x:s},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),p=_t({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(p),g=n.bufferSync(h),y=VT(g,m,f);return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(d.outputShape,y.dtype,y.values)}var Xle={kernelName:Oc,backendName:"cpu",kernelFunc:Kle};function Zle(e){let{inputs:t,backend:n}=e,{input:r}=t,s=k.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=_t({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),l=NN(i,!0,n),u=_t({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var Yle={kernelName:D1,backendName:"cpu",kernelFunc:Zle},Jle=At(zc,e=>Number.isFinite(e)?1:0,"bool"),Qle={kernelName:zc,backendName:"cpu",kernelFunc:Jle},eue=At(Lc,e=>Math.abs(e)===1/0?1:0,"bool"),tue={kernelName:Lc,backendName:"cpu",kernelFunc:eue},nue=At(Bc,e=>Number.isNaN(e)?1:0,"bool"),rue={kernelName:Bc,backendName:"cpu",kernelFunc:nue};function sue(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=qT(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var aue={kernelName:M1,backendName:"cpu",kernelFunc:sue},oue=At(Wc,e=>Math.log1p(e)),iue={kernelName:Wc,backendName:"cpu",kernelFunc:oue},lue=en((e,t)=>e&&t),uue=xn(Vc,lue,null,"bool"),cue={kernelName:Vc,backendName:"cpu",kernelFunc:uue},due=At(Qp,e=>e?0:1,"bool"),hue={kernelName:Qp,backendName:"cpu",kernelFunc:due},pue=en((e,t)=>e||t),fue=xn(ef,pue,null,"bool"),mue={kernelName:ef,backendName:"cpu",kernelFunc:fue};function gue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=r;Ne(s,"LRN");let u=s.shape[3],c=u-1,d=n.data.get(s.dataId).values,h=k.sizeFromShape(s.shape),p=new Float32Array(h);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),A=m-g+Math.min(g+a,c),x=0;for(;y<=A;y++){let b=d[y];x+=b*b}return x}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(s.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))d=Ls({inputs:{x:s},backend:n});else{let h=n.data.get(s.dataId).values,p=k.computeStrides(s.shape),f=T5(h,s.shape,s.dtype,p,c,"max");d=n.makeTensorInfo(c.outShape,s.dtype,f.values)}return d}var wue={kernelName:yl,backendName:"cpu",kernelFunc:vue};function kue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=r;Ne(s,"maxPool3d");let c=_.computePool3DInfo(s.shape,a,o,1,i,l,u),d=n.data.get(s.dataId).values,h=IN(d,s.shape,s.dtype,k.computeStrides(s.shape),c,"max");return n.makeTensorInfo(h.shape,"float32",h.values)}var Iue={kernelName:nf,backendName:"cpu",kernelFunc:kue};function Sue(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=r;Ne([s,a],"maxPool3DGrad");let c=_.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),h=gie(d,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,A=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,I=x-1-c.padInfo.front,w=v-1-c.padInfo.left,S=b-1-c.padInfo.top,E=ze(a.shape,"float32"),D=n.bufferSync(s);for(let $=0;$=c.outDepth||Math.floor(se)!==se))for(let oe=0;oe=c.outHeight||Math.floor(ne)!==ne))for(let ce=0;ce=c.outWidth||Math.floor(he)!==he)continue;let me=x*b*v-1-h.get($,se,ne,he,R),be=ae*b*v+oe*v+ce,Ee=me===be?1:0;if(Ee===0)continue;ee+=D.get($,se,ne,he,R)*Ee}}}E.set(ee,$,N,M,B,R)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var Tue={kernelName:z1,backendName:"cpu",kernelFunc:Sue};function Nue(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=r,h=_.computePool2DInfo(i.shape,l,u,1,c,d),p=n.data.get(i.dataId).values,f=ze(h.outShape,i.dtype,kN(p,i.shape,i.dtype,h).values),m=h.strideHeight,g=h.strideWidth,y=h.dilationHeight,A=h.dilationWidth,x=h.effectiveFilterHeight,b=h.effectiveFilterWidth,v=b-1-h.padInfo.left,I=x-1-h.padInfo.top,w=ze(i.shape,"float32"),S=n.data.get(s.dataId).values,E=ze(s.shape,"float32",S);for(let D=0;D=h.outHeight||Math.floor(J)!==J))for(let ee=0;ee=h.outWidth||Math.floor(ae)!==ae)continue;let se=x*b-1-f.get(D,J,ae,$),oe=X*b+ee,ne=se===oe?1:0;if(ne===0)continue;q+=E.get(D,J,ae,$)*ne}}w.set(q,D,R,N,$)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var Cue={kernelName:P1,backendName:"cpu",kernelFunc:Nue};function Eue(e,t,n,r,s){let a=k.computeStrides(t),o=T5(e,t,n,a,s,"max"),i=kN(e,t,n,s,!0,r);return[o.values,i.values]}var $ue={kernelName:L1,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=_.computePool2DInfo(r.shape,s,a,[1,1],o),[d,h]=Eue(u,r.shape,r.dtype,i,c),p=l.write(d,c.outShape,r.dtype),f=l.write(h,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function Rue(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=k.parseAxisParam(a,s.shape),u=_.computeOutAndReduceShapes(s.shape,i)[1],c=k.sizeFromShape(u),d=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(h);let p=Ja({inputs:{x:s},backend:n,attrs:{dtype:"float32"}});d.push(p);let f=N5({inputs:{a:p,b:h},backend:n});d.push(f);let m=Qd({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var _ue={kernelName:Al,backendName:"cpu",kernelFunc:Rue};function Due(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;Ne(s,"min");let i=k.parseAxisParam(a,s.shape),l=i,u=_.getAxesPermutation(l,s.shape.length),c=s;u!=null&&(c=Dr({inputs:{x:s},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,s.shape.length)),_.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,h]=_.computeOutAndReduceShapes(c.shape,l),p=k.sizeFromShape(h),f=k.makeZerosTypedArray(k.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;yx[0]+s.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+s.shape[b]),c=o==="reflect"?0:1,d=n.data.get(s.dataId).values,h=s.shape.length,p=k.computeStrides(s.shape),f=k.sizeFromShape(i),m=i.length,g=k.computeStrides(i),y=k.getTypedArrayFromDType(s.dtype,f);for(let x=0;x=u[I]&&(b[I]=(u[I]-1)*2-b[I]+c);b=b.map((I,w)=>I-l[w]);let v=k.locToIndex(b,h,p);y[x]=d[v]}return{dataId:n.write(y,i,s.dtype),shape:i,dtype:s.dtype}}var Oue={kernelName:bl,backendName:"cpu",kernelFunc:Mue},Pue=en((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),zue=xn(Uc,Pue),Lue={kernelName:Uc,backendName:"cpu",kernelFunc:zue},Bue=Xs(Xg());function EN(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=s.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=k.parseAxisParam([i],s.shape),u=CN({inputs:{x:s},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=_.expandShapeToKeepDim(u.shape,l),d=_t({inputs:{x:u},backend:n,attrs:{shape:c}}),h=I5({inputs:{a:s,b:d},backend:n}),p=zT({inputs:{x:h},backend:n}),f=Qd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=_t({inputs:{x:f},backend:n,attrs:{shape:c}}),g=N5({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Wue={kernelName:Ml,backendName:"cpu",kernelFunc:EN};function Vue(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r;Ne(s,"multinomial");let l=i?s:EN({inputs:{logits:s},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,h=[u,a],p=k.makeZerosTypedArray(k.sizeFromShape(h),"int32");for(let f=0;f=0&&c[d]{k.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=Sm({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),u=cu({inputs:l,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var rce={kernelName:Xc,backendName:"cpu",kernelFunc:RN};function sce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;Ne(s,"pad");let i=a.map((A,x)=>A[0]+s.shape[x]+A[1]),l=a.map(A=>A[0]),u=n.data.get(s.dataId).values,c=k.sizeFromShape(s.shape),d=s.shape.length,h=k.computeStrides(s.shape),p=k.sizeFromShape(i),f=i.length,m=k.computeStrides(i),g=k.getTypedArrayFromDType(s.dtype,p);o!==0&&g.fill(o);for(let A=0;AI+l[w]),v=k.locToIndex(b,f,m);g[v]=u[A]}return{dataId:n.write(g,i,s.dtype),shape:i,dtype:s.dtype}}var _N={kernelName:kl,backendName:"cpu",kernelFunc:sce},ace=en((e,t)=>Math.pow(e,t)),oce=xn(Il,ace),ice={kernelName:Il,backendName:"cpu",kernelFunc:oce};function lce(e){let{backend:t,attrs:n}=e,{start:r,stop:s,dtype:a,step:o}=n,i=tN(r,s,o,a);return t.makeTensorInfo([i.length],a,i)}var uce={kernelName:rf,backendName:"cpu",kernelFunc:lce},cce=At(Yc,e=>1/e),dce={kernelName:Yc,backendName:"cpu",kernelFunc:cce};function hce(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;Ne(s,"resizeBilinear");let l=k.computeStrides(s.shape),[u,c]=i,[d,h,p,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(k.sizeFromShape([d,u,c,f])),y=[a&&u>1?h-1:h,a&&c>1?p-1:p],A=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=y[0]/A[0],v=y[1]/A[1];for(let I=0;I1?u-1:u,o&&p>1?c-1:c],g=[o&&h>1?h-1:h,o&&p>1?p-1:p],y=m[0]/g[0],A=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v1?h-1:h,a&&c>1?p-1:p],A=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=y[0]/A[0],b=y[1]/A[1],v=0;for(let I=0;I1?c-1:c,o&&f>1?d-1:d],A=[o&&p>1?p-1:p,o&&f>1?f-1:f],x=y[0]/A[0],b=y[1]/A[1],v=1/x,I=1/b,w=Math.ceil(v)*2+2,S=Math.ceil(I)*2+2;for(let E=0;E=p)continue;let ne=D+oe*l[1],ce=oe*x,he=Math.min(c-1,o?Math.round(ce):Math.floor(ce));if($===he)for(let me=0;me=f)continue;let Ee=ne+be*l[2],$e=be*b,Pe=Math.min(d-1,o?Math.round($e):Math.floor($e));B===Pe&&(ae+=g[Ee+ee])}}m[q+ee]=ae}}}}return n.makeTensorInfo(s.shape,s.dtype,m)}var xce={kernelName:V1,backendName:"cpu",kernelFunc:Ace};function bce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r;Ne(s,"reverse");let o=s.shape.length,i=k.parseAxisParam(a,s.shape);if(o===0)return Ls({inputs:{x:s},backend:n});let l=new Jt(s.shape,s.dtype),u=n.bufferSync(s);for(let c=0;ch[p]=s.shape[p]-1-h[p]),l.set(u.get(...h),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var vce={kernelName:El,backendName:"cpu",kernelFunc:bce},wce={kernelName:pd,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[u,c,d,h]=r.shape,[p,f]=_.getImageCenter(o,c,d),m=255,g=Math.sin(s),y=Math.cos(s),A=i.data.get(r.dataId).values;for(let b=0;b=0&&M=0&&B{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),Ice={kernelName:$l,backendName:"cpu",kernelFunc:kce};function DN(e,t,n,r,s,a,o,i,l,u){let c=[r/s,s],d=e.values,h=t.values;if(r===0)return ze(n,t.dtype);let p=ze(c,t.dtype);p.values.fill(l);for(let f=0;f=r/s)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y1||s.shape.length===1?1:k.sizeFromShape(s.shape.slice(1));for(let f=0;fe>=0?$ce*e:Ece*(Math.exp(e)-1)),_ce={kernelName:td,backendName:"cpu",kernelFunc:Rce},Dce=At(sd,e=>e<0?-1:e>0?1:0),Fce={kernelName:sd,backendName:"cpu",kernelFunc:Dce},Mce=At(Rl,e=>Math.sin(e)),Oce={kernelName:Rl,backendName:"cpu",kernelFunc:Mce},Pce=At(rd,e=>Math.sinh(e)),zce={kernelName:rd,backendName:"cpu",kernelFunc:Pce},Lce=11920928955078125e-23,FN=Math.log(Lce)+2,Bce=At(ad,e=>{let t=e>-FN,n=eNumber(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var _ce={kernelName:Ky,backendName:"cpu",kernelFunc:$ce};function Rce(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape + ${o.shape}`);let i=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,h,p,f,m]=sN(i,r.shape,r.dtype,l,s.dtype,u,c);return[n.makeTensorInfo(h,r.dtype,d),n.makeTensorInfo([h[0]],s.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var Gce={kernelName:H1,backendName:"cpu",kernelFunc:Hce};function jce(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape - ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(s.dataId).values),i=n.data.get(r.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=vN(i,r.shape,r.dtype,o,l);return[n.makeTensorInfo(c,r.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Dce={kernelName:Xy,backendName:"cpu",kernelFunc:Rce};function Fce(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(s.dataId).values),i=n.data.get(r.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=aN(i,r.shape,r.dtype,o,l);return[n.makeTensorInfo(c,r.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var qce={kernelName:G1,backendName:"cpu",kernelFunc:jce};function Kce(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,[u,c]=M5(o,r.shape,r.dtype,i,l,!0);return n.makeTensorInfo(c,r.dtype,u)}var Mce={kernelName:Zy,backendName:"cpu",kernelFunc:Fce};function Oce(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,[u,c]=k5(o,r.shape,r.dtype,i,l,!0);return n.makeTensorInfo(c,r.dtype,u)}var Xce={kernelName:j1,backendName:"cpu",kernelFunc:Kce};function Zce(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,[u,c]=M5(o,r.shape,r.dtype,i,l);return n.makeTensorInfo(c,r.dtype,u)}var Pce={kernelName:Yy,backendName:"cpu",kernelFunc:Oce};function zce(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=R.calculateShapes(a,s,i),p=!1,f=n.bufferSync(s),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],y=KN(f,m,i,h,c,u,l,d,g,p);return n.makeTensorInfo(i,y.dtype,y.values)}var Lce={kernelName:Jy,backendName:"cpu",kernelFunc:zce};function Bce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=k.parseAxisParam(o,s.shape)[0],l=R.prepareSplitSize(s,a,i),u=new Array(s.shape.length).fill(0),c=s.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=fi({inputs:{x:s},backend:n,attrs:{begin:u,size:h}});return u[i]+=d,p})}var Wce={kernelName:id,backendName:"cpu",kernelFunc:Bce},Vce=xt(Dl,e=>Math.sqrt(e)),Uce={kernelName:Dl,backendName:"cpu",kernelFunc:Vce},Hce={kernelName:lf,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;Te(n,"square");let s=r.data.get(n.dataId).values,a=new Float32Array(s.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),jce={kernelName:Bo,backendName:"cpu",kernelFunc:Gce};function qce(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=r;Te(s,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=En.sliceInfo(s.shape,a,o,i,l,u,c,d,h),x=Ft({inputs:{x:s},backend:n,attrs:{shape:y}}),b;if(p){let w=fi({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=Ft({inputs:{x:w},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(w)}else if(A.some(w=>w===0))b=n.makeTensorInfo(A,s.dtype,[]);else{let w=n.bufferSync(x),S=kN(A,w,m,f);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let v=Ft({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Kce={kernelName:ld,backendName:"cpu",kernelFunc:qce};function Xce(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=r,{data:c,dataSplits:d}=t,h=n.data.get(c.dataId).values,p=n.data.get(d.dataId).values,[f,m]=IN(h,p,s,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Zce={kernelName:Qy,backendName:"cpu",kernelFunc:Xce};function Yce(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=SN(i,l,s),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Jce={kernelName:eA,backendName:"cpu",kernelFunc:Yce};function Qce(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=TN(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var ede={kernelName:tA,backendName:"cpu",kernelFunc:Qce},tde=xt(Ol,e=>Math.tan(e)),nde={kernelName:Ol,backendName:"cpu",kernelFunc:tde},rde=xt(Pl,e=>Math.tanh(e)),sde={kernelName:Pl,backendName:"cpu",kernelFunc:rde};function ade(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;Te(s,"tile");let o=CN(n.bufferSync(s),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var ode={kernelName:Lo,backendName:"cpu",kernelFunc:ade};function ide(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r;Te(s,"topk");let i=n.data.get(s.dataId).values,[l,u]=EN(i,s.shape,s.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var lde={kernelName:ud,backendName:"cpu",kernelFunc:ide};function ude(e){let{inputs:t,attrs:n,backend:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,h,p]=s.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],y=k.computeStrides(s.shape),A=y[0],x=y[1],b=y[2],v=k.getTypedArrayFromDType(s.dtype,k.sizeFromShape(g));v.fill(l);let w=r.data.get(s.dataId).values,S=r.data.get(a.dataId).values;for(let E=0;Et-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return k.clamp(0,n,t-1)}function hde(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return k.clamp(0,n,t-1)}function pde(e,t){return e}function fde(e,t){return k.clamp(0,e,t-1)}function rh(e,t,n,r,s,a,o,i,l,u,c){let d=o*r+i*s+l*a+u;return 0<=i&&in.disposeIntermediateTensorInfo(f)),p}var wde={kernelName:uf,backendName:"cpu",kernelFunc:vde},kde=[$oe,Tae,Roe,Foe,Rae,Ooe,zoe,Boe,Voe,Hoe,joe,Koe,Zoe,Qoe,tie,sie,oie,lie,cie,Coe,hie,fie,gie,$ae,Fae,Aie,Nae,bie,wie,Sie,Nie,kie,_ie,Die,Eie,Mie,Pie,Lie,Wie,Uie,Gie,jie,Kie,Zie,Jie,Qie,tle,ele,B5,sle,boe,ole,Mae,fle,Oae,mle,zae,vle,wle,Ile,Bae,Nle,Ele,_le,Dle,Mle,Vae,Hae,Cae,Ple,vie,Lle,Wle,Ule,voe,jae,Kae,Gle,Zae,qle,Zle,Jle,tue,rue,aue,Jae,lue,cue,hue,fue,gue,oue,Aue,bue,eoe,wue,Sue,Eue,noe,soe,Rue,Mue,zue,ooe,Bue,Vue,Uue,qN,que,koe,uoe,Xue,Eae,Yue,Ioe,Soe,Noe,Que,tce,rce,ace,ice,lce,cce,doe,hce,fce,Ace,Toe,bce,wce,Ice,hoe,Nue,Nce,Ece,_ce,Dce,Mce,Pce,Lce,Wce,Uce,Hce,foe,jce,Kce,Zce,Jce,ede,Aoe,nle,nde,sde,ode,lde,ioe,cde,Ade,bde,wde,Wue];for(let e of kde)oA(e);var YN={};De(YN,{assertNotComplex:()=>mu,bindCanvasToFramebuffer:()=>Mde,bindColorTextureToFramebuffer:()=>Mm,bindTextureToProgramUniformSampler:()=>hC,bindTextureUnit:()=>uC,bindVertexBufferToProgramAttribute:()=>G5,callAndCheck:()=>Ie,canBeRepresented:()=>JN,createFragmentShader:()=>tC,createFramebuffer:()=>lC,createProgram:()=>nC,createStaticIndexBuffer:()=>aC,createStaticVertexBuffer:()=>sC,createTexture:()=>oC,createVertexShader:()=>eC,getBatchDim:()=>gi,getExtensionOrThrow:()=>ih,getFramebufferErrorMessage:()=>pC,getMaxTexturesInShader:()=>yC,getNumChannels:()=>Dde,getProgramUniformLocation:()=>dC,getProgramUniformLocationOrThrow:()=>cC,getRowsCols:()=>yi,getShapeAs3D:()=>Om,getTextureShapeFromLogicalShape:()=>mC,getWebGLDisjointQueryTimerVersion:()=>AC,getWebGLErrorMessage:()=>QN,getWebGLMaxTextureSize:()=>gC,hasExtension:()=>Lr,isCapableOfRenderingToFloatTexture:()=>xC,isDownloadFloatTextureEnabled:()=>bC,isReshapeFree:()=>uh,isWebGLFenceEnabled:()=>vC,isWebGLVersionEnabled:()=>q5,linkProgram:()=>rC,resetMaxTextureSize:()=>Ode,resetMaxTexturesInShader:()=>Pde,unbindColorTextureFromFramebuffer:()=>j5,unbindTextureUnit:()=>Fde,validateFramebuffer:()=>lh,validateProgram:()=>Fm,validateTextureSize:()=>iC});var mi={},U5={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Dm(e,t){mi[e]=t}function Ls(e){if(!(e in mi)){let n=Sde(e);if(n!==null)mi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=mi[e];return t.isContextLost()?(delete mi[e],Ls(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),mi[e])}function Ide(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Sde(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=Ide(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete mi[e]},!1),e===1?t.getContext("webgl",U5)||t.getContext("experimental-webgl",U5):t.getContext("webgl2",U5)}var sh;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(sh||(sh={}));var zr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(zr||(zr={}));var Tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Tn||(Tn={}));function ah(e,t){return[t,e]}function Tde(e,t){return e*t}function oh(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function fu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Nde(e,t){let[n,r]=fu(e,t);return n*r*4}function H5(e,t){let n=e,r,s,a,o,i,l,u,c,d,h;return ae().getNumber("WEBGL_VERSION")===2?(r=n.R32F,s=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,h=n.FLOAT):(r=e.RGBA,s=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:s,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:h}}function Ie(e,t){let n=t();return ae().getBool("DEBUG")&&Cde(e),n}function Cde(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+QN(e,t))}var Ede=596e-10,$de=65504;function JN(e){return!!(ae().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Edee.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function eC(e,t){let n=ya(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function tC(e,t){let n=ya(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Rde(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var _de=/ERROR: [0-9]+:([0-9]+):/g;function Rde(e,t){let n=_de.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],s=e.split(` + ${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,l=n.data.get(a.dataId).values,[u,c]=k5(o,r.shape,r.dtype,i,l);return n.makeTensorInfo(c,r.dtype,u)}var Yce={kernelName:q1,backendName:"cpu",kernelFunc:Zce};function Jce(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=_.calculateShapes(a,s,i),p=!1,f=n.bufferSync(s),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],y=DN(f,m,i,h,c,u,l,d,g,p);return n.makeTensorInfo(i,y.dtype,y.values)}var Qce={kernelName:K1,backendName:"cpu",kernelFunc:Jce};function ede(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=k.parseAxisParam(o,s.shape)[0],l=_.prepareSplitSize(s,a,i),u=new Array(s.shape.length).fill(0),c=s.shape.slice();return l.map(d=>{let h=[...c];h[i]=d;let p=hi({inputs:{x:s},backend:n,attrs:{begin:u,size:h}});return u[i]+=d,p})}var tde={kernelName:id,backendName:"cpu",kernelFunc:ede},nde=At(Dl,e=>Math.sqrt(e)),rde={kernelName:Dl,backendName:"cpu",kernelFunc:nde},sde={kernelName:af,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;Ne(n,"square");let s=r.data.get(n.dataId).values,a=new Float32Array(s.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),ode={kernelName:Bo,backendName:"cpu",kernelFunc:ade};function ide(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=r;Ne(s,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=Cn.sliceInfo(s.shape,a,o,i,l,u,c,d,h),x=_t({inputs:{x:s},backend:n,attrs:{shape:y}}),b;if(p){let I=hi({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=_t({inputs:{x:I},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(I)}else if(A.some(I=>I===0))b=n.makeTensorInfo(A,s.dtype,[]);else{let I=n.bufferSync(x),w=iN(A,I,m,f);b=n.makeTensorInfo(w.shape,w.dtype,w.values)}let v=_t({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var lde={kernelName:ld,backendName:"cpu",kernelFunc:ide};function ude(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=r,{data:c,dataSplits:d}=t,h=n.data.get(c.dataId).values,p=n.data.get(d.dataId).values,[f,m]=lN(h,p,s,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var cde={kernelName:X1,backendName:"cpu",kernelFunc:ude};function dde(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=uN(i,l,s),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var hde={kernelName:Z1,backendName:"cpu",kernelFunc:dde};function pde(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=cN(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var fde={kernelName:Y1,backendName:"cpu",kernelFunc:pde},mde=At(Ol,e=>Math.tan(e)),gde={kernelName:Ol,backendName:"cpu",kernelFunc:mde},yde=At(Pl,e=>Math.tanh(e)),Ade={kernelName:Pl,backendName:"cpu",kernelFunc:yde};function xde(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;Ne(s,"tile");let o=hN(n.bufferSync(s),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var bde={kernelName:Lo,backendName:"cpu",kernelFunc:xde};function vde(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r;Ne(s,"topk");let i=n.data.get(s.dataId).values,[l,u]=fN(i,s.shape,s.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var wde={kernelName:ud,backendName:"cpu",kernelFunc:vde};function kde(e){let{inputs:t,attrs:n,backend:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,h,p]=s.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],y=k.computeStrides(s.shape),A=y[0],x=y[1],b=y[2],v=k.getTypedArrayFromDType(s.dtype,k.sizeFromShape(g));v.fill(l);let I=r.data.get(s.dataId).values,w=r.data.get(a.dataId).values;for(let E=0;Et-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return k.clamp(0,n,t-1)}function Tde(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return k.clamp(0,n,t-1)}function Nde(e,t){return e}function Cde(e,t){return k.clamp(0,e,t-1)}function eh(e,t,n,r,s,a,o,i,l,u,c){let d=o*r+i*s+l*a+u;return 0<=i&&in.disposeIntermediateTensorInfo(f)),p}var Ode={kernelName:of,backendName:"cpu",kernelFunc:Mde},Pde=[Hoe,Bae,joe,Koe,jae,Zoe,Joe,eie,nie,sie,oie,lie,cie,pie,mie,Aie,bie,wie,Iie,Voe,Tie,Cie,$ie,Hae,Kae,_ie,Wae,Fie,Oie,Lie,Wie,Pie,Gie,qie,Uie,Xie,Yie,Qie,tle,rle,ale,ole,lle,cle,hle,ple,mle,fle,C5,Ale,Foe,ble,Xae,Cle,Zae,Ele,Jae,Mle,Ole,zle,eoe,Wle,Ule,Gle,qle,Xle,noe,soe,Vae,Yle,Mie,Qle,tue,rue,Moe,ooe,loe,aue,coe,iue,cue,hue,mue,yue,xue,hoe,wue,Iue,Tue,Cue,$ue,bue,_ue,Fue,foe,Oue,Lue,Uue,goe,Aoe,jue,Xue,Jue,boe,ece,nce,rce,_N,ice,Poe,koe,uce,Uae,dce,zoe,Loe,Woe,pce,mce,yce,xce,vce,wce,Ice,Soe,Tce,Cce,_ce,Boe,Fce,Oce,zce,Toe,Wue,Wce,Uce,Gce,qce,Xce,Yce,Qce,tde,rde,sde,Coe,ode,lde,cde,hde,fde,_oe,gle,gde,Ade,bde,wde,voe,Ide,_de,Fde,Ode,tce];for(let e of Pde)ny(e);var ON={};_e(ON,{assertNotComplex:()=>hu,bindCanvasToFramebuffer:()=>Xde,bindColorTextureToFramebuffer:()=>Em,bindTextureToProgramUniformSampler:()=>YN,bindTextureUnit:()=>KN,bindVertexBufferToProgramAttribute:()=>D5,callAndCheck:()=>Ie,canBeRepresented:()=>PN,createFragmentShader:()=>BN,createFramebuffer:()=>qN,createProgram:()=>WN,createStaticIndexBuffer:()=>HN,createStaticVertexBuffer:()=>UN,createTexture:()=>GN,createVertexShader:()=>LN,getBatchDim:()=>fi,getExtensionOrThrow:()=>sh,getFramebufferErrorMessage:()=>JN,getMaxTexturesInShader:()=>nC,getNumChannels:()=>qde,getProgramUniformLocation:()=>ZN,getProgramUniformLocationOrThrow:()=>XN,getRowsCols:()=>mi,getShapeAs3D:()=>$m,getTextureShapeFromLogicalShape:()=>eC,getWebGLDisjointQueryTimerVersion:()=>rC,getWebGLErrorMessage:()=>zN,getWebGLMaxTextureSize:()=>tC,hasExtension:()=>Mr,isCapableOfRenderingToFloatTexture:()=>sC,isDownloadFloatTextureEnabled:()=>aC,isReshapeFree:()=>oh,isWebGLFenceEnabled:()=>oC,isWebGLVersionEnabled:()=>M5,linkProgram:()=>VN,resetMaxTextureSize:()=>Zde,resetMaxTexturesInShader:()=>Yde,unbindColorTextureFromFramebuffer:()=>F5,unbindTextureUnit:()=>Kde,validateFramebuffer:()=>ah,validateProgram:()=>Cm,validateTextureSize:()=>jN});var pi={},R5={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Nm(e,t){pi[e]=t}function Bs(e){if(!(e in pi)){let n=Lde(e);if(n!==null)pi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=pi[e];return t.isContextLost()?(delete pi[e],Bs(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),pi[e])}function zde(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Lde(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=zde(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete pi[e]},!1),e===1?t.getContext("webgl",R5)||t.getContext("experimental-webgl",R5):t.getContext("webgl2",R5)}var th;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(th||(th={}));var Fr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Fr||(Fr={}));var Sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Sn||(Sn={}));function nh(e,t){return[t,e]}function Bde(e,t){return e*t}function rh(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function du(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Wde(e,t){let[n,r]=du(e,t);return n*r*4}function _5(e,t){let n=e,r,s,a,o,i,l,u,c,d,h;return re().getNumber("WEBGL_VERSION")===2?(r=n.R32F,s=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,h=n.FLOAT):(r=e.RGBA,s=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,h=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:s,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:h}}function Ie(e,t){let n=t();return re().getBool("DEBUG")&&Vde(e),n}function Vde(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+zN(e,t))}var Ude=596e-10,Hde=65504;function PN(e){return!!(re().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Udee.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function LN(e,t){let n=Aa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function BN(e,t){let n=Aa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw jde(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Gde=/ERROR: [0-9]+:([0-9]+):/g;function jde(e,t){let n=Gde.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],s=e.split(` `),a=s.length.toString().length+2,o=s.map((d,h)=>k.rightPad((h+1).toString(),a)+d),i=0;for(let d=0;de.createProgram(),"Unable to create WebGLProgram.")}function rC(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Fm(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function sC(e,t){let n=ya(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function aC(e,t){let n=ya(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Dde(){return ae().getNumber("WEBGL_VERSION")===2?1:4}function oC(e){return ya(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function iC(e,t){let n=ae().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,s=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+s+".")}}function lC(e){return ya(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function G5(e,t,n,r,s,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),Ie(e,()=>e.vertexAttribPointer(i,s,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function uC(e,t,n){fC(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Fde(e,t){fC(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function cC(e,t,n){return ya(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function dC(e,t,n){return e.getUniformLocation(t,n)}function hC(e,t,n,r){Ie(e,()=>uC(e,t,r)),Ie(e,()=>e.uniform1i(n,r))}function Mde(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Mm(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function j5(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function lh(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+pC(e,t))}function pC(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ya(e,t,n){let r=Ie(e,()=>t());if(r==null)throw new Error(n);return r}function fC(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let s=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${s}.`)}}function gi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function yi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Om(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[gi(e),...yi(e)]),t}function mC(e,t=!1){let n=ae().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((s,a)=>a>=e.length-2?k.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let s=gi(e),a=2,o=2;return e.length&&([a,o]=yi(e)),r=s*(a/2)*(o/2),k.sizeToSquarishShape(r).map(i=>i*2)}return k.sizeToSquarishShape(r)}function Pm(e){return e%2==0}function uh(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Pm(n)&&Pm(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Pm(e[0])&&Pm(t[0])}var zm,Lm;function gC(e){if(zm==null){let t=Ls(e);zm=t.getParameter(t.MAX_TEXTURE_SIZE)}return zm}function Ode(){zm=null}function Pde(){Lm=null}function yC(e){if(Lm==null){let t=Ls(e);Lm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Lm)}function AC(e){if(e===0)return 0;let t,n=Ls(e);return Lr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Lr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Lr(e,t){return e.getExtension(t)!=null}function q5(e){try{if(Ls(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function xC(e){if(e===0)return!1;let t=Ls(e);if(e===1){if(!Lr(t,"OES_texture_float"))return!1}else if(!Lr(t,"EXT_color_buffer_float"))return!1;return K5(t)}function bC(e){if(e===0)return!1;let t=Ls(e);if(e===1){if(!Lr(t,"OES_texture_float")||!Lr(t,"WEBGL_color_buffer_float"))return!1}else{if(Lr(t,"EXT_color_buffer_float"))return K5(t);let r="EXT_color_buffer_half_float";if(Lr(t,r)){let s=t.getExtension(r);return zde(t,s)}return!1}return K5(t)}function K5(e){let t=H5(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,s,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function zde(e,t){let n=H5(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let s=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,s,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(o),i}function vC(e){return e!==2?!1:Ls(e).fenceSync!=null}function mu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Pe=ae();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>q5(2)?2:q5(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>gC(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>yC(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Pe.getNumber("WEBGL_VERSION");return e===0?0:AC(e)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!yf.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>xC(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>bC(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>vC(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>yf.isMobile()&&Pe.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Pe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);function Wn(){let e,t,n,r,s,a,o,i,l,u;return ae().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",s="texture",a="outputColor",o="out vec4 outputColor;",i=` +`))}function WN(e){return Aa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function VN(e,t){if(Ie(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Cm(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function UN(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function HN(e,t){let n=Aa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function qde(){return re().getNumber("WEBGL_VERSION")===2?1:4}function GN(e){return Aa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function jN(e,t){let n=re().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,s=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+s+".")}}function qN(e){return Aa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function D5(e,t,n,r,s,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),Ie(e,()=>e.vertexAttribPointer(i,s,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function KN(e,t,n){QN(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Kde(e,t){QN(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function XN(e,t,n){return Aa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function ZN(e,t,n){return e.getUniformLocation(t,n)}function YN(e,t,n,r){Ie(e,()=>KN(e,t,r)),Ie(e,()=>e.uniform1i(n,r))}function Xde(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Em(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function F5(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ah(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+JN(e,t))}function JN(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Aa(e,t,n){let r=Ie(e,()=>t());if(r==null)throw new Error(n);return r}function QN(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let s=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${s}.`)}}function fi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function mi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function $m(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[fi(e),...mi(e)]),t}function eC(e,t=!1){let n=re().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((s,a)=>a>=e.length-2?k.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let s=fi(e),a=2,o=2;return e.length&&([a,o]=mi(e)),r=s*(a/2)*(o/2),k.sizeToSquarishShape(r).map(i=>i*2)}return k.sizeToSquarishShape(r)}function Rm(e){return e%2==0}function oh(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Rm(n)&&Rm(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Rm(e[0])&&Rm(t[0])}var _m,Dm;function tC(e){if(_m==null){let t=Bs(e);_m=t.getParameter(t.MAX_TEXTURE_SIZE)}return _m}function Zde(){_m=null}function Yde(){Dm=null}function nC(e){if(Dm==null){let t=Bs(e);Dm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Dm)}function rC(e){if(e===0)return 0;let t,n=Bs(e);return Mr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Mr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Mr(e,t){return e.getExtension(t)!=null}function M5(e){try{if(Bs(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function sC(e){if(e===0)return!1;let t=Bs(e);if(e===1){if(!Mr(t,"OES_texture_float"))return!1}else if(!Mr(t,"EXT_color_buffer_float"))return!1;return O5(t)}function aC(e){if(e===0)return!1;let t=Bs(e);if(e===1){if(!Mr(t,"OES_texture_float")||!Mr(t,"WEBGL_color_buffer_float"))return!1}else{if(Mr(t,"EXT_color_buffer_float"))return O5(t);let r="EXT_color_buffer_half_float";if(Mr(t,r)){let s=t.getExtension(r);return Jde(t,s)}return!1}return O5(t)}function O5(e){let t=_5(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,s,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function Jde(e,t){let n=_5(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let s=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,s,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(o),i}function oC(e){return e!==2?!1:Bs(e).fenceSync!=null}function hu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=re();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>M5(2)?2:M5(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>tC(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>nC(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:rC(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!mf.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>sC(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>aC(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>oC(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Fe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>mf.isMobile()&&Fe.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Fe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Fe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Fe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Fe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Wn(){let e,t,n,r,s,a,o,i,l,u;return re().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",s="texture",a="outputColor",o="out vec4 outputColor;",i=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } @@ -121,11 +121,11 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } - `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:s,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Ai(e,t,n="index"){let r=k.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / ${s}`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${s}`:`index -= ${e[a]} * ${s}`;return`${o}; ${i};`}).join("")}function X5(e){let t=k.computeStrides(e).map(n=>n.toString());return` + `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:s,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function gi(e,t,n="index"){let r=k.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / ${s}`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${s}`:`index -= ${e[a]} * ${s}`;return`${o}; ${i};`}).join("")}function iC(e,t,n="index"){let r=k.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function P5(e){let t=k.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } -`}var wC=` +`}var lC=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; @@ -164,9 +164,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return c / 255.0; } -`,Lde=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=sh.DENSE;let t=oh(e),n=Wn();this.outputShape=e,this.userCode=` +`,Qde=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=th.DENSE;let t=rh(e),n=Wn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Ai(["r","c","d"],e)} + ${gi(["r","c","d"],e)} return ivec3(r, c, d); } @@ -185,9 +185,9 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},Bde=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=sh.DENSE;let t=oh(e),n=Wn();this.outputShape=e,this.userCode=` + `}},ehe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=th.DENSE;let t=rh(e),n=Wn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { - ${Ai(["r","c","d"],e)} + ${gi(["r","c","d"],e)} return ivec3(r, c, d); } @@ -206,23 +206,23 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${n.output} = result; } - `}},Wde=class{constructor(e){this.variableNames=["A"],this.outTexUsage=zr.DOWNLOAD;let t=Wn();this.outputShape=e,this.userCode=` - ${wC} + `}},the=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Fr.DOWNLOAD;let t=Wn();this.outputShape=e,this.userCode=` + ${lC} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } - `}},Vde=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=zr.DOWNLOAD;let t=Wn();this.outputShape=e,this.userCode=` - ${wC} + `}},nhe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Fr.DOWNLOAD;let t=Wn();this.outputShape=e,this.userCode=` + ${lC} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } - `}},Ude=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=Wn(),[s,a]=t;this.outputShape=e;let o="result";n&&(o="floor(result * 255. + 0.5)"),this.userCode=` - ${X5(e)} + `}},rhe=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=Wn(),[s,a]=t;this.outputShape=e;let o="result";n&&(o="floor(result * 255. + 0.5)"),this.userCode=` + ${P5(e)} void main() { ivec3 coords = getOutputCoords(); @@ -251,7 +251,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = vec4(${o}, 0., 0., 0.); } - `}},Hde=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=Wn(),[s,a]=t;this.outputShape=e;let o="",i="result";n&&(i="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;o+=` + `}},she=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=Wn(),[s,a]=t;this.outputShape=e;let o="",i="result";n&&(i="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;o+=` localCoords = coords; if(localCoords[2] + ${u} < ${e[2]}) { localCoords[2] += ${u}; @@ -280,7 +280,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee } } `}this.userCode=` - ${X5(e)} + ${P5(e)} void main() { ivec3 coords = getOutputCoords(); @@ -295,7 +295,7 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee ${r.output} = ${i}; } - `}},kC={};De(kC,{bindVertexProgramAttributeStreams:()=>RC,createBufferFromOutputTexture:()=>MC,createFloat16MatrixTexture:()=>CC,createFloat16PackedMatrixTexture:()=>_C,createFloat32MatrixTexture:()=>NC,createIndexBuffer:()=>TC,createPackedMatrixTexture:()=>$C,createUnsignedBytesMatrixTexture:()=>EC,createVertexBuffer:()=>SC,createVertexShader:()=>IC,downloadByteEncodedFloatMatrixFromOutputTexture:()=>PC,downloadFloat32MatrixFromBuffer:()=>OC,downloadMatrixFromPackedOutputTexture:()=>LC,downloadPackedMatrixFromBuffer:()=>zC,getInternalFormatForFloat16MatrixTexture:()=>Y5,getInternalFormatForFloat16PackedMatrixTexture:()=>eb,getInternalFormatForFloat32MatrixTexture:()=>Z5,getInternalFormatForPackedMatrixTexture:()=>Q5,getInternalFormatForUnsignedBytesMatrixTexture:()=>J5,uploadDenseMatrixToTexture:()=>DC,uploadPixelDataToTexture:()=>FC});function IC(e){let t=Wn(),n=`${t.version} + `}},uC={};_e(uC,{bindVertexProgramAttributeStreams:()=>AC,createBufferFromOutputTexture:()=>vC,createFloat16MatrixTexture:()=>fC,createFloat16PackedMatrixTexture:()=>yC,createFloat32MatrixTexture:()=>pC,createIndexBuffer:()=>hC,createPackedMatrixTexture:()=>gC,createUnsignedBytesMatrixTexture:()=>mC,createVertexBuffer:()=>dC,createVertexShader:()=>cC,downloadByteEncodedFloatMatrixFromOutputTexture:()=>kC,downloadFloat32MatrixFromBuffer:()=>wC,downloadMatrixFromPackedOutputTexture:()=>SC,downloadPackedMatrixFromBuffer:()=>IC,getInternalFormatForFloat16MatrixTexture:()=>L5,getInternalFormatForFloat16PackedMatrixTexture:()=>V5,getInternalFormatForFloat32MatrixTexture:()=>z5,getInternalFormatForPackedMatrixTexture:()=>W5,getInternalFormatForUnsignedBytesMatrixTexture:()=>B5,uploadDenseMatrixToTexture:()=>xC,uploadPixelDataToTexture:()=>bC});function cC(e){let t=Wn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; @@ -304,22 +304,22 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; - }`;return eC(e,n)}function SC(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return sC(e,t)}function TC(e){let t=new Uint16Array([0,1,2,2,1,3]);return aC(e,t)}function ch(e,t,n,r,s,a){iC(t,n);let o=oC(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(i,0,r,t,n,0,s,a,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function Z5(e){return e.internalFormatFloat}function NC(e,t,n,r){let[s,a]=ah(t,n);return ch(e,s,a,Z5(r),r.textureFormatFloat,e.FLOAT)}function Y5(e){return e.internalFormatHalfFloat}function CC(e,t,n,r){let[s,a]=ah(t,n);return ch(e,s,a,Y5(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function J5(e){return e.downloadTextureFormat}function EC(e,t,n,r){let[s,a]=ah(t,n);return ch(e,s,a,J5(r),e.RGBA,e.UNSIGNED_BYTE)}function Q5(e){return e.internalFormatPackedFloat}function $C(e,t,n,r){let[s,a]=fu(t,n);return ch(e,s,a,Q5(r),e.RGBA,e.FLOAT)}function eb(e){return e.internalFormatPackedHalfFloat}function _C(e,t,n,r){let[s,a]=fu(t,n);return ch(e,s,a,eb(r),e.RGBA,r.textureTypeHalfFloat)}function RC(e,t,n){let r=0,s=3*4,a=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),G5(e,t,"clipSpacePos",n,3,a,r)&&G5(e,t,"uv",n,2,a,s)}function DC(e,t,n,r,s,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;s instanceof Uint8Array?(o=new Uint8Array(n*r*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*r*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(s),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function FC(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function MC(e,t,n,r){let s=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,s));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),s}function OC(e,t,n){let r=e,s=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,s),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),s}function PC(e,t,n,r){let[s,a]=ah(t,n),o=4,i=new Uint8Array(Tde(t*n,o));return Ie(e,()=>e.readPixels(0,0,s,a,r.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function zC(e,t,n,r,s,a,o,i){let l=e,u=new Float32Array(Nde(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function LC(e,t,n){let r=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Bm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ae().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Dm(t,e)):this.gl=Ls(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(ae().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=ih(this.gl,s),Lr(this.gl,a))this.textureHalfFloatExtension=ih(this.gl,a);else if(ae().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Lr(this.gl,r))this.colorBufferHalfFloatExtension=ih(this.gl,r);else if(ae().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Lr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Lr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=SC(this.gl),this.indexBuffer=TC(this.gl),this.framebuffer=lC(this.gl),this.textureConfig=H5(this.gl,this.textureHalfFloatExtension)}get debug(){return ae().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),NC(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),CC(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),EC(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),FC(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),DC(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),_C(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),$C(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(j5(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>PC(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,s,a){return zC(this.gl,e,t,n,r,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return OC(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=MC(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ae().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,s=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=r.clientWaitSync(s,0,0);return a===r.ALREADY_SIGNALED||a===r.CONDITION_SATISFIED},t=s}else ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>LC(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=tC(t,e);this.vertexShader==null&&(this.vertexShader=IC(t));let r=nC(t);return Ie(t,()=>t.attachShader(r,this.vertexShader)),Ie(t,()=>t.attachShader(r,n)),rC(t,r),this.debug&&Fm(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=RC(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Fm(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?cC(this.gl,e,t):dC(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),hC(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,s]=fu(t,n);this.setOutputMatrixTextureDriver(e,r,s)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Fm(this.gl,this.program),lh(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=ih(this.gl,ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Gde(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Mm(this.gl,e,this.framebuffer),this.debug&&lh(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Mm(this.gl,this.outputTexture,this.framebuffer),this.debug&&lh(this.gl)):j5(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Mm(r,e,this.framebuffer),this.debug&&lh(r),this.outputTexture=e,Ie(r,()=>r.viewport(0,0,t,n)),Ie(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Gde(e){let t=0;for(;t{let m=k.sizeFromShape(f.shapeInfo.logicalShape);f.shapeInfo.isUniform?s.push(`uniform float ${f.name}${m>1?`[${m}]`:""};`):(s.push(`uniform sampler2D ${f.name};`),s.push(`uniform int offset${f.name};`))});let a=s.join(` -`),o=e.map(f=>qde(f,t,r)).join(` -`),i=t.texShape,l=Wn(),u=Zde(l),c,d,h=Qde(l);return t.isPacked?(c=Kde(t.logicalShape,i),d=Jde(l)):(c=Xde(t.logicalShape,i),d=Yde(l)),r&&(h+=rhe),[h,u,d,a,c,o,n].join(` -`)}function gu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return mhe(e);case 1:return yhe(e);case 2:return xhe(e);case 3:return vhe(e);case 4:return khe(e);case 5:return Ihe(e);case 6:return She(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function WC(e){switch(e.shapeInfo.logicalShape.length){case 0:return fhe(e);case 1:return ghe(e);case 2:return Ahe(e);case 3:return bhe(e);default:return whe(e)}}function qde(e,t,n=!1){let r="";n?r+=WC(e):r+=gu(e);let s=e.shapeInfo.logicalShape,a=t.logicalShape;return s.length<=a.length&&(n?r+=The(e,t):r+=Nhe(e,t)),r}function Kde(e,t){switch(e.length){case 0:return VC();case 1:return she(e,t);case 2:return hhe(e,t);case 3:return ohe(e,t);default:return lhe(e,t)}}function Xde(e,t){switch(e.length){case 0:return VC();case 1:return ahe(e,t);case 2:return phe(e,t);case 3:return ihe(e,t);case 4:return uhe(e,t);case 5:return che(e,t);case 6:return dhe(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Zde(e){return` + }`;return LN(e,n)}function dC(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return UN(e,t)}function hC(e){let t=new Uint16Array([0,1,2,2,1,3]);return HN(e,t)}function ih(e,t,n,r,s,a){jN(t,n);let o=GN(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ie(e,()=>e.texImage2D(i,0,r,t,n,0,s,a,null)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function z5(e){return e.internalFormatFloat}function pC(e,t,n,r){let[s,a]=nh(t,n);return ih(e,s,a,z5(r),r.textureFormatFloat,e.FLOAT)}function L5(e){return e.internalFormatHalfFloat}function fC(e,t,n,r){let[s,a]=nh(t,n);return ih(e,s,a,L5(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function B5(e){return e.downloadTextureFormat}function mC(e,t,n,r){let[s,a]=nh(t,n);return ih(e,s,a,B5(r),e.RGBA,e.UNSIGNED_BYTE)}function W5(e){return e.internalFormatPackedFloat}function gC(e,t,n,r){let[s,a]=du(t,n);return ih(e,s,a,W5(r),e.RGBA,e.FLOAT)}function V5(e){return e.internalFormatPackedHalfFloat}function yC(e,t,n,r){let[s,a]=du(t,n);return ih(e,s,a,V5(r),e.RGBA,r.textureTypeHalfFloat)}function AC(e,t,n){let r=0,s=3*4,a=3*4+2*4;return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),D5(e,t,"clipSpacePos",n,3,a,r)&&D5(e,t,"uv",n,2,a,s)}function xC(e,t,n,r,s,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;s instanceof Uint8Array?(o=new Uint8Array(n*r*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*r*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(s),Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function bC(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function vC(e,t,n,r){let s=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,s));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),s}function wC(e,t,n){let r=e,s=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,s),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),s}function kC(e,t,n,r){let[s,a]=nh(t,n),o=4,i=new Uint8Array(Bde(t*n,o));return Ie(e,()=>e.readPixels(0,0,s,a,r.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function IC(e,t,n,r,s,a,o,i){let l=e,u=new Float32Array(Wde(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function SC(e,t,n){let r=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Fm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=re().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Nm(t,e)):this.gl=Bs(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(re().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=sh(this.gl,s),Mr(this.gl,a))this.textureHalfFloatExtension=sh(this.gl,a);else if(re().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Mr(this.gl,r))this.colorBufferHalfFloatExtension=sh(this.gl,r);else if(re().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Mr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Mr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=dC(this.gl),this.indexBuffer=hC(this.gl),this.framebuffer=qN(this.gl),this.textureConfig=_5(this.gl,this.textureHalfFloatExtension)}get debug(){return re().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),pC(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),fC(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),mC(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),bC(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),xC(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),yC(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),gC(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(F5(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>kC(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,s,a){return IC(this.gl,e,t,n,r,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return wC(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=vC(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(re().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,s=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=r.clientWaitSync(s,0,0);return a===r.ALREADY_SIGNALED||a===r.CONDITION_SATISFIED},t=s}else re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>SC(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=BN(t,e);this.vertexShader==null&&(this.vertexShader=cC(t));let r=WN(t);return Ie(t,()=>t.attachShader(r,this.vertexShader)),Ie(t,()=>t.attachShader(r,n)),VN(t,r),this.debug&&Cm(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=AC(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Cm(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?XN(this.gl,e,t):ZN(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),YN(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,s]=du(t,n);this.setOutputMatrixTextureDriver(e,r,s)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Cm(this.gl,this.program),ah(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=sh(this.gl,re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=ahe(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Em(this.gl,e,this.framebuffer),this.debug&&ah(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Em(this.gl,this.outputTexture,this.framebuffer),this.debug&&ah(this.gl)):F5(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Em(r,e,this.framebuffer),this.debug&&ah(r),this.outputTexture=e,Ie(r,()=>r.viewport(0,0,t,n)),Ie(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function ahe(e){let t=0;for(;t{let f=k.sizeFromShape(p.shapeInfo.logicalShape);if(p.shapeInfo.isUniform?r.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(r.push(`uniform sampler2D ${p.name};`),r.push(`uniform int offset${p.name};`)),n.enableShapeUniforms){let{uniformShape:m}=U5(n.packedInputs,p.shapeInfo.logicalShape,p.shapeInfo.texShape);switch(m.length){case 1:r.push(`uniform int ${p.name}Shape;`);break;case 2:r.push(`uniform ivec2 ${p.name}Shape;`);break;case 3:r.push(`uniform ivec3 ${p.name}Shape;`);break;case 4:r.push(`uniform ivec4 ${p.name}Shape;`);break;default:break}r.push(`uniform ivec2 ${p.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:r.push("uniform int outShape;");break;case 2:r.push("uniform ivec2 outShape;"),r.push("uniform int outShapeStrides;");break;case 3:r.push("uniform ivec3 outShape;"),r.push("uniform ivec2 outShapeStrides;");break;case 4:r.push("uniform ivec4 outShape;"),r.push("uniform ivec3 outShapeStrides;");break;default:break}r.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(p=>{r.push(`uniform ${p.type} ${p.name}${p.arrayIndex?`[${p.arrayIndex}]`:""};`)});let s=r.join(` +`),a=e.map(p=>ihe(p,t,n.packedInputs,n.enableShapeUniforms)).join(` +`),o=t.texShape,i=Wn(),l=che(i),u,c,d=phe(i);return t.isPacked?(u=lhe(t.logicalShape,o,n.enableShapeUniforms),c=hhe(i)):(u=uhe(t.logicalShape,o,n.enableShapeUniforms),c=dhe(i)),n.packedInputs&&(d+=yhe),[d,l,c,s,u,a,n.userCode].join(` +`)}function pu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Ehe(e,t);case 1:return Rhe(e,t);case 2:return Dhe(e,t);case 3:return Mhe(e,t);case 4:return Phe(e,t);case 5:return zhe(e);case 6:return Lhe(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function NC(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Che(e);case 1:return $he(e,t);case 2:return _he(e,t);case 3:return Fhe(e,t);default:return Ohe(e,t)}}function ihe(e,t,n=!1,r){let s="";n?s+=NC(e,r):s+=pu(e,r);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?s+=Bhe(e,t):s+=Whe(e,t)),s}function lhe(e,t,n){switch(e.length){case 0:return CC();case 1:return Ahe(e,t,n);case 2:return The(e,t,n);case 3:return bhe(e,t,n);default:return whe(e,t,n)}}function uhe(e,t,n){switch(e.length){case 0:return CC();case 1:return xhe(e,t,n);case 2:return Nhe(e,t,n);case 3:return vhe(e,t,n);case 4:return khe(e,t,n);case 5:return Ihe(e,t);case 6:return She(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function che(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } - `}function Yde(e){return` + `}function dhe(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } - `}function Jde(e){return` + `}function hhe(e){return` void setOutput(vec4 val) { ${e.output} = val; } - `}function Qde(e){return`${e.version} + `}function phe(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; @@ -374,10 +374,10 @@ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To spee return fract((p3.x + p3.y) * p3.z); } - ${ehe} - ${the} - ${nhe} - `}var ehe=` + ${fhe} + ${mhe} + ${ghe} + `}var fhe=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; @@ -389,7 +389,7 @@ vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,the=` +`,mhe=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); @@ -397,7 +397,7 @@ vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,nhe=` +`,ghe=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { @@ -406,7 +406,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } -`,rhe=` +`,yhe=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? @@ -417,88 +417,172 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } -`;function VC(){return` +`;function CC(){return` int getOutputCoords() { return 0; } - `}function she(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` + `}function Ahe(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return r[0]===1?n?` int getOutputCoords() { - return 2 * int(resultUV.x * ${n[1]}.0); - } - `:n[1]===1?` - int getOutputCoords() { - return 2 * int(resultUV.y * ${n[0]}.0); + return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0)); } `:` + int getOutputCoords() { + return 2 * int(resultUV.x * ${r[1]}.0); + } + `:r[1]===1?n?` + int getOutputCoords() { + return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0)); + } + `:` + int getOutputCoords() { + return 2 * int(resultUV.y * ${r[0]}.0); + } + `:n?` + int getOutputCoords() { + ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); + ivec2 resTexRC = ivec2(resultUV.yx * + vec2(packedTexShape[0], packedTexShape[1])); + return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y); + } + `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * - vec2(${n[0]}, ${n[1]})); - return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); + vec2(${r[0]}, ${r[1]})); + return 2 * (resTexRC.x * ${r[1]} + resTexRC.y); } - `}function ahe(e,t){return t[0]===1?` + `}function xhe(e,t,n){return t[0]===1?n?` + int getOutputCoords() { + return int(resultUV.x * float(outTexShape[1])); + } + `:` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } - `:t[1]===1?` + `:t[1]===1?n?` + int getOutputCoords() { + return int(resultUV.y * float(outTexShape[0])); + } + `:` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } - `:` + `:n?` + int getOutputCoords() { + ivec2 resTexRC = ivec2(resultUV.yx * + vec2(outTexShape[0], outTexShape[1])); + return resTexRC.x * outTexShape[1] + resTexRC.y; + } + `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } - `}function ohe(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return` + `}function bhe(e,t,n){if(n)return` ivec3 getOutputCoords() { + ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); + int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0)); + int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * - vec2(${n[0]}, ${n[1]})); - int index = resTexRC.x * ${n[1]} + resTexRC.y; + vec2(packedTexShape[0], packedTexShape[1])); + int index = resTexRC.x * packedTexShape[1] + resTexRC.y; - int b = index / ${s}; - index -= b * ${s}; + int b = index / texelsInBatch; + index -= b * texelsInBatch; - int r = 2 * (index / ${r}); - int c = imod(index, ${r}) * 2; + int r = 2 * (index / texelsInLogicalRow); + int c = imod(index, texelsInLogicalRow) * 2; return ivec3(b, r, c); } - `}function ihe(e,t){let n=Ai(["r","c","d"],e);return` + `;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[2]/2),a=s*Math.ceil(e[1]/2);return` + ivec3 getOutputCoords() { + ivec2 resTexRC = ivec2(resultUV.yx * + vec2(${r[0]}, ${r[1]})); + int index = resTexRC.x * ${r[1]} + resTexRC.y; + + int b = index / ${a}; + index -= b * ${a}; + + int r = 2 * (index / ${s}); + int c = imod(index, ${s}) * 2; + + return ivec3(b, r, c); + } + `}function vhe(e,t,n){if(n)return` + ivec3 getOutputCoords() { + ivec2 resTexRC = ivec2(resultUV.yx * + vec2(outTexShape[0], outTexShape[1])); + int index = resTexRC.x * outTexShape[1] + resTexRC.y; + ${iC(["r","c","d"],e)} + return ivec3(r, c, d); + } +`;let r=gi(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; - ${n} + ${r} return ivec3(r, c, d); } - `}function lhe(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),a=s,o="",i="b, r, c";for(let l=2;l=1?c="coords = 0;":c=i.map(A=>`coords.${d[A+u]} = 0;`).join(` + `}function Bhe(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=TC(e.shapeInfo.logicalShape,t.logicalShape),l=wt(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(A=>`coords.${d[A+u]} = 0;`).join(` `);let h="";o<2&&a>0?h="coords":h=e.shapeInfo.logicalShape.map((A,x)=>`coords.${d[x+u]}`).join(", ");let p="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,y=k.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)p=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!y)o===1?p=` @@ -851,24 +1122,24 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, vec4 outputValue = get${r}(${h}); ${p} } - `}function Nhe(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(o,a))return` + `}function Whe(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(o,a))return` float ${s}() { return sampleTexture(${n}, resultUV); } - `;let u=It(l),c=BC(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,h,p=["x","y","z","w","u","v"];i===0?h="":l<2&&c.length>=1?h="coords = 0;":h=c.map(m=>`coords.${p[m+d]} = 0;`).join(` + `;let u=wt(l),c=TC(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,h,p=["x","y","z","w","u","v"];i===0?h="":l<2&&c.length>=1?h="coords = 0;":h=c.map(m=>`coords.${p[m+d]} = 0;`).join(` `);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${p[g+d]}`).join(", "),` float ${s}() { ${u} coords = getOutputCoords(); ${h} return get${r}(${f}); } - `}function It(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Au(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function xu(e,t){return t.map(n=>e[n]).join(", ")}function Che(e,t,n,r){let s=t.userCode,a=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),o=a.map(p=>p.shapeInfo),i={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=jde(a,i,s,t.packedInputs),u=e.createProgram(l),c=null,d=e.getUniformLocation(u,"NAN",!1);ae().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let h={};for(let p=0;p{let s=n.logicalShape,a=t[r],o=a.shape;if(!k.arraysEqual(s,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${s} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!k.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Ehe(e,t,n,r,s){UC(t.inShapeInfos,n),UC([t.outShapeInfo],[r]);let a=r.texData.texture,o=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),ae().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((i,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],d=t.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(k.sizeFromShape(i.shape)<2)e.gl.uniform1f(c,i.uniformValues[0]);else{let h=i.uniformValues;h instanceof Float32Array||(h=new Float32Array(h)),e.gl.uniform1fv(c,h)}return}i.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,i.texData.slice.flatOffset),e.setInputMatrixTexture(i.texData.texture,c,l)}}),s!=null&&s(e,t.webGLProgram),e.executeProgram()}function $he(e,t,n){let r="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0,l=o.isUniform?"uniform":o.texData.texShape;r+=`${o.shape}_${l}_${i}`});let s=e.userCode,a=e.constructor.name;return a+="_"+r+"_"+s,a}var HC={};De(HC,{addImpl:()=>qC,bincountImpl:()=>Fhe,bincountReduceImpl:()=>Mhe,ceilImpl:()=>KC,concatImpl:()=>XC,equalImpl:()=>ZC,expImpl:()=>YC,expm1Impl:()=>JC,floorImpl:()=>QC,gatherNdImpl:()=>Ohe,gatherV2Impl:()=>Phe,greaterEqualImpl:()=>tE,greaterImpl:()=>eE,lessEqualImpl:()=>rE,lessImpl:()=>nE,linSpaceImpl:()=>zhe,logImpl:()=>sE,maxImpl:()=>Lhe,maximumImpl:()=>aE,minimumImpl:()=>oE,multiplyImpl:()=>sb,negImpl:()=>Whe,notEqualImpl:()=>iE,prodImpl:()=>Uhe,rangeImpl:()=>lE,rsqrtImpl:()=>uE,simpleAbsImpl:()=>_he,sliceImpl:()=>ab,sparseFillEmptyRowsImpl:()=>Hhe,sparseReshapeImpl:()=>Ghe,sparseSegmentReductionImpl:()=>jhe,squaredDifferenceImpl:()=>cE,stridedSliceImpl:()=>qhe,stringNGramsImpl:()=>Xhe,stringSplitImpl:()=>Yhe,stringToHashBucketFastImpl:()=>Jhe,subImpl:()=>dE,tileImpl:()=>epe,topKImpl:()=>tpe,transposeImpl:()=>Vhe,uniqueImpl:()=>npe});function GC(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}function _he(e){let t=new Float32Array(e.length);for(let n=0;n{let o=R.assertAndGetBroadcastShape(t,n),i=o.length,l=k.computeStrides(o),u=k.sizeFromShape(o),c=k.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=R.getBroadcastDims(t,o),g=R.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yx[S]=0);let b=k.locToIndex(x,d,p),v=A.slice(-h);g.forEach(S=>v[S]=0);let w=k.locToIndex(v,h,f);c[y]=e(r[b],s[w])}return[c,o]}}function tb(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}function nb(e,t,n="float32"){if(n==="complex64"){let s=nb(e,t,"float32"),a=nb(e,t,"float32");return tb({inputs:{real:s,imag:a},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function jC(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function Rhe(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}function Wm(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return jC({inputs:{x:s},backend:n});let o=nb(n,s.shape,s.dtype),i=Wm({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),l=tb({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(s.dtype==="complex64"){let o=Rhe({inputs:{input:s},backend:n}),i=Wm({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=jC({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=k.toTypedArray([0],s.dtype),[l,u]=Br((c,d)=>c!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}function Jr(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;GC([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?R.fromUint8ToStringArray(u):u,h=o.dtype==="string"?R.fromUint8ToStringArray(c):c,p=r||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Wm({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=Wm({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[v,w,S]=n(o.shape,i.shape,p,f,x,b),I=l.makeTensorInfo(S,"float32",v),E=l.makeTensorInfo(S,"float32",w),F=tb({inputs:{real:I,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(I),l.disposeIntermediateTensorInfo(E),F}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=r||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function rb(e){return(t,n,r,s,a,o)=>{let i=R.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(i),u=i.length,c=k.computeStrides(i),d=k.getTypedArrayFromDType("float32",l),h=k.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,i),f=R.getBroadcastDims(n,i),m=R.mergeRealAndImagArrays(r,s),g=R.mergeRealAndImagArrays(a,o),y=t.length,A=k.computeStrides(t),x=n.length,b=k.computeStrides(n);if(p.length+f.length===0)for(let v=0;vS[_]=0);let I=k.locToIndex(S,y,A),E=w.slice(-x);f.forEach(_=>E[_]=0);let F=k.locToIndex(E,x,b),$=e(m[I*2],m[I*2+1],g[F*2],g[F*2+1]);d[v]=$.real,h[v]=$.imag}return[d,h,i]}}var qC=Br((e,t)=>e+t),Dhe=rb((e,t,n,r)=>({real:e+n,imag:t+r})),Hwe=Jr(Fa,qC,Dhe);function Fhe(e,t,n,r,s){let a=k.sizeFromShape(r),o=k.makeZerosTypedArray(s,n);for(let i=0;i=s||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function Mhe(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=Le([s,n],t.dtype);for(let i=0;i=n||(r?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function bu(e){return(t,n,r)=>{let s=k.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=r;if(GC(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,s);return i.makeTensorInfo(o.shape,u,c)}}var KC=bu(e=>Math.ceil(e)),Gwe=vu(No,KC);function XC(e,t,n,r){let s=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=k.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?R.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),jwe=Jr(il,ZC,null,"bool"),YC=bu(e=>Math.exp(e)),qwe=vu(Eo,YC),JC=bu(e=>Math.expm1(e)),Kwe=vu(ll,JC),QC=bu(e=>Math.floor(e)),Xwe=vu($o,QC);function Ohe(e,t,n,r,s,a,o,i,l){let u=Le([r,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;pe>t?1:0),Zwe=Jr(dl,eE,null,"bool"),tE=Br((e,t)=>e>=t?1:0),Ywe=Jr(_o,tE,null,"bool"),nE=Br((e,t)=>ee<=t?1:0),Qwe=Jr(ml,rE,null,"bool");function zhe(e,t,n){let r=(t-e)/(n-1),s=k.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;aMath.log(e)),e7e=vu(Ro,sE);function Lhe(e,t,n,r){let s=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let a=0;ai)&&(i=u)}s[a]=i}return s}var aE=Br((e,t)=>Math.max(e,t)),t7e=Jr(Do,aE),oE=Br((e,t)=>Math.min(e,t)),n7e=Jr(Fo,oE),sb=Br((e,t)=>e*t),Bhe=rb((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),r7e=Jr(Mo,sb,Bhe);function Whe(e,t,n){let r=k.createScalarValue(-1,n);return sb([],t,r,e,n)}var iE=Br((e,t)=>e!==t?1:0),s7e=Jr(vl,iE,null,"bool");function Vhe(e,t,n,r,s){let a=t.length,o=k.sizeFromShape(t),i=k.computeStrides(t),l=k.computeStrides(s),u=k.getTypedArrayFromDType(n,k.sizeFromShape(s));for(let c=0;c1;if(s||a||o)return k.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(i,r);t1/Math.sqrt(e)),a7e=vu(Oo,uE);function ab(e,t,n,r,s){let a=En.isSliceContinous(r,t,n),o=k.sizeFromShape(n),i=k.computeStrides(r);if(a){let d=En.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=s==="string"?R.fromUint8ToStringArray(e):e,u=Le(r,s,l),c=Le(n,s);for(let d=0;df+t[m]);c.set(u.get(...p),...h)}return s==="string"?R.fromStringArrayToUint8(c.values):c.values}function Hhe(e,t,n,r,s,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but - indices.shape[0] = ${i}`);let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(s,0);return[g,[0,d],y,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++f[y],h=h&&y>=p,p=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&h){let g=e,y=r;for(let A=0;A0){p[h-1]=1;for(let g=h-2;g>=0;--g)p[g]=p[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=k.getArrayFromDType(n,o*i);for(let g=0;g0?s[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=k.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,y=0,A=s[m];for(;;){let x=0;if(g=x)throw new Error("segment ids are not increasing")}if(A<0||A>=d)throw new Error(`Segment id ${A} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);A>y&&f.fill(o,y*u,A*u);for(let b=m;b=l[0])throw new Error(`Bad: indices[${b}] == ${r[b]} out of range [0, ${l[0]})`);for(let w=0;wi)break}return y{let n=e-t;return n*n}),o7e=Jr(Po,cE);function qhe(e,t,n,r){let s=Le(e,t.dtype);for(let a=0;a0?0:o-i),h=0;h+=l*this.leftPad.length;for(let y=0;yy.forEach(A=>f[m++]=A);for(let y=0;y0){g(e[d+c-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=k.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let l=0;l<=s;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[s]);for(let i=0;i{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function Xhe(e,t,n,r,s,a,o,i){return new Khe(n,r,s,a,o,i).compute(e,t)}function Zhe(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;oe-t),Qhe=rb((e,t,n,r)=>({real:e-n,imag:t-r})),i7e=Jr(zo,dE,Qhe);function epe(e,t){let n=new Array(e.rank);for(let s=0;sx.value-A.value);let m=d*r,g=l.subarray(m,m+r),y=u.subarray(m,m+r);for(let A=0;A{for(let g=0;g`${e}.${n}`)}function Vn(e,t){return t===1?[e]:mE(e,t)}function Lpe(e,t){if(e===1)return"rc";let n="";for(let r=0;r1&&!k.arraysEqual(t,n)&&r.lengthe[n]).join(", ")}function Vhe(e,t,n,r){let s=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=s.map(x=>x.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},i=ohe(s,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);re().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,h={},p={},f={};for(let x=0;x{A[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:h,customUniformLocations:A,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:p,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:y,outTexShapeLocation:g}}function EC(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let s=n.logicalShape,a=t[r],o=a.shape;if(!k.arraysEqual(s,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${s} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!k.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Uhe(e,t,n,r,s){t.program.enableShapeUniforms||(EC(t.inShapeInfos,n),EC([t.outShapeInfo],[r]));let a=r.texData.texture,o=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),re().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`],p=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(p){let{uniformShape:m}=U5(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(p,new Int32Array(m));break;case 2:e.gl.uniform2iv(p,new Int32Array(m));break;case 3:e.gl.uniform3iv(p,new Int32Array(m));break;case 4:e.gl.uniform4iv(p,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(k.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(r.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(r.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(r.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(r.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(r.shape));break;default:break}if(t.outShapeStridesLocation){let l=k.computeStrides(r.shape);switch(r.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,r.texData.texShape[0],r.texData.texShape[1]),t.program.customUniforms&&s&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=s[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Hhe(e,t,n){let r="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c}=U5(e.packedInputs,o.shape,l),d="",h="",p="";if(c.length===1&&e.packedInputs){let b=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${b[0]>1}_${b[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let b=k.computeStrides(c);p=`${b[0]===l[1]}_${b[b.length-1]===l[1]}`}let f=o.shape.length,m=f===2&&k.arraysEqual(o.shape,l),g=k.sizeFromShape(o.shape)===1,y=_.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&f===n.shape.length&&k.arraysEqual(l,n.texData.texShape),x=e.packedInputs||f>2?"":`${l[0]>1}_${l[1]>1}`;r+=`${f}_${A}_${u}_${c.length}_${g}_${y}_${m}_${d}_${h}_${p}_${x}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;r+=`${o.shape}_${l}_${i}`}});let s=e.userCode,a=e.constructor.name;return a+="_"+r+"_"+s+`${re().getNumber("WEBGL_VERSION")}`,a}function Mm(e){return re().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var $C={};_e($C,{addImpl:()=>DC,bincountImpl:()=>Khe,bincountReduceImpl:()=>Xhe,ceilImpl:()=>FC,concatImpl:()=>MC,equalImpl:()=>OC,expImpl:()=>PC,expm1Impl:()=>zC,floorImpl:()=>LC,gatherNdImpl:()=>Zhe,gatherV2Impl:()=>Yhe,greaterEqualImpl:()=>WC,greaterImpl:()=>BC,lessEqualImpl:()=>UC,lessImpl:()=>VC,linSpaceImpl:()=>Jhe,logImpl:()=>HC,maxImpl:()=>Qhe,maximumImpl:()=>GC,minimumImpl:()=>jC,multiplyImpl:()=>q5,negImpl:()=>tpe,notEqualImpl:()=>qC,prodImpl:()=>rpe,rangeImpl:()=>KC,rsqrtImpl:()=>XC,simpleAbsImpl:()=>Ghe,sliceImpl:()=>K5,sparseFillEmptyRowsImpl:()=>spe,sparseReshapeImpl:()=>ape,sparseSegmentReductionImpl:()=>ope,squaredDifferenceImpl:()=>ZC,stridedSliceImpl:()=>ipe,stringNGramsImpl:()=>upe,stringSplitImpl:()=>dpe,stringToHashBucketFastImpl:()=>hpe,subImpl:()=>YC,tileImpl:()=>fpe,topKImpl:()=>mpe,transposeImpl:()=>npe,uniqueImpl:()=>gpe});function RC(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}function Ghe(e){let t=new Float32Array(e.length);for(let n=0;n{let o=_.assertAndGetBroadcastShape(t,n),i=o.length,l=k.computeStrides(o),u=k.sizeFromShape(o),c=k.getTypedArrayFromDType(a,u),d=t.length,h=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=_.getBroadcastDims(t,o),g=_.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;yx[w]=0);let b=k.locToIndex(x,d,p),v=A.slice(-h);g.forEach(w=>v[w]=0);let I=k.locToIndex(v,h,f);c[y]=e(r[b],s[I])}return[c,o]}}function H5(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}function G5(e,t,n="float32"){if(n==="complex64"){let s=G5(e,t,"float32"),a=G5(e,t,"float32");return H5({inputs:{real:s,imag:a},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function _C(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function jhe(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}function Om(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return _C({inputs:{x:s},backend:n});let o=G5(n,s.shape,s.dtype),i=Om({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),l=H5({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(s.dtype==="complex64"){let o=jhe({inputs:{input:s},backend:n}),i=Om({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=_C({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=k.toTypedArray([0],s.dtype),[l,u]=Or((c,d)=>c!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}function Qr(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;RC([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?_.fromUint8ToStringArray(u):u,h=o.dtype==="string"?_.fromUint8ToStringArray(c):c,p=r||o.dtype,[f,m]=t(o.shape,i.shape,d,h,p);return l.makeTensorInfo(m,p,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=Om({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,h=c.complexTensorInfos.imag,p=l.data.get(d.dataId).values,f=l.data.get(h.dataId).values,m=Om({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,b=l.data.get(A.dataId).values,[v,I,w]=n(o.shape,i.shape,p,f,x,b),S=l.makeTensorInfo(w,"float32",v),E=l.makeTensorInfo(w,"float32",I),D=H5({inputs:{real:S,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(S),l.disposeIntermediateTensorInfo(E),D}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=r||o.dtype,[h,p]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(p,d,h)}}}function j5(e){return(t,n,r,s,a,o)=>{let i=_.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(i),u=i.length,c=k.computeStrides(i),d=k.getTypedArrayFromDType("float32",l),h=k.getTypedArrayFromDType("float32",l),p=_.getBroadcastDims(t,i),f=_.getBroadcastDims(n,i),m=_.mergeRealAndImagArrays(r,s),g=_.mergeRealAndImagArrays(a,o),y=t.length,A=k.computeStrides(t),x=n.length,b=k.computeStrides(n);if(p.length+f.length===0)for(let v=0;vw[R]=0);let S=k.locToIndex(w,y,A),E=I.slice(-x);f.forEach(R=>E[R]=0);let D=k.locToIndex(E,x,b),$=e(m[S*2],m[S*2+1],g[D*2],g[D*2+1]);d[v]=$.real,h[v]=$.imag}return[d,h,i]}}var DC=Or((e,t)=>e+t),qhe=j5((e,t,n,r)=>({real:e+n,imag:t+r})),m7e=Qr(Ma,DC,qhe);function Khe(e,t,n,r,s){let a=k.sizeFromShape(r),o=k.makeZerosTypedArray(s,n);for(let i=0;i=s||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function Xhe(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=ze([s,n],t.dtype);for(let i=0;i=n||(r?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function yu(e){return(t,n,r)=>{let s=k.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=r;if(RC(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,s);return i.makeTensorInfo(o.shape,u,c)}}var FC=yu(e=>Math.ceil(e)),g7e=Au(No,FC);function MC(e,t,n,r){let s=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=k.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?_.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;ue===t?1:0),y7e=Qr(il,OC,null,"bool"),PC=yu(e=>Math.exp(e)),A7e=Au(Eo,PC),zC=yu(e=>Math.expm1(e)),x7e=Au(ll,zC),LC=yu(e=>Math.floor(e)),b7e=Au($o,LC);function Zhe(e,t,n,r,s,a,o,i,l){let u=ze([r,a],n);for(let c=0;c=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let p=0;pe>t?1:0),v7e=Qr(dl,BC,null,"bool"),WC=Or((e,t)=>e>=t?1:0),w7e=Qr(Ro,WC,null,"bool"),VC=Or((e,t)=>ee<=t?1:0),I7e=Qr(ml,UC,null,"bool");function Jhe(e,t,n){let r=(t-e)/(n-1),s=k.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;aMath.log(e)),S7e=Au(_o,HC);function Qhe(e,t,n,r){let s=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let a=0;ai)&&(i=u)}s[a]=i}return s}var GC=Or((e,t)=>Math.max(e,t)),T7e=Qr(Do,GC),jC=Or((e,t)=>Math.min(e,t)),N7e=Qr(Fo,jC),q5=Or((e,t)=>e*t),epe=j5((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),C7e=Qr(Mo,q5,epe);function tpe(e,t,n){let r=k.createScalarValue(-1,n);return q5([],t,r,e,n)}var qC=Or((e,t)=>e!==t?1:0),E7e=Qr(vl,qC,null,"bool");function npe(e,t,n,r,s){let a=t.length,o=k.sizeFromShape(t),i=k.computeStrides(t),l=k.computeStrides(s),u=k.getTypedArrayFromDType(n,k.sizeFromShape(s));for(let c=0;c1;if(s||a||o)return k.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(i,r);t1/Math.sqrt(e)),$7e=Au(Oo,XC);function K5(e,t,n,r,s){let a=Cn.isSliceContinous(r,t,n),o=k.sizeFromShape(n),i=k.computeStrides(r);if(a){let d=Cn.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=s==="string"?_.fromUint8ToStringArray(e):e,u=ze(r,s,l),c=ze(n,s);for(let d=0;df+t[m]);c.set(u.get(...p),...h)}return s==="string"?_.fromStringArrayToUint8(c.values):c.values}function spe(e,t,n,r,s,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but + indices.shape[0] = ${i}`);let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(s,0);return[g,[0,d],y,u,c]}let h=!0,p=0,f=new Array(l).fill(0);for(let g=0;g=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++f[y],h=h&&y>=p,p=y}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&h){let g=e,y=r;for(let A=0;A0){p[h-1]=1;for(let g=h-2;g>=0;--g)p[g]=p[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=k.getArrayFromDType(n,o*i);for(let g=0;g0?s[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let h=t.slice();h[0]=d;let p=h.reduce((x,b)=>x*b,1),f=k.getArrayFromDType(n,p);if(i===0)return d>0&&f.fill(o),[f,h];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,y=0,A=s[m];for(;;){let x=0;if(g=x)throw new Error("segment ids are not increasing")}if(A<0||A>=d)throw new Error(`Segment id ${A} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);A>y&&f.fill(o,y*u,A*u);for(let b=m;b=l[0])throw new Error(`Bad: indices[${b}] == ${r[b]} out of range [0, ${l[0]})`);for(let I=0;Ii)break}return y{let n=e-t;return n*n}),R7e=Qr(Po,ZC);function ipe(e,t,n,r){let s=ze(e,t.dtype);for(let a=0;a0?0:o-i),h=0;h+=l*this.leftPad.length;for(let y=0;yy.forEach(A=>f[m++]=A);for(let y=0;y0){g(e[d+c-1]);for(let y=0;y0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=k.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let l=0;l<=s;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[s]);for(let i=0;i{let d=t[i+1]-t[i],h=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,h,c),u+=h}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,h=1;this.createNGrams(e,l,o,u,h,d)}}return[o,a]}};function upe(e,t,n,r,s,a,o,i){return new lpe(n,r,s,a,o,i).compute(e,t)}function cpe(e,t,n){if(!e.length)return[];if(t.length===0){let a=new Array(e.length);for(let o=0;oe-t),ppe=j5((e,t,n,r)=>({real:e-n,imag:t-r})),_7e=Qr(zo,YC,ppe);function fpe(e,t){let n=new Array(e.rank);for(let s=0;s{let n=t.value-e.value;return n===0?e.index-t.index:n};function JC(e,t,n=0,r=e.length-1){for(;r>n;){if(r-n>600){let i=r-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),h=Math.max(n,Math.floor(t-l*c/i+d)),p=Math.min(r,Math.floor(t+(i-l)*c/i+d));JC(e,t,h,p)}let s=e[t],a=n,o=r;for(k.swap(e,n,t),lh(e[r],s)>0&&k.swap(e,n,r);a0;)o=o-1}lh(e[n],s)===0?k.swap(e,n,o):(o=o+1,k.swap(e,o,r)),o<=t&&(n=o+1),t<=o&&(r=o-1)}}function mpe(e,t,n,r,s){let a=t[t.length-1],[o,i]=[e.length/a,a],l=k.getTypedArrayFromDType(n,o*r),u=k.getTypedArrayFromDType("int32",o*r);for(let d=0;df[x]={value:A,index:x}),r{for(let g=0;g`${e}.${n}`)}function Vn(e,t){return t===1?[e]:nE(e,t)}function Qpe(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let s=e-2;s= ${t[s]}`,s ${t[0]}`;let r="";for(let s=e-2;s= ${t[s]}`,s= ${t}; bool rEdge = rp1 >= ${n}; - `}function Hpe(e,t){let n=e.length,r=Wpe(n,t);return n===1?`getA(rc), + `}function sfe(e,t){let n=e.length,r=tfe(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), - rEdge || cEdge ? 0. : getA(${r[3]})`}var gE=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let s="thisRC = rc;";r%2==1&&(s+="thisRC.z += 1;"),r>1&&(s+="thisRC.y += 1;"),n+=` + rEdge || cEdge ? 0. : getA(${r[3]})`}var rE=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let s="thisRC = rc;";r%2==1&&(s+="thisRC.z += 1;"),r>1&&(s+="thisRC.y += 1;"),n+=` ${s} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); @@ -905,8 +1176,8 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` - ${Gpe(t)} - ${X5(e)} + ${afe(t)} + ${P5(e)} void main() { ivec3 rc = getOutputCoords(); @@ -921,12 +1192,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function Gpe(e){return` + `}};function afe(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { - ${Ai(["r","c","d"],e)} + ${gi(["r","c","d"],e)} return ivec3(r, c, d); } - `}var jpe=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=AE(t,n),s=xE(e,r,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=yE(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[s].shift();return this.usedTextures[s].push(i),i}let o;return r===Tn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Tn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Tn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Tn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Tn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let s=AE(n,r),a=xE(t,s,r);a in this.freeTextures||(this.freeTextures[a]=[]);let o=yE(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,r),i=ae().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function qpe(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function yE(e,t,n,r,s){let a=Kpe(t,r),o;if(s){let[l,u]=fu(e[0],e[1]);o=l*u}else{let[l,u]=ah(e[0],e[1]);o=l*u}let i=qpe(n,a);return o*i}function Kpe(e,t){switch(e){case Tn.PACKED_2X2_FLOAT32:return Q5(t);case Tn.PACKED_2X2_FLOAT16:return eb(t);case Tn.UNPACKED_FLOAT32:return Z5(t);case Tn.UNPACKED_FLOAT16:return Y5(t);case Tn.PACKED_4X1_UNSIGNED_BYTE:return J5(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Xpe(e){return ae().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Tn.PACKED_2X2_FLOAT32:Tn.UNPACKED_FLOAT32:e?Tn.PACKED_2X2_FLOAT16:Tn.UNPACKED_FLOAT16}function AE(e,t){if(e===zr.UPLOAD)return Tn.PACKED_2X2_FLOAT32;if(e===zr.RENDER||e==null)return Xpe(t);if(e===zr.DOWNLOAD||e===zr.PIXELS)return Tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function xE(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Qa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` + `}var ofe=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=aE(t,n),s=oE(e,r,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=sE(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[s].shift();return this.usedTextures[s].push(i),i}let o;return r===Sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let s=aE(n,r),a=oE(t,s,r);a in this.freeTextures||(this.freeTextures[a]=[]);let o=sE(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,r),i=re().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function ife(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function sE(e,t,n,r,s){let a=lfe(t,r),o;if(s){let[l,u]=du(e[0],e[1]);o=l*u}else{let[l,u]=nh(e[0],e[1]);o=l*u}let i=ife(n,a);return o*i}function lfe(e,t){switch(e){case Sn.PACKED_2X2_FLOAT32:return W5(t);case Sn.PACKED_2X2_FLOAT16:return V5(t);case Sn.UNPACKED_FLOAT32:return z5(t);case Sn.UNPACKED_FLOAT16:return L5(t);case Sn.PACKED_4X1_UNSIGNED_BYTE:return B5(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function ufe(e){return re().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Sn.PACKED_2X2_FLOAT32:Sn.UNPACKED_FLOAT32:e?Sn.PACKED_2X2_FLOAT16:Sn.UNPACKED_FLOAT16}function aE(e,t){if(e===Fr.UPLOAD)return Sn.PACKED_2X2_FLOAT32;if(e===Fr.RENDER||e==null)return ufe(t);if(e===Fr.DOWNLOAD||e===Fr.PIXELS)return Sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function oE(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Qa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Mm(this.outputShape.length),this.userCode=` float unaryOperation(float x) { ${t} } @@ -937,11 +1208,11 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},ys="if (isnan(x)) return x;",Zpe="return x;",bE="return abs(x);",Ype="return (x >= 0.0) ? x : (exp(x) - 1.0);",Jpe=ys+` + `}},gs="if (isnan(x)) return x;",cfe="return x;",iE="return abs(x);",dfe="return (x >= 0.0) ? x : (exp(x) - 1.0);",hfe=gs+` return (x < 0.0) ? 0.0 : x; -`,Qpe=ys+` +`,pfe=gs+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,Vm="return x;",efe="return 1.0 / (1.0 + exp(-1.0 * x));",tfe="return x;",nfe=` +`,Pm="return x;",ffe="return 1.0 / (1.0 + exp(-1.0 * x));",mfe="return x;",gfe=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -950,7 +1221,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,rfe=` +`,yfe=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -960,7 +1231,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,sfe=` +`,Afe=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -970,7 +1241,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, result.a = isNaN.a ? x.a : result.a; return result; -`,afe="return 1.0 / (1.0 + exp(-1.0 * x));",wu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` +`,xfe="return 1.0 / (1.0 + exp(-1.0 * x));",xu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Mm(this.outputShape.length),this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } @@ -981,17 +1252,17 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(y); } - `}},ofe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Vn("rc",t),r=It(t),s=Lpe(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` + `}},bfe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Vn("rc",t),r=wt(t),s=Qpe(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${s}); setOutput(getChannel(packedInput, ${o})); } - `}},ife=ca.whereImpl,lfe=1e-7,ufe=1e-4,Um={};function cfe(e){return e in Um||(Um[e]={}),Um[e]}var dfe=ae().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),hfe=600;function pfe(){return ae().global.screen==null?1024:ae().global.screen.height*ae().global.screen.width*window.devicePixelRatio*hfe/1024/1024}var vE=class extends Bp{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!ae().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Ls(ae().getNumber("WEBGL_VERSION"));this.binaryCache=cfe(ae().getNumber("WEBGL_VERSION")),this.gpgpu=new Bm(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new jpe(this.gpgpu),this.numMBBeforeWarning=pfe(),this.texData=new fy(this,za())}nextDataId(){return vE.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((ae().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ae().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:zr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,s){if(ae().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:zr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:s,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new wu(o,Vm):d=new Qa(o,Vm);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:r}],r),p=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let c;if(r==="complex64"){let d=this.readSync(s.real.dataId),h=this.readSync(s.imag.dataId);c=R.mergeRealAndImagArrays(d,h)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:s,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(s!=null){let p;i?p=new wu(r,Vm):p=new Qa(r,Vm);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ae().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ae().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&ae().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...oh(r))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let p=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=p[0],m=p[1];c=R.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let d=this.convertAndCacheOnCPU(e,c),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(p=>p(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&za().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=k.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=k.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(s);o.kernelMs=k.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(ae().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:s,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,s,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=dfe){return ae().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)0&&k.isString(n[0])){let s=n.map(a=>k.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return za().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new ofe(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Bpe(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[gi(e.shape),...yi(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[gi(t),...yi(t)],a=new gE(s,n),o=!0,i=this.runWebGLProgram(a,[r],e.dtype,null,o);return{dataId:i.dataId,shape:t,dtype:i.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:s}=t,a=Om(r),o;n?o=new Bde(a):o=new Lde(a);let i=!0,l=this.runWebGLProgram(o,[{shape:a,dtype:s,dataId:e}],s,null,i);return{dtype:s,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,s=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===sh.DENSE){let m=oh(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),k.sizeFromShape(a.shape)===0)return o.values=k.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&k.sizeFromShape(m.shape)<=ae().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!uh(g.shape,m.shape)){let y=m,A=m.shape;m.shape=g.shape,m=this.packedReshape(m,A),i.push(m),g=this.texData.get(m.dataId),y.shape=A}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=$he(e,l,u),d=this.getAndSaveBinary(c,()=>Che(this.gpgpu,e,l,u)),h=this.activeTimers!=null,p;h&&(p=this.startTimer()),Ehe(this.gpgpu,d,l,u,r),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),h&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=ae().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=k.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!ae().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&s===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,r,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ae().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Z(()=>{if(!ae().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ae().getBool("DEBUG");ae().set("DEBUG",!1);let t=this.abs(Fe(1e-8)).dataSync()[0];if(ae().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?lfe:ufe}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:s,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let c=t.texShape;if(c==null&&(c=mC(n,i),t.texShape=c),s!=null){let d=Om(n),h,p=c[1],f=c[0],m=s instanceof Uint8Array;i?([p,f]=fu(c[0],c[1]),h=new Hde(d,[f,p],m)):h=new Ude(d,[f,p],m);let g=this.makeTensorInfo([f,p],r);m?this.texData.get(g.dataId).usage=zr.PIXELS:this.texData.get(g.dataId).usage=zr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),p,f,s);let y=!0,A=this.runWebGLProgram(h,[g],r,null,y),x=this.texData.get(A.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(A.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let d=this.acquireTexture(c,o,r,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=ffe(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}},dh=vE;dh.nextDataId=0;function ffe(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew dh,2);var gfe={forceHalfFloat:wE},kE=` + `}},vfe=da.whereImpl,wfe=1e-7,kfe=1e-4,zm={};function Ife(e){return e in zm||(zm[e]={}),zm[e]}var Sfe=re().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),Tfe=600;function Nfe(){return re().global.screen==null?1024:re().global.screen.height*re().global.screen.width*window.devicePixelRatio*Tfe/1024/1024}var lE=class extends Lp{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!re().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Bs(re().getNumber("WEBGL_VERSION"));this.binaryCache=Ife(re().getNumber("WEBGL_VERSION")),this.gpgpu=new Fm(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new ofe(this.gpgpu),this.numMBBeforeWarning=Nfe(),this.texData=new c1(this,Ba())}nextDataId(){return lE.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((re().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||re().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Fr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,s){if(re().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Fr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:s,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new xu(o,Pm):d=new Qa(o,Pm);let h=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:r}],r),p=this.readSync(h.dataId);return this.disposeIntermediateTensorInfo(h),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let c;if(r==="complex64"){let d=this.readSync(s.real.dataId),h=this.readSync(s.imag.dataId);c=_.mergeRealAndImagArrays(d,h)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:s,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(s!=null){let p;i?p=new xu(r,Pm):p=new Qa(r,Pm);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!re().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&re().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&re().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...rh(r))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let p=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=p[0],m=p[1];c=_.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let p=this.gpgpu.gl;Ie(p,()=>p.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),h=this.pendingRead.get(e);return this.pendingRead.delete(e),h.forEach(p=>p(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ba().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=k.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=k.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(s);o.kernelMs=k.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(re().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:s,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,s,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=Sfe){return re().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)0&&k.isString(n[0])){let s=n.map(a=>k.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Ba().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new bfe(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new efe(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[fi(e.shape),...mi(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[fi(t),...mi(t)],a=new rE(s,n),o=!0,i=this.runWebGLProgram(a,[r],e.dtype,null,o);return{dataId:i.dataId,shape:t,dtype:i.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:s}=t,a=$m(r),o;n?o=new ehe(a):o=new Qde(a);let i=!0,l=this.runWebGLProgram(o,[{shape:a,dtype:s,dataId:e}],s,null,i);return{dtype:s,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,s=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===th.DENSE){let m=rh(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),k.sizeFromShape(a.shape)===0)return o.values=k.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&k.sizeFromShape(m.shape)<=re().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!oh(g.shape,m.shape)){let y=m,A=m.shape;m.shape=g.shape,m=this.packedReshape(m,A),i.push(m),g=this.texData.get(m.dataId),y.shape=A}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=Hhe(e,l,u),d=this.getAndSaveBinary(c,()=>Vhe(this.gpgpu,e,l,u)),h=this.activeTimers!=null,p;h&&(p=this.startTimer()),Uhe(this.gpgpu,d,l,u,r),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),h&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=re().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=k.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!re().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&s===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,r,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(re().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Y(()=>{if(!re().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=re().getBool("DEBUG");re().set("DEBUG",!1);let t=this.abs(De(1e-8)).dataSync()[0];if(re().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?wfe:kfe}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:s,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let c=t.texShape;if(c==null&&(c=eC(n,i),t.texShape=c),s!=null){let d=$m(n),h,p=c[1],f=c[0],m=s instanceof Uint8Array;i?([p,f]=du(c[0],c[1]),h=new she(d,[f,p],m)):h=new rhe(d,[f,p],m);let g=this.makeTensorInfo([f,p],r);m?this.texData.get(g.dataId).usage=Fr.PIXELS:this.texData.get(g.dataId).usage=Fr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),p,f,s);let y=!0,A=this.runWebGLProgram(h,[g],r,null,y),x=this.texData.get(A.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(A.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let d=this.acquireTexture(c,o,r,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=Cfe(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}},uh=lE;uh.nextDataId=0;function Cfe(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew uh,2);var $fe={forceHalfFloat:uE},cE=` if (isnan(a)) return a; if (isnan(b)) return b; -`,ku=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=` +`,bu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Mm(this.outputShape.length),this.userCode=` float binaryOperation(float a, float b) { ${e} } @@ -1001,22 +1272,34 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } - `}},Hm=` + `}},Lm=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`,hh=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length,a="";if(r)if(s===0||k.sizeFromShape(this.outputShape)===1)a=` +`,ch=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length;this.enableShapeUniforms=Mm(s);let a="";if(r)if(s===0||k.sizeFromShape(this.outputShape)===1)a=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(a=` - ${It(s)} coords = getOutputCoords(); - `,s===1)a+=` + ${wt(s)} coords = getOutputCoords(); + `,s===1)this.enableShapeUniforms?a+=` + result.y = (coords + 1) >= outShape ? 0. : result.y; + result.z = 0.; + result.w = 0.; + `:a+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; - `;else{let i=Vn("coords",s);a+=` + `;else{let i=Vn("coords",s);this.enableShapeUniforms?a+=` + bool nextRowOutOfBounds = + (${i[s-2]} + 1) >= outShape[${s} - 2]; + bool nextColOutOfBounds = + (${i[s-1]} + 1) >= outShape[${s} - 1]; + result.y = nextColOutOfBounds ? 0. : result.y; + result.z = nextRowOutOfBounds ? 0. : result.z; + result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; + `:a+=` bool nextRowOutOfBounds = (${i[s-2]} + 1) >= ${this.outputShape[s-2]}; bool nextColOutOfBounds = @@ -1038,21 +1321,21 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}};function gr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var yfe={kernelName:hl,backendName:"webgl",kernelFunc:gr};function eo(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.makeTensorInfo(r.shape,"complex64"),o=n.texData.get(a.dataId),i=gr({inputs:{x:r},backend:n}),l=gr({inputs:{x:s},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var Afe={kernelName:Iy,backendName:"webgl",kernelFunc:eo},IE="return (a < 0.) ? b * a : a;",SE=` + `}};function fr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var Rfe={kernelName:hl,backendName:"webgl",kernelFunc:fr};function eo(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.makeTensorInfo(r.shape,"complex64"),o=n.texData.get(a.dataId),i=fr({inputs:{x:r},backend:n}),l=fr({inputs:{x:s},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var _fe={kernelName:b1,backendName:"webgl",kernelFunc:eo},dE="return (a < 0.) ? b * a : a;",hE=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function xfe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r,o=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),i=ae().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new hh(SE,s.shape,o.shape):new ku(IE,s.shape,o.shape),l=n.runWebGLProgram(i,[s,o],s.dtype);return n.disposeIntermediateTensorInfo(o),l}var bfe={kernelName:pl,backendName:"webgl",kernelFunc:xfe},TE="return (a < 0.) ? b * a : a;",NE=` +`;function Dfe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r,o=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),i=re().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ch(hE,s.shape,o.shape):new bu(dE,s.shape,o.shape),l=n.runWebGLProgram(i,[s,o],s.dtype);return n.disposeIntermediateTensorInfo(o),l}var Ffe={kernelName:pl,backendName:"webgl",kernelFunc:Dfe},pE="return (a < 0.) ? b * a : a;",fE=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); -`;function vfe(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=ae().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new hh(NE,r.shape,s.shape):new ku(TE,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)}var wfe={kernelName:Sl,backendName:"webgl",kernelFunc:vfe},CE="if (isnan(x)) return x;",kfe=` +`;function Mfe(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=re().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ch(fE,r.shape,s.shape):new bu(pE,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)}var Ofe={kernelName:Sl,backendName:"webgl",kernelFunc:Mfe},mE="if (isnan(x)) return x;",Pfe=` if (isnan(a)) return a; if (isnan(b)) return b; -`,Ife=` +`,zfe=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; -`;function it({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:s,backend:a})=>{let{x:o}=s,i=a,l=r||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),h=n(d.values,l);return i.makeTensorInfo(o.shape,l,h)}let u=ae().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new wu(o.shape,t):c=new Qa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function Nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:s,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(r&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,w={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:v.dataId,dtype:v.dtype,shape:u.shape},I=new ku(e,l.shape,u.shape);return c.runWebGLProgram(I,[w,S],qr(b.dtype,v.dtype))}),A=eo({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),A}let d=a||qr(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&s!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?R.fromUint8ToStringArray(f):f,y=l.dtype==="string"?R.fromUint8ToStringArray(m):m,[A,x]=s(l.shape,u.shape,g,y,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=A,b}let h=ae().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return h?p=new hh(t,l.shape,u.shape,n):p=new ku(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],d)}}function Gm(e,t=!1){if(e==="linear")return t?tfe:Zpe;if(e==="relu")return t?rfe:Jpe;if(e==="elu")return t?nfe:Ype;if(e==="relu6")return t?sfe:Qpe;if(e==="prelu")return t?NE:TE;if(e==="leakyrelu")return t?SE:IE;if(e==="sigmoid")return t?afe:efe;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var EE=class{constructor(e,t,n,r=!1,s=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),d=r?"i * 2, rc.y":"rc.y, i * 2",h=s?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) { +`;function it({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:s,backend:a})=>{let{x:o}=s,i=a,l=r||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),h=n(d.values,l);return i.makeTensorInfo(o.shape,l,h)}let u=re().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new xu(o.shape,t):c=new Qa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function Tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:s,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(r&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,I={dataId:b.dataId,dtype:b.dtype,shape:l.shape},w={dataId:v.dataId,dtype:v.dtype,shape:u.shape},S=new bu(e,l.shape,u.shape);return c.runWebGLProgram(S,[I,w],Ur(b.dtype,v.dtype))}),A=eo({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),A}let d=a||Ur(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&s!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?_.fromUint8ToStringArray(f):f,y=l.dtype==="string"?_.fromUint8ToStringArray(m):m,[A,x]=s(l.shape,u.shape,g,y,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=A,b}let h=re().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return h?p=new ch(t,l.shape,u.shape,n):p=new bu(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],d)}}function Bm(e,t=!1){if(e==="linear")return t?mfe:cfe;if(e==="relu")return t?yfe:hfe;if(e==="elu")return t?gfe:dfe;if(e==="relu6")return t?Afe:pfe;if(e==="prelu")return t?fE:pE;if(e==="leakyrelu")return t?hE:dE;if(e==="sigmoid")return t?xfe:ffe;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var gE=class{constructor(e,t,n,r=!1,s=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),d=r?"i * 2, rc.y":"rc.y, i * 2",h=s?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${o} }`:l?m=`vec4 activation(vec4 a) { @@ -1091,7 +1374,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, setOutput(result); } - `}},$E={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},_E=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=` + `}},yE={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},AE=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOpComplex( float areal, float aimag, float breal, float bimag) { ${e} @@ -1104,7 +1387,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, float bimag = getBImagAtOutCoords(); setOutput(binaryOpComplex(areal, aimag, breal, bimag)); } - `}},RE="return a * b;";function ib(e){let{inputs:t,backend:n}=e,{a:r,b:s}=t,a=R.upcastType(r.dtype,s.dtype);if(r.dtype==="complex64"){let i=n.texData.get(r.dataId),l=n.texData.get(s.dataId),u=new _E($E.REAL,r.shape,s.shape),c=new _E($E.IMAG,r.shape,s.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:r.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:s.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:s.shape}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=eo({inputs:{real:h,imag:p},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,s])){let i=n.texData.get(r.dataId),l=n.texData.get(s.dataId),[u,c]=wpe(r.shape,s.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),h=n.texData.get(d.dataId);return h.values=u,d}let o;return ae().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new hh(RE,r.shape,s.shape):o=new ku(RE,r.shape,s.shape),n.runWebGLProgram(o,[r,s],a)}var Sfe={kernelName:Mo,backendName:"webgl",kernelFunc:ib};function Tfe(e,t,n){let r=[gi(e.shape),...yi(e.shape)],s={dtype:e.dtype,shape:r,dataId:e.dataId},a=[gi(t),...yi(t)],o=new gE(a,r),i=!0,l=n.runWebGLProgram(o,[s],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ve(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=n,i=k.sizeFromShape(s.shape),l=k.inferFromImplicitShape(a,i),u=k.sizeFromShape(l);k.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${s.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(s.dataId);return c.isPacked&&!uh(s.shape,l)&&!(c.texture!==null&&uh(c.shape,l))?Tfe(s,l,o):(o.incRef(s.dataId),{dataId:s.dataId,shape:l,dtype:s.dtype})}var Nfe={kernelName:Qc,backendName:"webgl",kernelFunc:ve},DE=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${k.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";s%n>0&&(u=` + `}},xE="return a * b;";function Z5(e){let{inputs:t,backend:n}=e,{a:r,b:s}=t,a=_.upcastType(r.dtype,s.dtype);if(r.dtype==="complex64"){let i=n.texData.get(r.dataId),l=n.texData.get(s.dataId),u=new AE(yE.REAL,r.shape,s.shape),c=new AE(yE.IMAG,r.shape,s.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:r.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:s.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:s.shape}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=eo({inputs:{real:h,imag:p},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,s])){let i=n.texData.get(r.dataId),l=n.texData.get(s.dataId),[u,c]=Ope(r.shape,s.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),h=n.texData.get(d.dataId);return h.values=u,d}let o;return re().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new ch(xE,r.shape,s.shape):o=new bu(xE,r.shape,s.shape),n.runWebGLProgram(o,[r,s],a)}var Lfe={kernelName:Mo,backendName:"webgl",kernelFunc:Z5};function Bfe(e,t,n){let r=[fi(e.shape),...mi(e.shape)],s={dtype:e.dtype,shape:r,dataId:e.dataId},a=[fi(t),...mi(t)],o=new rE(a,r),i=!0,l=n.runWebGLProgram(o,[s],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ve(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=n,i=k.sizeFromShape(s.shape),l=k.inferFromImplicitShape(a,i),u=k.sizeFromShape(l);k.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${s.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(s.dataId);return c.isPacked&&!oh(s.shape,l)&&!(c.texture!==null&&oh(c.shape,l))?Bfe(s,l,o):(o.incRef(s.dataId),{dataId:s.dataId,shape:l,dtype:s.dtype})}var Wfe={kernelName:Jc,backendName:"webgl",kernelFunc:ve},bE=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${k.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";s%n>0&&(u=` if (inIdx < 0 || inIdx >= ${s}) { return 0.0; } @@ -1157,7 +1440,7 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(sumValue); } - `}},Cfe=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=` + `}},Vfe=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { @@ -1249,12 +1532,12 @@ vec2 packedUVfrom3D(int texNumR, int texNumC, } setOutput(${l}); } - `}};function Efe(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function bi(e,t,n,r){let s=Efe(e.shape),a=e;for(let o=0;o6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let s=0;s6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=It(this.rank),s=mE("rc",this.rank),a=new Array(this.rank);for(let u=0;u6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let s=0;s6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=wt(this.rank),s=nE("rc",this.rank),a=new Array(this.rank);for(let u=0;u=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,d,p]:[y,p,d],S=r?[A,f,h]:[A,h,f],I=ve({inputs:{x:e},backend:s,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:s,attrs:{shape:S}}),F=[I,E],$=Math.max(y,A),_=n?I.shape[1]:I.shape[2],N=a!=null,P=o!=null,B=l==="leakyrelu",j=l!=null?Gm(l,!0):null,X=N||P||B||j!=null,Y;if((p===1||f===1)&&_>FE&&X===!1){let oe=I,se=E;n&&(oe=Un({inputs:{x:I},backend:s,attrs:{perm:[0,2,1]}}),F.push(oe)),r&&(se=Un({inputs:{x:E},backend:s,attrs:{perm:[0,2,1]}}),F.push(se));let ie=f!==1,ne=f===1,de=oe;ie&&(de=ve({inputs:{x:oe},backend:s,attrs:{shape:[$,_,1]}}),F.push(de));let he=f===1?2:1,ge=se;ne&&(ge=ve({inputs:{x:se},backend:s,attrs:{shape:[$,1,_]}}),F.push(ge));let be=ib({inputs:{a:de,b:ge},backend:s});Y=qm({inputs:{x:be},backend:s,attrs:{axis:he,keepDims:!0}}),F.push(be)}else{let oe=qr(e.dtype,t.dtype),se=new EE(w,S,[$,p,f],n,r,N,j,P,B),ie=[I,E];if(a!=null&&ie.push(a),P&&ie.push(o),B){let ne=s.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));ie.push(ne),F.push(ne)}Y=s.runWebGLProgram(se,ie,oe)}let ee=ve({inputs:{x:Y},backend:s,attrs:{shape:v}});F.push(Y);for(let oe of F)s.disposeIntermediateTensorInfo(oe);return ee}function Ofe(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=r;return Km({a:s,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var Pfe={kernelName:Ll,backendName:"webgl",kernelFunc:Ofe},ME="return abs(x);";function zfe(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let a=n.texData.get(r.dataId),o=pE(a.values);return n.makeTensorInfo(r.shape,r.dtype,o)}let s;return ae().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new wu(r.shape,ME):s=new Qa(r.shape,ME),n.runWebGLProgram(s,[r],r.dtype)}var Lfe={kernelName:xc,backendName:"webgl",kernelFunc:zfe},Bfe=ys+` + `}};function Wm(e,t,n){let r=re().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jfe(e.shape,t):new Hfe(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function qfe(e,t,n,r){let s=t,a=e.shape.length,o=k.parseAxisParam(s,e.shape),i=o,l=_.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=Wm(e,l,r),i=_.getInnerMostAxes(i.length,a)),_.assertAxesAreInnerMostDims("sum",i,a);let[d,h]=_.computeOutAndReduceShapes(c.shape,i),p=d;n&&(p=_.expandShapeToKeepDim(d,o));let f=k.sizeFromShape(h),g=k.sizeFromShape(e.shape)/f,y=ve({inputs:{x:c},attrs:{shape:[g,f]},backend:r}),A=uy(e.dtype),x=Ai(y,A,"sum",r),b=ve({inputs:{x},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),u&&r.disposeIntermediateTensorInfo(c),b}function Vm(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;return qfe(s,a,o,n)}var Kfe={kernelName:Fl,backendName:"webgl",kernelFunc:Vm};function Un(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{perm:a}=r,o=n,i=s.shape.length,l=new Array(i);for(let c=0;c=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(d===h,()=>`Error in matMul: inner shapes (${d}) and (${h}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let I=n?[y,d,p]:[y,p,d],w=r?[A,f,h]:[A,h,f],S=ve({inputs:{x:e},backend:s,attrs:{shape:I}}),E=ve({inputs:{x:t},backend:s,attrs:{shape:w}}),D=[S,E],$=Math.max(y,A),R=n?S.shape[1]:S.shape[2],N=a!=null,M=o!=null,B=l==="leakyrelu",q=l!=null?Bm(l,!0):null,X=N||M||B||q!=null,J;if((p===1||f===1)&&R>vE&&X===!1){let ae=S,se=E;n&&(ae=Un({inputs:{x:S},backend:s,attrs:{perm:[0,2,1]}}),D.push(ae)),r&&(se=Un({inputs:{x:E},backend:s,attrs:{perm:[0,2,1]}}),D.push(se));let oe=f!==1,ne=f===1,ce=ae;oe&&(ce=ve({inputs:{x:ae},backend:s,attrs:{shape:[$,R,1]}}),D.push(ce));let he=f===1?2:1,me=se;ne&&(me=ve({inputs:{x:se},backend:s,attrs:{shape:[$,1,R]}}),D.push(me));let be=Z5({inputs:{a:ce,b:me},backend:s});J=Vm({inputs:{x:be},backend:s,attrs:{axis:he,keepDims:!0}}),D.push(be)}else{let ae=Ur(e.dtype,t.dtype),se=new gE(I,w,[$,p,f],n,r,N,q,M,B),oe=[S,E];if(a!=null&&oe.push(a),M&&oe.push(o),B){let ne=s.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));oe.push(ne),D.push(ne)}J=s.runWebGLProgram(se,oe,ae)}let ee=ve({inputs:{x:J},backend:s,attrs:{shape:v}});D.push(J);for(let ae of D)s.disposeIntermediateTensorInfo(ae);return ee}function Zfe(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=r;return Um({a:s,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var Yfe={kernelName:Ll,backendName:"webgl",kernelFunc:Zfe},wE="return abs(x);";function Jfe(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let a=n.texData.get(r.dataId),o=eE(a.values);return n.makeTensorInfo(r.shape,r.dtype,o)}let s;return re().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new xu(r.shape,wE):s=new Qa(r.shape,wE),n.runWebGLProgram(s,[r],r.dtype)}var Qfe={kernelName:Ac,backendName:"webgl",kernelFunc:Jfe},eme=gs+` if (abs(x) > 1.) { return NAN; } return acos(x); -`,Wfe=it({opSnippet:Bfe}),Vfe={kernelName:bc,backendName:"webgl",kernelFunc:Wfe},Ufe=ys+` +`,tme=it({opSnippet:eme}),nme={kernelName:xc,backendName:"webgl",kernelFunc:tme},rme=gs+` if (x < 1.0) return NAN; -return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,backendName:"webgl",kernelFunc:Hfe},OE="return a + b;",jfe=Nn({opSnippet:OE,packedOpSnippet:OE,supportsComplex:!0,cpuKernelImpl:rpe}),qfe={kernelName:Fa,backendName:"webgl",kernelFunc:jfe},Kfe=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` +return log(x + sqrt(x * x - 1.0));`,sme=it({opSnippet:rme}),ame={kernelName:bc,backendName:"webgl",kernelFunc:sme},kE="return a + b;",ome=Tn({opSnippet:kE,packedOpSnippet:kE,supportsComplex:!0,cpuKernelImpl:ype}),ime={kernelName:Ma,backendName:"webgl",kernelFunc:ome},lme=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1286,7 +1569,7 @@ return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,b float result = ${r}; setOutput(result); } - `}},Xfe=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` + `}},ume=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} @@ -1294,7 +1577,7 @@ return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,b vec4 result = ${r}; setOutput(result); } - `}};function Xm(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return gr({inputs:{x:r[0]},backend:n});if(r.length>ae().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(r.length/2),u=Xm({inputs:r.slice(0,l),backend:n}),c=Xm({inputs:r.slice(l),backend:n});return Xm({inputs:[u,c],backend:n})}let s=r.map(l=>l.dtype).reduce((l,u)=>qr(l,u)),a=r.map(l=>l.shape),i=ae().getBool("WEBGL_PACK")?new Xfe(r[0].shape,a):new Kfe(r[0].shape,a);return n.runWebGLProgram(i,r,s)}var Zfe={kernelName:Zi,backendName:"webgl",kernelFunc:Xm};function Yfe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,l=k.parseAxisParam(a,s.shape),u=l,c=R.getAxesPermutation(u,i),d=s;c!=null&&(d=Un({inputs:{x:s},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,i)),R.assertAxesAreInnerMostDims("all",u,i);let[h,p]=R.computeOutAndReduceShapes(d.shape,u),f=k.sizeFromShape(p),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=bi(m,m.dtype,"all",n),y;if(o){let A=R.expandShapeToKeepDim(h,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),y}var Jfe={kernelName:wc,backendName:"webgl",kernelFunc:Yfe};function Qfe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,l=k.parseAxisParam(a,s.shape),u=l,c=R.getAxesPermutation(u,i),d=s;c!=null&&(d=Un({inputs:{x:s},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,i)),R.assertAxesAreInnerMostDims("any",u,i);let[h,p]=R.computeOutAndReduceShapes(d.shape,u),f=k.sizeFromShape(p),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=bi(m,m.dtype,"any",n),y;if(o){let A=R.expandShapeToKeepDim(h,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),y}var eme={kernelName:kc,backendName:"webgl",kernelFunc:Qfe},tme=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` + `}};function Hm(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return fr({inputs:{x:r[0]},backend:n});if(r.length>re().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(r.length/2),u=Hm({inputs:r.slice(0,l),backend:n}),c=Hm({inputs:r.slice(l),backend:n});return Hm({inputs:[u,c],backend:n})}let s=r.map(l=>l.dtype).reduce((l,u)=>Ur(l,u)),a=r.map(l=>l.shape),i=re().getBool("WEBGL_PACK")?new ume(r[0].shape,a):new lme(r[0].shape,a);return n.runWebGLProgram(i,r,s)}var cme={kernelName:Xi,backendName:"webgl",kernelFunc:Hm};function dme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,l=k.parseAxisParam(a,s.shape),u=l,c=_.getAxesPermutation(u,i),d=s;c!=null&&(d=Un({inputs:{x:s},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("all",u,i);let[h,p]=_.computeOutAndReduceShapes(d.shape,u),f=k.sizeFromShape(p),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ai(m,m.dtype,"all",n),y;if(o){let A=_.expandShapeToKeepDim(h,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),y}var hme={kernelName:vc,backendName:"webgl",kernelFunc:dme};function pme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,l=k.parseAxisParam(a,s.shape),u=l,c=_.getAxesPermutation(u,i),d=s;c!=null&&(d=Un({inputs:{x:s},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("any",u,i);let[h,p]=_.computeOutAndReduceShapes(d.shape,u),f=k.sizeFromShape(p),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=Ai(m,m.dtype,"any",n),y;if(o){let A=_.expandShapeToKeepDim(h,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),y}var fme={kernelName:wc,backendName:"webgl",kernelFunc:pme},mme=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -1314,14 +1597,14 @@ return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,b } setOutput(float(bestIndex)); } - `}},nme=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),r||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=It(i),u=Vn("coords",i),c,d;if(a===1){d=i+1;let S=It(d);c=` - ${S} sourceLocR = ${S}(${u.join()}, 0); + `}},gme=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),r||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=wt(i),u=Vn("coords",i),c,d;if(a===1){d=i+1;let w=wt(d);c=` + ${w} sourceLocR = ${w}(${u.join()}, 0); ++${u[i-1]}; - ${S} sourceLocG = ${S}(${u.join()}, 0); + ${w} sourceLocG = ${w}(${u.join()}, 0); ++${u[i-2]}; - ${S} sourceLocA = ${S}(${u.join()}, 0); + ${w} sourceLocA = ${w}(${u.join()}, 0); --${u[i-1]}; - ${S} sourceLocB = ${S}(${u.join()}, 0); + ${w} sourceLocB = ${w}(${u.join()}, 0); --${u[i-2]};`}else d=i,c=` ${l} sourceLocR = coords; ++${u[i-1]}; @@ -1330,7 +1613,7 @@ return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,b ${l} sourceLocA = coords; --${u[i-1]}; ${l} sourceLocB = coords; - --${u[i-2]};`;let h=["x","y","z","w","u","v"].slice(0,d),p="."+h[d-1],f=h.map(S=>"int "+S),m=Vn("sourceLocR",d-1).concat("inIdx.r"),g=Vn("sourceLocG",d-1).concat("inIdx.g"),y=Vn("sourceLocB",d-1).concat("inIdx.b"),A=Vn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=r?"":` + --${u[i-2]};`;let h=["x","y","z","w","u","v"].slice(0,d),p="."+h[d-1],f=h.map(w=>"int "+w),m=Vn("sourceLocR",d-1).concat("inIdx.r"),g=Vn("sourceLocG",d-1).concat("inIdx.g"),y=Vn("sourceLocB",d-1).concat("inIdx.b"),A=Vn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=r?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${y.join()}), @@ -1338,7 +1621,7 @@ return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,b getAChannel(${m.join()}), hasNextCol ? getAChannel(${g.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., - hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,w=r?"":` + hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,I=r?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${h.join()}), vec2(${h.slice(-2).join()})); @@ -1347,7 +1630,7 @@ return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,b return getChannel(getA(${h.join()}), vec2(${h.slice(-2).join()})); } - ${w} + ${I} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${u[i-1]} < ${o[i-1]-1}; @@ -1376,23 +1659,23 @@ return log(x + sqrt(x * x - 1.0));`,Hfe=it({opSnippet:Ufe}),Gfe={kernelName:vc,b } setOutput(bestIndex); } - `}};function PE(e,t,n,r=null){let s=t.shape[0],a=t.shape[1];r!=null&&(s=r.shape[0],a=r.shape[1]);let o=R.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:s,outSize:Math.ceil(a/o)},l=new tme(i,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=PE(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function zE(e,t,n,r=null){let s=r!=null?r.shape:t.shape,a=s[s.length-1],o=R.computeOptimalWindowSize(a),i=new nme(s,o,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=zE(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function LE(e,t,n,r){let s=[n];if(R.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),s,t.shape.length),!ae().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],[o,i]=R.computeOutAndReduceShapes(t.shape,s),l=k.sizeFromShape(i),u=ve({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});a.push(u);let c=PE(e,u,r);a.push(c);let d=ve({inputs:{x:c},backend:e,attrs:{shape:o}});return a.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}return zE(e,t,r)}function rme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=k.parseAxisParam(a,s.shape),i=R.getAxesPermutation(o,s.shape.length),l=s,u=[];i!=null&&(l=Un({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=LE(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var sme={kernelName:Yi,backendName:"webgl",kernelFunc:rme};function ame(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=k.parseAxisParam(a,s.shape),i=R.getAxesPermutation(o,s.shape.length),l=s,u=[];i!=null&&(l=Un({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(l),o=R.getInnerMostAxes(o.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=LE(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var ome={kernelName:qp,backendName:"webgl",kernelFunc:ame},ime=ys+` + `}};function IE(e,t,n,r=null){let s=t.shape[0],a=t.shape[1];r!=null&&(s=r.shape[0],a=r.shape[1]);let o=_.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:s,outSize:Math.ceil(a/o)},l=new mme(i,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=IE(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function SE(e,t,n,r=null){let s=r!=null?r.shape:t.shape,a=s[s.length-1],o=_.computeOptimalWindowSize(a),i=new gme(s,o,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=SE(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function TE(e,t,n,r){let s=[n];if(_.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),s,t.shape.length),!re().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],[o,i]=_.computeOutAndReduceShapes(t.shape,s),l=k.sizeFromShape(i),u=ve({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});a.push(u);let c=IE(e,u,r);a.push(c);let d=ve({inputs:{x:c},backend:e,attrs:{shape:o}});return a.forEach(h=>e.disposeIntermediateTensorInfo(h)),d}return SE(e,t,r)}function yme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=k.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),l=s,u=[];i!=null&&(l=Un({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=TE(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var Ame={kernelName:Zi,backendName:"webgl",kernelFunc:yme};function xme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=k.parseAxisParam(a,s.shape),i=_.getAxesPermutation(o,s.shape.length),l=s,u=[];i!=null&&(l=Un({inputs:{x:s},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=TE(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var bme={kernelName:qp,backendName:"webgl",kernelFunc:xme},vme=gs+` if (abs(x) > 1.) { return NAN; } return asin(x); -`,lme=it({opSnippet:ime}),ume={kernelName:Ic,backendName:"webgl",kernelFunc:lme},cme=ys+"return log(x + sqrt(x * x + 1.0));",dme=it({opSnippet:cme}),hme={kernelName:Sc,backendName:"webgl",kernelFunc:dme},pme=ys+` +`,wme=it({opSnippet:vme}),kme={kernelName:kc,backendName:"webgl",kernelFunc:wme},Ime=gs+"return log(x + sqrt(x * x + 1.0));",Sme=it({opSnippet:Ime}),Tme={kernelName:Ic,backendName:"webgl",kernelFunc:Sme},Nme=gs+` return atan(x); -`,fme=it({opSnippet:pme}),mme={kernelName:Tc,backendName:"webgl",kernelFunc:fme},gme=kfe+` +`,Cme=it({opSnippet:Nme}),Eme={kernelName:Sc,backendName:"webgl",kernelFunc:Cme},$me=Pfe+` return atan(a, b); -`,yme=` +`,Rme=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); - `+Ife+` + `+zfe+` return result; -`,Ame=Nn({opSnippet:gme,packedOpSnippet:yme}),xme={kernelName:Cc,backendName:"webgl",kernelFunc:Ame},bme=ys+` +`,_me=Tn({opSnippet:$me,packedOpSnippet:Rme}),Dme={kernelName:Nc,backendName:"webgl",kernelFunc:_me},Fme=gs+` if ((x < -1.0) || (x > 1.0)) return NAN; -return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernelName:Nc,backendName:"webgl",kernelFunc:vme},ph=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=` +return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Mme=it({opSnippet:Fme}),Ome={kernelName:Tc,backendName:"webgl",kernelFunc:Mme},dh=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let w=">=";this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${h}, ${p}); @@ -1434,7 +1717,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); - if (value ${S} currMinMaxValue) { + if (value ${w} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?s?m:g:`wR * ${d} + wC`}; @@ -1443,7 +1726,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(float(minMaxPosition)); } - `;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,w=` + `;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,I=` if (${f}) { avgValue += dot(values, ones); } else { @@ -1498,7 +1781,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel getValue(batch, xR, xC + 3 * ${u}, d) ); - ${w} + ${I} } int xC = xCCorner + ${b}; @@ -1510,7 +1793,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel initializationValue ); - ${w} + ${I} } else if (${v===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), @@ -1519,7 +1802,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel initializationValue ); - ${w} + ${I} } else if (${v===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), @@ -1528,12 +1811,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel initializationValue ); - ${w} + ${I} } } setOutput(${x}); } - `}},lb=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,h=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=` + `}},Y5=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,h=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${l}); const ivec3 pads = ivec3(${m}, ${g}, ${y}); @@ -1595,7 +1878,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(float(minMaxPosition)); } - `;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let w=Math.floor(a/4)*4,S=a%4,I=` + `;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let I=Math.floor(a/4)*4,w=a%4,S=` if (${A}) { avgValue += dot(values, ones); } else { @@ -1650,7 +1933,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel continue; } - for (int wC = 0; wC < ${w}; wC += 4) { + for (int wC = 0; wC < ${I}; wC += 4) { int xC = xCCorner + wC * ${d}; vec4 values = vec4( @@ -1660,11 +1943,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel getValue(batch, xD, xR, xC + 3 * ${d}, ch) ); - ${I} + ${S} } - int xC = xCCorner + ${w}; - if (${S===1}) { + int xC = xCCorner + ${I}; + if (${w===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, @@ -1672,8 +1955,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel initializationValue ); - ${I} - } else if (${S===2}) { + ${S} + } else if (${w===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), @@ -1681,8 +1964,8 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel initializationValue ); - ${I} - } else if (${S===3}) { + ${S} + } else if (${w===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), @@ -1690,13 +1973,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel initializationValue ); - ${I} + ${S} } } setOutput(${v}); } } - `}};function kme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;mu(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=r,u=1;k.assert(R.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=R.computePool2DInfo(s.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return gr({inputs:{x:s},backend:n});let d=new ph(c,"avg",!1);return n.runWebGLProgram(d,[s],"float32")}var Ime={kernelName:Ji,backendName:"webgl",kernelFunc:kme};function Sme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],d=R.computePool3DInfo(s.shape,a,o,c,i,l,u),h=new lb(d,"avg",!1);return n.runWebGLProgram(h,[s],"float32")}var Tme={kernelName:Kp,backendName:"webgl",kernelFunc:Sme},Nme=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=` + `}};function Pme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;hu(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=r,u=1;k.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(s.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return fr({inputs:{x:s},backend:n});let d=new dh(c,"avg",!1);return n.runWebGLProgram(d,[s],"float32")}var zme={kernelName:Yi,backendName:"webgl",kernelFunc:Pme};function Lme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],d=_.computePool3DInfo(s.shape,a,o,c,i,l,u),h=new Y5(d,"avg",!1);return n.runWebGLProgram(h,[s],"float32")}var Bme={kernelName:Kp,backendName:"webgl",kernelFunc:Lme},Wme=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${u}, ${c}); const float avgMultiplier = float(${d}); @@ -1738,7 +2021,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}},Cme=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=h-1-e.padInfo.left,g=1/(t*n*r);this.userCode=` + `}},Vme=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=h-1-e.padInfo.left,g=1/(t*n*r);this.userCode=` const ivec3 pads = ivec3(${p}, ${f}, ${m}); const float avgMultiplier = float(${g}); @@ -1794,7 +2077,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}};function Eme(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=r,d=[1,1,1],h=R.computePool3DInfo(o.shape,i,l,d,u,c),p=new Cme(h);return n.runWebGLProgram(p,[s],o.dtype)}var $me={kernelName:wy,backendName:"webgl",kernelFunc:Eme};function _me(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;mu([s,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=r,c=R.computePool2DInfo(o.shape,i,l,1,u),d=new Nme(c);return n.runWebGLProgram(d,[s],o.dtype)}var Rme={kernelName:vy,backendName:"webgl",kernelFunc:_me};function Dme(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;return Km({a:s,b:a,transposeA:o,transposeB:i,backend:n})}var Fme={kernelName:Qi,backendName:"webgl",kernelFunc:Dme},Mme=class{constructor(e,t,n,r,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="0.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}};function Ume(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=r,d=[1,1,1],h=_.computePool3DInfo(o.shape,i,l,d,u,c),p=new Vme(h);return n.runWebGLProgram(p,[s],o.dtype)}var Hme={kernelName:A1,backendName:"webgl",kernelFunc:Ume};function Gme(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;hu([s,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=r,c=_.computePool2DInfo(o.shape,i,l,1,u),d=new Wme(c);return n.runWebGLProgram(d,[s],o.dtype)}var jme={kernelName:y1,backendName:"webgl",kernelFunc:Gme};function qme(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;return Um({a:s,b:a,transposeA:o,transposeB:i,backend:n})}var Kme={kernelName:Ji,backendName:"webgl",kernelFunc:qme},Xme=class{constructor(e,t,n,r,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="0.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); @@ -1804,7 +2087,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel float inv = scale * inversesqrt(variance + float(${a})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } - `}},Ome=class{constructor(e,t,n,r,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";s!=null&&(R.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` + `}},Zme=class{constructor(e,t,n,r,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${o}; vec4 scale = ${i}; @@ -1817,18 +2100,17 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel setOutput((x - mean) * inv + offset); } - `}},Pme=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:s,variance:a,offset:o,scale:i}=e;k.assert(s.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(o==null||s.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(i==null||s.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,s,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let h=ae().getBool("WEBGL_PACK_NORMALIZATION")?new Ome(r.shape,s.shape,a.shape,c,d,l):new Mme(r.shape,s.shape,a.shape,c,d,l);return t.runWebGLProgram(h,u,u[0].dtype)},zme={kernelName:cl,backendName:"webgl",kernelFunc:Pme},Lme=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=It(this.rank),n=`uniform int start[${this.rank}];`,r=Bme(this.rank),s,a=e.map((o,i)=>`sourceLoc.${ub[i]} = start[${i}] + coords.${ub[i]};`);s=` + `}},Yme=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:s,variance:a,offset:o,scale:i}=e;k.assert(s.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(o==null||s.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(i==null||s.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,s,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let h=re().getBool("WEBGL_PACK_NORMALIZATION")?new Zme(r.shape,s.shape,a.shape,c,d,l):new Xme(r.shape,s.shape,a.shape,c,d,l);return t.runWebGLProgram(h,u,u[0].dtype)},Jme={kernelName:cl,backendName:"webgl",kernelFunc:Yme},Qme=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=wt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=e0e(this.rank),r,s=e.map((a,o)=>`sourceLoc.${J5[o]} = start[${o}] + coords.${J5[o]};`);r=` ${t} sourceLoc; ${t} coords = getOutputCoords(); - ${a.join(` + ${s.join(` `)} `,this.userCode=` - ${n} void main() { - ${s} - setOutput(getSource(${r})); + ${r} + setOutput(getSource(${n})); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},ub=["x","y","z","w","u","v"];function Bme(e){if(e===1)return"sourceLoc";if(e<=6)return ub.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Wme=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=It(this.rank),n=Vn("coords",this.rank),r=Vn("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,a=`getChannel(getSource(${r.join()}), ${s})`,o=` + `}},J5=["x","y","z","w","u","v"];function e0e(e){if(e===1)return"sourceLoc";if(e<=6)return J5.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var t0e=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=wt(this.rank),n=Vn("coords",this.rank),r=Vn("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,a=`getChannel(getSource(${r.join()}), ${s})`,o=` result.x = ${a}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; @@ -1848,7 +2130,6 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel `,l=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(` `);this.userCode=` - uniform int start[${this.rank}]; void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; @@ -1858,9 +2139,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ${i} setOutput(result); } - `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function Vme(e,t,n,r){let s=r.texData.get(e.dataId),a=r.makeTensorInfo(n,e.dtype),o=r.texData.get(a.dataId);Object.assign(o,s),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=En.computeFlatOffset(t,k.computeStrides(e.shape));s.slice&&(i+=s.slice.flatOffset),o.slice={flatOffset:i,origDataId:s.slice&&s.slice.origDataId||e.dataId};let l=r.dataRefCount.get(o.slice.origDataId)||1;return r.dataRefCount.set(o.slice.origDataId,l+1),a}function fh(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r,[i,l]=En.parseSliceParams(s,a,o);if(En.assertParamsValid(s,i,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,s.dtype,[]);if(n.shouldExecuteOnCPU([s])||s.dtype==="string"){let d=n.texData.get(s.dataId),h=Cpe(d.values,i,l,s.shape,s.dtype);return n.makeTensorInfo(l,s.dtype,h)}let{isPacked:u}=n.texData.get(s.dataId),c=En.isSliceContinous(s.shape,i,l);if(u||!c){let d=ae().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Wme(l):new Lme(l),h=d.getCustomSetupFunc(i);return n.runWebGLProgram(d,[s],s.dtype,h)}return n.uploadToGPU(s.dataId),Vme(s,i,l,n)}var Ume={kernelName:rd,backendName:"webgl",kernelFunc:fh},Hme=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;k.assert(s.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=R.getReshaped(s.shape,a,i),u=R.getPermuted(l.length,a.length),c=R.getReshapedPermuted(s.shape,a,i),d=R.getSliceBeginCoords(o,a.length),h=R.getSliceSize(c,o,a.length),p=[],f=ve({inputs:{x:s},backend:n,attrs:{shape:l}}),m=Un({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=fh({inputs:{x:g},backend:n,attrs:{begin:d,size:h}});return p.push(f),p.push(m),p.push(g),p.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},Gme={kernelName:Xp,backendName:"webgl",kernelFunc:Hme};function jme(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.readSync(s.dataId),l=n.readSync(a.dataId),u=hE(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var qme={kernelName:ky,backendName:"webgl",kernelFunc:jme},Kme="return float(a != b);",BE=Nn({opSnippet:Kme,cpuKernelImpl:Ipe,dtype:"bool"}),Xme={kernelName:vl,backendName:"webgl",kernelFunc:BE};function mh(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return gr({inputs:{x:s.complexTensorInfos.real},backend:n})}var Zme={kernelName:Gy,backendName:"webgl",kernelFunc:mh},Yme="return float(int(x));";function Jme(e,t){let n=new Qa(e.shape,Yme),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function cb(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return gr({inputs:{x:s},backend:n});let o=un(s.shape),i=cb({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),l=eo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(s.dtype==="complex64"){let o=mh({inputs:{input:s},backend:n}),i=cb({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=gr({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return Jme(s,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),l=BE({inputs:{a:s,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var Qme={kernelName:el,backendName:"webgl",kernelFunc:cb},WE="return ceil(x);",e0e=it({opSnippet:WE,packedOpSnippet:WE,cpuKernelImpl:ape}),t0e={kernelName:No,backendName:"webgl",kernelFunc:e0e},n0e=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` - uniform float minVal; - uniform float maxVal; + `}};function n0e(e,t,n,r){let s=r.texData.get(e.dataId),a=r.makeTensorInfo(n,e.dtype),o=r.texData.get(a.dataId);Object.assign(o,s),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Cn.computeFlatOffset(t,k.computeStrides(e.shape));s.slice&&(i+=s.slice.flatOffset),o.slice={flatOffset:i,origDataId:s.slice&&s.slice.origDataId||e.dataId};let l=r.dataRefCount.get(o.slice.origDataId)||1;return r.dataRefCount.set(o.slice.origDataId,l+1),a}function vu(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r,[i,l]=Cn.parseSliceParams(s,a,o);if(Cn.assertParamsValid(s,i,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,s.dtype,[]);if(n.shouldExecuteOnCPU([s])||s.dtype==="string"){let d=n.texData.get(s.dataId),h=Vpe(d.values,i,l,s.shape,s.dtype);return n.makeTensorInfo(l,s.dtype,h)}let{isPacked:u}=n.texData.get(s.dataId),c=Cn.isSliceContinous(s.shape,i,l);if(u||!c){let d=re().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new t0e(l):new Qme(l),h=[i];return n.runWebGLProgram(d,[s],s.dtype,h)}return n.uploadToGPU(s.dataId),n0e(s,i,l,n)}var r0e={kernelName:nd,backendName:"webgl",kernelFunc:vu},s0e=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;k.assert(s.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,x)=>A*x),l=_.getReshaped(s.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),h=_.getSliceSize(c,o,a.length),p=[],f=ve({inputs:{x:s},backend:n,attrs:{shape:l}}),m=Un({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=vu({inputs:{x:g},backend:n,attrs:{begin:d,size:h}});return p.push(f),p.push(m),p.push(g),p.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},a0e={kernelName:Cc,backendName:"webgl",kernelFunc:s0e};function o0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.readSync(s.dataId),l=n.readSync(a.dataId),u=QC(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var i0e={kernelName:x1,backendName:"webgl",kernelFunc:o0e},l0e="return float(a != b);",NE=Tn({opSnippet:l0e,cpuKernelImpl:zpe,dtype:"bool"}),u0e={kernelName:vl,backendName:"webgl",kernelFunc:NE};function hh(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return fr({inputs:{x:s.complexTensorInfos.real},backend:n})}var c0e={kernelName:W1,backendName:"webgl",kernelFunc:hh},d0e="return float(int(x));";function h0e(e,t){let n=new Qa(e.shape,d0e),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function Q5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return fr({inputs:{x:s},backend:n});let o=ln(s.shape),i=Q5({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),l=eo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(s.dtype==="complex64"){let o=hh({inputs:{input:s},backend:n}),i=Q5({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!k.hasEncodingLoss(s.dtype,a)){let o=fr({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return h0e(s,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),l=NE({inputs:{a:s,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var p0e={kernelName:Qi,backendName:"webgl",kernelFunc:Q5},CE="return ceil(x);",f0e=it({opSnippet:CE,packedOpSnippet:CE,cpuKernelImpl:xpe}),m0e={kernelName:No,backendName:"webgl",kernelFunc:f0e},g0e=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { float value = getAAtOutCoords(); @@ -1871,10 +2150,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel setOutput(clamp(value, minVal, maxVal)); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},r0e=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` - uniform float minVal; - uniform float maxVal; - + `}},y0e=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { vec4 value = getAAtOutCoords(); @@ -1885,7 +2161,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } - `}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function s0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i;ae().getBool("WEBGL_PACK_CLIP")?i=new r0e(s.shape):i=new n0e(s.shape);let l=i.getCustomSetupFunc(a,o);return n.runWebGLProgram(i,[s],s.dtype,l)}var a0e={kernelName:Co,backendName:"webgl",kernelFunc:s0e},o0e=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` + `}};function A0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i;re().getBool("WEBGL_PACK_CLIP")?i=new y0e(s.shape):i=new g0e(s.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[s],s.dtype,l)}var x0e={kernelName:Co,backendName:"webgl",kernelFunc:A0e},b0e=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); @@ -1898,7 +2174,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } - `}};function VE(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function i0e(e){let{inputs:t,backend:n}=e,{x:r}=t,s=n.texData.get(r.dataId),a=new o0e(r.shape),o=[VE(r,s.complexTensorInfos.real),VE(r,s.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var l0e={kernelName:Zp,backendName:"webgl",kernelFunc:i0e},u0e=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f= ${i[f-1]}) { return getChannel( - getT${f}(${Zm(o,l,m)}), - vec2(${Zm(u,l,m)})); + getT${f}(${Gm(o,l,m)}), + vec2(${Gm(u,l,m)})); }`}let h=i.length,p=i[i.length-1];d+=` return getChannel( - getT${h}(${Zm(o,l,p)}), - vec2(${Zm(u,l,p)}));`,this.userCode=` + getT${h}(${Gm(o,l,p)}), + vec2(${Gm(u,l,p)}));`,this.userCode=` float getValue(${o.map(f=>"int "+f)}) { ${d} } @@ -1944,7 +2220,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(result); } - `}};function Zm(e,t,n){let r=e.indexOf(t);return e.map((a,o)=>o===r?`${a} - ${n}`:a).join()}function Ym(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return gr({inputs:{x:s.complexTensorInfos.imag},backend:n})}var d0e={kernelName:zy,backendName:"webgl",kernelFunc:Ym};function Iu(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(m=>mh({inputs:{input:m},backend:n})),d=e.map(m=>Ym({inputs:{input:m},backend:n})),h=Iu(c,t,n),p=Iu(d,t,n),f=eo({inputs:{real:h,imag:p},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}let s=n.shouldExecuteOnCPU(e);if(r==="string"&&(s=!0),s){let c=e.map(y=>{let A=k.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),d=c.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),h=R.computeOutShape(c.map(y=>y.shape),1),p=c[0].shape[0]===1,f=ope(d,h,r,p),m=R.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,r,f);return c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>ae().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=Iu(e.slice(0,c),t,n),h=Iu(e.slice(c),t,n),p=Iu([d,h],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),p}if(ae().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new c0e(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:o}=h0e(e,t,n),i=new u0e(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function h0e(e,t,n){let r=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function UE(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=k.parseAxisParam(s,t[0].shape)[0],o=R.computeOutShape(t.map(u=>u.shape),a);if(k.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>k.sizeFromShape(u.shape)>0);if(i.length===1)return gr({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return R.assertParamsConsistent(l,a),Iu(i,a,n)}var p0e={kernelName:Ec,backendName:"webgl",kernelFunc:UE},HE=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,A=m?3:1,x="",b="";n&&(r?x=`float activation(float a) { + `}};function Gm(e,t,n){let r=e.indexOf(t);return e.map((a,o)=>o===r?`${a} - ${n}`:a).join()}function jm(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return fr({inputs:{x:s.complexTensorInfos.imag},backend:n})}var S0e={kernelName:F1,backendName:"webgl",kernelFunc:jm};function wu(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(m=>hh({inputs:{input:m},backend:n})),d=e.map(m=>jm({inputs:{input:m},backend:n})),h=wu(c,t,n),p=wu(d,t,n),f=eo({inputs:{real:h,imag:p},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}let s=n.shouldExecuteOnCPU(e);if(r==="string"&&(s=!0),s){let c=e.map(y=>{let A=k.sizeFromShape(y.shape.slice(t));return ve({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),d=c.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),h=_.computeOutShape(c.map(y=>y.shape),1),p=c[0].shape[0]===1,f=bpe(d,h,r,p),m=_.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(m,r,f);return c.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>re().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=wu(e.slice(0,c),t,n),h=wu(e.slice(c),t,n),p=wu([d,h],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),p}if(re().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new I0e(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:o}=T0e(e,t,n),i=new k0e(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function T0e(e,t,n){let r=_.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function $E(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=k.parseAxisParam(s,t[0].shape)[0],o=_.computeOutShape(t.map(u=>u.shape),a);if(k.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>k.sizeFromShape(u.shape)>0);if(i.length===1)return fr({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return _.assertParamsConsistent(l,a),wu(i,a,n)}var N0e={kernelName:Ec,backendName:"webgl",kernelFunc:$E},RE=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,A=m?3:1,x="",b="";n&&(r?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:s?x=`float activation(float a) { @@ -2078,7 +2354,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ${b} setOutput(result); } - `}},f0e=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` + `}},C0e=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,h=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${s}, ${a}, ${o}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); @@ -2166,7 +2442,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}},m0e=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:s,strideWidth:a,strideHeight:o,padInfo:i,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:d}=n,{left:h,top:p}=i,f=s*r,m=Wn(),g=d==="channelsLast",y=g?0:1,A=g?1:2,x="";for(let b=0;b<=1;b++)for(let v=0;v<=1;v++)x+=` + `}},E0e=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:s,strideWidth:a,strideHeight:o,padInfo:i,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:d}=n,{left:h,top:p}=i,f=s*r,m=Wn(),g=d==="channelsLast",y=g?0:1,A=g?1:2,x="";for(let b=0;b<=1;b++)for(let v=0;v<=1;v++)x+=` blockIndex = rc.y + ${v}; pos = rc.x + ${b}; @@ -2210,7 +2486,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ${m.output} = result; } - `}};function GE({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],h=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[],A=(d===1||h===1)&&c>FE,x=l[2]%2!=0&&!!u.isPacked;if(A||!ae().getBool("WEBGL_LAZILY_UNPACK")||!ae().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ve({inputs:{x:e},backend:r,attrs:{shape:[1,b,n.inChannels]}}),w=ve({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Km({a:v,b:w,transposeA:f,transposeB:m,backend:r,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:S},backend:r,attrs:{shape:n.outShape}}),y.push(v),y.push(w),y.push(S)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(uh(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let S=ve({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let I=Km({a:v,b:S,backend:r,transposeA:f,transposeB:m,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),E=r.texData.get(I.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,E.shape=n.outShape,g=gr({inputs:{x:I},backend:r}),g.shape=n.outShape,y.push(I)}for(let b of y)r.disposeIntermediateTensorInfo(b);return g}function jE({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:h,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,g=h*d,y=[m,g],A=!0,x=!1,b=[],v=ve({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),w=ve({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});b.push(v),b.push(w);let S=new m0e(y,v.shape,n),I=r.runWebGLProgram(S,[v],"float32"),E=ve({inputs:{x:I},backend:r,attrs:{shape:[1,y[0],y[1]]}});b.push(I),b.push(E);let F=s!=null,$=a!=null,_=i==="leakyrelu",N=i?Gm(i,!0):null,P=new EE(E.shape,w.shape,[1,g,n.outChannels],A,x,F,N,$,_),B=[E,w];if(s&&B.push(s),$&&B.push(a),_){let ee=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));B.push(ee),b.push(ee)}let j=r.runWebGLProgram(P,B,"float32"),X=f?[1,h,d,n.outChannels]:[1,n.outChannels,h,d],Y=ve({inputs:{x:j},backend:r,attrs:{shape:X}});b.push(j);for(let ee of b)r.disposeIntermediateTensorInfo(ee);return Y}function g0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=r,d=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(s.shape,a.shape,o,u,i,c,!1,d),p;if(h.filterHeight===1&&h.filterWidth===1&&h.dilationHeight===1&&h.dilationWidth===1&&h.strideHeight===1&&h.strideWidth===1&&(h.padInfo.type==="SAME"||h.padInfo.type==="VALID"))p=GE({x:s,filter:a,convInfo:h,backend:n});else if(ae().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)p=jE({x:s,filter:a,convInfo:h,backend:n});else{let m=new HE(h);p=n.runWebGLProgram(m,[s,a],"float32")}let f=ve({inputs:{x:p},backend:n,attrs:{shape:h.outShape}});return n.disposeIntermediateTensorInfo(p),f}var y0e={kernelName:tl,backendName:"webgl",kernelFunc:g0e},A0e=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` + `}};function _E({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],h=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[],A=(d===1||h===1)&&c>vE,x=l[2]%2!=0&&!!u.isPacked;if(A||!re().getBool("WEBGL_LAZILY_UNPACK")||!re().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ve({inputs:{x:e},backend:r,attrs:{shape:[1,b,n.inChannels]}}),I=ve({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),w=Um({a:v,b:I,transposeA:f,transposeB:m,backend:r,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:w},backend:r,attrs:{shape:n.outShape}}),y.push(v),y.push(I),y.push(w)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},I=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(oh(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let w=ve({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(w);let S=Um({a:v,b:w,backend:r,transposeA:f,transposeB:m,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),E=r.texData.get(S.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=I,E.shape=n.outShape,g=fr({inputs:{x:S},backend:r}),g.shape=n.outShape,y.push(S)}for(let b of y)r.disposeIntermediateTensorInfo(b);return g}function DE({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:h,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,g=h*d,y=[m,g],A=!0,x=!1,b=[],v=ve({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),I=ve({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});b.push(v),b.push(I);let w=new E0e(y,v.shape,n),S=r.runWebGLProgram(w,[v],"float32"),E=ve({inputs:{x:S},backend:r,attrs:{shape:[1,y[0],y[1]]}});b.push(S),b.push(E);let D=s!=null,$=a!=null,R=i==="leakyrelu",N=i?Bm(i,!0):null,M=new gE(E.shape,I.shape,[1,g,n.outChannels],A,x,D,N,$,R),B=[E,I];if(s&&B.push(s),$&&B.push(a),R){let ee=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));B.push(ee),b.push(ee)}let q=r.runWebGLProgram(M,B,"float32"),X=f?[1,h,d,n.outChannels]:[1,n.outChannels,h,d],J=ve({inputs:{x:q},backend:r,attrs:{shape:X}});b.push(q);for(let ee of b)r.disposeIntermediateTensorInfo(ee);return J}function $0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=r,d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(s.shape,a.shape,o,u,i,c,!1,d),p;if(h.filterHeight===1&&h.filterWidth===1&&h.dilationHeight===1&&h.dilationWidth===1&&h.strideHeight===1&&h.strideWidth===1&&(h.padInfo.type==="SAME"||h.padInfo.type==="VALID"))p=_E({x:s,filter:a,convInfo:h,backend:n});else if(re().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)p=DE({x:s,filter:a,convInfo:h,backend:n});else{let m=new RE(h);p=n.runWebGLProgram(m,[s,a],"float32")}let f=ve({inputs:{x:p},backend:n,attrs:{shape:h.outShape}});return n.disposeIntermediateTensorInfo(p),f}var R0e={kernelName:el,backendName:"webgl",kernelFunc:$0e},_0e=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2252,7 +2528,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}},x0e=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=` + `}},D0e=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { @@ -2305,7 +2581,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}},b0e=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` + `}},F0e=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; @@ -2347,7 +2623,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}},v0e=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=` + `}},M0e=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${i}, ${l}, ${u}); void main() { @@ -2404,12 +2680,12 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}};function w0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,d=R.convertConv2DDataFormat(l),h=R.computeConv2DInfo(s.shape,c,o,1,i,u,!1,d),p=new A0e(h);return n.runWebGLProgram(p,[s,a],"float32")}var k0e={kernelName:Sy,backendName:"webgl",kernelFunc:w0e};function I0e(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=r,d=R.convertConv2DDataFormat(u),h=R.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),p=new x0e(h);return n.runWebGLProgram(p,[s,a],"float32")}var S0e={kernelName:nl,backendName:"webgl",kernelFunc:I0e};function T0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:l}=r,u=R.computeConv3DInfo(s.shape,a.shape,o,l,i),c=new f0e(u);return n.runWebGLProgram(c,[s,a],"float32")}var N0e={kernelName:Yp,backendName:"webgl",kernelFunc:T0e};function C0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:l}=r,u=R.computeConv3DInfo(s.shape,l,o,1,i),c=new b0e(u);return n.runWebGLProgram(c,[s,a],"float32")}var E0e={kernelName:Ty,backendName:"webgl",kernelFunc:C0e};function $0e(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:l}=r,u=R.computeConv3DInfo(l,a.shape,i,1,o),c=new v0e(u);return n.runWebGLProgram(c,[s,a],"float32")}var _0e={kernelName:Ny,backendName:"webgl",kernelFunc:$0e},R0e=CE+` + `}};function O0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,d=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(s.shape,c,o,1,i,u,!1,d),p=new _0e(h);return n.runWebGLProgram(p,[s,a],"float32")}var P0e={kernelName:v1,backendName:"webgl",kernelFunc:O0e};function z0e(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=r,d=_.convertConv2DDataFormat(u),h=_.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),p=new D0e(h);return n.runWebGLProgram(p,[s,a],"float32")}var L0e={kernelName:tl,backendName:"webgl",kernelFunc:z0e};function B0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:l}=r,u=_.computeConv3DInfo(s.shape,a.shape,o,l,i),c=new C0e(u);return n.runWebGLProgram(c,[s,a],"float32")}var W0e={kernelName:Zp,backendName:"webgl",kernelFunc:B0e};function V0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:l}=r,u=_.computeConv3DInfo(s.shape,l,o,1,i),c=new F0e(u);return n.runWebGLProgram(c,[s,a],"float32")}var U0e={kernelName:w1,backendName:"webgl",kernelFunc:V0e};function H0e(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:l}=r,u=_.computeConv3DInfo(l,a.shape,i,1,o),c=new M0e(u);return n.runWebGLProgram(c,[s,a],"float32")}var G0e={kernelName:k1,backendName:"webgl",kernelFunc:H0e},j0e=mE+` return cos(x); -`,D0e=it({opSnippet:R0e}),F0e={kernelName:rl,backendName:"webgl",kernelFunc:D0e},M0e=` +`,q0e=it({opSnippet:j0e}),K0e={kernelName:nl,backendName:"webgl",kernelFunc:q0e},X0e=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; -`,O0e=it({opSnippet:M0e}),P0e={kernelName:$c,backendName:"webgl",kernelFunc:O0e},z0e=class{constructor(e,t,n,r,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let h=r==="bilinear"?1:0,[p,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[A,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` +`,Z0e=it({opSnippet:X0e}),Y0e={kernelName:rl,backendName:"webgl",kernelFunc:Z0e},J0e=class{constructor(e,t,n,r,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let h=r==="bilinear"?1:0,[p,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[A,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${A}); void main() { @@ -2470,21 +2746,20 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel setOutput(newValue); } } - `}},L0e=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=r,c=new z0e(s.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[s,a,o],"float32")},B0e={kernelName:_c,backendName:"webgl",kernelFunc:L0e},qE=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,s=t?"0.0":`getX(${KE(r,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=` - uniform float index; + `}},Q0e=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=r,c=new J0e(s.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[s,a,o],"float32")},ege={kernelName:$c,backendName:"webgl",kernelFunc:Q0e},FE=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let r=e.length,s=t?"0.0":`getX(${ME(r,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=` void main() { - ${It(r)} coords = getOutputCoords(); - int end = ${XE(r,"coords")}; + ${wt(r)} coords = getOutputCoords(); + int end = ${OE(r,"coords")}; float val = ${s}; int pow2 = int(pow(2.0, index)); if (${o}) { int idx = ${i}; - ${XE(r,"coords")} = idx; - val += getX(${KE(r,"coords")}); + ${OE(r,"coords")} = idx; + val += getX(${ME(r,"coords")}); } setOutput(val); } - `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function KE(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function XE(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function W0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,l=s.shape.length,u=R.getAxesPermutation([a],l),c=s;u!=null&&(c=Un({inputs:{x:s},backend:n,attrs:{perm:u}}));let d=R.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${s.shape.length-1} but got axis=${a}`);let h=c.shape[d],p=gr({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(h))-1;f++){let m=new qE(c.shape,!1,i),g=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,g),n.disposeIntermediateTensorInfo(y)}if(o){let f=new qE(c.shape,o,i),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=R.getUndoAxesPermutation(u),m=Un({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var V0e={kernelName:sl,backendName:"webgl",kernelFunc:W0e};function U0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let l=n.readSync(s.dataId),u=n.readSync(a.dataId),c=hE(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(s.shape.length===2){let l=n.bufferSync(s),u=n.bufferSync(a),c=spe(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var H0e={kernelName:Cy,backendName:"webgl",kernelFunc:U0e},G0e=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` + `}};function ME(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function OE(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function tge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,l=s.shape.length,u=_.getAxesPermutation([a],l),c=s;u!=null&&(c=Un({inputs:{x:s},backend:n,attrs:{perm:u}}));let d=_.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${s.shape.length-1} but got axis=${a}`);let h=c.shape[d],p=fr({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(h))-1;f++){let m=new FE(c.shape,!1,i),g=[[f]],y=p;p=n.runWebGLProgram(m,[p],p.dtype,g),n.disposeIntermediateTensorInfo(y)}if(o){let f=new FE(c.shape,o,i),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=_.getUndoAxesPermutation(u),m=Un({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var nge={kernelName:sl,backendName:"webgl",kernelFunc:tge};function rge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let l=n.readSync(s.dataId),u=n.readSync(a.dataId),c=QC(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(s.shape.length===2){let l=n.bufferSync(s),u=n.bufferSync(a),c=Ape(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var sge={kernelName:I1,backendName:"webgl",kernelFunc:rge},age=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -2503,7 +2778,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel float result = ${this.getInputSamplingString()}; setOutput(result); } - `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function j0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r;k.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],l=o==="NHWC"?s.shape[1]:s.shape[2],u=o==="NHWC"?s.shape[2]:s.shape[3],c=o==="NHWC"?s.shape[3]:s.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=new G0e(f,a,o);return n.runWebGLProgram(m,[s],s.dtype)}var q0e={kernelName:Rc,backendName:"webgl",kernelFunc:j0e},ZE=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,o=e.inWidth,i=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,d=e.dilationHeight,h=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,g="",y="";n&&(r?g=`float activation(float a) { + `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function oge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r;k.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],l=o==="NHWC"?s.shape[1]:s.shape[2],u=o==="NHWC"?s.shape[2]:s.shape[3],c=o==="NHWC"?s.shape[3]:s.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=new age(f,a,o);return n.runWebGLProgram(m,[s],s.dtype)}var ige={kernelName:Rc,backendName:"webgl",kernelFunc:oge},PE=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,o=e.inWidth,i=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,d=e.dilationHeight,h=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,g="",y="";n&&(r?g=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:s?g=`float activation(float a) { @@ -2559,33 +2834,37 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ${y} setOutput(result); } - `}},YE=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,o=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,d=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,g=m,y=` + `}},zE=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.outChannels/e.inChannels,o=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,d=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,f=e.filterHeight,m=e.filterWidth,g=m,y=` int xR; int xC; int xCOffset; vec4 wTexel; vec4 previous; vec4 final;`;for(let v=0;v=0 && xR < ${o}) { - `;for(let w=0;w<(g+1)/2;w++){let S=w*2,I=S*p;if(y+=` - xC = xCCorner + ${I}; - `,d===1){if(S= 0 && xCOffset < ${i} && xTexelC${I}Ready == 0) { - xTexelC${I} = getX(batch, xR, xCOffset, d1); + if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) { + xTexelC${w} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= ${i}) { - xTexelC${I}.zw = vec2(0.0); + xTexelC${w}.zw = vec2(0.0); } - xTexelC${I}Ready = 1; + xTexelC${w}Ready = 1; } - `,p===1&&I>0?y+=` - xC${S} = vec4(xTexelC${I-2}.zw, xTexelC${I}.xy); + `,p===1&&S>0?y+=` + xC${w} = vec4(xTexelC${w-2}.zw, xTexelC${w}.xy); `:y+=` xCOffset = xC + 1 - 2; @@ -2598,113 +2877,113 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel previous.zw = vec2(0.0); } - xC${S} = vec4(previous.zw, xTexelC${I}.xy); + xC${w} = vec4(previous.zw, xTexelC${w}.xy); } else { - xC${S} = vec4(0.0, 0.0, xTexelC${I}.xy); + xC${w} = vec4(0.0, 0.0, xTexelC${w}.xy); } `):y+=` - if (xC >= 0 && xC < ${i} && xTexelC${I}Ready == 0) { - xTexelC${I} = getX(batch, xR, xC, d1); + if (xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) { + xTexelC${w} = getX(batch, xR, xC, d1); if (xC + 1 >= ${i}) { - xTexelC${I}.zw = vec2(0.0); + xTexelC${w}.zw = vec2(0.0); } - xTexelC${I}Ready = 1; + xTexelC${w}Ready = 1; } - xC${S} = xTexelC${I}; - `,I+1= 0 && xCOffset < ${i} && xTexelC${I+2}Ready == 0) { - xTexelC${I+2} = getX(batch, xR, xCOffset, d1); + if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) { + xTexelC${w+1} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= ${i}) { - xTexelC${I+2}.zw = vec2(0.0); + xTexelC${w+1}.zw = vec2(0.0); } - xTexelC${I+2}Ready = 1; + xTexelC${w+1}Ready = 1; } `,p>1&&(y+=` xCOffset -= 2; - if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${I}Ready == 0) { - xTexelC${I} = getX(batch, xR, xCOffset, d1); - xTexelC${I}Ready = 1; + if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) { + xTexelC${w} = getX(batch, xR, xCOffset, d1); + xTexelC${w}Ready = 1; } `),y+=` - xC${S+1} = vec4(xTexelC${I}.zw, xTexelC${I+2}.xy); + xC${w+1} = vec4(xTexelC${w}.zw, xTexelC${w+1}.xy); `):E===1?y+=` - xC${S+1} = xTexelC${I}; + xC${w+1} = xTexelC${w}; `:y+=` xCOffset = xC + ${E}; - if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${I+2}Ready == 0) { - xTexelC${I+2} = getX(batch, xR, xCOffset, d1); + if (xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) { + xTexelC${w+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= ${i}) { - xTexelC${I+2}.zw = vec2(0.0); + xTexelC${w+1}.zw = vec2(0.0); } - xTexelC${I+2}Ready = 1; + xTexelC${w+1}Ready = 1; } - xC${S+1} = xTexelC${I+2}; - `}}else I= 0 && xCOffset < ${i} && xTexelC${I}Ready == 0) { - xTexelC${I} = getX(batch, xR, xCOffset, d1); + if(xCOffset >= 0 && xCOffset < ${i} && xTexelC${w}Ready == 0) { + xTexelC${w} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= ${i}) { - xTexelC${I}.zw = vec2(0.0); + xTexelC${w}.zw = vec2(0.0); } - xTexelC${I}Ready = 1; + xTexelC${w}Ready = 1; } - if(xC + 1 >= 0 && xC + 1 < ${i} && xTexelC${I+2}Ready == 0) { - xTexelC${I+2} = getX(batch, xR, xC + 1, d1); + if(xC + 1 >= 0 && xC + 1 < ${i} && xTexelC${w+1}Ready == 0) { + xTexelC${w+1} = getX(batch, xR, xC + 1, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xC + 2 >= ${i}) { - xTexelC${I+2}.zw = vec2(0.0); + xTexelC${w+1}.zw = vec2(0.0); } - xTexelC${I+2}Ready = 1; + xTexelC${w+1}Ready = 1; } - xC${S} = vec4(xTexelC${I}.zw, xTexelC${I+2}.zw); - `,I+1= 0 && xCOffset < ${i}) { final = getX(batch, xR, xCOffset, d1); } - xC${S+1} = vec4(xTexelC${I+2}.xy, final.xy); + xC${w+1} = vec4(xTexelC${w+1}.xy, final.xy); `)):(y+=` - if(xC >= 0 && xC < ${i} && xTexelC${I}Ready == 0) { - xTexelC${I} = getX(batch, xR, xC, d1); + if(xC >= 0 && xC < ${i} && xTexelC${w}Ready == 0) { + xTexelC${w} = getX(batch, xR, xC, d1); if (xC + 1 >= ${i}) { - xTexelC${I}.zw = vec2(0.0); + xTexelC${w}.zw = vec2(0.0); } - xTexelC${I}Ready = 1; + xTexelC${w}Ready = 1; } xCOffset = xC + ${d}; - if(xCOffset >= 0 && xCOffset < ${i} && xTexelC${I+2}Ready == 0) { - xTexelC${I+2} = getX(batch, xR, xCOffset, d1); + if(xCOffset >= 0 && xCOffset < ${i} && xTexelC${w+1}Ready == 0) { + xTexelC${w+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= ${i}) { - xTexelC${I+2}.zw = vec2(0.); + xTexelC${w+1}.zw = vec2(0.); } - xTexelC${I+2}Ready = 1; + xTexelC${w+1}Ready = 1; } - xC${S} = vec4( - xTexelC${I}.xy, xTexelC${I+2}.xy); - `,I+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=R.computeConv2DInfo(s.shape,a.shape,o,c,i,u,!0),h;return ae().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?h=new YE(d):h=new ZE(d),n.runWebGLProgram(h,[s,a],"float32")}var X0e={kernelName:al,backendName:"webgl",kernelFunc:K0e},Z0e=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` + `}};function lge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=_.computeConv2DInfo(s.shape,a.shape,o,c,i,u,!0),h;return re().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?h=new zE(d):h=new PE(d),n.runWebGLProgram(h,[s,a],"float32")}var uge={kernelName:al,backendName:"webgl",kernelFunc:lge},cge=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; @@ -2777,7 +3056,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}},Y0e=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` + `}},dge=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${a}, ${o}); void main() { @@ -2822,13 +3101,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}};function J0e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=r,d=R.computeConv2DInfo(s.shape,c,o,i,l,u,!0),h=new Z0e(d);return n.runWebGLProgram(h,[s,a],"float32")}var Q0e={kernelName:Ey,backendName:"webgl",kernelFunc:J0e};function ege(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=r,d=R.computeConv2DInfo(c,a.shape,o,i,l,u,!0),h=new Y0e(d);return n.runWebGLProgram(h,[s,a],"float32")}var tge={kernelName:$y,backendName:"webgl",kernelFunc:ege},nge=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` + `}};function hge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=r,d=_.computeConv2DInfo(s.shape,c,o,i,l,u,!0),h=new cge(d);return n.runWebGLProgram(h,[s,a],"float32")}var pge={kernelName:S1,backendName:"webgl",kernelFunc:hge};function fge(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=r,d=_.computeConv2DInfo(c,a.shape,o,i,l,u,!0),h=new dge(d);return n.runWebGLProgram(h,[s,a],"float32")}var mge={kernelName:T1,backendName:"webgl",kernelFunc:fge},gge=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } - `}};function rge(e){let{inputs:t,backend:n}=e,{x:r}=t,s=[...r.shape,...r.shape],a=k.sizeFromShape(r.shape),o=ve({inputs:{x:r},backend:n,attrs:{shape:[a]}}),i=new nge(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:s}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var sge={kernelName:_y,backendName:"webgl",kernelFunc:rge},age=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:s,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=r;this.userCode=` + `}};function yge(e){let{inputs:t,backend:n}=e,{x:r}=t,s=[...r.shape,...r.shape],a=k.sizeFromShape(r.shape),o=ve({inputs:{x:r},backend:n,attrs:{shape:[a]}}),i=new gge(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:s}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var Age={kernelName:N1,backendName:"webgl",kernelFunc:yge},xge=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:s,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=r;this.userCode=` const ivec2 strides = ivec2(${s}, ${a}); const ivec2 pads = ivec2(${c}, ${d}); const float neg_infinity = -3.4e38; @@ -2866,7 +3145,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel float result = curVal; setOutput(result); } - `}};function oge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:l}=r,u=R.computeDilation2DInfo(s.shape,a.shape,o,i,"NHWC",l),c,d=new age(u);c=n.runWebGLProgram(d,[s,a],"float32");let h=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),h}var ige={kernelName:Jp,backendName:"webgl",kernelFunc:oge};function lge(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:l}=R.decodeEinsumEquation(s,a.length);R.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=R.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m=0&&(h=qm({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var uge={kernelName:Fy,backendName:"webgl",kernelFunc:lge},cge="return (x >= 0.0) ? x : (exp(x) - 1.0);",dge=` + `}};function bge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:l}=r,u=_.computeDilation2DInfo(s.shape,a.shape,o,i,"NHWC",l),c,d=new xge(u);c=n.runWebGLProgram(d,[s,a],"float32");let h=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),h}var vge={kernelName:Yp,backendName:"webgl",kernelFunc:bge};function wge(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:l}=_.decodeEinsumEquation(s,a.length);_.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=_.getEinsumComputePath(i,l),d=c.length,h=null,p=o.length,f=[];for(let m=0;m=0&&(h=Vm({inputs:{x:h},backend:n,attrs:{axis:u[m]-(o.length-p),keepDims:!1}}),f.push(h)),p--)}for(let m of f)m!==h&&n.disposeIntermediateTensorInfo(m);return h}var kge={kernelName:$1,backendName:"webgl",kernelFunc:wge},Ige="return (x >= 0.0) ? x : (exp(x) - 1.0);",Sge=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); @@ -2875,27 +3154,27 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; -`,hge=it({opSnippet:cge,packedOpSnippet:dge}),pge={kernelName:Dc,backendName:"webgl",kernelFunc:hge},fge="return (b >= 1.0) ? a : a * (b + 1.0);",mge=` +`,Tge=it({opSnippet:Ige,packedOpSnippet:Sge}),Nge={kernelName:_c,backendName:"webgl",kernelFunc:Tge},Cge="return (b >= 1.0) ? a : a * (b + 1.0);",Ege=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); -`,gge=e=>{let{inputs:t,backend:n}=e,{dy:r,y:s}=t,a=ae().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new hh(mge,r.shape,s.shape):new ku(fge,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)},yge={kernelName:My,backendName:"webgl",kernelFunc:gge},Age=` +`,$ge=e=>{let{inputs:t,backend:n}=e,{dy:r,y:s}=t,a=re().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ch(Ege,r.shape,s.shape):new bu(Cge,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)},Rge={kernelName:R1,backendName:"webgl",kernelFunc:$ge},_ge=` return vec4(equal(a, b)); -`,xge="return float(a == b);",bge=Nn({opSnippet:xge,packedOpSnippet:Age,dtype:"bool",cpuKernelImpl:ipe}),vge={kernelName:il,backendName:"webgl",kernelFunc:bge},wge=` +`,Dge="return float(a == b);",Fge=Tn({opSnippet:Dge,packedOpSnippet:_ge,dtype:"bool",cpuKernelImpl:vpe}),Mge={kernelName:il,backendName:"webgl",kernelFunc:Fge},Oge=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. - float p = ${R.ERF_P}; - float a1 = ${R.ERF_A1}; - float a2 = ${R.ERF_A2}; - float a3 = ${R.ERF_A3}; - float a4 = ${R.ERF_A4}; - float a5 = ${R.ERF_A5}; + float p = ${_.ERF_P}; + float a1 = ${_.ERF_A1}; + float a2 = ${_.ERF_A2}; + float a3 = ${_.ERF_A3}; + float a4 = ${_.ERF_A4}; + float a5 = ${_.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); -`,kge=it({opSnippet:wge}),Ige={kernelName:Fc,backendName:"webgl",kernelFunc:kge},JE="return exp(x);",QE=it({opSnippet:JE,packedOpSnippet:JE,cpuKernelImpl:lpe}),Sge={kernelName:Eo,backendName:"webgl",kernelFunc:QE};function db(e){let{inputs:t,attrs:n,backend:r}=e,{dim:s}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=s;return s<0&&(k.assert(-(o+1)<=s,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+s+1),i.splice(l,0,1),ve({inputs:{x:a},backend:r,attrs:{shape:i}})}var Tge={kernelName:Mc,backendName:"webgl",kernelFunc:db},e9="return exp(x) - 1.0;",Nge=it({opSnippet:e9,packedOpSnippet:e9,cpuKernelImpl:upe}),Cge={kernelName:ll,backendName:"webgl",kernelFunc:Nge},t9=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${r}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` +`,Pge=it({opSnippet:Oge}),zge={kernelName:Dc,backendName:"webgl",kernelFunc:Pge},LE="return exp(x);",BE=it({opSnippet:LE,packedOpSnippet:LE,cpuKernelImpl:wpe}),Lge={kernelName:Eo,backendName:"webgl",kernelFunc:BE};function eb(e){let{inputs:t,attrs:n,backend:r}=e,{dim:s}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=s;return s<0&&(k.assert(-(o+1)<=s,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+s+1),i.splice(l,0,1),ve({inputs:{x:a},backend:r,attrs:{shape:i}})}var Bge={kernelName:Fc,backendName:"webgl",kernelFunc:eb},WE="return exp(x) - 1.0;",Wge=it({opSnippet:WE,packedOpSnippet:WE,cpuKernelImpl:kpe}),Vge={kernelName:ll,backendName:"webgl",kernelFunc:Wge},VE=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${r}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${s}; float unaryOpComplex(float real, float expR, float imag, float expI) { @@ -2928,18 +3207,17 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } - `}};function n9(e,t,n){let r=n.texData.get(e.dataId),s=k.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=s/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new t9("real",l,t),c=new t9("imag",l,t),d=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=eo({inputs:{real:h,imag:p},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Ege(e){let{inputs:t,backend:n}=e,{input:r}=t;return n9(r,!1,n)}var $ge={kernelName:Oy,backendName:"webgl",kernelFunc:Ege},_ge=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` - uniform float value; + `}};function UE(e,t,n){let r=n.texData.get(e.dataId),s=k.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=s/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new VE("real",l,t),c=new VE("imag",l,t),d=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],h=n.runWebGLProgram(u,d,"float32"),p=n.runWebGLProgram(c,d,"float32"),f=eo({inputs:{real:h,imag:p},backend:n});n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Uge(e){let{inputs:t,backend:n}=e,{input:r}=t;return UE(r,!1,n)}var Hge={kernelName:_1,backendName:"webgl",kernelFunc:Uge},Gge=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` void main() { // Input can be obtained from uniform value. setOutput(value); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function hb(e){let{backend:t,attrs:n}=e,{shape:r,value:s}=n,{dtype:a}=n;if(a=a||k.inferDtype(s),a==="string"){let o=k.getArrayFromDType(a,k.sizeFromShape(r));return o.fill(s),t.makeTensorInfo(r,a,o)}else{let o=new _ge(r,s),i=o.getCustomSetupFunc(s);return t.runWebGLProgram(o,[],a,i)}}var Rge={kernelName:Qp,backendName:"webgl",kernelFunc:hb},Dge=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` + `}};function qm(e){let{backend:t,attrs:n}=e,{shape:r,value:s}=n,{dtype:a}=n;if(a=a||k.inferDtype(s),a==="string"){let o=k.getArrayFromDType(a,k.sizeFromShape(r));return o.fill(s),t.makeTensorInfo(r,a,o)}else{let o=new Gge(r,s),i=[[s]];return t.runWebGLProgram(o,[],a,i)}}var jge={kernelName:Jp,backendName:"webgl",kernelFunc:qm},qge=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; - int coordX = ${t} - x; + int coordX = ${t} - x - 1; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); @@ -2948,7 +3226,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(outputValue); } - `}},Fge={kernelName:Oc,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,s=new Dge(n.shape);return r.runWebGLProgram(s,[n],n.dtype)}},r9="return floor(x);",Mge=it({opSnippet:r9,packedOpSnippet:r9,cpuKernelImpl:cpe}),Oge={kernelName:$o,backendName:"webgl",kernelFunc:Mge},Pge=` + `}},Kge={kernelName:Mc,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,s=new qge(n.shape);return r.runWebGLProgram(s,[n],n.dtype)}},HE="return floor(x);",Xge=it({opSnippet:HE,packedOpSnippet:HE,cpuKernelImpl:Ipe}),Zge={kernelName:$o,backendName:"webgl",kernelFunc:Xge},Yge=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); @@ -2958,7 +3236,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } else { return NAN; } -`,zge=` +`,Jge=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); @@ -2979,7 +3257,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); -`,Lge=Nn({opSnippet:Pge,packedOpSnippet:zge,dtype:"int32"}),Bge={kernelName:ul,backendName:"webgl",kernelFunc:Lge},Wge=class{constructor(e){this.variableNames=["A"];let t=Wn(),[n,r]=e;this.outputShape=e,this.userCode=` +`,Qge=Tn({opSnippet:Yge,packedOpSnippet:Jge,dtype:"int32"}),e2e={kernelName:ul,backendName:"webgl",kernelFunc:Qge},t2e=class{constructor(e){this.variableNames=["A"];let t=Wn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -3001,7 +3279,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel setOutput(floor(value * 255.0 + 0.5)); } - `}},Vge=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Wn(),[n,r]=e;this.outputShape=e,this.userCode=` + `}},n2e=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Wn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; @@ -3035,7 +3313,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ${t.output} = result; } - `}},Uge={kernelName:rA,backendName:"webgl",kernelFunc:Hge},Su;function Hge(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:s}=t,{numChannels:a}=r,o=typeof HTMLVideoElement!="undefined"&&s instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&s instanceof HTMLImageElement,[l,u]=o?[s.videoWidth,s.videoHeight]:[s.width,s.height],c=[u,l],d=[u,l,a];(i||o)&&(Su==null&&(Su=document.createElement("canvas").getContext("2d")),Su.canvas.width=l,Su.canvas.height=u,Su.drawImage(s,0,0,l,u),s=Su.canvas);let h=n.makeTensorInfo(c,"int32");n.texData.get(h.dataId).usage=zr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),s);let p=ae().getBool("WEBGL_PACK")?new Vge(d):new Wge(d),f=n.runWebGLProgram(p,[h],"int32");return n.disposeData(h.dataId),f}function Gge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=r,m=R.convertConv2DDataFormat(c),g=R.computeConv2DInfo(s.shape,a.shape,l,d,u,h,!1,m),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=GE({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else if(ae().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)y=jE({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,w=p==="leakyrelu",S=p?Gm(p,!1):null,I=new HE(g,b,S,v,w),E=[s,a];if(o&&E.push(o),i&&E.push(i),w){let F=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));E.push(F),A.push(F)}y=n.runWebGLProgram(I,E,"float32")}let x=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var jge={kernelName:Bl,backendName:"webgl",kernelFunc:Gge};function qge(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:p}=r,f=[],m=c;m==null&&(m=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=R.computeConv2DInfo(s.shape,a.shape,l,m,u,d,!0),y=ae().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,A=h?Gm(h,y):null,x=[s,a],b=o!=null,v=i!=null,w=h==="leakyrelu";if(b&&x.push(o),v&&x.push(i),w){let E=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));x.push(E),f.push(E)}let S;y?S=new YE(g,b,A,v,w):S=new ZE(g,b,A,v,w);let I=n.runWebGLProgram(S,x,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),I}var Kge={kernelName:Wl,backendName:"webgl",kernelFunc:qge},Xge=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=It(t.length),s=It(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=` + `}},r2e={kernelName:Q1,backendName:"webgl",kernelFunc:s2e},ku;function s2e(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:s}=t,{numChannels:a}=r,o=typeof HTMLVideoElement!="undefined"&&s instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&s instanceof HTMLImageElement,[l,u]=o?[s.videoWidth,s.videoHeight]:[s.width,s.height],c=[u,l],d=[u,l,a];(i||o)&&(ku==null&&(ku=document.createElement("canvas").getContext("2d")),ku.canvas.width=l,ku.canvas.height=u,ku.drawImage(s,0,0,l,u),s=ku.canvas);let h=n.makeTensorInfo(c,"int32");n.texData.get(h.dataId).usage=Fr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),s);let p=re().getBool("WEBGL_PACK")?new n2e(d):new t2e(d),f=n.runWebGLProgram(p,[h],"int32");return n.disposeData(h.dataId),f}function a2e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=r,m=_.convertConv2DDataFormat(c),g=_.computeConv2DInfo(s.shape,a.shape,l,d,u,h,!1,m),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=_E({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else if(re().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)y=DE({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:p,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,I=p==="leakyrelu",w=p?Bm(p,!1):null,S=new RE(g,b,w,v,I),E=[s,a];if(o&&E.push(o),i&&E.push(i),I){let D=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));E.push(D),A.push(D)}y=n.runWebGLProgram(S,E,"float32")}let x=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return A.push(y),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var o2e={kernelName:Bl,backendName:"webgl",kernelFunc:a2e};function i2e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:h,leakyreluAlpha:p}=r,f=[],m=c;m==null&&(m=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=_.computeConv2DInfo(s.shape,a.shape,l,m,u,d,!0),y=re().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,A=h?Bm(h,y):null,x=[s,a],b=o!=null,v=i!=null,I=h==="leakyrelu";if(b&&x.push(o),v&&x.push(i),I){let E=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));x.push(E),f.push(E)}let w;y?w=new zE(g,b,A,v,I):w=new PE(g,b,A,v,I);let S=n.runWebGLProgram(w,x,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),S}var l2e={kernelName:Wl,backendName:"webgl",kernelFunc:i2e},u2e=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=wt(t.length),s=wt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${s} coords = getOutputCoords(); @@ -3046,21 +3324,21 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(getX(flattenIndex, coords[1])); } - `}};function Zge(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=s.shape,o=a[a.length-1],i=k.sizeFromShape(r.shape),[l,u,c,d]=R.prepareAndValidate(r,s),h=ve({inputs:{x:s},backend:n,attrs:{shape:[u,o]}}),p=ve({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/c,c]}});if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.readSync(s.dataId),A=n.bufferSync(r),x=dpe(y,A,r.dtype,u,o,c,d,r.shape,i);return n.makeTensorInfo(l,r.dtype,x.values)}let f=new Xge(o,d,[u,c]),m=n.runWebGLProgram(f,[p,h],p.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),g}var Yge={kernelName:zc,backendName:"webgl",kernelFunc:Zge},Jge=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=It(this.rank),r=Qge(e,2);this.userCode=` + `}};function c2e(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=s.shape,o=a[a.length-1],i=k.sizeFromShape(r.shape),[l,u,c,d]=_.prepareAndValidate(r,s),h=ve({inputs:{x:s},backend:n,attrs:{shape:[u,o]}}),p=ve({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/c,c]}});if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let y=n.readSync(s.dataId),A=n.bufferSync(r),x=Spe(y,A,r.dtype,u,o,c,d,r.shape,i);return n.makeTensorInfo(l,r.dtype,x.values)}let f=new u2e(o,d,[u,c]),m=n.runWebGLProgram(f,[p,h],p.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),g}var d2e={kernelName:Pc,backendName:"webgl",kernelFunc:c2e},h2e=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=wt(this.rank),r=p2e(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } - `}};function Qge(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;sn.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new Jge(h.shape,f),g=n.runWebGLProgram(m,[h,p],h.dtype);d.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}var t2e={kernelName:Pc,backendName:"webgl",kernelFunc:e2e},n2e="return float(a > b);",r2e=` + `}};function p2e(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;sn.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new h2e(h.shape,f),g=n.runWebGLProgram(m,[h,p],h.dtype);d.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}var f2e={kernelName:Oc,backendName:"webgl",kernelFunc:GE},m2e="return float(a > b);",g2e=` return vec4(greaterThan(a, b)); -`,s2e=Nn({opSnippet:n2e,packedOpSnippet:r2e,cpuKernelImpl:ppe,dtype:"bool"}),a2e={kernelName:dl,backendName:"webgl",kernelFunc:s2e},o2e="return float(a >= b);",i2e=` +`,y2e=Tn({opSnippet:m2e,packedOpSnippet:g2e,cpuKernelImpl:Npe,dtype:"bool"}),A2e={kernelName:dl,backendName:"webgl",kernelFunc:y2e},x2e="return float(a >= b);",b2e=` return vec4(greaterThanEqual(a, b)); -`,l2e=Nn({opSnippet:o2e,packedOpSnippet:i2e,dtype:"bool",cpuKernelImpl:fpe}),u2e={kernelName:_o,backendName:"webgl",kernelFunc:l2e};function c2e(e){let{inputs:t,backend:n}=e,{input:r}=t;return n9(r,!0,n)}var d2e={kernelName:Py,backendName:"webgl",kernelFunc:c2e},h2e="return float(!isnan(x) && !isinf(x));",p2e=it({opSnippet:h2e,dtype:"bool"}),f2e={kernelName:Lc,backendName:"webgl",kernelFunc:p2e},m2e="return float(isinf(x));",g2e=it({opSnippet:m2e,dtype:"bool"}),y2e={kernelName:Bc,backendName:"webgl",kernelFunc:g2e},A2e="return float(isnan(x));",x2e=it({opSnippet:A2e,dtype:"bool"}),b2e={kernelName:Wc,backendName:"webgl",kernelFunc:x2e},v2e="return float(a < b);",w2e=` +`,v2e=Tn({opSnippet:x2e,packedOpSnippet:b2e,dtype:"bool",cpuKernelImpl:Cpe}),w2e={kernelName:Ro,backendName:"webgl",kernelFunc:v2e};function k2e(e){let{inputs:t,backend:n}=e,{input:r}=t;return UE(r,!0,n)}var I2e={kernelName:D1,backendName:"webgl",kernelFunc:k2e},S2e="return float(!isnan(x) && !isinf(x));",T2e=it({opSnippet:S2e,dtype:"bool"}),N2e={kernelName:zc,backendName:"webgl",kernelFunc:T2e},C2e="return float(isinf(x));",E2e=it({opSnippet:C2e,dtype:"bool"}),$2e={kernelName:Lc,backendName:"webgl",kernelFunc:E2e},R2e="return float(isnan(x));",_2e=it({opSnippet:R2e,dtype:"bool"}),D2e={kernelName:Bc,backendName:"webgl",kernelFunc:_2e},F2e="return float(a < b);",M2e=` return vec4(lessThan(a, b)); -`,k2e=Nn({opSnippet:v2e,packedOpSnippet:w2e,cpuKernelImpl:mpe,dtype:"bool"}),I2e={kernelName:fl,backendName:"webgl",kernelFunc:k2e},S2e="return float(a <= b);",T2e=` +`,O2e=Tn({opSnippet:F2e,packedOpSnippet:M2e,cpuKernelImpl:Epe,dtype:"bool"}),P2e={kernelName:fl,backendName:"webgl",kernelFunc:O2e},z2e="return float(a <= b);",L2e=` return vec4(lessThanEqual(a, b)); -`,N2e=Nn({opSnippet:S2e,packedOpSnippet:T2e,cpuKernelImpl:gpe,dtype:"bool"}),C2e={kernelName:ml,backendName:"webgl",kernelFunc:N2e};function E2e(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=ype(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var $2e={kernelName:Ly,backendName:"webgl",kernelFunc:E2e},_2e=`if (x < 0.0) return NAN; - return log(x);`,R2e=` +`,B2e=Tn({opSnippet:z2e,packedOpSnippet:L2e,cpuKernelImpl:$pe,dtype:"bool"}),W2e={kernelName:ml,backendName:"webgl",kernelFunc:B2e};function V2e(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=Rpe(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var U2e={kernelName:M1,backendName:"webgl",kernelFunc:V2e},H2e=`if (x < 0.0) return NAN; + return log(x);`,G2e=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; @@ -3069,16 +3347,16 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel result.a = isNaN.a == 1.0 ? NAN : result.a; return result; -`,D2e=it({opSnippet:_2e,packedOpSnippet:R2e,cpuKernelImpl:Ape}),F2e={kernelName:Ro,backendName:"webgl",kernelFunc:D2e},M2e="return log(1.0 + x);",O2e=it({opSnippet:M2e}),P2e={kernelName:Vc,backendName:"webgl",kernelFunc:O2e},z2e="return float(a >= 1.0 && b >= 1.0);",L2e=` +`,j2e=it({opSnippet:H2e,packedOpSnippet:G2e,cpuKernelImpl:_pe}),q2e={kernelName:_o,backendName:"webgl",kernelFunc:j2e},K2e="return log(1.0 + x);",X2e=it({opSnippet:K2e}),Z2e={kernelName:Wc,backendName:"webgl",kernelFunc:X2e},Y2e="return float(a >= 1.0 && b >= 1.0);",J2e=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); -`,B2e=Nn({opSnippet:z2e,packedOpSnippet:L2e,dtype:"bool"}),W2e={kernelName:Uc,backendName:"webgl",kernelFunc:B2e},V2e="return float(!(x >= 1.0));",U2e=it({opSnippet:V2e}),H2e={kernelName:ef,backendName:"webgl",kernelFunc:U2e},G2e="return float(a >= 1.0 || b >= 1.0);",j2e=` +`,Q2e=Tn({opSnippet:Y2e,packedOpSnippet:J2e,dtype:"bool"}),e1e={kernelName:Vc,backendName:"webgl",kernelFunc:Q2e},t1e="return float(!(x >= 1.0));",n1e=it({opSnippet:t1e}),r1e={kernelName:Qp,backendName:"webgl",kernelFunc:n1e},s1e="return float(a >= 1.0 || b >= 1.0);",a1e=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); -`,q2e=Nn({opSnippet:G2e,packedOpSnippet:j2e,dtype:"bool"}),K2e={kernelName:tf,backendName:"webgl",kernelFunc:q2e},X2e=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${l})`:s===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${s}));`,this.userCode=` +`,o1e=Tn({opSnippet:s1e,packedOpSnippet:a1e,dtype:"bool"}),i1e={kernelName:ef,backendName:"webgl",kernelFunc:o1e},l1e=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${l})`:s===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3097,7 +3375,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel float val = x * ${i}; setOutput(val); } - `}},Z2e=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${l})`:s===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${s}));`,this.userCode=` + `}},u1e=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${l})`:s===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; @@ -3159,7 +3437,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel vec4 result = xAtOutputCoords * ${i}; setOutput(result); } - `}},Y2e=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=r,u=ae().getBool("WEBGL_PACK_NORMALIZATION")?new Z2e(s.shape,a,o,i,l):new X2e(s.shape,a,o,i,l);return n.runWebGLProgram(u,[s],s.dtype)},J2e={kernelName:nf,backendName:"webgl",kernelFunc:Y2e},Q2e=class{constructor(e,t,n,r,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=s,this.userCode=` + `}},c1e=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=r,u=re().getBool("WEBGL_PACK_NORMALIZATION")?new u1e(s.shape,a,o,i,l):new l1e(s.shape,a,o,i,l);return n.runWebGLProgram(u,[s],s.dtype)},d1e={kernelName:tf,backendName:"webgl",kernelFunc:c1e},h1e=class{constructor(e,t,n,r,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=s,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3214,14 +3492,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(result); } - `}},eye=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=r,d=new Q2e(s.shape,i,l,u,c);return n.runWebGLProgram(d,[s,a,o],s.dtype)},tye={kernelName:By,backendName:"webgl",kernelFunc:eye};function nye(e,t,n,r){let s=k.sizeFromShape(t),o=k.sizeFromShape(e.shape)/s,i=ve({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),l=bi(i,e.dtype,"max",r),u=ve({inputs:{x:l},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}function s9(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=s.shape.length,l=k.parseAxisParam(a,s.shape),u=l,c=R.getAxesPermutation(u,i),d=c!=null,h=n.shouldExecuteOnCPU([s]),p=s;if(d){if(h){let x=n.texData.get(p.dataId).values,b=new Array(i);for(let S=0;S{let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=r,d=new h1e(s.shape,i,l,u,c);return n.runWebGLProgram(d,[s,a,o],s.dtype)},f1e={kernelName:O1,backendName:"webgl",kernelFunc:p1e};function m1e(e,t,n,r){let s=k.sizeFromShape(t),o=k.sizeFromShape(e.shape)/s,i=ve({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),l=Ai(i,e.dtype,"max",r),u=ve({inputs:{x:l},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}function jE(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=s.shape.length,l=k.parseAxisParam(a,s.shape),u=l,c=_.getAxesPermutation(u,i),d=c!=null,h=n.shouldExecuteOnCPU([s]),p=s;if(d){if(h){let x=n.texData.get(p.dataId).values,b=new Array(i);for(let w=0;w`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=R.computePool2DInfo(s.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return gr({inputs:{x:s},backend:n});let d=new ph(c,"max",!1);return n.runWebGLProgram(d,[s],s.dtype)}var uye={kernelName:yl,backendName:"webgl",kernelFunc:lye};function cye(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],d=R.computePool3DInfo(s.shape,a,o,c,i,u,l),h=new lb(d,"max",!1);return n.runWebGLProgram(h,[s],s.dtype)}var dye={kernelName:rf,backendName:"webgl",kernelFunc:cye},hye=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=s-1-e.padInfo.top,i=a-1-e.padInfo.left,l=s*a-1;this.userCode=` +`,x1e=Tn({opSnippet:y1e,packedOpSnippet:A1e,cpuKernelImpl:Fpe}),b1e={kernelName:Do,backendName:"webgl",kernelFunc:x1e};function v1e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;hu(s,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=r,u=1;k.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(s.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&k.arraysEqual(c.inShape,c.outShape))return fr({inputs:{x:s},backend:n});let d=new dh(c,"max",!1);return n.runWebGLProgram(d,[s],s.dtype)}var w1e={kernelName:yl,backendName:"webgl",kernelFunc:v1e};function k1e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],d=_.computePool3DInfo(s.shape,a,o,c,i,u,l),h=new Y5(d,"max",!1);return n.runWebGLProgram(h,[s],s.dtype)}var I1e={kernelName:nf,backendName:"webgl",kernelFunc:k1e},S1e=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=s-1-e.padInfo.top,i=a-1-e.padInfo.left,l=s*a-1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { @@ -3267,7 +3545,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}},pye=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,h=u-1-e.padInfo.left,p=i*l*u-1;this.userCode=` + `}},T1e=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,h=u-1-e.padInfo.left,p=i*l*u-1;this.userCode=` const ivec3 pads = ivec3(${c}, ${d}, ${h}); void main() { @@ -3331,14 +3609,14 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel } setOutput(dotProd); } - `}};function fye(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=r,d=[1,1,1],h=R.computePool3DInfo(o.shape,i,l,d,u,c),p=new lb(h,"max",!0),f=n.runWebGLProgram(p,[o],o.dtype),m=new pye(h),g=n.runWebGLProgram(m,[s,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var mye={kernelName:Vy,backendName:"webgl",kernelFunc:fye};function gye(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;mu([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=r,h=R.computePool2DInfo(i.shape,l,u,1,c,d),p=!0,f=new ph(h,"max",p),m=n.runWebGLProgram(f,[i],i.dtype),g=new hye(h),y=n.runWebGLProgram(g,[s,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var yye={kernelName:Wy,backendName:"webgl",kernelFunc:gye};function Aye(e,t,n,r){let s=new ph(n,"max",!1),a=r.runWebGLProgram(s,[e],"float32");s=new ph(n,"max",!0,!0,t);let o=r.runWebGLProgram(s,[e],"float32");return[a,o]}var xye={kernelName:Uy,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];k.assert(R.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=R.computePool2DInfo(r.shape,s,a,u,o),[d,h]=Aye(r,i,c,l);return[d,h]}};function bye(e,t,n,r){let s=k.sizeFromShape(t),o=k.sizeFromShape(e.shape)/s,i=ve({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),l=bi(i,"float32","mean",r),u=ve({inputs:{x:l},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}var vye={kernelName:Al,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:s,axis:a}=t,o=n,i=r.shape.length,l=k.parseAxisParam(a,r.shape),u=l,c=R.getAxesPermutation(u,i),d=c!=null,h=o.shouldExecuteOnCPU([r]),p=[],f=r;if(d){if(h){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let I=0;I{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];k.assert(_.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,s,a,u,o),[d,h]=R1e(r,i,c,l);return[d,h]}};function D1e(e,t,n,r){let s=k.sizeFromShape(t),o=k.sizeFromShape(e.shape)/s,i=ve({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),l=Ai(i,"float32","mean",r),u=ve({inputs:{x:l},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(l),u}var F1e={kernelName:Al,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:s,axis:a}=t,o=n,i=r.shape.length,l=k.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=c!=null,h=o.shouldExecuteOnCPU([r]),p=[],f=r;if(d){if(h){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let S=0;Su[0]+e[c]+u[1]);let r=e.length,s=It(r),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` +`,L1e=Tn({opSnippet:P1e,packedOpSnippet:z1e,cpuKernelImpl:Mpe}),B1e={kernelName:Fo,backendName:"webgl",kernelFunc:L1e},W1e=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,s=wt(r),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${a}; int end = ${o}; @@ -3367,7 +3645,7 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ${s} coords = outC - start; setOutput(getX(${i})); } - `}},Eye=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,s=It(r),a=t.map(p=>p[0]).join(","),o=t.map((p,f)=>p[0]+e[f]).join(","),i=Vn("rc",r),l=Vn("source",r),u=`${i[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,h="";if(r===1){let p=` + `}},V1e=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,s=wt(r),a=t.map(p=>p[0]).join(","),o=t.map((p,f)=>p[0]+e[f]).join(","),i=Vn("rc",r),l=Vn("source",r),u=`${i[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,h="";if(r===1){let p=` ${s} source = rc; if (source < start) { source = start * 2 - source - ${d}; @@ -3423,15 +3701,13 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel ${h} setOutput(result); } - `}},$ye=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:s,mode:a}=n,o=ae().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Eye(r.shape,s,a):new Cye(r.shape,s,a);return t.runWebGLProgram(o,[r],r.dtype)},_ye={kernelName:bl,backendName:"webgl",kernelFunc:$ye},Rye=`if (b == 0.0) return NAN; - return mod(a, b);`,Dye=` + `}},U1e=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:s,mode:a}=n,o=re().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new V1e(r.shape,s,a):new W1e(r.shape,s,a);return t.runWebGLProgram(o,[r],r.dtype)},H1e={kernelName:bl,backendName:"webgl",kernelFunc:U1e},G1e=`if (b == 0.0) return NAN; + return mod(a, b);`,j1e=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); - `+Hm+` + `+Lm+` return result; -`,Fye=Nn({opSnippet:Rye,packedOpSnippet:Dye}),Mye={kernelName:Hc,backendName:"webgl",kernelFunc:Fye},Oye=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` - uniform float seed; - +`,q1e=Tn({opSnippet:G1e,packedOpSnippet:j1e}),K1e={kernelName:Uc,backendName:"webgl",kernelFunc:q1e},X1e=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; @@ -3451,11 +3727,11 @@ return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,vme=it({opSnippet:bme}),wme={kernel // If no other event happened, last event happened. setOutput(float(${t-1})); } - `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},Pye=` + `}},Z1e=` if (a == b) { return 1.0; }; -return a / b;`,zye=` +return a / b;`,Y1e=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; @@ -3473,17 +3749,16 @@ return a / b;`,zye=` } return result; -`,a9=Nn({opSnippet:Pye,packedOpSnippet:zye,checkOutOfBounds:!0}),Lye={kernelName:ol,backendName:"webgl",kernelFunc:a9},o9="return a - b;",i9=Nn({opSnippet:o9,packedOpSnippet:o9,supportsComplex:!0,cpuKernelImpl:Mpe}),Bye={kernelName:zo,backendName:"webgl",kernelFunc:i9};function l9(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=k.parseAxisParam([a],s.shape),i=s9({inputs:{x:s},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=R.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=i9({inputs:{a:s,b:u},backend:n}),d=QE({inputs:{x:c},backend:n}),h=qm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),p=ve({inputs:{x:h},backend:n,attrs:{shape:l}}),f=a9({inputs:{a:d,b:p},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}var Wye={kernelName:Ml,backendName:"webgl",kernelFunc:l9};function Vye(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r,l=i?s:l9({inputs:{logits:s},backend:n,attrs:{dim:s.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new Oye(u,c,a),h=d.getCustomSetupFunc(o),p=n.runWebGLProgram(d,[l],"int32",h);return i||n.disposeIntermediateTensorInfo(l),p}var Uye={kernelName:Hy,backendName:"webgl",kernelFunc:Vye},u9="return -x;";function Hye(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let a=n.texData.get(r.dataId),[o,i]=kpe(a.values,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,o)}let s;return ae().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new wu(r.shape,u9):s=new Qa(r.shape,u9),n.runWebGLProgram(s,[r],r.dtype)}var Gye={kernelName:Gc,backendName:"webgl",kernelFunc:Hye},jye=ca.nonMaxSuppressionV3Impl;function qye(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=r,u=n.readSync(s.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=jye(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Kye={kernelName:jc,backendName:"webgl",kernelFunc:qye},Xye=ca.nonMaxSuppressionV4Impl;function Zye(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(s.dataId),d=n.readSync(a.dataId),{selectedIndices:h,validOutputs:p}=Xye(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var Yye={kernelName:qc,backendName:"webgl",kernelFunc:Zye},Jye=ca.nonMaxSuppressionV5Impl;function Qye(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(s.dataId),d=n.readSync(a.dataId),h=o,p=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=Jye(c,d,h,p,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var eAe={kernelName:Kc,backendName:"webgl",kernelFunc:Qye},tAe=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` +`,qE=Tn({opSnippet:Z1e,packedOpSnippet:Y1e,checkOutOfBounds:!0}),J1e={kernelName:ol,backendName:"webgl",kernelFunc:qE},KE="return a - b;",XE=Tn({opSnippet:KE,packedOpSnippet:KE,supportsComplex:!0,cpuKernelImpl:Xpe}),Q1e={kernelName:zo,backendName:"webgl",kernelFunc:XE};function ZE(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=k.parseAxisParam([a],s.shape),i=jE({inputs:{x:s},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=_.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=XE({inputs:{a:s,b:u},backend:n}),d=BE({inputs:{x:c},backend:n}),h=Vm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),p=ve({inputs:{x:h},backend:n,attrs:{shape:l}}),f=qE({inputs:{a:d,b:p},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),f}var eye={kernelName:Ml,backendName:"webgl",kernelFunc:ZE};function tye(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r,l=i?s:ZE({inputs:{logits:s},backend:n,attrs:{dim:s.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new X1e(u,c,a),h=[[o]],p=n.runWebGLProgram(d,[l],"int32",h);return i||n.disposeIntermediateTensorInfo(l),p}var nye={kernelName:B1,backendName:"webgl",kernelFunc:tye},YE="return -x;";function rye(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let a=n.texData.get(r.dataId),[o,i]=Ppe(a.values,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,o)}let s;return re().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new xu(r.shape,YE):s=new Qa(r.shape,YE),n.runWebGLProgram(s,[r],r.dtype)}var sye={kernelName:Hc,backendName:"webgl",kernelFunc:rye},aye=da.nonMaxSuppressionV3Impl;function oye(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=r,u=n.readSync(s.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=aye(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var iye={kernelName:Gc,backendName:"webgl",kernelFunc:oye},lye=da.nonMaxSuppressionV4Impl;function uye(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(s.dataId),d=n.readSync(a.dataId),{selectedIndices:h,validOutputs:p}=lye(c,d,o,i,l,u);return[n.makeTensorInfo([h.length],"int32",new Int32Array(h)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var cye={kernelName:jc,backendName:"webgl",kernelFunc:uye},dye=da.nonMaxSuppressionV5Impl;function hye(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(s.dataId),d=n.readSync(a.dataId),h=o,p=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=dye(c,d,h,p,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var pye={kernelName:qc,backendName:"webgl",kernelFunc:hye},fye=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } - `}},nAe=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,l=k.sizeFromShape(s.shape),u=new tAe(l,a,o,i),c=ve({inputs:{x:s},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],s.dtype);n.disposeIntermediateTensorInfo(c);let h=[...s.shape,a],p=ve({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),p},rAe={kernelName:wl,backendName:"webgl",kernelFunc:nAe};function Jm(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let s=mh({inputs:{input:r},backend:n}),a=Jm({inputs:{x:s},backend:n}),o=Ym({inputs:{input:r},backend:n}),i=Jm({inputs:{x:o},backend:n}),l=eo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return hb({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var sAe={kernelName:hd,backendName:"webgl",kernelFunc:Jm};function c9(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let s=mh({inputs:{input:r},backend:n}),a=c9({inputs:{x:s},backend:n}),o=Ym({inputs:{input:r},backend:n}),i=Jm({inputs:{x:o},backend:n}),l=eo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return hb({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var aAe={kernelName:Xc,backendName:"webgl",kernelFunc:c9};function oAe(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return db({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=db({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),u=UE({inputs:l,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var iAe={kernelName:Zc,backendName:"webgl",kernelFunc:oAe},lAe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,s=It(r),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` + `}},mye=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,l=k.sizeFromShape(s.shape),u=new fye(l,a,o,i),c=ve({inputs:{x:s},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],s.dtype);n.disposeIntermediateTensorInfo(c);let h=[...s.shape,a],p=ve({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),p},gye={kernelName:wl,backendName:"webgl",kernelFunc:mye};function Km(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let s=hh({inputs:{input:r},backend:n}),a=Km({inputs:{x:s},backend:n}),o=jm({inputs:{input:r},backend:n}),i=Km({inputs:{x:o},backend:n}),l=eo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return qm({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var yye={kernelName:hd,backendName:"webgl",kernelFunc:Km};function JE(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let s=hh({inputs:{input:r},backend:n}),a=JE({inputs:{x:s},backend:n}),o=jm({inputs:{input:r},backend:n}),i=Km({inputs:{x:o},backend:n}),l=eo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return qm({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var Aye={kernelName:Kc,backendName:"webgl",kernelFunc:JE};function xye(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return eb({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=eb({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),u=$E({inputs:l,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var bye={kernelName:Xc,backendName:"webgl",kernelFunc:xye},vye=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,s=wt(r),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${a}; int end = ${o}; - uniform float value; void main() { int outC = getOutputCoords(); @@ -3496,7 +3771,6 @@ return a / b;`,zye=` `;return}this.userCode=` ${s} start = ${s}(${a}); ${s} end = ${s}(${o}); - uniform float value; void main() { ${s} outC = getOutputCoords(); @@ -3507,7 +3781,7 @@ return a / b;`,zye=` setOutput(getX(${i})); } } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},uAe=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,s=It(r),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Vn("rc",r),l=Vn("source",r),u=`${i[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${s} rc = outputLoc;`,`${i[r-1]} += 1; + `}},wye=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,s=wt(r),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Vn("rc",r),l=Vn("source",r),u=`${i[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${s} rc = outputLoc;`,`${i[r-1]} += 1; if(${u}) { `,r===1?"":`} rc = outputLoc; @@ -3524,7 +3798,6 @@ return a / b;`,zye=` `;p+=r===1?"} ":"}}",this.userCode=` const ${s} start = ${s}(${a}); const ${s} end = ${s}(${o}); - uniform float value; void main() { ${s} outputLoc = getOutputCoords(); @@ -3532,7 +3805,7 @@ return a / b;`,zye=` ${p} setOutput(result); } - `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},d9=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r,i=ae().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uAe(s.shape,a,o):new lAe(s.shape,a,o),l=i.getCustomSetupFunc(o);return n.runWebGLProgram(i,[s],s.dtype,l)},cAe={kernelName:kl,backendName:"webgl",kernelFunc:d9},dAe=` + `}},QE=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r,i=re().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wye(s.shape,a,o):new vye(s.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[s],s.dtype,l)},kye={kernelName:kl,backendName:"webgl",kernelFunc:QE},Iye=` if(a < 0.0 && floor(b) < b){ return NAN; } @@ -3541,7 +3814,7 @@ return a / b;`,zye=` } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); -`,hAe=` +`,Sye=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); @@ -3555,11 +3828,11 @@ return a / b;`,zye=` result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); - `+Hm+` + `+Lm+` return result; -`,pAe=Nn({opSnippet:dAe,packedOpSnippet:hAe}),fAe={kernelName:Il,backendName:"webgl",kernelFunc:pAe};function mAe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,l=[],u=k.parseAxisParam(a,s.shape),c=u,d=R.getAxesPermutation(c,i),h=s;d!=null&&(h=Un({inputs:{x:s},backend:n,attrs:{perm:d}}),c=R.getInnerMostAxes(c.length,i),l.push(h)),R.assertAxesAreInnerMostDims("prod",c,i);let p;if(n.shouldExecuteOnCPU([h])){let f=n.texData.get(h.dataId).values,{outVals:m,outShape:g,outDtype:y}=Spe(h.shape,h.dtype,f,c);p=n.makeTensorInfo(g,y,m)}else{let[f,m]=R.computeOutAndReduceShapes(h.shape,c),g=k.sizeFromShape(m),y=ve({inputs:{x:h},backend:n,attrs:{shape:[-1,g]}}),A=pA(s.dtype),x=bi(y,A,"prod",n);p=ve({inputs:{x},backend:n,attrs:{shape:f}}),l.push(y),l.push(x)}if(o){l.push(p);let f=R.expandShapeToKeepDim(p.shape,u);p=ve({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var gAe={kernelName:Yc,backendName:"webgl",kernelFunc:mAe},h9=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=Tpe(r,s,a,o);return t.makeTensorInfo([i.length],o,i)},yAe={kernelName:sf,backendName:"webgl",kernelFunc:h9},AAe="return 1.0 / x;",xAe=it({opSnippet:AAe}),bAe={kernelName:Jc,backendName:"webgl",kernelFunc:xAe},vAe=ys+` +`,Tye=Tn({opSnippet:Iye,packedOpSnippet:Sye}),Nye={kernelName:Il,backendName:"webgl",kernelFunc:Tye};function Cye(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,l=[],u=k.parseAxisParam(a,s.shape),c=u,d=_.getAxesPermutation(c,i),h=s;d!=null&&(h=Un({inputs:{x:s},backend:n,attrs:{perm:d}}),c=_.getInnerMostAxes(c.length,i),l.push(h)),_.assertAxesAreInnerMostDims("prod",c,i);let p;if(n.shouldExecuteOnCPU([h])){let f=n.texData.get(h.dataId).values,{outVals:m,outShape:g,outDtype:y}=Lpe(h.shape,h.dtype,f,c);p=n.makeTensorInfo(g,y,m)}else{let[f,m]=_.computeOutAndReduceShapes(h.shape,c),g=k.sizeFromShape(m),y=ve({inputs:{x:h},backend:n,attrs:{shape:[-1,g]}}),A=uy(s.dtype),x=Ai(y,A,"prod",n);p=ve({inputs:{x},backend:n,attrs:{shape:f}}),l.push(y),l.push(x)}if(o){l.push(p);let f=_.expandShapeToKeepDim(p.shape,u);p=ve({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var Eye={kernelName:Zc,backendName:"webgl",kernelFunc:Cye},e9=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=Bpe(r,s,a,o);return t.makeTensorInfo([i.length],o,i)},$ye={kernelName:rf,backendName:"webgl",kernelFunc:e9},Rye="return 1.0 / x;",_ye=it({opSnippet:Rye}),Dye={kernelName:Yc,backendName:"webgl",kernelFunc:_ye},Fye=gs+` return (x < 0.0) ? 0.0 : x; -`,wAe=` +`,Mye=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3569,9 +3842,9 @@ return a / b;`,zye=` result.a = isNaN.a ? x.a : result.a; return result; -`,kAe=it({opSnippet:vAe,packedOpSnippet:wAe}),IAe={kernelName:Tl,backendName:"webgl",kernelFunc:kAe},SAe=ys+` +`,Oye=it({opSnippet:Fye,packedOpSnippet:Mye}),Pye={kernelName:Tl,backendName:"webgl",kernelFunc:Oye},zye=gs+` return (x < 0.0) ? 0.0 : min(6.0, x); -`,TAe=` +`,Lye=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); @@ -3581,7 +3854,7 @@ return a / b;`,zye=` result.a = isNaN.a ? x.a : result.a; return result; -`,NAe=it({opSnippet:SAe,packedOpSnippet:TAe}),CAe={kernelName:Cl,backendName:"webgl",kernelFunc:NAe},EAe=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` +`,Bye=it({opSnippet:zye,packedOpSnippet:Lye}),Wye={kernelName:Cl,backendName:"webgl",kernelFunc:Bye},Vye=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); @@ -3614,7 +3887,7 @@ return a / b;`,zye=` setOutput(newValue); } - `}},$Ae=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},Uye=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/c[0]}, ${u[1]/c[1]}, @@ -3691,7 +3964,7 @@ return a / b;`,zye=` setOutput(newValue); } - `}};function _Ae(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[l,u]=i,c=ae().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new $Ae(s.shape,l,u,a,o):new EAe(s.shape,l,u,a,o);return n.runWebGLProgram(c,[s],"float32")}var RAe={kernelName:Nl,backendName:"webgl",kernelFunc:_Ae},DAe=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` + `}};function Hye(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[l,u]=i,c=re().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Uye(s.shape,l,u,a,o):new Vye(s.shape,l,u,a,o);return n.runWebGLProgram(c,[s],"float32")}var Gye={kernelName:Nl,backendName:"webgl",kernelFunc:Hye},jye=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3772,7 +4045,7 @@ return a / b;`,zye=` setOutput(accumulator); } - `}};function FAe(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new DAe(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var MAe={kernelName:qy,backendName:"webgl",kernelFunc:FAe},OAe=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",h;s?h="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}};function qye(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new jye(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Kye={kernelName:U1,backendName:"webgl",kernelFunc:qye},Xye=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",h;s?h="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/c[0]}, ${u[1]/c[1]}); @@ -3794,7 +4067,7 @@ return a / b;`,zye=` setOutput(newValue); } - `}},PAe=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",h;s?h="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` + `}},Zye=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[r&&t>1?o-1:o,r&&n>1?i-1:i],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",h;s?h="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/c[0]}, ${u[1]/c[1]}, @@ -3835,7 +4108,7 @@ return a / b;`,zye=` setOutput(newValue); } - `}};function zAe(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[l,u]=i,c=ae().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new PAe(s.shape,l,u,a,o):new OAe(s.shape,l,u,a,o);return n.runWebGLProgram(c,[s],s.dtype)}var LAe={kernelName:af,backendName:"webgl",kernelFunc:zAe},BAe=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` + `}};function Yye(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[l,u]=i,c=re().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Zye(s.shape,l,u,a,o):new Xye(s.shape,l,u,a,o);return n.runWebGLProgram(c,[s],s.dtype)}var Jye={kernelName:sf,backendName:"webgl",kernelFunc:Yye},Qye=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,h=1/c,p=Math.ceil(d)*2+2,f=Math.ceil(h)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; @@ -3905,17 +4178,17 @@ return a / b;`,zye=` setOutput(accumulator); } - `}};function WAe(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new BAe(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var VAe={kernelName:jy,backendName:"webgl",kernelFunc:WAe},UAe=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` + `}};function eAe(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new Qye(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var tAe={kernelName:V1,backendName:"webgl",kernelFunc:eAe},nAe=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } - `;return}let r=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,s=e.map((o,i)=>r(i)).join(","),a=It(n);this.userCode=` + `;return}let r=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,s=e.map((o,i)=>r(i)).join(","),a=wt(n);this.userCode=` void main() { ${a} coords = getOutputCoords(); setOutput(getX(${s})); } - `}},HAe=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=Vn("rc",n),s=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,o=It(n);n===1?this.userCode=` + `}},rAe=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=Vn("rc",n),s=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,o=wt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); @@ -3943,10 +4216,9 @@ return a / b;`,zye=` } setOutput(result); } - `;function i(p){return d(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",d(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",d(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",d(p)}function d(p){let f=e.map((y,A)=>h(A,p)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function h(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function GAe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=s.shape.length,i=k.parseAxisParam(a,s.shape);if(o===0)return gr({inputs:{x:s},backend:n});let l=ae().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new HAe(s.shape,i):new UAe(s.shape,i);return n.runWebGLProgram(l,[s],s.dtype)}var jAe={kernelName:El,backendName:"webgl",kernelFunc:GAe},qAe=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=` + `;function i(p){return d(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",d(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",d(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",d(p)}function d(p){let f=e.map((y,A)=>h(A,p)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function h(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function sAe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=s.shape.length,i=k.parseAxisParam(a,s.shape);if(o===0)return fr({inputs:{x:s},backend:n});let l=re().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rAe(s.shape,i):new nAe(s.shape,i);return n.runWebGLProgram(l,[s],s.dtype)}var aAe={kernelName:El,backendName:"webgl",kernelFunc:sAe},oAe=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],r=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` - uniform vec4 params; void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; @@ -3963,7 +4235,7 @@ return a / b;`,zye=` } setOutput(outputValue); } - `}getCustomSetupFunc(e,t,n,r){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},KAe={kernelName:pd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,l=new qAe(r.shape,a),[u,c]=R.getImageCenter(o,r.shape[1],r.shape[2]),d=l.getCustomSetupFunc(u,c,Math.sin(s),Math.cos(s));return i.runWebGLProgram(l,[r],r.dtype,d)}},XAe=` + `}},iAe={kernelName:pd,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,l=new oAe(r.shape,a),[u,c]=_.getImageCenter(o,r.shape[1],r.shape[2]),d=[[u,c,Math.sin(s),Math.cos(s)]];return i.runWebGLProgram(l,[r],r.dtype,d)}},lAe=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); @@ -3978,7 +4250,7 @@ return a / b;`,zye=` return base + 1.0; } } -`,ZAe=it({opSnippet:XAe}),YAe={kernelName:$l,backendName:"webgl",kernelFunc:ZAe},JAe="return inversesqrt(x);",QAe=it({opSnippet:JAe,cpuKernelImpl:Npe}),e1e={kernelName:Oo,backendName:"webgl",kernelFunc:QAe},p9=class{constructor(e,t,n,r,s,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=It(s.length),l=It(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";r===1?d="i":r===2&&(d="i, coords[1]");let h=`getUpdates(${d})`,p=t>1?"strides[j]":"strides";this.userCode=` +`,uAe=it({opSnippet:lAe}),cAe={kernelName:$l,backendName:"webgl",kernelFunc:uAe},dAe="return inversesqrt(x);",hAe=it({opSnippet:dAe,cpuKernelImpl:Wpe}),pAe={kernelName:Oo,backendName:"webgl",kernelFunc:hAe},t9=class{constructor(e,t,n,r,s,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=wt(s.length),l=wt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";r===1?d="i":r===2&&(d="i, coords[1]");let h=`getUpdates(${d})`,p=t>1?"strides[j]":"strides";this.userCode=` ${i} strides = ${i}(${s}); void main() { @@ -3998,7 +4270,7 @@ return a / b;`,zye=` } setOutput(mix(getDefaultValue(), sum, float(found))); } - `}};function t1e(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=R.calculateShapes(a,s,o),h=[d/u,u];if(d===0)return n.makeTensorInfo(o,s.dtype);let p=ve({inputs:{x:s},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new p9(l,i,p.shape.length,f.shape.length,c,h),y=n.runWebGLProgram(g,[f,p,m],f.dtype),A=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),A}var n1e={kernelName:ed,backendName:"webgl",kernelFunc:t1e},r1e=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",r="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",r="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); -`,i1e=it({opSnippet:o1e}),l1e={kernelName:nd,backendName:"webgl",kernelFunc:i1e},u1e="return 1.0 / (1.0 + exp(-1.0 * x));",c1e=it({opSnippet:u1e}),d1e={kernelName:Rl,backendName:"webgl",kernelFunc:c1e},h1e=` +`,bAe=it({opSnippet:xAe}),vAe={kernelName:td,backendName:"webgl",kernelFunc:bAe},wAe="return 1.0 / (1.0 + exp(-1.0 * x));",kAe=it({opSnippet:wAe}),IAe={kernelName:_l,backendName:"webgl",kernelFunc:kAe},SAe=` if (isnan(x)) { return 0.0; } return sign(x); -`,p1e=it({opSnippet:h1e}),f1e={kernelName:ad,backendName:"webgl",kernelFunc:p1e},m1e=CE+` +`,TAe=it({opSnippet:SAe}),NAe={kernelName:sd,backendName:"webgl",kernelFunc:TAe},CAe=mE+` return sin(x); -`,g1e=it({opSnippet:m1e}),y1e={kernelName:_l,backendName:"webgl",kernelFunc:g1e},A1e=` +`,EAe=it({opSnippet:CAe}),$Ae={kernelName:Rl,backendName:"webgl",kernelFunc:EAe},RAe=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; -`,x1e=it({opSnippet:A1e}),b1e={kernelName:sd,backendName:"webgl",kernelFunc:x1e},v1e=` +`,_Ae=it({opSnippet:RAe}),DAe={kernelName:rd,backendName:"webgl",kernelFunc:_Ae},FAe=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; @@ -4042,17 +4314,17 @@ return a / b;`,zye=` result = log(exp_x + 1.0); } return result; -`,w1e=it({opSnippet:v1e}),k1e={kernelName:od,backendName:"webgl",kernelFunc:w1e},I1e=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;k.assert(s.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,A)=>y*A),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeIntermediateTensorInfo(y)),g},S1e={kernelName:of,backendName:"webgl",kernelFunc:I1e};function T1e(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: +`,MAe=it({opSnippet:FAe}),OAe={kernelName:ad,backendName:"webgl",kernelFunc:MAe},PAe=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;k.assert(s.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,A)=>y*A),l=[[0,0]];l.push(...o);for(let y=1+a.length;yn.disposeIntermediateTensorInfo(y)),g},zAe={kernelName:od,backendName:"webgl",kernelFunc:PAe};function LAe(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: ${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw: ${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw: ${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw: - ${o.shape}`);let i=n.readSync(r.dataId),l=n.readSync(s.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,h,p,f,m]=Epe(i,r.shape,r.dtype,l,s.dtype,u,c);return[n.makeTensorInfo(h,r.dtype,d),n.makeTensorInfo([h[0]],s.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var N1e={kernelName:Ky,backendName:"webgl",kernelFunc:T1e};function C1e(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(s.dataId)),i=n.readSync(r.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=$pe(i,r.shape,r.dtype,o,l);return[n.makeTensorInfo(c,r.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var E1e={kernelName:Xy,backendName:"webgl",kernelFunc:C1e};function $1e(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${o.shape}`);let i=n.readSync(r.dataId),l=n.readSync(s.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,h,p,f,m]=Upe(i,r.shape,r.dtype,l,s.dtype,u,c);return[n.makeTensorInfo(h,r.dtype,d),n.makeTensorInfo([h[0]],s.dtype,p),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var BAe={kernelName:H1,backendName:"webgl",kernelFunc:LAe};function WAe(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(s.dataId)),i=n.readSync(r.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=Hpe(i,r.shape,r.dtype,o,l);return[n.makeTensorInfo(c,r.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var VAe={kernelName:G1,backendName:"webgl",kernelFunc:WAe};function UAe(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),l=n.readSync(a.dataId),[u,c]=fE(o,r.shape,r.dtype,i,l,!0);return n.makeTensorInfo(c,r.dtype,u)}var _1e={kernelName:Zy,backendName:"webgl",kernelFunc:$1e};function R1e(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape + ${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),l=n.readSync(a.dataId),[u,c]=tE(o,r.shape,r.dtype,i,l,!0);return n.makeTensorInfo(c,r.dtype,u)}var HAe={kernelName:j1,backendName:"webgl",kernelFunc:UAe};function GAe(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape - ${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),l=n.readSync(a.dataId),[u,c]=fE(o,r.shape,r.dtype,i,l);return n.makeTensorInfo(c,r.dtype,u)}var D1e={kernelName:Yy,backendName:"webgl",kernelFunc:R1e};function F1e(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=R.calculateShapes(a,s,i),h=!1,p=new p9(u,l,s.shape.length,a.shape.length,c,[d,1],h),f=n.runWebGLProgram(p,[a,s,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var M1e={kernelName:Jy,backendName:"webgl",kernelFunc:F1e};function O1e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=k.parseAxisParam(o,s.shape)[0],l=R.prepareSplitSize(s,a,i),u=s.shape.length,c=new Array(u).fill(0),d=s.shape.slice();return l.map(h=>{let p=[...d];p[i]=h;let f=fh({inputs:{x:s},backend:n,attrs:{begin:c,size:p}});return c[i]+=h,f})}var P1e={kernelName:id,backendName:"webgl",kernelFunc:O1e},z1e="return sqrt(x);",L1e=it({opSnippet:z1e}),B1e={kernelName:Dl,backendName:"webgl",kernelFunc:L1e},W1e="return x * x;",V1e=it({opSnippet:W1e}),U1e={kernelName:lf,backendName:"webgl",kernelFunc:V1e},f9="return (a - b) * (a - b);",H1e=Nn({opSnippet:f9,packedOpSnippet:f9}),G1e={kernelName:Po,backendName:"webgl",kernelFunc:H1e};function j1e({inputs:e,attrs:t,backend:n}){let{x:r}=e,s=ys+` + ${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),l=n.readSync(a.dataId),[u,c]=tE(o,r.shape,r.dtype,i,l);return n.makeTensorInfo(c,r.dtype,u)}var jAe={kernelName:q1,backendName:"webgl",kernelFunc:GAe};function qAe(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=_.calculateShapes(a,s,i),h=!1,p=new t9(u,l,s.shape.length,a.shape.length,c,[d,1],h),f=n.runWebGLProgram(p,[a,s,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var KAe={kernelName:K1,backendName:"webgl",kernelFunc:qAe};function XAe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=k.parseAxisParam(o,s.shape)[0],l=_.prepareSplitSize(s,a,i),u=s.shape.length,c=new Array(u).fill(0),d=s.shape.slice();return l.map(h=>{let p=[...d];p[i]=h;let f=vu({inputs:{x:s},backend:n,attrs:{begin:c,size:p}});return c[i]+=h,f})}var ZAe={kernelName:id,backendName:"webgl",kernelFunc:XAe},YAe="return sqrt(x);",JAe=it({opSnippet:YAe}),QAe={kernelName:Dl,backendName:"webgl",kernelFunc:JAe},exe="return x * x;",txe=it({opSnippet:exe}),nxe={kernelName:af,backendName:"webgl",kernelFunc:txe},n9="return (a - b) * (a - b);",rxe=Tn({opSnippet:n9,packedOpSnippet:n9}),sxe={kernelName:Po,backendName:"webgl",kernelFunc:rxe};function axe({inputs:e,attrs:t,backend:n}){let{x:r}=e,s=gs+` return x > 0.0 ? 1.0 : float(${t.alpha}); - `,a=new Qa(r.shape,s);return n.runWebGLProgram(a,[r],r.dtype)}var q1e={kernelName:Bo,backendName:"webgl",kernelFunc:j1e},K1e=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,s=It(n.length),a=It(n.length),o="";if(r===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` + `,a=new Qa(r.shape,s);return n.runWebGLProgram(a,[r],r.dtype)}var oxe={kernelName:Bo,backendName:"webgl",kernelFunc:axe},ixe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,s=wt(n.length),a=wt(n.length),o="";if(r===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` ${s} begin = ${s}(${e}); ${s} strides = ${s}(${t}); @@ -4060,15 +4332,89 @@ return a / b;`,zye=` ${a} coords = getOutputCoords(); setOutput(getX(${o})); } - `}};function X1e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=r,{nonStrided:p,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=En.sliceInfo(s.shape,a,o,i,l,u,c,d,h),x=ve({inputs:{x:s},backend:n,attrs:{shape:y}}),b;if(p){let w=fh({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=ve({inputs:{x:w},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(w)}else if(A.some(w=>w===0))b=n.makeTensorInfo(A,s.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let I=n.texData.get(x.dataId).values,E=Le(x.shape,x.dtype,I),F=_pe(A,E,m,f);b=n.makeTensorInfo(A,x.dtype,F.values)}else{let S=new K1e(f,m,A);b=n.runWebGLProgram(S,[x],x.dtype)}let v=ve({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Z1e={kernelName:ld,backendName:"webgl",kernelFunc:X1e};function Y1e(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=r,{data:c,dataSplits:d}=t,h=n.readSync(c.dataId),p=n.readSync(d.dataId),[f,m]=Rpe(h,p,s,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var J1e={kernelName:Qy,backendName:"webgl",kernelFunc:Y1e};function Q1e(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=Dpe(i,l,s),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var exe={kernelName:eA,backendName:"webgl",kernelFunc:Q1e};function txe(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=Fpe(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var nxe={kernelName:tA,backendName:"webgl",kernelFunc:txe},rxe="return tan(x);",sxe=it({opSnippet:rxe}),axe={kernelName:Ol,backendName:"webgl",kernelFunc:sxe},oxe=` + `}};function lxe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=r,{nonStrided:p,$begin:f,$strides:m,size:g,newShape:y,outShape:A}=Cn.sliceInfo(s.shape,a,o,i,l,u,c,d,h),x=ve({inputs:{x:s},backend:n,attrs:{shape:y}}),b;if(p){let I=vu({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=ve({inputs:{x:I},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(I)}else if(A.some(I=>I===0))b=n.makeTensorInfo(A,s.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let S=n.texData.get(x.dataId).values,E=ze(x.shape,x.dtype,S),D=Gpe(A,E,m,f);b=n.makeTensorInfo(A,x.dtype,D.values)}else{let w=new ixe(f,m,A);b=n.runWebGLProgram(w,[x],x.dtype)}let v=ve({inputs:{x:b},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var uxe={kernelName:ld,backendName:"webgl",kernelFunc:lxe};function cxe(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=r,{data:c,dataSplits:d}=t,h=n.readSync(c.dataId),p=n.readSync(d.dataId),[f,m]=jpe(h,p,s,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var dxe={kernelName:X1,backendName:"webgl",kernelFunc:cxe};function hxe(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=qpe(i,l,s),h=c.length;return[n.makeTensorInfo([h,2],"int32",u),n.makeTensorInfo([h],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var pxe={kernelName:Z1,backendName:"webgl",kernelFunc:hxe};function fxe(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=Kpe(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var mxe={kernelName:Y1,backendName:"webgl",kernelFunc:fxe},gxe="return tan(x);",yxe=it({opSnippet:gxe}),Axe={kernelName:Ol,backendName:"webgl",kernelFunc:yxe},xxe=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); -`,ixe=it({opSnippet:oxe}),lxe={kernelName:Pl,backendName:"webgl",kernelFunc:ixe},uxe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let s=0;s5){let l=n.readSync(s.dataId),u=s.dtype==="string"?l.map(h=>k.decodeString(h)):l,c=Le(s.shape,s.dtype,u),d=Ope(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new uxe(s.shape,a);return n.runWebGLProgram(o,[s],s.dtype)}var dxe={kernelName:Lo,backendName:"webgl",kernelFunc:m9};function hxe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r,i=n.readSync(s.dataId),[l,u]=Ppe(i,s.shape,s.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var pxe={kernelName:ud,backendName:"webgl",kernelFunc:hxe},fxe=class{constructor(e,t,n,r,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(r){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` + `}};function kxe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let s=0;s5){let l=n.readSync(s.dataId),u=s.dtype==="string"?l.map(h=>k.decodeString(h)):l,c=ze(s.shape,s.dtype,u),d=Zpe(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new wxe(s.shape,a);return n.runWebGLProgram(o,[s],s.dtype)}var Ixe={kernelName:Lo,backendName:"webgl",kernelFunc:r9},Sxe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` + void main() { + ivec2 coords = getOutputCoords(); + int batch = coords[0]; + int elemIdx = coords[1]; + + // We compare elements pair-wise within a group of size 2 * inc. + // The comparing rule for each group alternates between ascending + // and descending. Within each group, we compare each pair at + // positions i and i+inc. To decide whether an element at position i + // is x0 or x1, we mod it by 2 * inc, if the result is smaller than + // inc, it is in the first half of the group, we denote it as x0, + // otherwise we denote it as x1. + // For example, as shown in the Bitonic top K paper referenced above, + // Figure5(a) shows that element[1] is in the + // second half of the group when group size is 2, but it is in the + // first half of the group when group size is 4. + + bool isFirstInPair = imod(elemIdx, 2 * inc) < inc; + int i = isFirstInPair ? elemIdx : elemIdx - inc; + + int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); + int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc)); + float x0 = i0 < n ? getX(batch, i0) : negativeInf; + float x1 = i1 < n ? getX(batch, i1) : negativeInf; + + // Denotes which direction indices are in (ascending or descending). + bool reverse = imod(elemIdx, 2 * dir) >= dir; + bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0); + if (reverse == isGreater) { // Elements in opposite order of direction + int iTemp = i0; + i0 = i1; + i1 = iTemp; + } + if (isFirstInPair) { + setOutput(float(i0)); + } else { + setOutput(float(i1)); + } + } + `}},Txe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` + void main() { + // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ... + ivec2 coords = getOutputCoords(); + int batch = coords[0]; + int elemIdx = coords[1]; + + // The output size is half of the previous size. + // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4), + // we only need to output the indices at positions |, the indices at + // positions _ can be thrown away, see Figure5(b) After Phase 2 + // (Merge phase) in the Bitonic Top K paper referenced above. + // For example, the paper shows we only need to output the orange bars. + // The output sequence should look like this | | | | | | | |. + // Because the sequence is halved, to map the output index back + // to the previous sequence to find the corresponding value, + // we need to double the index. When we double the index, + // we basically interpolate a position, so 2i looks like + // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position + // of each 2k positions by - elemIdx % k. E.g. for output at + // index 4,5,6,7, we want to get the corresponding element at + // original index 8,9,10,11, for output at index 8,9,10,11, + // we want to get the corresponding element at original index + // 16,17,18,19, so on and so forth. + + int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k)); + int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); + int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k)); + + float x0 = getX(batch, i0); + float x1 = i1 < n ? getX(batch, i1) : x0; + + setOutput(x0 >= x1 ? float(i0) : float(i1)); + } + `}};function xi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function s9(e){let t=1;for(;tl){let D=n.readSync(s.dataId),[$,R]=Ype(D,u,s.dtype,a,o);return[n.makeTensorInfo($.shape,$.dtype,$.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,s.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[s,qm({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(s.dataId),h=d!==null&&d.isPacked,p=h?n.unpackTensor(s):s,m=k.sizeFromShape(u)/c,g=ve({inputs:{x:p},attrs:{shape:[m,c]},backend:n});h&&xi(n,p);let y=s9(a),A=s9(c),x=null,b=()=>x===null?[g,g]:[g,x],v=(D,$,R)=>{let N=b(),M=new Sxe(R),q=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[D],[$]],X=x;x=n.runWebGLProgram(M,N,"int32",q),xi(n,X)};for(let D=1;D=1;R/=2)v($,R,[m,A])}for(let D=A;D>y;D/=2){let $=b(),R=new Txe([m,D/2]),M=[[c],[x===null?1:0],[y]],B=x;x=n.runWebGLProgram(R,$,"int32",M),xi(n,B);let q=y/2,X=q*2;for(let J=q;J>=1;J/=2)v(X,J,x.shape)}let I=x;x=vu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),xi(n,I);let w=GE({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});xi(n,g);let S=u.slice(0,-1);S.push(a),I=x,x=ve({inputs:{x},attrs:{shape:S},backend:n}),xi(n,I);let E=w;return w=ve({inputs:{x:w},attrs:{shape:S},backend:n}),xi(n,E),[w,x]}var Cxe={kernelName:ud,backendName:"webgl",kernelFunc:Nxe},Exe=class{constructor(e,t,n,r,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(r){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${i} == 2) { @@ -4180,7 +4526,7 @@ return a / b;`,zye=` } setOutput(outputValue); } - `}};function mxe(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=r,[c,d,h,p]=s.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],y=new fxe(d,h,o,i,l,g);return n.runWebGLProgram(y,[s,a],"float32")}var gxe={kernelName:cd,backendName:"webgl",kernelFunc:mxe};function yxe(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;mu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=r.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=zpe(o,s,a.shape,a.dtype);return[r.makeTensorInfo(l,a.dtype,i),r.makeTensorInfo([u.length],"int32",u)]}var Axe={kernelName:nA,backendName:"webgl",kernelFunc:yxe};function xxe(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s,i=o.shape.length,l=s.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var bxe={kernelName:dd,backendName:"webgl",kernelFunc:xxe},vxe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,s=e.inSize,a=e.numSegments,o=a*Math.ceil(s/n);this.outputShape=[r,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=` + `}};function $xe(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=r,[c,d,h,p]=s.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],y=new Exe(d,h,o,i,l,g);return n.runWebGLProgram(y,[s,a],"float32")}var Rxe={kernelName:cd,backendName:"webgl",kernelFunc:$xe};function _xe(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;hu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=r.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=Jpe(o,s,a.shape,a.dtype);return[r.makeTensorInfo(l,a.dtype,i),r.makeTensorInfo([u.length],"int32",u)]}var Dxe={kernelName:J1,backendName:"webgl",kernelFunc:_xe};function Fxe(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s,i=o.shape.length,l=s.shape[a],u=new Array(i-1),c=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var Mxe={kernelName:dd,backendName:"webgl",kernelFunc:Fxe},Oxe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,s=e.inSize,a=e.numSegments,o=a*Math.ceil(s/n);this.outputShape=[r,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=` sumValue += dot(values, segFilter); `,h="";s%n>0&&(h=` if (inIdx < 0 || inIdx >= ${s}) { @@ -4286,14 +4632,14 @@ return a / b;`,zye=` } setOutput(${l}); } - `}};function wxe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r,i=s.shape.length,l=[],u=0,c=R.getAxesPermutation([u],i),d=s;c!=null&&(d=Un({inputs:{x:s},backend:n,attrs:{perm:c}}),l.push(d),u=R.getInnerMostAxes(1,i)[0]);let h=R.segment_util.computeOutShape(d.shape,u,o),p=k.sizeFromShape([d.shape[u]]),f=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=pA(s.dtype),g=(b,v,w,S,I)=>{let E=b.shape[0],F=b.shape[1],$=R.segment_util.segOpComputeOptimalWindowSize(F,I),_={windowSize:$,inSize:F,batchSize:E,numSegments:I},N=new vxe(_,v),P=n.compileAndRun(N,[b,w],S);if(l.push(P),P.shape[1]===I)return P;let B=h9({backend:n,attrs:{start:0,stop:I,step:1,dtype:"float32"}}),j=m9({inputs:{x:B},backend:n,attrs:{reps:[F/$]}});return l.push(B),l.push(j),g(P,v,j,S,I)},y=g(f,"unsortedSegmentSum",a,m,o),A=ve({inputs:{x:y},backend:n,attrs:{shape:h}}),x=A;if(c!=null){l.push(A);let b=R.getUndoAxesPermutation(c);x=Un({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var kxe={kernelName:uf,backendName:"webgl",kernelFunc:wxe},Ixe=[J2e,tye,Pfe,Lfe,Vfe,Gfe,qfe,Zfe,Jfe,eme,sme,ome,ume,hme,xme,mme,wme,Tme,Ime,$me,Rme,Fme,zme,Gme,qme,Qme,t0e,a0e,l0e,Afe,p0e,k0e,S0e,y0e,E0e,_0e,N0e,F0e,P0e,B0e,V0e,H0e,q0e,Q0e,tge,X0e,sge,ige,uge,pge,yge,vge,Ige,Sge,Tge,Cge,$ge,Rge,Fge,Oge,Bge,Uge,jge,Kge,Yge,t2e,a2e,u2e,yfe,d2e,d0e,f2e,y2e,b2e,bfe,I2e,C2e,$2e,P2e,F2e,W2e,H2e,K2e,rye,dye,uye,mye,yye,xye,iye,vye,kye,Nye,_ye,Mye,Uye,Sfe,Gye,Kye,Yye,eAe,Xme,rAe,aAe,iAe,cAe,fAe,wfe,gAe,yAe,Zme,Lye,bAe,CAe,IAe,Nfe,RAe,MAe,LAe,VAe,jAe,KAe,YAe,e1e,n1e,a1e,l1e,d1e,f1e,y1e,b1e,Ume,Wye,k1e,S1e,N1e,E1e,_1e,D1e,M1e,P1e,B1e,U1e,G1e,q1e,Z1e,J1e,exe,nxe,Bye,Ffe,axe,lxe,dxe,pxe,gxe,Mfe,Axe,bxe,kxe,sAe];for(let e of Ixe)oA(e);var tr;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(tr||(tr={}));var gh;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(gh||(gh={}));var g9;function Sxe(e){g9=e.wasm.cwrap(Ll,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Txe(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=r,h=n.dataIdMap.get(s.dataId).id,p=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let I=n.dataIdMap.get(o.dataId);if(I.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${I.shape.length}.`);f=I.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=gh[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?s.shape[2]:s.shape[1],A=u?a.shape[1]:a.shape[2],x=s.shape[0],b=n.makeOutput([x,y,A],s.dtype),v=n.dataIdMap.get(b.dataId).id,w=new Uint8Array(new Int32Array(s.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return g9(h,w,s.shape.length,p,S,a.shape.length,l,u,g,f,m,d||0,v),b}var Nxe={kernelName:Ll,backendName:"wasm",setupFunc:Sxe,kernelFunc:Txe};function Hn(e){let t;function n(s){t=s.wasm.cwrap(e,null,["number","number"])}function r(s){let{backend:a,inputs:{x:o}}=s,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var Cxe=Hn(xc);function Gn(e,t,n){let r;function s(o){r=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,h=i.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=R.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),A=i.dataIdMap.get(m.dataId).id,x=()=>r(d,g,u.shape.length,h,y,c.shape.length,tr[u.dtype],A);if(t&&u.dtype==="float32")return x(),m;let b=R.getBroadcastDims(u.shape,f),v=R.getBroadcastDims(c.shape,f),w=b.every((I,E)=>I===E),S=v.every((I,E)=>I===E);if(w&&S)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:a}}var Exe=!0,$xe=Gn(Fa,Exe),y9;function _xe(e){y9=e.wasm.cwrap(Zi,null,["array","number","number","number"])}function Rxe(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let s=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(s).buffer),o=n.dataIdMap.get(r.dataId).id;return y9(a,s.length,tr[r.dtype],o),r}var Dxe={kernelName:Zi,backendName:"wasm",setupFunc:_xe,kernelFunc:Rxe};function Qm(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var Fxe={kernelName:hl,backendName:"wasm",kernelFunc:Qm},A9;function Mxe(e){A9=e.wasm.cwrap(zl,null,["number","array","number","number","number","array","number"])}function e0(e){let{inputs:t,backend:n,attrs:r}=e,[s,a]=Pxe(t.x.shape,r.perm),o=!0;for(let f=0;f=s&&(a===-1||r[a]>r[o])&&(a=o);r[a]=s}return[n,r]}var zxe={kernelName:zl,backendName:"wasm",kernelFunc:e0,setupFunc:Mxe};function to(e,t,n){let r=e.shape,s=e.shape.length,a=k.parseAxisParam(t,r),o=a,i=R.getAxesPermutation(o,s),l=null,u=!1;if(i!=null){let c=new Array(s);for(let p=0;p`new shape: ${o}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:o,dtype:r.dtype}}var Yxe={kernelName:Qc,backendName:"wasm",kernelFunc:As},k9;function Jxe(e){k9=e.wasm.cwrap(Qi,null,["number","array","number","number","array","number","number","number","number"])}function Qxe(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=s.shape.length,u=a.shape.length,c=o?s.shape[l-2]:s.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?s.shape[l-1]:s.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=k.sizeFromShape(f),y=k.sizeFromShape(m),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);k.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],w=i?[y,p,d]:[y,d,p],S=As({inputs:{x:s},backend:n,attrs:{shape:v}}),I=As({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(S.dataId).id,F=n.dataIdMap.get(I.dataId).id,$=o?S.shape[2]:S.shape[1],_=i?I.shape[1]:I.shape[2],N=Math.max(g,y),P=n.makeOutput([N,$,_],S.dtype),B=n.dataIdMap.get(P.dataId).id,j=new Uint8Array(new Int32Array(S.shape).buffer),X=new Uint8Array(new Int32Array(I.shape).buffer);return k9(E,j,S.shape.length,F,X,I.shape.length,o,i,B),n.disposeData(S.dataId),n.disposeData(I.dataId),P.shape=b,P}var e5e={kernelName:Qi,backendName:"wasm",setupFunc:Jxe,kernelFunc:Qxe};function t0(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,s=r.makeOutput(t.shape,n),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(s).set(a),s}var t5e={kernelName:el,backendName:"wasm",kernelFunc:t0},n5e=Hn(No),I9;function r5e(e){I9=e.wasm.cwrap(Co,null,["number","number","number","number"])}function s5e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i=n.dataIdMap.get(s.dataId).id,l=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(l.dataId).id;return I9(i,a,o,u),l}var a5e={kernelName:Co,backendName:"wasm",setupFunc:r5e,kernelFunc:s5e};function S9(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],s=R.computeOutShape(t.map(p=>p.shape),r),a=t.filter(p=>k.sizeFromShape(p.shape)>0);if(a.length===1)return Qm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(k.sizeFromShape(s)===0)return o;let i=a.map(p=>p.shape);if(R.assertParamsConsistent(i,r),a[0].dtype==="string"){let p=a.map(x=>{let b=k.sizeFromShape(x.shape.slice(r));return As({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=R.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,g=XC(f,s,t[0].dtype,m),y=R.computeOutShape(a.map(x=>x.shape),r);o.shape=y;let A=n.dataIdMap.get(o.dataId);return A.stringBytes=R.fromStringArrayToUint8(g),p.forEach(x=>n.disposeData(x.dataId)),o}let l=k.sizeFromShape(a[0].shape.slice(0,r)),u=0,c=a.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return u+=f,f}),d=a.map(p=>n.typedArrayFromHeap(p)),h=n.typedArrayFromHeap(o);for(let p=0;p`cumsum does not support ${s.dtype} tensors in the WASM backend`);let u=R.getAxesPermutation([a],l),c=s;u!==null&&(c=e0({inputs:{x:s},attrs:{perm:u},backend:n}));let d=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[d],l);let h=n.makeOutput(c.shape,c.dtype),p=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(h.dataId).id;E9(f,o?1:0,i?1:0,p,m,tr[s.dtype]);let g=h;if(u!==null){let y=R.getUndoAxesPermutation(u);g=e0({inputs:{x:h},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(h.dataId)}return g}var x5e={kernelName:sl,backendName:"wasm",setupFunc:y5e,kernelFunc:A5e},$9;function b5e(e){$9=e.wasm.cwrap(Rc,null,["number","number","number","array","number","array","array","number","number"])}function v5e(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{blockSize:a,dataFormat:o}=r;k.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],l=o==="NHWC"?s.shape[1]:s.shape[2],u=o==="NHWC"?s.shape[2]:s.shape[3],c=o==="NHWC"?s.shape[3]:s.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(s.dataId).id,A=new Uint8Array(new Int32Array(k.computeStrides(s.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return $9(y,a,o==="NHWC"?1:0,A,s.shape.length-1,x,b,f.length,v),m}var w5e={kernelName:Rc,backendName:"wasm",setupFunc:b5e,kernelFunc:v5e},_9;function k5e(e){_9=e.wasm.cwrap(al,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function I5e(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,h=u==null?[1,1]:u,p=R.computeConv2DInfo(s.shape,a.shape,l,h,c,d,!0),f=p.filterHeight,m=p.filterWidth,g=p.padInfo.top,y=p.padInfo.right,A=p.padInfo.bottom,x=p.padInfo.left,b=p.dilationHeight,v=p.dilationWidth,w=p.strideHeight,S=p.strideWidth,I=p.inChannels,E=p.outChannels,F=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(p.outShape,"float32"),_=r.dataIdMap.get($.dataId).id;return _9(o,s.shape[0],s.shape[1],s.shape[2],i,f,m,g,y,A,x,F,b,v,w,S,I,E,_),$}var S5e={kernelName:al,backendName:"wasm",setupFunc:k5e,kernelFunc:I5e},T5e=!1,N5e=Gn(il,T5e,"bool"),C5e=Hn(Eo);function fb(e){let{inputs:t,attrs:n,backend:r}=e,{input:s}=t,{dim:a}=n,o=s.shape.length,i=s.shape.slice(),l=a;return a<0&&(k.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),As({inputs:{x:s},backend:r,attrs:{shape:i}})}var E5e={kernelName:Mc,backendName:"wasm",kernelFunc:fb};function $5e(e){let{attrs:{shape:t,value:n,dtype:r},backend:s}=e,a=s.makeOutput(t,r);return s.typedArrayFromHeap(a).fill(n),a}var _5e={kernelName:Qp,backendName:"wasm",kernelFunc:$5e},R9;function R5e(e){R9=e.wasm.cwrap(Oc,null,["number","number","number","number","number","number"])}function D5e(e){let{inputs:t,backend:n}=e,{image:r}=t,s=n.makeOutput(r.shape,r.dtype),a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,[i,l,u,c]=r.shape;return R9(a,i,l,u,c,o),s}var F5e={kernelName:Oc,backendName:"wasm",kernelFunc:D5e,setupFunc:R5e},M5e=Hn($o),O5e=!1,P5e=Gn(ul,O5e),D9;function z5e(e){D9=e.wasm.cwrap(cl,null,["number","number","number","number","number","number","number"])}function L5e(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:s}=r,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(k.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return D9(c,d,h,p,f,s,g),m}var B5e={kernelName:cl,backendName:"wasm",setupFunc:z5e,kernelFunc:L5e},F9;function W5e(e){F9=e.wasm.cwrap(Bl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function V5e(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(s.shape,a.shape,l,c,u,h),g=gh[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(s.dataId).id,A=r.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let ne=r.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${x})`);b=ne.id}let v=m.filterHeight,w=m.filterWidth,S=m.padInfo.top,I=m.padInfo.right,E=m.padInfo.bottom,F=m.padInfo.left,$=m.dilationHeight,_=m.dilationWidth,N=m.strideHeight,P=m.strideWidth,B=m.inChannels,j=m.padInfo.type==="SAME"?1:0,X=m.batchSize,Y=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let oe=r.makeOutput(m.outShape,"float32"),se=r.dataIdMap.get(oe.dataId).id,ie=i==null?0:r.dataIdMap.get(i.dataId).id;return F9(y,X,Y,ee,A,v,w,b,S,I,E,F,j,$,_,N,P,B,x,g,ie,f||0,se),oe}var U5e={kernelName:Bl,backendName:"wasm",setupFunc:W5e,kernelFunc:V5e},M9;function H5e(e){M9=e.wasm.cwrap(Wl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function G5e(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(s.shape,a.shape,l,c,u,h,!0),g=gh[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(s.dataId).id,A=r.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let ne=r.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${x})`);b=ne.id}let v=m.filterHeight,w=m.filterWidth,S=m.padInfo.top,I=m.padInfo.right,E=m.padInfo.bottom,F=m.padInfo.left,$=m.dilationHeight,_=m.dilationWidth,N=m.strideHeight,P=m.strideWidth,B=m.inChannels,j=m.padInfo.type==="SAME"?1:0,X=m.batchSize,Y=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let oe=r.makeOutput(m.outShape,"float32"),se=r.dataIdMap.get(oe.dataId).id,ie=i==null?0:r.dataIdMap.get(i.dataId).id;return M9(y,X,Y,ee,A,v,w,b,S,I,E,F,j,$,_,N,P,B,x,g,ie,f||0,se),oe}var j5e={kernelName:Wl,backendName:"wasm",setupFunc:H5e,kernelFunc:G5e},O9;function q5e(e){O9=e.wasm.cwrap(zc,null,["number","number","number","number","number","number","array","number"])}function K5e(e){let{backend:t,inputs:n}=e,{params:r,indices:s}=n,[a,o,i,l]=N6.prepareAndValidate(r,s),u=t.makeOutput(a,r.dtype);if(o===0)return u;let c=s.shape,d=c[c.length-1],p=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return O9(p,tr[r.dtype],m,o,d,i,g,y),u}var X5e={kernelName:zc,backendName:"wasm",setupFunc:q5e,kernelFunc:K5e},P9;function Z5e(e){P9=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Y5e(e){let{backend:t,inputs:n,attrs:r}=e,{x:s,indices:a}=n,{axis:o,batchDims:i}=r,l=k.parseAxisParam(o,s.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(s,a,l,i),c=As({inputs:{x:s},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=k.sizeFromShape(a.shape),h=As({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(p,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let m=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(h.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(c.shape)).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return P9(y,tr[s.dtype],v,m,x,u.batchSize,w,b),t.disposeData(c.dataId),t.disposeData(h.dataId),f.shape=u.outputShape,f}var J5e={kernelName:Pc,backendName:"wasm",setupFunc:Z5e,kernelFunc:Y5e},Q5e=!1,ebe=Gn(dl,Q5e,"bool"),tbe=!1,nbe=Gn(_o,tbe,"bool"),z9;function rbe(e){z9=e.wasm.cwrap(pl,null,["number","number","number"])}function sbe(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,s=r.dataIdMap.get(t.dataId).id,a=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let o=r.dataIdMap.get(a.dataId).id;z9(s,n,o)}return a}var abe={kernelName:pl,backendName:"wasm",setupFunc:rbe,kernelFunc:sbe},obe=!1,ibe=Gn(fl,obe,"bool"),lbe=!1,ube=Gn(ml,lbe,"bool"),cbe=Hn(Ro),dbe=!1,hbe=Gn(Uc,dbe,"bool"),L9;function pbe(e){L9=e.wasm.cwrap(gl,null,["number, number, number"])}function fbe(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:s,keepDims:a}=r,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;R.assertAxesAreInnerMostDims("max",d,f);let[m,g]=R.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(g),A=t.makeOutput(m,o.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;L9(l,y,x)}if(p&&t.disposeData(c.dataId),a){let x=R.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var mbe={kernelName:gl,backendName:"wasm",setupFunc:pbe,kernelFunc:fbe},gbe=!1,ybe=Gn(Do,gbe),B9;function Abe(e){B9=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xbe(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(s.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,A=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,w=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=r.makeOutput(c.outShape,"float32"),I=r.dataIdMap.get(S.dataId).id;return B9(a,s.shape[0],s.shape[1],s.shape[2],d,h,p,f,m,g,y,A,x,b,v,w,I),S}var bbe={kernelName:yl,backendName:"wasm",setupFunc:Abe,kernelFunc:xbe},W9;function vbe(e){W9=e.wasm.cwrap(Al,null,["number, number, number"])}function wbe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t),f=d;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=t0({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(m,"float32");if(k.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;W9(l,y,b)}if(p&&t.disposeData(c.dataId),a){let b=R.expandShapeToKeepDim(x.shape,h);x.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var kbe={kernelName:Al,backendName:"wasm",setupFunc:vbe,kernelFunc:wbe},V9;function Ibe(e){V9=e.wasm.cwrap(xl,null,["number, number, number"])}function Sbe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t);if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;R.assertAxesAreInnerMostDims("min",d,f);let[m,g]=R.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;V9(l,y,x)}if(p&&t.disposeData(c.dataId),a){let x=R.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var Tbe={kernelName:xl,backendName:"wasm",setupFunc:Ibe,kernelFunc:Sbe},Nbe=!1,Cbe=Gn(Fo,Nbe),mb;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(mb||(mb={}));var U9;function Ebe(e){U9=e.wasm.cwrap(bl,null,["number","array","number","number","array","array","number","number"])}function $be(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),d=r.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return U9(o,u,t.shape.length,tr[t.dtype],h,p,mb[s],l),i}var _be={kernelName:bl,backendName:"wasm",kernelFunc:$be,setupFunc:Ebe},Rbe=!0,Dbe=Gn(Mo,Rbe),Fbe=Hn(Gc);function gb(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],s=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:s,pSelectedScores:a,pValidOutputs:o}}var H9;function Mbe(e){H9=e.wasm.cwrap(jc,"number",["number","number","number","number","number"])}function Obe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o}=r,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=H9(u,c,a,s,o),{pSelectedIndices:h,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=gb(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",h)}var Pbe={kernelName:jc,backendName:"wasm",setupFunc:Mbe,kernelFunc:Obe},G9;function zbe(e){G9=e.wasm.cwrap(qc,"number",["number","number","number","number","number","bool"])}function Lbe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=G9(c,d,a,s,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=gb(t,h);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),A=t.makeOutput([],"int32",g);return[y,A]}var Bbe={kernelName:qc,backendName:"wasm",setupFunc:zbe,kernelFunc:Lbe},j9;function Wbe(e){j9=e.wasm.cwrap(Kc,"number",["number","number","number","number","number","number"])}function Vbe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=j9(c,d,a,s,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=gb(t,h);t.wasm._free(g);let y=t.makeOutput([f],"int32",p),A=t.makeOutput([f],"float32",m);return[y,A]}var Ube={kernelName:Kc,backendName:"wasm",setupFunc:Wbe,kernelFunc:Vbe},Hbe=!1,Gbe=Gn(vl,Hbe,"bool"),q9;function jbe(e){q9=e.wasm.cwrap(wl,null,["number","number","number","number","number"])}function qbe(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,l=n.makeOutput([...s.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(s.dataId).id;return q9(d,a,o,i,u),l}var Kbe={kernelName:wl,backendName:"wasm",setupFunc:jbe,kernelFunc:qbe};function Xbe(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var Zbe={kernelName:Xc,backendName:"wasm",kernelFunc:Xbe};function Ybe(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return fb({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=fb({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),u=S9({inputs:l,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeData(c.dataId)),u}var Jbe={kernelName:Zc,backendName:"wasm",kernelFunc:Ybe},K9;function Qbe(e){K9=e.wasm.cwrap(kl,null,["number","array","number","number","array","array","number","number"])}function e3e(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),d=r.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return K9(o,u,t.shape.length,tr[t.dtype],h,p,s,l),i}var t3e={kernelName:kl,backendName:"wasm",kernelFunc:e3e,setupFunc:Qbe},n3e=!1,r3e=Gn(Il,n3e),X9;function s3e(e){X9=e.wasm.cwrap(Sl,null,["number","number","number"])}function a3e(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,i=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return X9(a,o,l),i}var o3e={kernelName:Sl,backendName:"wasm",setupFunc:s3e,kernelFunc:a3e},Z9;function i3e(e){Z9=e.wasm.cwrap(Yc,null,["number","number","number","number"])}function l3e(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;Z9(l,y,tr[A.dtype],x)}if(p&&t.disposeData(c.dataId),a){let x=R.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var u3e={kernelName:Yc,backendName:"wasm",setupFunc:i3e,kernelFunc:l3e},c3e=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=lE(r,s,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},d3e={kernelName:sf,backendName:"wasm",kernelFunc:c3e},h3e=!0,p3e=Gn(ol,h3e),f3e=Hn(Tl),m3e=Hn(Cl),Y9;function g3e(e){Y9=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","number","number","number","number"])}function y3e(e){let{backend:t,inputs:n,attrs:r}=e,{images:s}=n,{alignCorners:a,halfPixelCenters:o,size:i}=r,[l,u]=i,[c,d,h,p]=s.shape,f=[c,l,u,p],m=t.dataIdMap.get(s.dataId),g;m.dtype!=="float32"&&(g=t0({backend:t,inputs:{x:s},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,A=t.makeOutput(f,"float32");if(k.sizeFromShape(s.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return Y9(y,c,d,h,p,l,u,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),A}var A3e={kernelName:Nl,backendName:"wasm",setupFunc:g3e,kernelFunc:y3e},J9;function x3e(e){J9=e.wasm.cwrap(El,null,["number","array","number","array","number","number"])}function b3e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=k.parseAxisParam(a,s.shape);if(s.shape.length===0)return Qm({inputs:{x:s},backend:n});let i=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(s.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(s.shape).buffer);J9(l,c,o.length,d,s.shape.length,u);let h=As({inputs:{x:i},attrs:{shape:s.shape},backend:n});return n.disposeData(i.dataId),h}var v3e={kernelName:El,backendName:"wasm",kernelFunc:b3e,setupFunc:x3e},Q9;function w3e(e){Q9=e.wasm.cwrap(pd,null,["number","number","number","number","number","number","number","number","array","number","number"])}function k3e(e){let{inputs:t,backend:n,attrs:r}=e,{image:s}=t,{radians:a,fillValue:o,center:i}=r,l=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(s.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,h,p,f]=s.shape,[m,g]=R.getImageCenter(i,h,p),y=o===0,A=255,x=typeof o=="number"?[o,o,o,y?0:A]:[...o,A],b=new Uint8Array(new Int32Array(x).buffer);return Q9(u,d,h,p,f,a,m,g,b,x.length,c),l}var I3e={kernelName:pd,backendName:"wasm",kernelFunc:k3e,setupFunc:w3e},S3e=Hn($l),T3e=Hn(Oo),e$;function N3e(e){e$=e.wasm.cwrap(ed,null,["number","number","number","number","number","number","array","number","number"])}function C3e(e){let{backend:t,inputs:n,attrs:r}=e,{indices:s,updates:a}=n,{shape:o}=r,i=t.makeOutput(o,a.dtype);if(k.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=E6.calculateShapes(a,s,o),f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(d).buffer),A=t.dataIdMap.get(i.dataId).id;return e$(f,g,tr[a.dtype],l,u,c,y,h,A),i}var E3e={kernelName:ed,backendName:"wasm",setupFunc:N3e,kernelFunc:C3e},t$;function $3e(e){t$=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function _3e(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(s.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(s.shape,s.dtype),c=n.dataIdMap.get(u.dataId).id,d=r.shape.length,h=s.shape.length,p=d===0||d>1||h===1?1:k.sizeFromShape(s.shape.slice(1));return t$(o,i,l,p,c),u}var R3e={kernelName:td,backendName:"wasm",kernelFunc:_3e,setupFunc:$3e},n$;function D3e(e){n$=e.wasm.cwrap(Rl,null,["number","number"])}function F3e(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(s.dataId).id;return k.sizeFromShape(s.shape)===0||n$(r,a),s}var M3e={kernelName:"Sigmoid",backendName:"wasm",setupFunc:D3e,kernelFunc:F3e},O3e=Hn(_l);function n0(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:s}=e,[a,o]=En.parseSliceParams(t,n,r),i=En.isSliceContinous(t.shape,a,o),l=s.readSync(t.dataId),u=s.makeOutput(o,t.dtype),c=k.computeStrides(t.shape),d=s.dataIdMap.get(u.dataId);if(i){let f=En.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+k.sizeFromShape(o)):s.typedArrayFromHeap(u).set(l.subarray(f,f+k.sizeFromShape(o))),u}if(t.dtype==="string"){let f=ab(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let h=s.typedArrayFromHeap(u),p=t.shape.length;if(p===2)P3e(l,c[0],h,a,o);else if(p===3)z3e(l,c[0],c[1],h,a,o);else if(p===4)L3e(l,c[0],c[1],c[2],h,a,o);else{let f=ab(l,a,o,t.shape,t.dtype);h.set(f)}return u}function P3e(e,t,n,r,s){let a=0,o=r[0],i=r[1],l=o+s[0];for(let u=o;u{let h=[...c];h[i]=d;let p=n0({inputs:{x:s},attrs:{begin:u,size:h},backend:r});return u[i]+=d,p})}var G3e={kernelName:id,backendName:"wasm",kernelFunc:H3e},j3e=Hn(Dl),q3e=Hn(lf),K3e=!0,X3e=Gn(Po,K3e),s$;function Z3e(e){s$=e.wasm.cwrap(Bo,null,["number","number","number"])}function Y3e(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return s$(o,s,l),i}var J3e={kernelName:Bo,backendName:"wasm",setupFunc:Z3e,kernelFunc:Y3e},a$;function Q3e(e){a$=e.wasm.cwrap(ld,null,["number","array","number","array","array","array","array","array","number","number"])}function eve(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{begin:a,end:o,strides:i}=r;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=r,p=R.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=s.shape.length-a.length,m=R.slice_util.maskToAxes(d),g=s.shape.slice();m.forEach($=>{a[$]=0,o[$]=1,g.splice($,0,1)});let y=As({inputs:{x:s},attrs:{shape:g},backend:t}),{begin:A,end:x,strides:b}=R.slice_util.getNormalizedAxes(y.shape,p,f,a,o,i,l,u,c);a=A,o=x,i=b;let v=R.slice_util.maskToAxes(h);v.forEach($=>{o[$]=a[$]+1,i[$]=1});let w=R.slice_util.computeOutShape(a,o,i),S=w.filter(($,_)=>v.indexOf(_)===-1);if(i.every($=>$===1)){let $=n0({inputs:{x:y},attrs:{begin:a,size:w},backend:t});t.disposeData(y.dataId);let _=As({inputs:{x:$},attrs:{shape:S},backend:t});return t.disposeData($.dataId),_}let E=t.makeOutput(S,"float32");if(!S.some($=>$===0)){let $=t.dataIdMap.get(y.dataId).id,_=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),N=new Uint8Array(new Int32Array(a).buffer),P=new Uint8Array(new Int32Array(o).buffer),B=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(S).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(S)).buffer),Y=t.dataIdMap.get(E.dataId).id;a$($,_,y.shape.length,N,P,B,j,X,S.length,Y)}t.disposeData(y.dataId);let F=As({inputs:{x:E},attrs:{shape:S},backend:t});return t.disposeData(E.dataId),F}var tve={kernelName:ld,backendName:"wasm",setupFunc:Q3e,kernelFunc:eve},nve=!0,rve=Gn(zo,nve),o$;function sve(e){o$=e.wasm.cwrap(Fl,null,["number, number, number"])}function ave(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=R.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;o$(l,y,x)}if(p&&t.disposeData(c.dataId),a){let x=R.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var ove={kernelName:Fl,backendName:"wasm",setupFunc:sve,kernelFunc:ave},ive=Hn(Ol),lve=Hn(Pl),i$;function uve(e){i$=e.wasm.cwrap(Lo,null,["number","array","number","array","number","number"])}function cve(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,a=n.dataIdMap.get(s.dataId).id,{reps:o}=r,i=new Array(s.shape.length);for(let h=0;h{let{x:r}=e,{k:s,sorted:a}=n,o=t.dataIdMap.get(r.dataId).id,i=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=s;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),h=t.dataIdMap.get(d.dataId).id;return l$(o,i,r.shape.length,tr[r.dtype],s,a,c,h),[u,d]},fve={kernelName:ud,backendName:"wasm",setupFunc:hve,kernelFunc:pve},u$;function mve(e){u$=e.wasm.cwrap(cd,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function gve(e){let{backend:t,inputs:n,attrs:r}=e,{image:s,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=r,[c,d,h,p]=s.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],y=new Uint8Array(new Int32Array(k.computeStrides(s.shape)).buffer),A=t.makeOutput(g,s.dtype),x=t.dataIdMap.get(A.dataId).id,v=t.dataIdMap.get(s.dataId).id,S=t.dataIdMap.get(a.dataId).id,I=o==="nearest"?1:2,E;switch(i){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return u$(v,S,a.shape[0]>1,c,f,m,p,h,d,y,s.shape.length-1,I,E,l,x),A}var yve={kernelName:cd,backendName:"wasm",setupFunc:mve,kernelFunc:gve};function Ave(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape[a],i=s.shape.length,l=new Array(i-1),u=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var xve={kernelName:dd,backendName:"wasm",kernelFunc:Ave};function bve(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var vve={kernelName:hd,backendName:"wasm",kernelFunc:bve},wve=[Cxe,$xe,Dxe,Wxe,Hxe,qxe,Zxe,e5e,t5e,n5e,a5e,o5e,u5e,h5e,p5e,g5e,x5e,w5e,S5e,N5e,C5e,E5e,_5e,F5e,M5e,P5e,Nxe,B5e,U5e,j5e,X5e,J5e,ebe,nbe,Fxe,abe,ibe,ube,cbe,hbe,mbe,ybe,bbe,kbe,Tbe,Cbe,_be,Dbe,Fbe,Pbe,Bbe,Ube,Gbe,Kbe,Zbe,Jbe,t3e,r3e,o3e,u3e,d3e,p3e,f3e,m3e,Yxe,A3e,v3e,I3e,T3e,S3e,E3e,R3e,M3e,O3e,B3e,U3e,G3e,j3e,q3e,X3e,J3e,tve,rve,ove,ive,lve,dve,fve,yve,zxe,xve,vve];for(let e of wve)oA(e);var yb=ae();yb.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));yb.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(yb.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var c$=Ks(TR()),kve='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Ive=Ks(NR()),d$=class extends Bp{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new fy(this,za())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r,s){let a=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:s});return}let o=k.sizeFromShape(n),i=o*k.bytesPerElement(r),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:r,refCount:s}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return Nve(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,s,a);case"int32":return new Int32Array(r,s,a);case"bool":return new Uint8Array(r,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Sve(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(s=>{WebAssembly.instantiate(s,t).then(a=>{n(a.instance,a.module)})})}),{})}function h$(e,t,n){if(r0!=null)return r0;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Ah!=null&&Ah[r]!=null?Ah[r]:n+r}async function Tve(){let[e,t]=await Promise.all([ae().getAsync("WASM_HAS_SIMD_SUPPORT"),ae().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let s={};s.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=kve,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?h$(e,t,yh!=null?yh:l):l+i},Ab&&(s.instantiateWasm=Sve(h$(e,t,yh!=null?yh:"")));let a=!1;s.onAbort=()=>{if(a||xh)return;xh=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&r0==null?(s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+c$.default.toString()],{type:"text/javascript"}),o=(0,c$.default)(s)):o=(0,Ive.default)(s),o.then(i=>{a=!0,xh=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function Nve(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Cve=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],r0=null,yh=null,Ah={},xh=!1,Ab=!1;function Eve(e,t=!1){if(U6("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),xh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");r0=e,Ab=t}function $ve(e,t=!1){if(xh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")yh=e;else{Ah=e;let n=Cve.filter(r=>Ah[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Ab=t}var _ve="3.7.0",Rve=2;$A("wasm",async()=>{let{wasm:e}=await Tve();return new d$(e)},Rve);var Dve={tfjs:CR,"tfjs-core":ER,"tfjs-data":$R,"tfjs-layers":_R,"tfjs-converter":RR,"tfjs-backend-cpu":DR,"tfjs-backend-webgl":FR,"tfjs-backend-wasm":MR};var nr={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Fve(){let e=nr.gl;!e||(nr.extensions=e.getSupportedExtensions())}function p$(){if(!q2(nr.name)){try{nr.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(nr.width,nr.height):document.createElement("canvas")}catch(e){me("error: cannot create canvas:",e);return}try{nr.gl=nr.canvas.getContext("webgl2",nr.webGLattr)}catch(e){me("error: cannot get WebGL2 context:",e);return}try{Dm(2,nr.gl)}catch(e){me("error: cannot set WebGL2 context:",e);return}try{let e=new Bm(nr.gl);K2(nr.name,()=>new dh(e),nr.priority)}catch(e){me("error: cannot register WebGL backend:",e);return}try{Li("webgl").forEach(t=>{let n={...t,backendName:nr.name};sp(n)})}catch(e){me("error: cannot update WebGL backend registration:",e);return}try{Sr.set("WEBGL_VERSION",2)}catch(e){me("error: cannot set WebGL backend flags:",e);return}Fve(),me("backend registered:",nr.name)}}function f$(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function vh(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Tu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Nu(e,t,n){let r=t.shape[1],s=t.shape[2],a=[[e.startPoint[1]/r,e.startPoint[0]/s,e.endPoint[1]/r,e.endPoint[0]/s]];return Ye.cropAndResize(t,a,[0],n)}function s0(e,t=1.5){let n=Tu(e),r=vh(e),s=[t*r[0]/2,t*r[1]/2],a=[n[0]-s[0],n[1]-s[1]],o=[n[0]+s[0],n[1]+s[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function a0(e){let t=Tu(e),n=vh(e),s=Math.max(...n)/2,a=[Math.round(t[0]-s),Math.round(t[1]-s)],o=[Math.round(t[0]+s),Math.round(t[1]+s)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function xb(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),r=[Math.min(...t),Math.min(...n)],s=[Math.max(...t),Math.max(...n)];return{startPoint:r,endPoint:s,landmarks:e}}var m$=e=>({startPoint:Ze(e,[0,0],[-1,2]),endPoint:Ze(e,[0,2],[-1,2])});var o0=[[1,0,0],[0,1,0],[0,0,1]];function Mve(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function bb(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Mve(n)}function g$(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function no(e,t){let n=0;for(let r=0;r{let u=Ye.resizeBilinear(t,[this.inputSize,this.inputSize]).div(127.5).sub(.5),c=this.model.execute(u),d;if(Array.isArray(c)){let m=c.sort((x,b)=>x.size-b.size),g=an([m[0],m[2]],2),y=an([m[1],m[3]],2);d=an([y,g],1).squeeze(0)}else d=Zn(c);let h=Pve(d,this.anchors,[this.inputSize,this.inputSize]),p=Ze(d,[0,0],[-1,1]),f=Ts(p).squeeze().dataSync();return[d,h,f]}),a=await Ye.nonMaxSuppressionAsync(r,s,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),o=a.arraySync();a.dispose();let i=[];for(let l=0;lthis.config.face.detector.minConfidence){let c=Ze(r,[o[l],0],[1,-1]),d=m$(c);c.dispose();let h=this.anchorsData[o[l]],p=Ue(()=>Ze(n,[o[l],v$-1],[1,-1]).squeeze().reshape([v$,-1]));i.push({box:d,landmarks:p,anchor:h,confidence:u})}}return n.dispose(),r.dispose(),{boxes:i,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function k$(e){let t=await Et($t(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new w$(t,e);return!t||!t.modelUrl?me("load model failed:",e.face.detector.modelPath):e.debug&&me("load model:",t.modelUrl),n}var Bs={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},vb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],wh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],vi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var zve=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Lve=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Bve=[33,133,362,263,1,78,308],x7e=zve.map(e=>wh[e]),b7e=Lve.map(e=>wh[e]),v7e=Bve.map(e=>wh[e]);var wb=Bs.leftEyeLower0,kb=Bs.rightEyeLower0,Cu={leftBounds:[wb[0],wb[wb.length-1]],rightBounds:[kb[0],kb[kb.length-1]]},l0={count:468,mouth:13,symmetryLine:[13,Bs.midwayBetweenEyes[0]]},I$={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Eu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function u0(e,t,n,r){for(let s=0;s[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=r!==0?i0(r,[0,0]):o0,l=r!==0?o.map(d=>[...x$(d,i),d[2]]):o,u=r!==0?A$(s):o0,c=[...Tu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+no(c,u[0])),Math.round(d[1]+no(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[Cu.leftBounds[0]][2],r=t[Cu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,s,a=!1){let o=a0(s0(xb([t[r],t[s]]),this.irisEnlarge)),i=vh(o),l=Ye.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return a&&Sr.flags.IS_BROWSER&&(l=Ye.flipLeftRight(l)),{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,r,s=!1){let a=[];for(let o=0;o{let u=o;return l===2?u=s:l===4&&(u=a),[i[0],i[1],u]})}async predict(t,n){let r=!1,s;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(s=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||s&&s.boxes&&(!n.face.mesh.enabled||s.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let o of s.boxes)this.storedBoxes.push({startPoint:o.box.startPoint.dataSync(),endPoint:o.box.endPoint.dataSync(),landmarks:o.landmarks.arraySync(),confidence:o.confidence});this.storedBoxes.length>0&&(r=!0)}if(r){if(!s||!s.boxes||s.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let o=0;o{o.box.startPoint.dispose(),o.box.endPoint.dispose(),o.landmarks.dispose()});let a=Ue(()=>this.storedBoxes.map((o,i)=>{let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&Sr.flags.IS_BROWSER){let[x,b]=o.landmarks.length>=l0.count?l0.symmetryLine:I$.symmetryLine;u=bb(o.landmarks[x],o.landmarks[b]);let v=Tu({startPoint:o.startPoint,endPoint:o.endPoint}),w=[v[0]/t.shape[2],v[1]/t.shape[1]],S=Ye.rotateWithOffset(t,u,0,w);c=i0(-u,v),n.face.mesh.enabled?l=Nu({startPoint:o.startPoint,endPoint:o.endPoint},S,[this.meshSize,this.meshSize]).div(255):l=Nu({startPoint:o.startPoint,endPoint:o.endPoint},S,[this.boxSize,this.boxSize]).div(255)}else{c=o0;let x=t.clone();n.face.mesh.enabled?l=Nu({startPoint:o.startPoint,endPoint:o.endPoint},x,[this.meshSize,this.meshSize]).div(255):l=Nu({startPoint:o.startPoint,endPoint:o.endPoint},x,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:o,faceConfidence:null,boxConfidence:o.confidence,confidence:o.confidence,image:l};let[,d,h]=this.meshDetector.execute(l),p=d.dataSync()[0];if(p=l0.count?l0.symmetryLine:I$.symmetryLine;u=bb(o.landmarks[x],o.landmarks[b]);let v=Tu({startPoint:o.startPoint,endPoint:o.endPoint}),w=[v[0]/t.shape[2],v[1]/t.shape[1]],S=Ye.rotateWithOffset(t.toFloat(),u,0,w);c=i0(-u,v),l=Nu({startPoint:o.startPoint,endPoint:o.endPoint},S,[this.meshSize,this.meshSize]).div(255)}let A={mesh:g,box:o,faceConfidence:p,boxConfidence:o.confidence,image:l};return this.storedBoxes[i]={...a0(o),confidence:o.confidence,faceConfidence:p},A}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(o=>o.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Zt=[null,null,null],Sb;async function S$(e,t){let n=await Sb.predict(e,t),r=[],s=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/Sb.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(Bs))i[c]=Bs[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];r.push({id:s++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,image:a.image,tensor:a.image}),a.coords&&a.coords.dispose()}return r}async function Tb(e){return!Zt[0]&&e.face.enabled||!Zt[1]&&e.face.mesh.enabled||!Zt[2]&&e.face.iris.enabled?(Zt=await Promise.all([!Zt[0]&&e.face.enabled?k$(e):null,!Zt[1]&&e.face.mesh.enabled?Et($t(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Zt[2]&&e.face.iris.enabled?Et($t(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Zt[1]||!Zt[1].modelUrl?me("load model failed:",e.face.mesh.modelPath):e.debug&&me("load model:",Zt[1].modelUrl)),e.face.iris.enabled&&(!Zt[2]||!Zt[2].modelUrl?me("load model failed:",e.face.iris.modelPath):e.debug&&me("load model:",Zt[2].modelUrl))):e.debug&&(Zt[0]&&me("cached model:",Zt[0].model.modelUrl),Zt[1]&&me("cached model:",Zt[1].modelUrl),Zt[2]&&me("cached model:",Zt[2].modelUrl)),Sb=new Ib(Zt[0],Zt[1],Zt[2]),Zt}var T$=vi,N$=wh;var xs,c0=[],C$=0,Nb=Number.MAX_SAFE_INTEGER;async function Cb(e){let t=$t(e.modelBasePath,e.face.description.modelPath);return xs?e.debug&&me("cached model:",t):(xs=await Et(t),xs?e.debug&&me("load model:",t):me("load model failed:",e.face.description.modelPath)),xs}function Eb(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-r)/100}function E$(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let s of t)if(s.embedding&&s.name){let a=Eb(e,s.embedding);a>n&&a>r.similarity&&(r={...s,similarity:a})}return r}function $b(e){return Ue(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Tt))return null;let r=[[.05,.15,.85,.85]];return xs.inputs[0].shape?(n.shape.length===3?Ye.cropAndResize(ea(n,0),r,[0],[xs.inputs[0].shape[2],xs.inputs[0].shape[1]]):Ye.cropAndResize(n,r,[0],[xs.inputs[0].shape[2],xs.inputs[0].shape[1]])).mul(255):null})}async function _b(e,t,n,r){var s,a;return xs?Nb0?(Nb++,c0[n]):(Nb=0,new Promise(async o=>{let i=$b(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};t.face.description.enabled&&(l=await xs.predict(i)),Ve(i),l&&(Ue(()=>{let c=l.find(m=>m.shape[1]===1).dataSync(),d=Math.trunc(200*Math.abs(c[0]-.5))/100;d>t.face.description.minConfidence&&(u.gender=c[0]<=.5?"female":"male",u.genderScore=Math.min(.99,d));let h=l.find(m=>m.shape[1]===100).argMax(1).dataSync()[0],p=l.find(m=>m.shape[1]===100).dataSync();u.age=Math.round(p[h-1]>p[h+1]?10*h-100*p[h-1]:10*h+100*p[h+1])/10;let f=l.find(m=>m.shape[1]===1024);u.descriptor=[...f.dataSync()]}),l.forEach(c=>Ve(c))),c0[n]=u,C$=r,o(u)})):null}var Wve=["angry","disgust","fear","happy","sad","surprise","neutral"],bs,d0=[],$$=0,Rb=Number.MAX_SAFE_INTEGER,Db=[.2989,.587,.114];async function Fb(e){return bs?e.debug&&me("cached model:",bs.modelUrl):(bs=await Et($t(e.modelBasePath,e.face.emotion.modelPath)),!bs||!bs.modelUrl?me("load model failed:",e.face.emotion.modelPath):e.debug&&me("load model:",bs.modelUrl)),bs}async function Mb(e,t,n,r){return bs?Rb0?(Rb++,d0[n]):(Rb=0,new Promise(async s=>{let a=Ye.resizeBilinear(e,[bs.inputs[0].shape[2],bs.inputs[0].shape[1]],!1),[o,i,l]=ta(a,3,3);a.dispose();let u=fe(o,Db[0]),c=fe(i,Db[1]),d=fe(l,Db[2]);o.dispose(),i.dispose(),l.dispose();let h=X2([u,c,d]);u.dispose(),c.dispose(),d.dispose();let p=Ue(()=>h.sub(.5).mul(2));h.dispose();let f=[];if(t.face.emotion.enabled){let m=await bs.predict(p),g=m.dataSync();Ve(m);for(let y=0;yt.face.emotion.minConfidence&&f.push({score:Math.min(.99,Math.trunc(100*g[y])/100),emotion:Wve[y]});f.sort((y,A)=>A.score-y.score)}p.dispose(),d0[n]=f,$$=r,s(f)})):null}var kh=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],_$=kh.length,Ih=kh.reduce((e,t,n)=>(e[t]=n,e),{}),Vve=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Uve=Vve.map(([e,t])=>[Ih[e],Ih[t]]),R$=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function D$(e){let t=e.reduce(({maxX:n,maxY:r,minX:s,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(r,i),minX:Math.min(s,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function F$(e,[t,n],[r,s]){let a=t/r,o=n/s,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/s,u.box[1]/r,u.box[2]/s,u.box[3]/r],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:h,position:p})=>({score:d,part:h,position:[Math.trunc(p.x*o),Math.trunc(p.y*a)],positionRaw:[p.x/r,p.y/r]}))});return e.map((u,c)=>i(u,c))}var Ob=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function M$(e,t,n,r){let s=n-e,a=r-t;return s*s+a*a}function Bb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var h0=1,$u=16,Hve=50**2;function O$(e,t,n,r,s,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,A,x)=>({y:Lb(Math.round(y.y/$u),0,A-1),x:Lb(Math.round(y.x/$u),0,x-1)}),[u,c]=r.shape,d=l(t.position,u,c),h=i(d),f=Bb(t.position,h);for(let y=0;y[Ih[h],Ih[p]]),o=a.map(([,h])=>h),i=a.map(([h])=>h),l=t.shape[2],u=o.length,c=new Array(l),d=zb(e.part,$u,n);c[e.part.id]={score:e.score,part:kh[e.part.id],position:d};for(let h=u-1;h>=0;--h){let p=o[h],f=i[h];c[p]&&!c[f]&&(c[f]=O$(h,c[p],f,t,n,s))}for(let h=0;ht){i=!1;break}if(!i)break}return i}function qve(e,t){let[n,r,s]=t.shape,a=new Ob(n*r*s,({score:o})=>o);for(let o=0;o{var o;let a=(o=s[r])==null?void 0:o.position;return a?M$(n,t,a.y,a.x)<=Hve:!1})}function Kve(e,t){return t.reduce((r,{position:s,score:a},o)=>(P$(e,s,o)||(r+=a),r),0)/t.length}function z$(e,t,n,r,s,a){let o=[],i=qve(a,t);for(;o.lengthp.score>a);let d=Kve(o,c),h=D$(c);d>a&&o.push({keypoints:c,box:h,score:Math.round(100*d)/100})}return o}var yr,Xve=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function Wb(e,t){let n=Ue(()=>{if(!yr.inputs[0].shape)return[];let i=Ye.resizeBilinear(e,[yr.inputs[0].shape[2],yr.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),u=yr.execute(i,Xve).map(c=>Zn(c,[0]));return u[1]=u[1].sigmoid(),u}),r=await Promise.all(n.map(o=>o.buffer()));for(let o of n)o.dispose();let s=await z$(r[0],r[1],r[2],r[3],t.body.maxDetected,t.body.minConfidence);return yr.inputs[0].shape?F$(s,[e.shape[1],e.shape[2]],[yr.inputs[0].shape[2],yr.inputs[0].shape[1]]):[]}async function Vb(e){return yr?e.debug&&me("cached model:",yr.modelUrl):(yr=await Et($t(e.modelBasePath,e.body.modelPath)),!yr||!yr.modelUrl?me("load model failed:",e.body.modelPath):e.debug&&me("load model:",yr.modelUrl)),yr}function p0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Sh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function L$(e,t,n){let r=t.shape[1],s=t.shape[2],a=[[e.startPoint[1]/r,e.startPoint[0]/s,e.endPoint[1]/r,e.endPoint[0]/s]];return Ye.cropAndResize(t,a,[0],n)}function B$(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],s=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:s,confidence:e.confidence}}function f0(e,t=1.5){let n=Sh(e),r=p0(e),s=[t*r[0]/2,t*r[1]/2],a=[n[0]-s[0],n[1]-s[1]],o=[n[0]+s[0],n[1]+s[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function m0(e){let t=Sh(e),n=p0(e),s=Math.max(...n)/2,a=[t[0]-s,t[1]-s],o=[t[0]+s,t[1]+s];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var W$=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Ub=class{constructor(t){var n;this.model=t,this.anchors=W$.map(r=>[r.x,r.y]),this.anchorsTensor=ra(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=ur([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=ur([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return Ue(()=>{let n=Ze(t,[0,0],[-1,2]),r=Ze(t,[0,2],[-1,2]),s=Me(Qe(n,this.inputSizeTensor),this.anchorsTensor),a=Qe(r,this.doubleInputSizeTensor),o=fe(He(s,a),this.inputSizeTensor),i=fe(Me(s,a),this.inputSizeTensor);return lc([o,i],1)})}normalizeLandmarks(t,n){return Ue(()=>{let r=Me(Qe(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return fe(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),s=Zn(r);r.dispose();let a=Ue(()=>Ts(Ze(s,[0,0],[-1,1])).squeeze()),o=a.dataSync(),i=Ze(s,[0,1],[-1,4]),l=this.normalizeBoxes(i);i.dispose();let u=await Ye.nonMaxSuppressionAsync(l,o,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),c=u.arraySync();a.dispose(),u.dispose();let d=[];for(let h of c)if(o[h]>=n.hand.minConfidence){let p=Ze(l,[h,0],[1,-1]),f=Ze(s,[h,5],[1,14]),m=Ue(()=>this.normalizeLandmarks(f,h).reshape([-1,2]));f.dispose(),d.push({box:p,palmLandmarks:m,confidence:o[h]})}return s.dispose(),l.dispose(),d}async estimateHandBounds(t,n){let r=t.shape[1],s=t.shape[2],a=Ue(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),o=await this.getBoxes(a,n);a.dispose();let i=[];if(!o||o.length===0)return i;for(let l of o){let u=l.box.dataSync(),c=u.slice(0,2),d=u.slice(2,4),h=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),i.push(B$({startPoint:c,endPoint:d,palmLandmarks:h,confidence:l.confidence},[s/this.inputSize,r/this.inputSize]))}return i}};function Zve(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function V$(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Zve(n)}var U$=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ro(e,t){let n=0;for(let r=0;ro[0]),r=t.map(o=>o[1]),s=[Math.min(...n),Math.min(...r)],a=[Math.max(...n),Math.max(...r)];return{startPoint:s,endPoint:a}}getBoxForPalmLandmarks(t,n){let r=t.map(a=>Gb([...a,1],n)),s=this.calculateLandmarksBoundingBox(r);return f0(m0(s),Jve)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=f0(m0(n),j$);r.palmLandmarks=[];for(let s=0;s[o[0]*(p[0]-this.inputSize/2),o[1]*(p[1]-this.inputSize/2),o[2]*p[2]]),l=Hb(r,[0,0]),u=i.map(p=>[...Gb(p,l),p[2]]),c=G$(s),d=[...Sh(n),1],h=[ro(d,c[0]),ro(d,c[1])];return u.map(p=>[Math.trunc(p[0]+h[0]),Math.trunc(p[1]+h[1]),Math.trunc(p[2])])}async estimateHands(t,n){let r=!1,s;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(s=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,s&&s.length>0&&(s.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...s],this.storedBoxes.length>0&&(r=!0));let a=[];for(let o=0;o=n.hand.minConfidence){let x=ue(y,[-1,3]),b=x.arraySync();y.dispose(),x.dispose();let v=this.transformRawCoords(b,p,l,h),w=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...w,confidence:A};let S={landmarks:v,confidence:A,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};a.push(S)}else this.storedBoxes[o]=null;y.dispose()}else{let l=f0(m0(i),j$),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var K$={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},so,ao,X$;async function qb(e,t){let n=await X$.estimateHands(e,t);if(!n)return[];let r=[];for(let s=0;sn[s].landmarks[c]);let o=n[s].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[s].box?[Math.trunc(Math.max(0,n[s].box.topLeft[0])),Math.trunc(Math.max(0,n[s].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[s].box.bottomRight[0])-Math.max(0,n[s].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[s].box.bottomRight[1])-Math.max(0,n[s].box.topLeft[1]))]:[0,0,0,0],l=[n[s].box.topLeft[0]/(e.shape[2]||0),n[s].box.topLeft[1]/(e.shape[1]||0),(n[s].box.bottomRight[0]-n[s].box.topLeft[0])/(e.shape[2]||0),(n[s].box.bottomRight[1]-n[s].box.topLeft[1])/(e.shape[1]||0)];r.push({id:s,score:Math.round(100*n[s].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a})}return r}async function Kb(e){!so||!ao?([so,ao]=await Promise.all([e.hand.enabled?Et($t(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Et($t(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!so||!so.modelUrl?me("load model failed:",e.hand.detector.modelPath):e.debug&&me("load model:",so.modelUrl),!ao||!ao.modelUrl?me("load model failed:",e.hand.skeleton.modelPath):e.debug&&me("load model:",ao.modelUrl))):(e.debug&&me("cached model:",so.modelUrl),e.debug&&me("cached model:",ao.modelUrl));let t=new Ub(so);return X$=new jb(t,ao),[so,ao]}var Z$=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],Y$=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var rr;async function g0(e){return rr?e.debug&&me("cached model:",rr.modelUrl):(rr=await Et($t(e.modelBasePath,e.body.modelPath)),rr.width=parseInt(rr.signature.inputs["input_1:0"].tensorShape.dim[2].size),rr.height=parseInt(rr.signature.inputs["input_1:0"].tensorShape.dim[1].size),!rr||!rr.modelUrl?me("load model failed:",e.body.modelPath):e.debug&&me("load model:",rr.modelUrl)),rr}async function Xb(e,t){var m;if(!rr)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},r=Ye.resizeBilinear(e,[rr.width,rr.height],!1),s=Qe(r,[255]);r.dispose();let a=await rr.predict(s),o=((m=a.find(g=>g.size===195||g.size===155))==null?void 0:m.dataSync())||[];a.forEach(g=>g.dispose()),s.dispose();let i=[],l=(o==null?void 0:o.length)===195?Z$:Y$,u=5;for(let g=0;gg.position[0]),d=i.map(g=>g.position[1]),h=[Math.min(...c),Math.min(...d),Math.max(...c)-Math.min(...c),Math.max(...d)-Math.min(...c)],p=[0,0,0,0],f=i.reduce((g,y)=>y.score>g?y.score:g,0);return[{id:0,score:f,box:h,boxRaw:p,keypoints:i}]}var sr,Ws=[],Zb=[0,0,0,0],Yb=[0,0,0,0],y0=0,Jb=Number.MAX_SAFE_INTEGER,twe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function J$(e){return sr?e.debug&&me("cached model:",sr.modelUrl):(sr=await Et($t(e.modelBasePath,e.body.modelPath)),!sr||!sr.modelUrl?me("load model failed:",e.body.modelPath):e.debug&&me("load model:",sr.modelUrl)),sr}function nwe(e,t){let[n,r]=e.shape;return Ue(()=>{let s=(i,l)=>He(i,fe(Qe(i,ut(l,"int32")),ut(l,"int32"))),a=ue(e,[r*n]),o=_a(a,0).dataSync()[0];if(o>t){let i=Z2(a,0),l=s(i,n).dataSync()[0],u=Qe(i,ut(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function Qb(e,t){return Jb0?(Jb++,[{id:0,score:y0,box:Zb,boxRaw:Yb,keypoints:Ws}]):(Jb=0,new Promise(async n=>{let r=Ue(()=>{if(!sr.inputs[0].shape)return null;let u=Ye.resizeBilinear(e,[sr.inputs[0].shape[2],sr.inputs[0].shape[1]],!1);return fe(u,2).sub(1)}),s;if(t.body.enabled&&(s=await sr.predict(r)),r.dispose(),s){Ws.length=0;let u=s.squeeze();Ve(s);let c=u.unstack(2);Ve(u);for(let d=0;dt.body.minConfidence&&Ws.push({score:Math.round(100*f)/100,part:twe[d],positionRaw:[h/sr.inputs[0].shape[2],p/sr.inputs[0].shape[1]],position:[Math.round(e.shape[2]*h/sr.inputs[0].shape[2]),Math.round(e.shape[1]*p/sr.inputs[0].shape[1])]})}c.forEach(d=>Ve(d))}y0=Ws.reduce((u,c)=>c.score>u?c.score:u,0);let a=Ws.map(u=>u.position[0]),o=Ws.map(u=>u.position[1]);Zb=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=Ws.map(u=>u.positionRaw[0]),l=Ws.map(u=>u.positionRaw[1]);Yb=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:y0,box:Zb,boxRaw:Yb,keypoints:Ws}])}))}var vs,Vs=[],e3=[0,0,0,0],t3=[0,0,0,0],_u=0,n3=Number.MAX_SAFE_INTEGER,rwe=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function r3(e){return vs?e.debug&&me("cached model:",vs.modelUrl):(vs=await Et($t(e.modelBasePath,e.body.modelPath)),!vs||!vs.modelUrl?me("load model failed:",e.body.modelPath):e.debug&&me("load model:",vs.modelUrl)),vs}async function s3(e,t){return n30?(n3++,[{id:0,score:_u,box:e3,boxRaw:t3,keypoints:Vs}]):(n3=0,new Promise(async n=>{let r=Ue(()=>{if(!vs.inputs[0].shape)return null;let u=Ye.resizeBilinear(e,[vs.inputs[0].shape[2],vs.inputs[0].shape[1]],!1);return Pt(u,"int32")}),s;if(t.body.enabled&&(s=await vs.predict(r)),r.dispose(),s){Vs.length=0;let u=s.arraySync();Ve(s);let c=u[0][0];for(let d=0;dt.body.minConfidence&&Vs.push({score:Math.round(100*_u)/100,part:rwe[d],positionRaw:[c[d][1],c[d][0]],position:[Math.round((e.shape[2]||0)*c[d][1]),Math.round((e.shape[1]||0)*c[d][0])]})}_u=Vs.reduce((u,c)=>c.score>u?c.score:u,0);let a=Vs.map(u=>u.position[0]),o=Vs.map(u=>u.position[1]);e3=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=Vs.map(u=>u.positionRaw[0]),l=Vs.map(u=>u.positionRaw[1]);t3=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:_u,box:e3,boxRaw:t3,keypoints:Vs}])}))}var Ru=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Ar,a3=[],o3=Number.MAX_SAFE_INTEGER,A0=2.5;async function i3(e){if(Ar)e.debug&&me("cached model:",Ar.modelUrl);else{Ar=await Et($t(e.modelBasePath,e.object.modelPath));let t=Object.values(Ar.modelSignature.inputs);if(Ar.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Ar.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Ar||!Ar.modelUrl?me("load model failed:",e.object.modelPath):e.debug&&me("load model:",Ar.modelUrl)}return Ar}async function swe(e,t,n,r){let s=0,a=[];for(let u of[1,2,4])Ue(()=>{var g,y;let c=u*13,d=(g=e.find(A=>A.shape[1]===c**2&&A.shape[2]===Ru.length))==null?void 0:g.squeeze(),h=(y=e.find(A=>A.shape[1]===c**2&&A.shape[2]r.object.minConfidence&&x!==61){let v=(.5+Math.trunc(A%c))/c,w=(.5+Math.trunc(A/c))/c,S=f[A].map(B=>B*(c/u/t)),[I,E]=[v-A0/u*S[0],w-A0/u*S[1]],[F,$]=[v+A0/u*S[2]-I,w+A0/u*S[3]-E],_=[I,E,F,$];_=_.map(B=>Math.max(0,Math.min(B,1)));let N=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],P={id:s++,score:Math.round(100*b)/100,class:x+1,label:Ru[x].label,box:N.map(B=>Math.trunc(B)),boxRaw:_};a.push(P)}}});e.forEach(u=>Ve(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Ye.nonMaxSuppressionAsync(o,i,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);l=u.dataSync(),Ve(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function l3(e,t){return o30?(o3++,a3):(o3=0,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],s=Ye.resizeBilinear(e,[Ar.inputSize,Ar.inputSize],!1),a=s.div(255),o=a.transpose([0,3,1,2]);a.dispose(),s.dispose();let i;t.object.enabled&&(i=await Ar.predict(o)),o.dispose();let l=await swe(i,Ar.inputSize,r,t);a3=l,n(l)}))}var xr,u3=[],c3=Number.MAX_SAFE_INTEGER;async function d3(e){if(xr)e.debug&&me("cached model:",xr.modelUrl);else{xr=await Et($t(e.modelBasePath,e.object.modelPath));let t=Object.values(xr.modelSignature.inputs);if(xr.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!xr.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!xr||!xr.modelUrl?me("load model failed:",e.object.modelPath):e.debug&&me("load model:",xr.modelUrl)}return xr}async function awe(e,t,n,r){if(!e)return[];let s=[],a=e.arraySync(),o=Zn(e);e.dispose();let i=ta(o,6,1);o.dispose();let u=So([i[1],i[0],i[3],i[2]],1).squeeze(),c=i[4].squeeze(),d=i[5].squeeze();i.forEach(m=>m.dispose());let h=await Ye.nonMaxSuppressionAsync(u,c,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);u.dispose(),c.dispose(),d.dispose();let p=h.dataSync();h.dispose();let f=0;for(let m of p){let g=Math.trunc(100*a[0][m][4])/100,y=a[0][m][5],A=Ru[y].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],w=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];s.push({id:f++,score:g,class:y,label:A,box:w,boxRaw:v})}return s}async function h3(e,t){return c30?(c3++,u3):(c3=0,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],s=Ye.resizeBilinear(e,[xr.inputSize,xr.inputSize]),a=t.object.enabled?xr.execute(s,["tower_0/detections"]):null;s.dispose();let o=await awe(a,xr.inputSize,r,t);u3=o,n(o)}))}function owe(e,t,n){let r=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,h)=>(u[h]=0,d))},s=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=s(t,e.VERTEX_SHADER),o=s(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function Q$(e){e||(e={});let t=0,n=null,r=!1,s=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},h=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=h.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let w=Array.prototype.slice.call(arguments,1),S=d[v];o.push({func:S,args:w})},this.reset=function(){o=[]};let g=function(v,w){if(!(v===i&&w===l)){if(h.width=v,i=v,h.height=w,l=w,!u){let S=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,S,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},y=function(v,w){let S=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,S);let I=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,I);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,w,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:S,texture:E}},A=function(v){return a[v]=a[v]||y(i,l),a[v]},x=function(v=null){var E,F;let w=null,S=null,I=!1;t===0?w=n:w=(E=A(s))==null?void 0:E.texture,t++,r&&!(v&f.INTERMEDIATE)?(S=null,I=t%2==0):(s=(s+1)%2,S=(F=A(s))==null?void 0:F.fbo),m.bindTexture(m.TEXTURE_2D,w),m.bindFramebuffer(m.FRAMEBUFFER,S),m.uniform1f(c.uniform.flipY,I?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(g(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),h;for(let w=0;w{let E=b.shape[0],D=b.shape[1],$=_.segment_util.segOpComputeOptimalWindowSize(D,S),R={windowSize:$,inSize:D,batchSize:E,numSegments:S},N=new Oxe(R,v),M=n.compileAndRun(N,[b,I],w);if(l.push(M),M.shape[1]===S)return M;let B=e9({backend:n,attrs:{start:0,stop:S,step:1,dtype:"float32"}}),q=r9({inputs:{x:B},backend:n,attrs:{reps:[D/$]}});return l.push(B),l.push(q),g(M,v,q,w,S)},y=g(f,"unsortedSegmentSum",a,m,o),A=ve({inputs:{x:y},backend:n,attrs:{shape:h}}),x=A;if(c!=null){l.push(A);let b=_.getUndoAxesPermutation(c);x=Un({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var zxe={kernelName:of,backendName:"webgl",kernelFunc:Pxe},Lxe=[d1e,f1e,Yfe,Qfe,nme,ame,ime,cme,hme,fme,Ame,bme,kme,Tme,Dme,Eme,Ome,Bme,zme,Hme,jme,Kme,Jme,a0e,i0e,p0e,m0e,x0e,w0e,_fe,N0e,P0e,L0e,R0e,U0e,G0e,W0e,K0e,Y0e,ege,nge,sge,ige,pge,mge,uge,Age,vge,kge,Nge,Rge,Mge,zge,Lge,Bge,Vge,Hge,jge,Kge,Zge,e2e,r2e,o2e,l2e,d2e,f2e,A2e,w2e,Rfe,I2e,S0e,N2e,$2e,D2e,Ffe,P2e,W2e,U2e,Z2e,q2e,e1e,r1e,i1e,g1e,I1e,w1e,C1e,$1e,_1e,b1e,F1e,O1e,B1e,H1e,K1e,nye,Lfe,sye,iye,cye,pye,u0e,gye,Aye,bye,kye,Nye,Ofe,Eye,$ye,c0e,J1e,Dye,Wye,Pye,Wfe,Gye,Kye,Jye,tAe,aAe,iAe,cAe,pAe,mAe,AAe,vAe,IAe,NAe,$Ae,DAe,r0e,eye,OAe,zAe,BAe,VAe,HAe,jAe,KAe,ZAe,QAe,nxe,sxe,oxe,uxe,dxe,pxe,mxe,Q1e,Kfe,Axe,vxe,Ixe,Cxe,Rxe,Xfe,Dxe,Mxe,zxe,yye];for(let e of Lxe)ny(e);var tr;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(tr||(tr={}));var ph;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(ph||(ph={}));var a9;function Bxe(e){a9=e.wasm.cwrap(Ll,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Wxe(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=r,h=n.dataIdMap.get(s.dataId).id,p=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let S=n.dataIdMap.get(o.dataId);if(S.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${S.shape.length}.`);f=S.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=ph[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?s.shape[2]:s.shape[1],A=u?a.shape[1]:a.shape[2],x=s.shape[0],b=n.makeOutput([x,y,A],s.dtype),v=n.dataIdMap.get(b.dataId).id,I=new Uint8Array(new Int32Array(s.shape).buffer),w=new Uint8Array(new Int32Array(a.shape).buffer);return a9(h,I,s.shape.length,p,w,a.shape.length,l,u,g,f,m,d||0,v),b}var Vxe={kernelName:Ll,backendName:"wasm",setupFunc:Bxe,kernelFunc:Wxe};function $n(e){let t;function n(s){t=s.wasm.cwrap(e,null,["number","number"])}function r(s){let{backend:a,inputs:{x:o}}=s,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var Uxe=$n(Ac);function Hn(e,t,n){let r;function s(o){r=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,h=i.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=_.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),A=i.dataIdMap.get(m.dataId).id,x=()=>r(d,g,u.shape.length,h,y,c.shape.length,tr[u.dtype],A);if(t&&u.dtype==="float32")return x(),m;let b=_.getBroadcastDims(u.shape,f),v=_.getBroadcastDims(c.shape,f),I=b.every((S,E)=>S===E),w=v.every((S,E)=>S===E);if(I&&w)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:a}}var Hxe=!0,Gxe=Hn(Ma,Hxe),o9;function jxe(e){o9=e.wasm.cwrap(Xi,null,["array","number","number","number"])}function qxe(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let s=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(s).buffer),o=n.dataIdMap.get(r.dataId).id;return o9(a,s.length,tr[r.dtype],o),r}var Kxe={kernelName:Xi,backendName:"wasm",setupFunc:jxe,kernelFunc:qxe};function Xm(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var Xxe={kernelName:hl,backendName:"wasm",kernelFunc:Xm},i9;function Zxe(e){i9=e.wasm.cwrap(zl,null,["number","array","number","number","number","array","number"])}function Iu(e){let{inputs:t,backend:n,attrs:r}=e,[s,a]=Jxe(t.x.shape,r.perm),o=!0;for(let f=0;f=s&&(a===-1||r[a]>r[o])&&(a=o);r[a]=s}return[n,r]}var Qxe={kernelName:zl,backendName:"wasm",kernelFunc:Iu,setupFunc:Zxe};function to(e,t,n){let r=e.shape,s=e.shape.length,a=k.parseAxisParam(t,r),o=a,i=_.getAxesPermutation(o,s),l=null,u=!1;if(i!=null){let c=new Array(s);for(let p=0;p`new shape: ${o}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:o,dtype:r.dtype}}var h5e={kernelName:Jc,backendName:"wasm",kernelFunc:nr},h9;function p5e(e){h9=e.wasm.cwrap(Ji,null,["number","array","number","number","array","number","number","number","number"])}function f5e(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=s.shape.length,u=a.shape.length,c=o?s.shape[l-2]:s.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],h=o?s.shape[l-1]:s.shape[l-2],p=i?a.shape[u-2]:a.shape[u-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=k.sizeFromShape(f),y=k.sizeFromShape(m),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>y?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([h,p]);k.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,h]:[g,h,c],I=i?[y,p,d]:[y,d,p],w=nr({inputs:{x:s},backend:n,attrs:{shape:v}}),S=nr({inputs:{x:a},backend:n,attrs:{shape:I}}),E=n.dataIdMap.get(w.dataId).id,D=n.dataIdMap.get(S.dataId).id,$=o?w.shape[2]:w.shape[1],R=i?S.shape[1]:S.shape[2],N=Math.max(g,y),M=n.makeOutput([N,$,R],w.dtype),B=n.dataIdMap.get(M.dataId).id,q=new Uint8Array(new Int32Array(w.shape).buffer),X=new Uint8Array(new Int32Array(S.shape).buffer);return h9(E,q,w.shape.length,D,X,S.shape.length,o,i,B),n.disposeData(w.dataId),n.disposeData(S.dataId),M.shape=b,M}var m5e={kernelName:Ji,backendName:"wasm",setupFunc:p5e,kernelFunc:f5e};function fh(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:s}=e,[a,o]=Cn.parseSliceParams(t,n,r),i=Cn.isSliceContinous(t.shape,a,o),l=s.readSync(t.dataId),u=s.makeOutput(o,t.dtype),c=k.computeStrides(t.shape),d=s.dataIdMap.get(u.dataId);if(i){let f=Cn.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+k.sizeFromShape(o)):s.typedArrayFromHeap(u).set(l.subarray(f,f+k.sizeFromShape(o))),u}if(t.dtype==="string"){let f=K5(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let h=s.typedArrayFromHeap(u),p=t.shape.length;if(p===2)g5e(l,c[0],h,a,o);else if(p===3)y5e(l,c[0],c[1],h,a,o);else if(p===4)A5e(l,c[0],c[1],c[2],h,a,o);else{let f=K5(l,a,o,t.shape,t.dtype);h.set(f)}return u}function g5e(e,t,n,r,s){let a=0,o=r[0],i=r[1],l=o+s[0];for(let u=o;uy*A),l=_.getReshaped(s.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(s.shape,a,i),d=_.getSliceBeginCoords(o,a.length),h=_.getSliceSize(c,o,a.length),p=nr({inputs:{x:s},backend:n,attrs:{shape:l}}),f=Iu({inputs:{x:p},backend:n,attrs:{perm:u}}),m=nr({inputs:{x:f},backend:n,attrs:{shape:c}}),g=fh({inputs:{x:m},backend:n,attrs:{begin:d,size:h}});return n.disposeData(p.dataId),n.disposeData(f.dataId),n.disposeData(p.dataId),g}var v5e={kernelName:Cc,backendName:"wasm",kernelFunc:b5e};function Zm(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,s=r.makeOutput(t.shape,n),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(s).set(a),s}var w5e={kernelName:Qi,backendName:"wasm",kernelFunc:Zm},k5e=$n(No),p9;function I5e(e){p9=e.wasm.cwrap(Co,null,["number","number","number","number"])}function S5e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i=n.dataIdMap.get(s.dataId).id,l=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(l.dataId).id;return p9(i,a,o,u),l}var T5e={kernelName:Co,backendName:"wasm",setupFunc:I5e,kernelFunc:S5e};function f9(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],s=_.computeOutShape(t.map(p=>p.shape),r),a=t.filter(p=>k.sizeFromShape(p.shape)>0);if(a.length===1)return Xm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(k.sizeFromShape(s)===0)return o;let i=a.map(p=>p.shape);if(_.assertParamsConsistent(i,r),a[0].dtype==="string"){let p=a.map(x=>{let b=k.sizeFromShape(x.shape.slice(r));return nr({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=_.computeOutShape(p.map(x=>x.shape),1);let m=p[0].shape[0]===1,g=MC(f,s,t[0].dtype,m),y=_.computeOutShape(a.map(x=>x.shape),r);o.shape=y;let A=n.dataIdMap.get(o.dataId);return A.stringBytes=_.fromStringArrayToUint8(g),p.forEach(x=>n.disposeData(x.dataId)),o}let l=k.sizeFromShape(a[0].shape.slice(0,r)),u=0,c=a.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return u+=f,f}),d=a.map(p=>n.typedArrayFromHeap(p)),h=n.typedArrayFromHeap(o);for(let p=0;p`cumsum does not support ${s.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([a],l),c=s;u!==null&&(c=Iu({inputs:{x:s},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[d],l);let h=n.makeOutput(c.shape,c.dtype),p=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(h.dataId).id;A9(f,o?1:0,i?1:0,p,m,tr[s.dtype]);let g=h;if(u!==null){let y=_.getUndoAxesPermutation(u);g=Iu({inputs:{x:h},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(h.dataId)}return g}var W5e={kernelName:sl,backendName:"wasm",setupFunc:L5e,kernelFunc:B5e},x9;function V5e(e){x9=e.wasm.cwrap(Rc,null,["number","number","number","array","number","array","array","number","number"])}function U5e(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{blockSize:a,dataFormat:o}=r;k.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=s.shape[0],l=o==="NHWC"?s.shape[1]:s.shape[2],u=o==="NHWC"?s.shape[2]:s.shape[3],c=o==="NHWC"?s.shape[3]:s.shape[1],d=l*a,h=u*a,p=c/(a*a),f=o==="NHWC"?[i,d,h,p]:[i,p,d,h],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(s.dataId).id,A=new Uint8Array(new Int32Array(k.computeStrides(s.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return x9(y,a,o==="NHWC"?1:0,A,s.shape.length-1,x,b,f.length,v),m}var H5e={kernelName:Rc,backendName:"wasm",setupFunc:V5e,kernelFunc:U5e},b9;function G5e(e){b9=e.wasm.cwrap(al,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function j5e(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,h=u==null?[1,1]:u,p=_.computeConv2DInfo(s.shape,a.shape,l,h,c,d,!0),f=p.filterHeight,m=p.filterWidth,g=p.padInfo.top,y=p.padInfo.right,A=p.padInfo.bottom,x=p.padInfo.left,b=p.dilationHeight,v=p.dilationWidth,I=p.strideHeight,w=p.strideWidth,S=p.inChannels,E=p.outChannels,D=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(p.outShape,"float32"),R=r.dataIdMap.get($.dataId).id;return b9(o,s.shape[0],s.shape[1],s.shape[2],i,f,m,g,y,A,x,D,b,v,I,w,S,E,R),$}var q5e={kernelName:al,backendName:"wasm",setupFunc:G5e,kernelFunc:j5e},K5e=!1,X5e=Hn(il,K5e,"bool"),Z5e=$n(Eo);function nb(e){let{inputs:t,attrs:n,backend:r}=e,{input:s}=t,{dim:a}=n,o=s.shape.length,i=s.shape.slice(),l=a;return a<0&&(k.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),nr({inputs:{x:s},backend:r,attrs:{shape:i}})}var Y5e={kernelName:Fc,backendName:"wasm",kernelFunc:nb};function J5e(e){let{attrs:{shape:t,value:n,dtype:r},backend:s}=e,a=s.makeOutput(t,r);return s.typedArrayFromHeap(a).fill(n),a}var Q5e={kernelName:Jp,backendName:"wasm",kernelFunc:J5e},v9;function ebe(e){v9=e.wasm.cwrap(Mc,null,["number","number","number","number","number","number"])}function tbe(e){let{inputs:t,backend:n}=e,{image:r}=t,s=n.makeOutput(r.shape,r.dtype),a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,[i,l,u,c]=r.shape;return v9(a,i,l,u,c,o),s}var nbe={kernelName:Mc,backendName:"wasm",kernelFunc:tbe,setupFunc:ebe},rbe=$n($o),sbe=!1,abe=Hn(ul,sbe),w9;function obe(e){w9=e.wasm.cwrap(cl,null,["number","number","number","number","number","number","number"])}function ibe(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:s}=r,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(k.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return w9(c,d,h,p,f,s,g),m}var lbe={kernelName:cl,backendName:"wasm",setupFunc:obe,kernelFunc:ibe},k9;function ube(e){k9=e.wasm.cwrap(Bl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cbe(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(s.shape,a.shape,l,c,u,h),g=ph[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(s.dataId).id,A=r.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let ne=r.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${x})`);b=ne.id}let v=m.filterHeight,I=m.filterWidth,w=m.padInfo.top,S=m.padInfo.right,E=m.padInfo.bottom,D=m.padInfo.left,$=m.dilationHeight,R=m.dilationWidth,N=m.strideHeight,M=m.strideWidth,B=m.inChannels,q=m.padInfo.type==="SAME"?1:0,X=m.batchSize,J=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),se=r.dataIdMap.get(ae.dataId).id,oe=i==null?0:r.dataIdMap.get(i.dataId).id;return k9(y,X,J,ee,A,v,I,b,w,S,E,D,q,$,R,N,M,B,x,g,oe,f||0,se),ae}var dbe={kernelName:Bl,backendName:"wasm",setupFunc:ube,kernelFunc:cbe},I9;function hbe(e){I9=e.wasm.cwrap(Wl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function pbe(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:h,activation:p,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(s.shape,a.shape,l,c,u,h,!0),g=ph[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(s.dataId).id,A=r.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let ne=r.dataIdMap.get(o.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${x})`);b=ne.id}let v=m.filterHeight,I=m.filterWidth,w=m.padInfo.top,S=m.padInfo.right,E=m.padInfo.bottom,D=m.padInfo.left,$=m.dilationHeight,R=m.dilationWidth,N=m.strideHeight,M=m.strideWidth,B=m.inChannels,q=m.padInfo.type==="SAME"?1:0,X=m.batchSize,J=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),se=r.dataIdMap.get(ae.dataId).id,oe=i==null?0:r.dataIdMap.get(i.dataId).id;return I9(y,X,J,ee,A,v,I,b,w,S,E,D,q,$,R,N,M,B,x,g,oe,f||0,se),ae}var fbe={kernelName:Wl,backendName:"wasm",setupFunc:hbe,kernelFunc:pbe},S9;function mbe(e){S9=e.wasm.cwrap(Pc,null,["number","number","number","number","number","number","array","number"])}function gbe(e){let{backend:t,inputs:n}=e,{params:r,indices:s}=n,[a,o,i,l]=x6.prepareAndValidate(r,s),u=t.makeOutput(a,r.dtype);if(o===0)return u;let c=s.shape,d=c[c.length-1],p=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return S9(p,tr[r.dtype],m,o,d,i,g,y),u}var ybe={kernelName:Pc,backendName:"wasm",setupFunc:mbe,kernelFunc:gbe},T9;function Abe(e){T9=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function xbe(e){let{backend:t,inputs:n,attrs:r}=e,{x:s,indices:a}=n,{axis:o,batchDims:i}=r,l=k.parseAxisParam(o,s.shape)[0],u=_.segment_util.collectGatherOpShapeInfo(s,a,l,i),c=nr({inputs:{x:s},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=k.sizeFromShape(a.shape),h=nr({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(p,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let m=c.shape.length-1,y=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(h.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(c.shape)).buffer),I=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return T9(y,tr[s.dtype],v,m,x,u.batchSize,I,b),t.disposeData(c.dataId),t.disposeData(h.dataId),f.shape=u.outputShape,f}var bbe={kernelName:Oc,backendName:"wasm",setupFunc:Abe,kernelFunc:xbe},vbe=!1,wbe=Hn(dl,vbe,"bool"),kbe=!1,Ibe=Hn(Ro,kbe,"bool"),N9;function Sbe(e){N9=e.wasm.cwrap(pl,null,["number","number","number"])}function Tbe(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,s=r.dataIdMap.get(t.dataId).id,a=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let o=r.dataIdMap.get(a.dataId).id;N9(s,n,o)}return a}var Nbe={kernelName:pl,backendName:"wasm",setupFunc:Sbe,kernelFunc:Tbe},Cbe=!1,Ebe=Hn(fl,Cbe,"bool"),$be=!1,Rbe=Hn(ml,$be,"bool"),_be=$n(_o),Dbe=!1,Fbe=Hn(Vc,Dbe,"bool"),C9;function Mbe(e){C9=e.wasm.cwrap(gl,null,["number, number, number"])}function Obe(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:s,keepDims:a}=r,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t);if(p){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;_.assertAxesAreInnerMostDims("max",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(g),A=t.makeOutput(m,o.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;C9(l,y,x)}if(p&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var Pbe={kernelName:gl,backendName:"wasm",setupFunc:Mbe,kernelFunc:Obe},zbe=!1,Lbe=Hn(Do,zbe),E9;function Bbe(e){E9=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wbe(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=_.computePool2DInfo(s.shape,o,i,1,l,u),d=c.filterHeight,h=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,A=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,I=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let w=r.makeOutput(c.outShape,"float32"),S=r.dataIdMap.get(w.dataId).id;return E9(a,s.shape[0],s.shape[1],s.shape[2],d,h,p,f,m,g,y,A,x,b,v,I,S),w}var Vbe={kernelName:yl,backendName:"wasm",setupFunc:Bbe,kernelFunc:Wbe},$9;function Ube(e){$9=e.wasm.cwrap(Al,null,["number, number, number"])}function Hbe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t),f=d;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=Zm({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(m,"float32");if(k.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;$9(l,y,b)}if(p&&t.disposeData(c.dataId),a){let b=_.expandShapeToKeepDim(x.shape,h);x.shape=b}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var Gbe={kernelName:Al,backendName:"wasm",setupFunc:Ube,kernelFunc:Hbe},R9;function jbe(e){R9=e.wasm.cwrap(xl,null,["number, number, number"])}function qbe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t);if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;_.assertAxesAreInnerMostDims("min",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;R9(l,y,x)}if(p&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var Kbe={kernelName:xl,backendName:"wasm",setupFunc:jbe,kernelFunc:qbe},Xbe=!1,Zbe=Hn(Fo,Xbe),rb;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(rb||(rb={}));var _9;function Ybe(e){_9=e.wasm.cwrap(bl,null,["number","array","number","number","array","array","number","number"])}function Jbe(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),d=r.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return _9(o,u,t.shape.length,tr[t.dtype],h,p,rb[s],l),i}var Qbe={kernelName:bl,backendName:"wasm",kernelFunc:Jbe,setupFunc:Ybe},e3e=!0,t3e=Hn(Mo,e3e),n3e=$n(Hc);function sb(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],s=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:s,pSelectedScores:a,pValidOutputs:o}}var D9;function r3e(e){D9=e.wasm.cwrap(Gc,"number",["number","number","number","number","number"])}function s3e(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o}=r,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=D9(u,c,a,s,o),{pSelectedIndices:h,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=sb(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",h)}var a3e={kernelName:Gc,backendName:"wasm",setupFunc:r3e,kernelFunc:s3e},F9;function o3e(e){F9=e.wasm.cwrap(jc,"number",["number","number","number","number","number","bool"])}function i3e(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=F9(c,d,a,s,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=sb(t,h);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),A=t.makeOutput([],"int32",g);return[y,A]}var l3e={kernelName:jc,backendName:"wasm",setupFunc:o3e,kernelFunc:i3e},M9;function u3e(e){M9=e.wasm.cwrap(qc,"number",["number","number","number","number","number","number"])}function c3e(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,h=M9(c,d,a,s,o,i),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=sb(t,h);t.wasm._free(g);let y=t.makeOutput([f],"int32",p),A=t.makeOutput([f],"float32",m);return[y,A]}var d3e={kernelName:qc,backendName:"wasm",setupFunc:u3e,kernelFunc:c3e},h3e=!1,p3e=Hn(vl,h3e,"bool"),O9;function f3e(e){O9=e.wasm.cwrap(wl,null,["number","number","number","number","number"])}function m3e(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,l=n.makeOutput([...s.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(s.dataId).id;return O9(d,a,o,i,u),l}var g3e={kernelName:wl,backendName:"wasm",setupFunc:f3e,kernelFunc:m3e};function y3e(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var A3e={kernelName:Kc,backendName:"wasm",kernelFunc:y3e};function x3e(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return nb({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{k.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),k.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=nb({inputs:{input:c},backend:n,attrs:{dim:s}});return i.push(d),d}),u=f9({inputs:l,backend:n,attrs:{axis:s}});return i.forEach(c=>n.disposeData(c.dataId)),u}var b3e={kernelName:Xc,backendName:"wasm",kernelFunc:x3e},P9;function v3e(e){P9=e.wasm.cwrap(kl,null,["number","array","number","number","array","array","number","number"])}function w3e(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),d=r.map(f=>f[1]),h=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(d).buffer);return P9(o,u,t.shape.length,tr[t.dtype],h,p,s,l),i}var z9={kernelName:kl,backendName:"wasm",kernelFunc:w3e,setupFunc:v3e},k3e=!1,I3e=Hn(Il,k3e),L9;function S3e(e){L9=e.wasm.cwrap(Sl,null,["number","number","number"])}function T3e(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,i=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return L9(a,o,l),i}var N3e={kernelName:Sl,backendName:"wasm",setupFunc:S3e,kernelFunc:T3e},B9;function C3e(e){B9=e.wasm.cwrap(Zc,null,["number","number","number","number"])}function E3e(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;B9(l,y,tr[A.dtype],x)}if(p&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var $3e={kernelName:Zc,backendName:"wasm",setupFunc:C3e,kernelFunc:E3e},R3e=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=KC(r,s,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},_3e={kernelName:rf,backendName:"wasm",kernelFunc:R3e},D3e=!0,F3e=Hn(ol,D3e),M3e=$n(Tl),O3e=$n(Cl),W9;function P3e(e){W9=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","number","number","number","number"])}function z3e(e){let{backend:t,inputs:n,attrs:r}=e,{images:s}=n,{alignCorners:a,halfPixelCenters:o,size:i}=r,[l,u]=i,[c,d,h,p]=s.shape,f=[c,l,u,p],m=t.dataIdMap.get(s.dataId),g;m.dtype!=="float32"&&(g=Zm({backend:t,inputs:{x:s},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,A=t.makeOutput(f,"float32");if(k.sizeFromShape(s.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return W9(y,c,d,h,p,l,u,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),A}var L3e={kernelName:Nl,backendName:"wasm",setupFunc:P3e,kernelFunc:z3e},V9;function B3e(e){V9=e.wasm.cwrap(El,null,["number","array","number","array","number","number"])}function W3e(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=k.parseAxisParam(a,s.shape);if(s.shape.length===0)return Xm({inputs:{x:s},backend:n});let i=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(s.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(s.shape).buffer);V9(l,c,o.length,d,s.shape.length,u);let h=nr({inputs:{x:i},attrs:{shape:s.shape},backend:n});return n.disposeData(i.dataId),h}var V3e={kernelName:El,backendName:"wasm",kernelFunc:W3e,setupFunc:B3e},U9;function U3e(e){U9=e.wasm.cwrap(pd,null,["number","number","number","number","number","number","number","number","array","number","number"])}function H3e(e){let{inputs:t,backend:n,attrs:r}=e,{image:s}=t,{radians:a,fillValue:o,center:i}=r,l=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(s.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,h,p,f]=s.shape,[m,g]=_.getImageCenter(i,h,p),y=o===0,A=255,x=typeof o=="number"?[o,o,o,y?0:A]:[...o,A],b=new Uint8Array(new Int32Array(x).buffer);return U9(u,d,h,p,f,a,m,g,b,x.length,c),l}var G3e={kernelName:pd,backendName:"wasm",kernelFunc:H3e,setupFunc:U3e},j3e=$n($l),q3e=$n(Oo),H9;function K3e(e){H9=e.wasm.cwrap(Qc,null,["number","number","number","number","number","number","array","number","number"])}function X3e(e){let{backend:t,inputs:n,attrs:r}=e,{indices:s,updates:a}=n,{shape:o}=r,i=t.makeOutput(o,a.dtype);if(k.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:h}=v6.calculateShapes(a,s,o),f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(d).buffer),A=t.dataIdMap.get(i.dataId).id;return H9(f,g,tr[a.dtype],l,u,c,y,h,A),i}var Z3e={kernelName:Qc,backendName:"wasm",setupFunc:K3e,kernelFunc:X3e},G9;function Y3e(e){G9=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function J3e(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(s.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(s.shape,s.dtype),c=n.dataIdMap.get(u.dataId).id,d=r.shape.length,h=s.shape.length,p=d===0||d>1||h===1?1:k.sizeFromShape(s.shape.slice(1));return G9(o,i,l,p,c),u}var Q3e={kernelName:ed,backendName:"wasm",kernelFunc:J3e,setupFunc:Y3e},j9;function eve(e){j9=e.wasm.cwrap(_l,null,["number","number"])}function tve(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(s.dataId).id;return k.sizeFromShape(s.shape)===0||j9(r,a),s}var nve={kernelName:"Sigmoid",backendName:"wasm",setupFunc:eve,kernelFunc:tve},rve=$n(Rl),q9;function sve(e){q9=e.wasm.cwrap(Ml,null,["number","number","number","number"])}function ave(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,s=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[r],l=k.sizeFromShape(n.shape)/i;return k.sizeFromShape(a.shape)===0||q9(s,o,i,l),a}var ove={kernelName:Ml,backendName:"wasm",setupFunc:sve,kernelFunc:ave};function ive(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r,i=k.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let I=1+a.length;I{let h=[...c];h[i]=d;let p=fh({inputs:{x:s},attrs:{begin:u,size:h},backend:r});return u[i]+=d,p})}var cve={kernelName:id,backendName:"wasm",kernelFunc:uve},dve=$n(Dl),hve=$n(af),pve=!0,fve=Hn(Po,pve),K9;function mve(e){K9=e.wasm.cwrap(Bo,null,["number","number","number"])}function gve(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return K9(o,s,l),i}var yve={kernelName:Bo,backendName:"wasm",setupFunc:mve,kernelFunc:gve},X9;function Ave(e){X9=e.wasm.cwrap(ld,null,["number","array","number","array","array","array","array","array","number","number"])}function xve(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{begin:a,end:o,strides:i}=r;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:h}=r,p=_.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=s.shape.length-a.length,m=_.slice_util.maskToAxes(d),g=s.shape.slice();m.forEach($=>{a[$]=0,o[$]=1,g.splice($,0,1)});let y=nr({inputs:{x:s},attrs:{shape:g},backend:t}),{begin:A,end:x,strides:b}=_.slice_util.getNormalizedAxes(y.shape,p,f,a,o,i,l,u,c);a=A,o=x,i=b;let v=_.slice_util.maskToAxes(h);v.forEach($=>{o[$]=a[$]+1,i[$]=1});let I=_.slice_util.computeOutShape(a,o,i),w=I.filter(($,R)=>v.indexOf(R)===-1);if(i.every($=>$===1)){let $=fh({inputs:{x:y},attrs:{begin:a,size:I},backend:t});t.disposeData(y.dataId);let R=nr({inputs:{x:$},attrs:{shape:w},backend:t});return t.disposeData($.dataId),R}let E=t.makeOutput(w,"float32");if(!w.some($=>$===0)){let $=t.dataIdMap.get(y.dataId).id,R=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),N=new Uint8Array(new Int32Array(a).buffer),M=new Uint8Array(new Int32Array(o).buffer),B=new Uint8Array(new Int32Array(i).buffer),q=new Uint8Array(new Int32Array(w).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(w)).buffer),J=t.dataIdMap.get(E.dataId).id;X9($,R,y.shape.length,N,M,B,q,X,w.length,J)}t.disposeData(y.dataId);let D=nr({inputs:{x:E},attrs:{shape:w},backend:t});return t.disposeData(E.dataId),D}var bve={kernelName:ld,backendName:"wasm",setupFunc:Ave,kernelFunc:xve},vve=!0,wve=Hn(zo,vve),Z9;function kve(e){Z9=e.wasm.cwrap(Fl,null,["number, number, number"])}function Ive(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:h,inputWasTransposed:p}=to(o,s,t),f=d;if(p){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),y=k.sizeFromShape(g),A=t.makeOutput(m,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;Z9(l,y,x)}if(p&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(A.shape,h);A.shape=x}return A}var Sve={kernelName:Fl,backendName:"wasm",setupFunc:kve,kernelFunc:Ive},Tve=$n(Ol),Nve=$n(Pl),Y9;function Cve(e){Y9=e.wasm.cwrap(Lo,null,["number","array","number","array","number","number"])}function Eve(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,a=n.dataIdMap.get(s.dataId).id,{reps:o}=r,i=new Array(s.shape.length);for(let h=0;h{let{x:r}=e,{k:s,sorted:a}=n,o=t.dataIdMap.get(r.dataId).id,i=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=s;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),h=t.dataIdMap.get(d.dataId).id;return J9(o,i,r.shape.length,tr[r.dtype],s,a,c,h),[u,d]},Dve={kernelName:ud,backendName:"wasm",setupFunc:Rve,kernelFunc:_ve},Q9;function Fve(e){Q9=e.wasm.cwrap(cd,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Mve(e){let{backend:t,inputs:n,attrs:r}=e,{image:s,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=r,[c,d,h,p]=s.shape,[f,m]=u!=null?u:[d,h],g=[c,f,m,p],y=new Uint8Array(new Int32Array(k.computeStrides(s.shape)).buffer),A=t.makeOutput(g,s.dtype),x=t.dataIdMap.get(A.dataId).id,v=t.dataIdMap.get(s.dataId).id,w=t.dataIdMap.get(a.dataId).id,S=o==="nearest"?1:2,E;switch(i){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return Q9(v,w,a.shape[0]>1,c,f,m,p,h,d,y,s.shape.length-1,S,E,l,x),A}var Ove={kernelName:cd,backendName:"wasm",setupFunc:Fve,kernelFunc:Mve};function Pve(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape[a],i=s.shape.length,l=new Array(i-1),u=0;for(let p=0;p({dataId:p,dtype:f,shape:l}))}var zve={kernelName:dd,backendName:"wasm",kernelFunc:Pve};function Lve(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var Bve={kernelName:hd,backendName:"wasm",kernelFunc:Lve},Wve=[Uxe,Gxe,Kxe,n5e,a5e,l5e,d5e,m5e,v5e,w5e,k5e,T5e,N5e,$5e,D5e,F5e,M5e,z5e,W5e,H5e,q5e,X5e,Z5e,Y5e,Q5e,nbe,rbe,abe,Vxe,lbe,dbe,fbe,ybe,bbe,wbe,Ibe,Xxe,Nbe,Ebe,Rbe,_be,Fbe,Pbe,Lbe,Vbe,Gbe,Kbe,Zbe,Qbe,t3e,n3e,a3e,l3e,d3e,p3e,g3e,A3e,b3e,z9,I3e,N3e,$3e,_3e,F3e,M3e,O3e,h5e,L3e,V3e,G3e,q3e,j3e,Z3e,Q3e,nve,rve,x5e,ove,lve,cve,dve,hve,fve,yve,bve,wve,Sve,Tve,Nve,$ve,Dve,Ove,Qxe,zve,Bve];for(let e of Wve)ny(e);var ab=re();ab.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));ab.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(ab.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var e$=Xs(g_()),Vve='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Uve=Xs(y_()),t$=class extends Lp{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new c1(this,Ba())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r,s){let a=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:s});return}let o=k.sizeFromShape(n),i=o*k.bytesPerElement(r),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:r,refCount:s}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return jve(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,s,a);case"int32":return new Int32Array(r,s,a);case"bool":return new Uint8Array(r,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Hve(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(s=>{WebAssembly.instantiate(s,t).then(a=>{n(a.instance,a.module)})})}),{})}function n$(e,t,n){if(Ym!=null)return Ym;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),gh!=null&&gh[r]!=null?gh[r]:n+r}async function Gve(){let[e,t]=await Promise.all([re().getAsync("WASM_HAS_SIMD_SUPPORT"),re().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let s={};s.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Vve,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?n$(e,t,mh!=null?mh:l):l+i},ob&&(s.instantiateWasm=Hve(n$(e,t,mh!=null?mh:"")));let a=!1;s.onAbort=()=>{if(a||yh)return;yh=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Ym==null?(s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+e$.default.toString()],{type:"text/javascript"}),o=(0,e$.default)(s)):o=(0,Uve.default)(s),o.then(i=>{a=!0,yh=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function jve(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var qve=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Ym=null,mh=null,gh={},yh=!1,ob=!1;function Kve(e,t=!1){if(M6("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),yh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Ym=e,ob=t}function Xve(e,t=!1){if(yh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")mh=e;else{gh=e;let n=qve.filter(r=>gh[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}ob=t}var Zve="3.8.0",Yve=2;Ny("wasm",async()=>{let{wasm:e}=await Gve();return new t$(e)},Yve);var Jve={tfjs:A_,"tfjs-core":x_,"tfjs-data":b_,"tfjs-layers":v_,"tfjs-converter":w_,"tfjs-backend-cpu":k_,"tfjs-backend-webgl":I_,"tfjs-backend-wasm":S_};var rr={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Qve(){let e=rr.gl;!e||(rr.extensions=e.getSupportedExtensions())}function r$(){if(!U2(rr.name)){try{rr.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(rr.width,rr.height):document.createElement("canvas")}catch(e){fe("error: cannot create canvas:",e);return}try{rr.gl=rr.canvas.getContext("webgl2",rr.webGLattr)}catch(e){fe("error: cannot get WebGL2 context:",e);return}try{Nm(2,rr.gl)}catch(e){fe("error: cannot set WebGL2 context:",e);return}try{let e=new Fm(rr.gl);H2(rr.name,()=>new uh(e),rr.priority)}catch(e){fe("error: cannot register WebGL backend:",e);return}try{zi("webgl").forEach(t=>{let n={...t,backendName:rr.name};rp(n)})}catch(e){fe("error: cannot update WebGL backend registration:",e);return}try{kr.set("WEBGL_VERSION",2)}catch(e){fe("error: cannot set WebGL backend flags:",e);return}Qve(),fe("backend registered:",rr.name)}}function s$(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function xh(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Su(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Tu(e,t,n){let r=t.shape[1],s=t.shape[2],a=[[e.startPoint[1]/r,e.startPoint[0]/s,e.endPoint[1]/r,e.endPoint[0]/s]];return Ze.cropAndResize(t,a,[0],n)}function Jm(e,t=1.5){let n=Su(e),r=xh(e),s=[t*r[0]/2,t*r[1]/2],a=[n[0]-s[0],n[1]-s[1]],o=[n[0]+s[0],n[1]+s[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function Qm(e){let t=Su(e),n=xh(e),s=Math.max(...n)/2,a=[Math.round(t[0]-s),Math.round(t[1]-s)],o=[Math.round(t[0]+s),Math.round(t[1]+s)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function ib(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),r=[Math.min(...t),Math.min(...n)],s=[Math.max(...t),Math.max(...n)];return{startPoint:r,endPoint:s,landmarks:e}}var a$=e=>({startPoint:Xe(e,[0,0],[-1,2]),endPoint:Xe(e,[0,2],[-1,2])});var e0=[[1,0,0],[0,1,0],[0,0,1]];function ewe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function lb(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return ewe(n)}function o$(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function no(e,t){let n=0;for(let r=0;r{let c=Ze.resizeBilinear(t,[this.inputSize,this.inputSize]).div(127.5).sub(.5),d=this.model.execute(c),h;if(Array.isArray(d)){let g=d.sort((b,v)=>b.size-v.size),y=rn([g[0],g[2]],2),A=rn([g[1],g[3]],2);h=rn([A,y],1).squeeze(0)}else h=Xn(d);let p=nwe(h,this.anchors,[this.inputSize,this.inputSize]),f=Xe(h,[0,0],[-1,1]),m=Is(f).squeeze().dataSync();return[h,p,m]});this.config=Fn(this.config,n);let o=await Ze.nonMaxSuppressionAsync(s,a,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=o.arraySync();o.dispose();let l=[];for(let u=0;uthis.config.face.detector.minConfidence){let d=Xe(s,[i[u],0],[1,-1]),h=a$(d);d.dispose();let p=this.anchorsData[i[u]],f=Ve(()=>Xe(r,[i[u],d$-1],[1,-1]).squeeze().reshape([d$,-1]));l.push({box:h,landmarks:f,anchor:p,confidence:c})}}return r.dispose(),s.dispose(),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function p$(e){let t=await Nt(Ct(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new h$(t,e);return!t||!t.modelUrl?fe("load model failed:",e.face.detector.modelPath):e.debug&&fe("load model:",t.modelUrl),n}var Ws={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},ub=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],bh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],bi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var rwe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],swe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],awe=[33,133,362,263,1,78,308],H7e=rwe.map(e=>bh[e]),G7e=swe.map(e=>bh[e]),j7e=awe.map(e=>bh[e]);var cb=Ws.leftEyeLower0,db=Ws.rightEyeLower0,Nu={leftBounds:[cb[0],cb[cb.length-1]],rightBounds:[db[0],db[db.length-1]]},n0={count:468,mouth:13,symmetryLine:[13,Ws.midwayBetweenEyes[0]]},f$={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Cu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function r0(e,t,n,r){for(let s=0;s[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=r!==0?t0(r,[0,0]):e0,l=r!==0?o.map(d=>[...u$(d,i),d[2]]):o,u=r!==0?l$(s):e0,c=[...Su({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+no(c,u[0])),Math.round(d[1]+no(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[Nu.leftBounds[0]][2],r=t[Nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,s,a=!1){let o=Qm(Jm(ib([t[r],t[s]]),this.irisEnlarge)),i=xh(o),l=Ze.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return a&&kr.flags.IS_BROWSER&&(l=Ze.flipLeftRight(l)),{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,r,s=!1){let a=[];for(let o=0;o{let u=o;return l===2?u=s:l===4&&(u=a),[i[0],i[1],u]})}async predict(t,n){let r=!1,s;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(s=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||s&&s.boxes&&(!n.face.mesh.enabled||s.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let o of s.boxes)this.storedBoxes.push({startPoint:o.box.startPoint.dataSync(),endPoint:o.box.endPoint.dataSync(),landmarks:o.landmarks.arraySync(),confidence:o.confidence});this.storedBoxes.length>0&&(r=!0)}if(r){if(!s||!s.boxes||s.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let o=0;o{o.box.startPoint.dispose(),o.box.endPoint.dispose(),o.landmarks.dispose()});let a=Ve(()=>this.storedBoxes.map((o,i)=>{let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&kr.flags.IS_BROWSER){let[x,b]=o.landmarks.length>=n0.count?n0.symmetryLine:f$.symmetryLine;u=lb(o.landmarks[x],o.landmarks[b]);let v=Su({startPoint:o.startPoint,endPoint:o.endPoint}),I=[v[0]/t.shape[2],v[1]/t.shape[1]],w=Ze.rotateWithOffset(t,u,0,I);c=t0(-u,v),n.face.mesh.enabled?l=Tu({startPoint:o.startPoint,endPoint:o.endPoint},w,[this.meshSize,this.meshSize]).div(255):l=Tu({startPoint:o.startPoint,endPoint:o.endPoint},w,[this.boxSize,this.boxSize]).div(255)}else{c=e0;let x=t.clone();n.face.mesh.enabled?l=Tu({startPoint:o.startPoint,endPoint:o.endPoint},x,[this.meshSize,this.meshSize]).div(255):l=Tu({startPoint:o.startPoint,endPoint:o.endPoint},x,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:o,faceConfidence:null,boxConfidence:o.confidence,confidence:o.confidence,image:l};let[,d,h]=this.meshDetector.execute(l),p=d.dataSync()[0];if(p=n0.count?n0.symmetryLine:f$.symmetryLine;u=lb(o.landmarks[x],o.landmarks[b]);let v=Su({startPoint:o.startPoint,endPoint:o.endPoint}),I=[v[0]/t.shape[2],v[1]/t.shape[1]],w=Ze.rotateWithOffset(t.toFloat(),u,0,I);c=t0(-u,v),l=Tu({startPoint:o.startPoint,endPoint:o.endPoint},w,[this.meshSize,this.meshSize]).div(255)}let A={mesh:g,box:o,faceConfidence:p,boxConfidence:o.confidence,image:l};return this.storedBoxes[i]={...Qm(o),confidence:o.confidence,faceConfidence:p},A}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(o=>o.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Kt=[null,null,null],pb;async function m$(e,t){let n=await pb.predict(e,t),r=[],s=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/pb.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(Ws))i[c]=Ws[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];r.push({id:s++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,image:a.image,tensor:a.image}),a.coords&&a.coords.dispose()}return r}async function fb(e){return!Kt[0]&&e.face.enabled||!Kt[1]&&e.face.mesh.enabled||!Kt[2]&&e.face.iris.enabled?(Kt=await Promise.all([!Kt[0]&&e.face.enabled?p$(e):null,!Kt[1]&&e.face.mesh.enabled?Nt(Ct(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Kt[2]&&e.face.iris.enabled?Nt(Ct(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Kt[1]||!Kt[1].modelUrl?fe("load model failed:",e.face.mesh.modelPath):e.debug&&fe("load model:",Kt[1].modelUrl)),e.face.iris.enabled&&(!Kt[2]||!Kt[2].modelUrl?fe("load model failed:",e.face.iris.modelPath):e.debug&&fe("load model:",Kt[2].modelUrl))):e.debug&&(Kt[0]&&fe("cached model:",Kt[0].model.modelUrl),Kt[1]&&fe("cached model:",Kt[1].modelUrl),Kt[2]&&fe("cached model:",Kt[2].modelUrl)),pb=new hb(Kt[0],Kt[1],Kt[2]),Kt}var g$=bi,y$=bh;var ys,s0=[],A$=0,mb=Number.MAX_SAFE_INTEGER;async function gb(e){let t=Ct(e.modelBasePath,e.face.description.modelPath);return ys?e.debug&&fe("cached model:",t):(ys=await Nt(t),ys?e.debug&&fe("load model:",t):fe("load model failed:",e.face.description.modelPath)),ys}function yb(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-r)/100}function x$(e,t,n=0){let r={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let s of t)if(s.embedding&&s.name){let a=yb(e,s.embedding);a>n&&a>r.similarity&&(r={...s,similarity:a})}return r}function Ab(e){return Ve(()=>{let n=e.image||e.tensor||e;if(!(n instanceof It))return null;let r=[[.05,.15,.85,.85]];return ys.inputs[0].shape?(n.shape.length===3?Ze.cropAndResize(ta(n,0),r,[0],[ys.inputs[0].shape[2],ys.inputs[0].shape[1]]):Ze.cropAndResize(n,r,[0],[ys.inputs[0].shape[2],ys.inputs[0].shape[1]])).mul(255):null})}async function xb(e,t,n,r){var s,a;return ys?mb0?(mb++,s0[n]):(mb=0,new Promise(async o=>{let i=Ab(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};t.face.description.enabled&&(l=await ys.predict(i)),We(i),l&&(Ve(()=>{let c=l.find(m=>m.shape[1]===1).dataSync(),d=Math.trunc(200*Math.abs(c[0]-.5))/100;d>t.face.description.minConfidence&&(u.gender=c[0]<=.5?"female":"male",u.genderScore=Math.min(.99,d));let h=l.find(m=>m.shape[1]===100).argMax(1).dataSync()[0],p=l.find(m=>m.shape[1]===100).dataSync();u.age=Math.round(p[h-1]>p[h+1]?10*h-100*p[h-1]:10*h+100*p[h+1])/10;let f=l.find(m=>m.shape[1]===1024);u.descriptor=[...f.dataSync()]}),l.forEach(c=>We(c))),s0[n]=u,A$=r,o(u)})):null}var owe=["angry","disgust","fear","happy","sad","surprise","neutral"],As,a0=[],b$=0,bb=Number.MAX_SAFE_INTEGER,vb=[.2989,.587,.114];async function wb(e){return As?e.debug&&fe("cached model:",As.modelUrl):(As=await Nt(Ct(e.modelBasePath,e.face.emotion.modelPath)),!As||!As.modelUrl?fe("load model failed:",e.face.emotion.modelPath):e.debug&&fe("load model:",As.modelUrl)),As}async function kb(e,t,n,r){return As?bb0?(bb++,a0[n]):(bb=0,new Promise(async s=>{let a=Ze.resizeBilinear(e,[As.inputs[0].shape[2],As.inputs[0].shape[1]],!1),[o,i,l]=na(a,3,3);a.dispose();let u=pe(o,vb[0]),c=pe(i,vb[1]),d=pe(l,vb[2]);o.dispose(),i.dispose(),l.dispose();let h=G2([u,c,d]);u.dispose(),c.dispose(),d.dispose();let p=Ve(()=>h.sub(.5).mul(2));h.dispose();let f=[];if(t.face.emotion.enabled){let m=await As.predict(p),g=m.dataSync();We(m);for(let y=0;yt.face.emotion.minConfidence&&f.push({score:Math.min(.99,Math.trunc(100*g[y])/100),emotion:owe[y]});f.sort((y,A)=>A.score-y.score)}p.dispose(),a0[n]=f,b$=r,s(f)})):null}var vh=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],v$=vh.length,wh=vh.reduce((e,t,n)=>(e[t]=n,e),{}),iwe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],lwe=iwe.map(([e,t])=>[wh[e],wh[t]]),w$=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function k$(e){let t=e.reduce(({maxX:n,maxY:r,minX:s,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(r,i),minX:Math.min(s,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function I$(e,[t,n],[r,s]){let a=t/r,o=n/s,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/s,u.box[1]/r,u.box[2]/s,u.box[3]/r],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:h,position:p})=>({score:d,part:h,position:[Math.trunc(p.x*o),Math.trunc(p.y*a)],positionRaw:[p.x/r,p.y/r]}))});return e.map((u,c)=>i(u,c))}var Ib=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(nn?n:e}function S$(e,t,n,r){let s=n-e,a=r-t;return s*s+a*a}function Cb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var o0=1,Eu=16,uwe=50**2;function T$(e,t,n,r,s,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,A,x)=>({y:Nb(Math.round(y.y/Eu),0,A-1),x:Nb(Math.round(y.x/Eu),0,x-1)}),[u,c]=r.shape,d=l(t.position,u,c),h=i(d),f=Cb(t.position,h);for(let y=0;y[wh[h],wh[p]]),o=a.map(([,h])=>h),i=a.map(([h])=>h),l=t.shape[2],u=o.length,c=new Array(l),d=Tb(e.part,Eu,n);c[e.part.id]={score:e.score,part:vh[e.part.id],position:d};for(let h=u-1;h>=0;--h){let p=o[h],f=i[h];c[p]&&!c[f]&&(c[f]=T$(h,c[p],f,t,n,s))}for(let h=0;ht){i=!1;break}if(!i)break}return i}function hwe(e,t){let[n,r,s]=t.shape,a=new Ib(n*r*s,({score:o})=>o);for(let o=0;o{var o;let a=(o=s[r])==null?void 0:o.position;return a?S$(n,t,a.y,a.x)<=uwe:!1})}function pwe(e,t){return t.reduce((r,{position:s,score:a},o)=>(N$(e,s,o)||(r+=a),r),0)/t.length}function C$(e,t,n,r,s,a){let o=[],i=hwe(a,t);for(;o.lengthp.score>a);let d=pwe(o,c),h=k$(c);d>a&&o.push({keypoints:c,box:h,score:Math.round(100*d)/100})}return o}var mr,fwe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function Eb(e,t){let n=Ve(()=>{if(!mr.inputs[0].shape)return[];let i=Ze.resizeBilinear(e,[mr.inputs[0].shape[2],mr.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),u=mr.execute(i,fwe).map(c=>Xn(c,[0]));return u[1]=u[1].sigmoid(),u}),r=await Promise.all(n.map(o=>o.buffer()));for(let o of n)o.dispose();let s=await C$(r[0],r[1],r[2],r[3],t.body.maxDetected,t.body.minConfidence);return mr.inputs[0].shape?I$(s,[e.shape[1],e.shape[2]],[mr.inputs[0].shape[2],mr.inputs[0].shape[1]]):[]}async function $b(e){return mr?e.debug&&fe("cached model:",mr.modelUrl):(mr=await Nt(Ct(e.modelBasePath,e.body.modelPath)),!mr||!mr.modelUrl?fe("load model failed:",e.body.modelPath):e.debug&&fe("load model:",mr.modelUrl)),mr}function i0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function kh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function E$(e,t,n){let r=t.shape[1],s=t.shape[2],a=[[e.startPoint[1]/r,e.startPoint[0]/s,e.endPoint[1]/r,e.endPoint[0]/s]];return Ze.cropAndResize(t,a,[0],n)}function $$(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],s=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:s,confidence:e.confidence}}function l0(e,t=1.5){let n=kh(e),r=i0(e),s=[t*r[0]/2,t*r[1]/2],a=[n[0]-s[0],n[1]-s[1]],o=[n[0]+s[0],n[1]+s[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function u0(e){let t=kh(e),n=i0(e),s=Math.max(...n)/2,a=[t[0]-s,t[1]-s],o=[t[0]+s,t[1]+s];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var R$=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Rb=class{constructor(t){var n;this.model=t,this.anchors=R$.map(r=>[r.x,r.y]),this.anchorsTensor=sa(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=ur([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=ur([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return Ve(()=>{let n=Xe(t,[0,0],[-1,2]),r=Xe(t,[0,2],[-1,2]),s=Me(Je(n,this.inputSizeTensor),this.anchorsTensor),a=Je(r,this.doubleInputSizeTensor),o=pe(Ue(s,a),this.inputSizeTensor),i=pe(Me(s,a),this.inputSizeTensor);return ic([o,i],1)})}normalizeLandmarks(t,n){return Ve(()=>{let r=Me(Je(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return pe(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),s=Xn(r);r.dispose();let a=Ve(()=>Is(Xe(s,[0,0],[-1,1])).squeeze()),o=a.dataSync(),i=Xe(s,[0,1],[-1,4]),l=this.normalizeBoxes(i);i.dispose();let u=await Ze.nonMaxSuppressionAsync(l,o,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),c=u.arraySync();a.dispose(),u.dispose();let d=[];for(let h of c)if(o[h]>=n.hand.minConfidence){let p=Xe(l,[h,0],[1,-1]),f=Xe(s,[h,5],[1,14]),m=Ve(()=>this.normalizeLandmarks(f,h).reshape([-1,2]));f.dispose(),d.push({box:p,palmLandmarks:m,confidence:o[h]})}return s.dispose(),l.dispose(),d}async estimateHandBounds(t,n){let r=t.shape[1],s=t.shape[2],a=Ve(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),o=await this.getBoxes(a,n);a.dispose();let i=[];if(!o||o.length===0)return i;for(let l of o){let u=l.box.dataSync(),c=u.slice(0,2),d=u.slice(2,4),h=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),i.push($$({startPoint:c,endPoint:d,palmLandmarks:h,confidence:l.confidence},[s/this.inputSize,r/this.inputSize]))}return i}};function mwe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function _$(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return mwe(n)}var D$=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ro(e,t){let n=0;for(let r=0;ro[0]),r=t.map(o=>o[1]),s=[Math.min(...n),Math.min(...r)],a=[Math.max(...n),Math.max(...r)];return{startPoint:s,endPoint:a}}getBoxForPalmLandmarks(t,n){let r=t.map(a=>Db([...a,1],n)),s=this.calculateLandmarksBoundingBox(r);return l0(u0(s),ywe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=l0(u0(n),O$);r.palmLandmarks=[];for(let s=0;s[o[0]*(p[0]-this.inputSize/2),o[1]*(p[1]-this.inputSize/2),o[2]*p[2]]),l=_b(r,[0,0]),u=i.map(p=>[...Db(p,l),p[2]]),c=M$(s),d=[...kh(n),1],h=[ro(d,c[0]),ro(d,c[1])];return u.map(p=>[Math.trunc(p[0]+h[0]),Math.trunc(p[1]+h[1]),Math.trunc(p[2])])}async estimateHands(t,n){let r=!1,s;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(s=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,s&&s.length>0&&(s.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...s],this.storedBoxes.length>0&&(r=!0));let a=[];for(let o=0;o=n.hand.minConfidence){let x=le(y,[-1,3]),b=x.arraySync();y.dispose(),x.dispose();let v=this.transformRawCoords(b,p,l,h),I=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...I,confidence:A};let w={landmarks:v,confidence:A,box:{topLeft:I.startPoint,bottomRight:I.endPoint}};a.push(w)}else this.storedBoxes[o]=null;y.dispose()}else{let l=l0(u0(i),O$),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var z$={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},so,ao,L$;async function Mb(e,t){let n=await L$.estimateHands(e,t);if(!n)return[];let r=[];for(let s=0;sn[s].landmarks[c]);let o=n[s].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[s].box?[Math.trunc(Math.max(0,n[s].box.topLeft[0])),Math.trunc(Math.max(0,n[s].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[s].box.bottomRight[0])-Math.max(0,n[s].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[s].box.bottomRight[1])-Math.max(0,n[s].box.topLeft[1]))]:[0,0,0,0],l=[n[s].box.topLeft[0]/(e.shape[2]||0),n[s].box.topLeft[1]/(e.shape[1]||0),(n[s].box.bottomRight[0]-n[s].box.topLeft[0])/(e.shape[2]||0),(n[s].box.bottomRight[1]-n[s].box.topLeft[1])/(e.shape[1]||0)];r.push({id:s,score:Math.round(100*n[s].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a})}return r}async function Ob(e){!so||!ao?([so,ao]=await Promise.all([e.hand.enabled?Nt(Ct(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Nt(Ct(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!so||!so.modelUrl?fe("load model failed:",e.hand.detector.modelPath):e.debug&&fe("load model:",so.modelUrl),!ao||!ao.modelUrl?fe("load model failed:",e.hand.skeleton.modelPath):e.debug&&fe("load model:",ao.modelUrl))):(e.debug&&fe("cached model:",so.modelUrl),e.debug&&fe("cached model:",ao.modelUrl));let t=new Rb(so);return L$=new Fb(t,ao),[so,ao]}var B$=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],W$=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var sr;async function c0(e){return sr?e.debug&&fe("cached model:",sr.modelUrl):(sr=await Nt(Ct(e.modelBasePath,e.body.modelPath)),sr.width=parseInt(sr.signature.inputs["input_1:0"].tensorShape.dim[2].size),sr.height=parseInt(sr.signature.inputs["input_1:0"].tensorShape.dim[1].size),!sr||!sr.modelUrl?fe("load model failed:",e.body.modelPath):e.debug&&fe("load model:",sr.modelUrl)),sr}async function Pb(e,t){var m;if(!sr)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},r=Ze.resizeBilinear(e,[sr.width,sr.height],!1),s=Je(r,[255]);r.dispose();let a=await sr.predict(s),o=((m=a.find(g=>g.size===195||g.size===155))==null?void 0:m.dataSync())||[];a.forEach(g=>g.dispose()),s.dispose();let i=[],l=(o==null?void 0:o.length)===195?B$:W$,u=5;for(let g=0;gg.position[0]),d=i.map(g=>g.position[1]),h=[Math.min(...c),Math.min(...d),Math.max(...c)-Math.min(...c),Math.max(...d)-Math.min(...c)],p=[0,0,0,0],f=i.reduce((g,y)=>y.score>g?y.score:g,0);return[{id:0,score:f,box:h,boxRaw:p,keypoints:i}]}var ar,Vs=[],zb=[0,0,0,0],Lb=[0,0,0,0],d0=0,Bb=Number.MAX_SAFE_INTEGER,bwe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function V$(e){return ar?e.debug&&fe("cached model:",ar.modelUrl):(ar=await Nt(Ct(e.modelBasePath,e.body.modelPath)),!ar||!ar.modelUrl?fe("load model failed:",e.body.modelPath):e.debug&&fe("load model:",ar.modelUrl)),ar}function vwe(e,t){let[n,r]=e.shape;return Ve(()=>{let s=(i,l)=>Ue(i,pe(Je(i,ut(l,"int32")),ut(l,"int32"))),a=le(e,[r*n]),o=_a(a,0).dataSync()[0];if(o>t){let i=j2(a,0),l=s(i,n).dataSync()[0],u=Je(i,ut(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function Wb(e,t){return Bb0?(Bb++,[{id:0,score:d0,box:zb,boxRaw:Lb,keypoints:Vs}]):(Bb=0,new Promise(async n=>{let r=Ve(()=>{if(!ar.inputs[0].shape)return null;let u=Ze.resizeBilinear(e,[ar.inputs[0].shape[2],ar.inputs[0].shape[1]],!1);return pe(u,2).sub(1)}),s;if(t.body.enabled&&(s=await ar.predict(r)),r.dispose(),s){Vs.length=0;let u=s.squeeze();We(s);let c=u.unstack(2);We(u);for(let d=0;dt.body.minConfidence&&Vs.push({score:Math.round(100*f)/100,part:bwe[d],positionRaw:[h/ar.inputs[0].shape[2],p/ar.inputs[0].shape[1]],position:[Math.round(e.shape[2]*h/ar.inputs[0].shape[2]),Math.round(e.shape[1]*p/ar.inputs[0].shape[1])]})}c.forEach(d=>We(d))}d0=Vs.reduce((u,c)=>c.score>u?c.score:u,0);let a=Vs.map(u=>u.position[0]),o=Vs.map(u=>u.position[1]);zb=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=Vs.map(u=>u.positionRaw[0]),l=Vs.map(u=>u.positionRaw[1]);Lb=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:d0,box:zb,boxRaw:Lb,keypoints:Vs}])}))}var xs,Us=[],Vb=[0,0,0,0],Ub=[0,0,0,0],$u=0,Hb=Number.MAX_SAFE_INTEGER,wwe=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function Gb(e){return xs?e.debug&&fe("cached model:",xs.modelUrl):(xs=await Nt(Ct(e.modelBasePath,e.body.modelPath)),!xs||!xs.modelUrl?fe("load model failed:",e.body.modelPath):e.debug&&fe("load model:",xs.modelUrl)),xs}async function jb(e,t){return Hb0?(Hb++,[{id:0,score:$u,box:Vb,boxRaw:Ub,keypoints:Us}]):(Hb=0,new Promise(async n=>{let r=Ve(()=>{if(!xs.inputs[0].shape)return null;let u=Ze.resizeBilinear(e,[xs.inputs[0].shape[2],xs.inputs[0].shape[1]],!1);return Mt(u,"int32")}),s;if(t.body.enabled&&(s=await xs.predict(r)),r.dispose(),s){Us.length=0;let u=s.arraySync();We(s);let c=u[0][0];for(let d=0;dt.body.minConfidence&&Us.push({score:Math.round(100*$u)/100,part:wwe[d],positionRaw:[c[d][1],c[d][0]],position:[Math.round((e.shape[2]||0)*c[d][1]),Math.round((e.shape[1]||0)*c[d][0])]})}$u=Us.reduce((u,c)=>c.score>u?c.score:u,0);let a=Us.map(u=>u.position[0]),o=Us.map(u=>u.position[1]);Vb=[Math.min(...a),Math.min(...o),Math.max(...a)-Math.min(...a),Math.max(...o)-Math.min(...o)];let i=Us.map(u=>u.positionRaw[0]),l=Us.map(u=>u.positionRaw[1]);Ub=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)],n([{id:0,score:$u,box:Vb,boxRaw:Ub,keypoints:Us}])}))}var Ru=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var gr,qb=[],Kb=Number.MAX_SAFE_INTEGER,h0=2.5;async function Xb(e){if(gr)e.debug&&fe("cached model:",gr.modelUrl);else{gr=await Nt(Ct(e.modelBasePath,e.object.modelPath));let t=Object.values(gr.modelSignature.inputs);if(gr.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!gr.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!gr||!gr.modelUrl?fe("load model failed:",e.object.modelPath):e.debug&&fe("load model:",gr.modelUrl)}return gr}async function kwe(e,t,n,r){let s=0,a=[];for(let u of[1,2,4])Ve(()=>{var g,y;let c=u*13,d=(g=e.find(A=>A.shape[1]===c**2&&A.shape[2]===Ru.length))==null?void 0:g.squeeze(),h=(y=e.find(A=>A.shape[1]===c**2&&A.shape[2]r.object.minConfidence&&x!==61){let v=(.5+Math.trunc(A%c))/c,I=(.5+Math.trunc(A/c))/c,w=f[A].map(B=>B*(c/u/t)),[S,E]=[v-h0/u*w[0],I-h0/u*w[1]],[D,$]=[v+h0/u*w[2]-S,I+h0/u*w[3]-E],R=[S,E,D,$];R=R.map(B=>Math.max(0,Math.min(B,1)));let N=[R[0]*n[0],R[1]*n[1],R[2]*n[0],R[3]*n[1]],M={id:s++,score:Math.round(100*b)/100,class:x+1,label:Ru[x].label,box:N.map(B=>Math.trunc(B)),boxRaw:R};a.push(M)}}});e.forEach(u=>We(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Ze.nonMaxSuppressionAsync(o,i,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);l=u.dataSync(),We(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Zb(e,t){return Kb0?(Kb++,qb):(Kb=0,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],s=Ze.resizeBilinear(e,[gr.inputSize,gr.inputSize],!1),a=s.div(255),o=a.transpose([0,3,1,2]);a.dispose(),s.dispose();let i;t.object.enabled&&(i=await gr.predict(o)),o.dispose();let l=await kwe(i,gr.inputSize,r,t);qb=l,n(l)}))}var yr,Yb=[],Jb=Number.MAX_SAFE_INTEGER;async function Qb(e){if(yr)e.debug&&fe("cached model:",yr.modelUrl);else{yr=await Nt(Ct(e.modelBasePath,e.object.modelPath));let t=Object.values(yr.modelSignature.inputs);if(yr.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!yr.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!yr||!yr.modelUrl?fe("load model failed:",e.object.modelPath):e.debug&&fe("load model:",yr.modelUrl)}return yr}async function Iwe(e,t,n,r){if(!e)return[];let s=[],a=e.arraySync(),o=Xn(e);e.dispose();let i=na(o,6,1);o.dispose();let u=So([i[1],i[0],i[3],i[2]],1).squeeze(),c=i[4].squeeze(),d=i[5].squeeze();i.forEach(m=>m.dispose());let h=await Ze.nonMaxSuppressionAsync(u,c,r.object.maxDetected,r.object.iouThreshold,r.object.minConfidence);u.dispose(),c.dispose(),d.dispose();let p=h.dataSync();h.dispose();let f=0;for(let m of p){let g=Math.trunc(100*a[0][m][4])/100,y=a[0][m][5],A=Ru[y].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],I=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];s.push({id:f++,score:g,class:y,label:A,box:I,boxRaw:v})}return s}async function e3(e,t){return Jb0?(Jb++,Yb):(Jb=0,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],s=Ze.resizeBilinear(e,[yr.inputSize,yr.inputSize]),a=t.object.enabled?yr.execute(s,["tower_0/detections"]):null;s.dispose();let o=await Iwe(a,yr.inputSize,r,t);Yb=o,n(o)}))}function Swe(e,t,n){let r=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,h)=>(u[h]=0,d))},s=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=s(t,e.VERTEX_SHADER),o=s(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function U$(e){e||(e={});let t=0,n=null,r=!1,s=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},h=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=h.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let I=Array.prototype.slice.call(arguments,1),w=d[v];o.push({func:w,args:I})},this.reset=function(){o=[]};let g=function(v,I){if(!(v===i&&I===l)){if(h.width=v,i=v,h.height=I,l=I,!u){let w=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,w,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},y=function(v,I){let w=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,w);let S=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,S);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,I,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:w,texture:E}},A=function(v){return a[v]=a[v]||y(i,l),a[v]},x=function(v=null){var E,D;let I=null,w=null,S=!1;t===0?I=n:I=(E=A(s))==null?void 0:E.texture,t++,r&&!(v&f.INTERMEDIATE)?(w=null,S=t%2==0):(s=(s+1)%2,w=(D=A(s))==null?void 0:D.fbo),m.bindTexture(m.TEXTURE_2D,I),m.bindFramebuffer(m.FRAMEBUFFER,w),m.uniform1f(c.uniform.flipY,S?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(g(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),h;for(let I=0;I0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!a)return{tensor:null,canvas:Oe};let o=s,i=a;if(o>x0&&(o=x0,i=o*a/s),i>x0&&(i=x0,o=i*s/a),t.filter.width>0?o=t.filter.width:t.filter.height>0&&(o=s*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/s)),!o||!i)throw new Error("Human: Input cannot determine dimension");(!Oe||(Oe==null?void 0:Oe.width)!==o||(Oe==null?void 0:Oe.height)!==i)&&(Oe=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas"),(Oe==null?void 0:Oe.width)!==o&&(Oe.width=o),(Oe==null?void 0:Oe.height)!==i&&(Oe.height=i));let l=Oe.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(s,0),l.scale(-1,1),l.drawImage(e,0,0,s,a,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,s,a,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),t.filter.enabled){if((!rn||!Bt||Oe.width!==Bt.width||(Oe==null?void 0:Oe.height)!==(Bt==null?void 0:Bt.height))&&(Bt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height):document.createElement("canvas"),(Bt==null?void 0:Bt.width)!==(Oe==null?void 0:Oe.width)&&(Bt.width=Oe==null?void 0:Oe.width),(Bt==null?void 0:Bt.height)!==(Oe==null?void 0:Oe.height)&&(Bt.height=Oe==null?void 0:Oe.height),rn=Sr.flags.IS_BROWSER?new Q$({canvas:Bt}):null),!rn)return{tensor:null,canvas:Oe};rn.reset(),rn.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&rn.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&rn.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&rn.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&rn.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&rn.addFilter("hue",t.filter.hue),t.filter.negative&&rn.addFilter("negative"),t.filter.sepia&&rn.addFilter("sepia"),t.filter.vintage&&rn.addFilter("brownie"),t.filter.sepia&&rn.addFilter("sepia"),t.filter.kodachrome&&rn.addFilter("kodachrome"),t.filter.technicolor&&rn.addFilter("technicolor"),t.filter.polaroid&&rn.addFilter("polaroid"),t.filter.pixelate!==0&&rn.addFilter("pixelate",t.filter.pixelate),rn.apply(Oe)}else Bt=Oe,rn&&(rn=null);let u;if(Bt.data){let c=[Bt.height,Bt.width,3];u=mp(Bt.data,c,"int32")}else if(Bt instanceof ImageData)u=Hr?Hr.fromPixels(Bt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(Bt,0,0),u=Hr?Hr.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(Bt,0,0);let h=d==null?void 0:d.getImageData(0,0,o,i);u=Hr?Hr.fromPixels(h):null}if(u){let c=u.toFloat();n=c.expandDims(0),u.dispose(),c.dispose()}}let r=t.filter.return?Bt:null;return{tensor:n,canvas:r}}var Wr,p3=!1;async function b0(e){return Wr?e.debug&&me("cached model:",Wr.modelUrl):(Wr=await Et($t(e.modelBasePath,e.segmentation.modelPath)),!Wr||!Wr.modelUrl?me("load model failed:",e.segmentation.modelPath):e.debug&&me("load model:",Wr.modelUrl)),Wr}async function f3(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!Wr||!Wr.inputs[0].shape)return null;let r=Ye.resizeBilinear(e.tensor,[Wr.inputs[0].shape[1],Wr.inputs[0].shape[2]],!1),s=r.div(255),a=Wr.predict(s);Ve(r),Ve(s);let o=Zn(a,0),i;if(o.shape[2]===2){let g=o.softmax(),[y,A]=fc(g,2),x=A.expandDims(2),b=x.expandDims(0);Ve(g),Ve(y),Ve(A);let v=Ye.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=v.squeeze(0),Ve(v),Ve(x),Ve(b)}else i=Ye.resizeBilinear(o,[t,n]);if(typeof document=="undefined")return i.dataSync();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,Hr&&await Hr.toPixels(i,l),Ve(i),Ve(o),Ve(a);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");h.width=t,h.height=n;let p=h.getContext("2d");return e.canvas&&await p.drawImage(e.canvas,0,0),p.globalCompositeOperation="darken",p.filter="blur(8px)",await p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none",e.canvas=h,d}async function e_(e,t,n){var a;if(p3)return null;p3=!0,Wr||await b0(n);let r=wi(e,n),s=await f3(r);if(Ve(r.tensor),t&&s){let o=wi(t,n),i=o.canvas;Ve(o.tensor);let l=r.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let h=d.getImageData(0,0,c.width,c.height);for(let p=0;p{let t=(d,h)=>Math.atan2(d[1]-h[1],d[0]-h[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],r=1,s=e.mesh[33][2]>e.mesh[263][2],a=s?e.mesh[473]:e.mesh[468],o=s?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=s?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],r*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},lwe=(e,t)=>{let n=g=>{let y=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=y,g[1]/=y,g[2]/=y,g},r=(g,y)=>{let A=g[0]-y[0],x=g[1]-y[1],b=g[2]-y[2];return[A,x,b]},s=(g,y)=>{let A=g[1]*y[2]-g[2]*y[1],x=g[2]*y[0]-g[0]*y[2],b=g[0]*y[1]-g[1]*y[0];return[A,x,b]},a=g=>{let[y,A,x,b,v,w,S,I,E]=g,F,$,_;return b<1?b>-1?(_=Math.asin(b),$=Math.atan2(-S,y),F=Math.atan2(-w,v)):(_=-Math.PI/2,$=-Math.atan2(I,E),F=0):(_=Math.PI/2,$=Math.atan2(I,E),F=0),{pitch:2*-F,yaw:2*-$,roll:2*-_}},o=g=>{let y=(x,b,v,w)=>Math.atan2(w-b,v-x);return{pitch:y(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:y(g[33][0],g[33][2],g[263][0],g[263][2]),roll:y(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),c=n(r(u[1],u[0])),d=n(r(u[3],u[2])),h=n(s(d,c));d=s(c,h);let p=[d[0],d[1],d[2],c[0],c[1],c[2],h[0],h[1],h[2]],f=a(p),m=i.length===478?iwe(e):{bearing:0,strength:0};return{angle:f,matrix:p,gaze:m}},m3=async(e,t)=>{var c,d,h,p,f,m;let n,r,s,a,o,i,l=[];e.state="run:face",n=at();let u=await S$(t,e.config);if(e.performance.face=Math.trunc(at()-n),!t.shape||t.shape.length!==4)return[];if(!u)return[];for(let g=0;g{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),s=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&r&&s&&r.position.yl.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},r_=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},s_=e=>{if(!e)return[];let t=[];for(let n=0;n.06||d>.06)&&(u=!1),h>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||p<.01||f>.022||p>.022)&&(u=!1),(f<.01||p<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||p>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},a_=e=>{if(!e)return[];let t=[];for(let n=0;n0){let s=r.reduce((o,i)=>o.position[2]o.position[1]dwe,body:()=>l_,canvas:()=>cwe,face:()=>i_,gesture:()=>o_,hand:()=>u_,object:()=>c_,options:()=>oo,person:()=>uwe});var oo={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},v0=e=>Math.round(e*180/Math.PI);function g3(e,t,n,r=0,s){e.fillStyle=s.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:s.color,e.beginPath(),e.arc(t,n,s.pointSize,0,2*Math.PI),e.fill()}function Th(e,t,n,r,s,a){if(e.beginPath(),a.useCurves){let o=(t+t+r)/2,i=(n+n+s)/2;e.ellipse(o,i,r/2,s/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+r-a.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+a.roundRect),e.lineTo(t+r,n+s-a.roundRect),e.quadraticCurveTo(t+r,n+s,t+r-a.roundRect,n+s),e.lineTo(t+a.roundRect,n+s),e.quadraticCurveTo(t,n+s,t,n+s-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function y3(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t){let s=r[2]||0;e.strokeStyle=n.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:n.color,e.lineTo(r[0],Math.round(r[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Nh(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){y3(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText(c,8,2+a*r.lineHeight)),s.fillStyle=r.labelColor,s.fillText(c,6,0+a*r.lineHeight),a+=1}}}async function i_(e,t,n){var a,o,i,l;let r=lr(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s)for(let u of t){s.font=r.font,s.strokeStyle=r.color,s.fillStyle=r.color,r.drawBoxes&&Th(s,u.box[0],u.box[1],u.box[2],u.box[3],r);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${v0(u.rotation.angle.roll)}\xB0 yaw:${v0(u.rotation.angle.yaw)}\xB0 pitch:${v0(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${v0(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),s.fillStyle=r.color;for(let d=c.length-1;d>=0;d--){let h=Math.max(u.box[0],0),p=d*r.lineHeight+u.box[1];r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText(c[d],h+5,p+16)),s.fillStyle=r.labelColor,s.fillText(c[d],h+4,p+15)}if(s.lineWidth=1,u.mesh&&u.mesh.length>0){if(r.drawPoints)for(let d of u.mesh)g3(s,d[0],d[1],d[2],r);if(r.drawPolygons){s.lineWidth=1;for(let d=0;du.mesh[p]);y3(s,h,r)}if(u.annotations&&u.annotations.leftEyeIris){s.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,s.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;s.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,h,0,0,2*Math.PI),s.stroke(),r.fillPolygons&&(s.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,s.fill())}if(u.annotations&&u.annotations.rightEyeIris){s.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,s.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;s.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,h,0,0,2*Math.PI),s.stroke(),r.fillPolygons&&(s.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,s.fill())}if(r.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){s.strokeStyle="pink",s.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];s.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),s.lineTo(d[0],d[1]);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];s.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),s.lineTo(h[0],h[1]),s.stroke()}}}}}async function l_(e,t,n){var a;let r=lr(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round";for(let o=0;ou.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),Nh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&y3(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),Nh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),Nh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),Nh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),Nh(s,l,r)}}}}async function u_(e,t,n){let r=lr(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round",s.font=r.font;for(let a of t){if(r.drawBoxes&&(s.strokeStyle=r.color,s.fillStyle=r.color,Th(s,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText("hand",a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),s.fillStyle=r.labelColor,s.fillText("hand",a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])),s.stroke()),r.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)s.fillStyle=r.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:r.color,g3(s,o[0],o[1],0,r);if(r.drawLabels){let o=(i,l)=>{s.fillStyle=r.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:r.color,s.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};s.font=r.font,o(a.annotations.indexFinger,"index"),o(a.annotations.middleFinger,"middle"),o(a.annotations.ringFinger,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palmBase,"palm")}if(r.drawPolygons){let o=i=>{if(!!i)for(let l=0;l0?l-1:0][0],i[l>0?l-1:0][1]),s.lineTo(i[l][0],i[l][1]),s.stroke()};s.lineWidth=r.lineWidth,o(a.annotations.indexFinger),o(a.annotations.middleFinger),o(a.annotations.ringFinger),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function c_(e,t,n){let r=lr(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round",s.font=r.font;for(let a of t)if(r.drawBoxes){if(s.strokeStyle=r.color,s.fillStyle=r.color,Th(s,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText(o,a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),s.fillStyle=r.labelColor,s.fillText(o,a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])}s.stroke()}}}async function uwe(e,t,n){let r=lr(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round",s.font=r.font;for(let a=0;aP.box[0]&&S.box[0]P.box[1]&&S.box[1]+S.box[3]I.body.box[0]&&P.box[0]+P.box[2]I.body.box[1]&&P.box[1]+P.box[3]I.body.box[0]&&P.box[1]+P.box[3]>I.body.box[1]&&P.box[1]+P.box[3]{P&&P.length===4&&(E.push(P[0],P[0]+P[2]),F.push(P[1],P[1]+P[3]))};$((y=I.face)==null?void 0:y.box),$((A=I.body)==null?void 0:A.box),$((b=(x=I.hands)==null?void 0:x.left)==null?void 0:b.box),$((w=(v=I.hands)==null?void 0:v.right)==null?void 0:w.box);let _=Math.min(...E),N=Math.min(...F);I.box=[_,N,Math.max(...E)-_,Math.max(...F)-N],s&&s.length===4&&(I.boxRaw=[I.box[0]/s[2],I.box[1]/s[1],I.box[2]/s[2],I.box[3]/s[1]]),o.push(I)}return o}var Be={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function h_(e){var r,s,a,o,i,l,u,c,d,h,p,f,m,g,y,A,x,b,v,w,S;let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t):1;if(Be.canvas=e.canvas,!Be.body||e.body.length!==Be.body.length)Be.body=JSON.parse(JSON.stringify(e.body));else for(let I=0;I((n-1)*Be.body[I].box[N]+_)/n),F=e.body[I].boxRaw.map((_,N)=>((n-1)*Be.body[I].boxRaw[N]+_)/n),$=e.body[I].keypoints.map((_,N)=>({score:_.score,part:_.part,position:[Be.body[I].keypoints[N]?((n-1)*Be.body[I].keypoints[N].position[0]+_.position[0])/n:_.position[0],Be.body[I].keypoints[N]?((n-1)*Be.body[I].keypoints[N].position[1]+_.position[1])/n:_.position[1]],positionRaw:[Be.body[I].keypoints[N]?((n-1)*Be.body[I].keypoints[N].positionRaw[0]+_.positionRaw[0])/n:_.position[0],Be.body[I].keypoints[N]?((n-1)*Be.body[I].keypoints[N].positionRaw[1]+_.positionRaw[1])/n:_.position[1]]}));Be.body[I]={...e.body[I],box:E,boxRaw:F,keypoints:$}}if(!Be.hand||e.hand.length!==Be.hand.length)Be.hand=JSON.parse(JSON.stringify(e.hand));else for(let I=0;I((n-1)*Be.hand[I].box[B]+P)/n),F=e.hand[I].boxRaw.map((P,B)=>((n-1)*Be.hand[I].boxRaw[B]+P)/n),$=e.hand[I].keypoints.map((P,B)=>P.map((j,X)=>((n-1)*Be.hand[I].keypoints[B][X]+j)/n)),_=Object.keys(e.hand[I].annotations),N={};for(let P of _)N[P]=e.hand[I].annotations[P].map((B,j)=>B.map((X,Y)=>((n-1)*Be.hand[I].annotations[P][j][Y]+X)/n));Be.hand[I]={...e.hand[I],box:E,boxRaw:F,keypoints:$,annotations:N}}if(!Be.face||e.face.length!==Be.face.length)Be.face=JSON.parse(JSON.stringify(e.face));else for(let I=0;I((n-1)*Be.face[I].box[N]+_)/n),F=e.face[I].boxRaw.map((_,N)=>((n-1)*Be.face[I].boxRaw[N]+_)/n),$={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};$.matrix=(r=e.face[I].rotation)==null?void 0:r.matrix,$.angle={roll:((n-1)*(((a=(s=Be.face[I].rotation)==null?void 0:s.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[I].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Be.face[I].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[I].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((p=(h=Be.face[I].rotation)==null?void 0:h.angle)==null?void 0:p.pitch)||0)+(((m=(f=e.face[I].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},$.gaze={bearing:((n-1)*(((y=(g=Be.face[I].rotation)==null?void 0:g.gaze)==null?void 0:y.bearing)||0)+(((x=(A=e.face[I].rotation)==null?void 0:A.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Be.face[I].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((S=(w=e.face[I].rotation)==null?void 0:w.gaze)==null?void 0:S.strength)||0))/n},Be.face[I]={...e.face[I],rotation:$,box:E,boxRaw:F}}if(!Be.object||e.object.length!==Be.object.length)Be.object=JSON.parse(JSON.stringify(e.object));else for(let I=0;I((n-1)*Be.object[I].box[_]+$)/n),F=e.object[I].boxRaw.map(($,_)=>((n-1)*Be.object[I].boxRaw[_]+$)/n);Be.object[I]={...e.object[I],box:E,boxRaw:F}}if(e.persons){let I=e.persons;if(!Be.persons||I.length!==Be.persons.length)Be.persons=JSON.parse(JSON.stringify(I));else for(let E=0;E((n-1)*Be.persons[E].box[$]+F)/n)}return e.gesture&&(Be.gesture=e.gesture),e.performance&&(Be.performance=e.performance),Be}var w0=` +`),d.brightness=function(v){let I=(v||0)+1;d.colorMatrix([I,0,0,0,0,0,I,0,0,0,0,0,I,0,0,0,0,0,1,0])},d.saturation=function(v){let I=(v||0)*2/3+1,w=(I-1)*-.5;d.colorMatrix([I,w,w,0,0,w,I,w,0,0,w,w,I,0,0,0,0,0,1,0])},d.desaturate=function(){d.saturation(-1)},d.contrast=function(v){let I=(v||0)+1,w=-128*(I-1);d.colorMatrix([I,0,0,0,w,0,I,0,0,w,0,0,I,0,w,0,0,0,1,0])},d.negative=function(){d.contrast(-2)},d.hue=function(v){v=(v||0)/180*Math.PI;let I=Math.cos(v),w=Math.sin(v),S=.213,E=.715,D=.072;d.colorMatrix([S+I*(1-S)+w*-S,E+I*-E+w*-E,D+I*-D+w*(1-D),0,0,S+I*-S+w*.143,E+I*(1-E)+w*.14,D+I*-D+w*-.283,0,0,S+I*-S+w*-(1-S),E+I*-E+w*E,D+I*(1-D)+w*D,0,0,0,0,0,1,0])},d.desaturateLuminance=function(){d.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},d.sepia=function(){d.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},d.brownie=function(){d.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},d.vintagePinhole=function(){d.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},d.kodachrome=function(){d.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},d.technicolor=function(){d.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},d.polaroid=function(){d.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},d.shiftToBGR=function(){d.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},d.convolution=function(v){let I=new Float32Array(v),w=1/i,S=1/l,E=b(d.convolution.SHADER);m.uniform1fv(E.uniform.m,I),m.uniform2f(E.uniform.px,w,S),x()},d.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(` +`),d.detectEdges=function(){d.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},d.sobelX=function(){d.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},d.sobelY=function(){d.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},d.sharpen=function(v){let I=v||1;d.convolution.call(this,[0,-1*I,0,-1*I,1+4*I,-1*I,0,-1*I,0])},d.emboss=function(v){let I=v||1;d.convolution.call(this,[-2*I,-1*I,0,-1*I,1,1*I,0,1*I,2*I])},d.blur=function(v){let I=v/7/i,w=v/7/l,S=b(d.blur.SHADER);m.uniform2f(S.uniform.px,0,w),x(f.INTERMEDIATE),m.uniform2f(S.uniform.px,I,0),x()},d.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(` +`),d.pixelate=function(v){let I=v/i,w=v/l,S=b(d.pixelate.SHADER);m.uniform2f(S.uniform.size,I,w),x()},d.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(` +`)}var p0=2048,Oe,Lt,tn;function vi(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof It)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof It)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Qs(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!a)return{tensor:null,canvas:Oe};let o=s,i=a;if(o>p0&&(o=p0,i=o*a/s),i>p0&&(i=p0,o=i*s/a),t.filter.width>0?o=t.filter.width:t.filter.height>0&&(o=s*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/s)),!o||!i)throw new Error("Human: Input cannot determine dimension");(!Oe||(Oe==null?void 0:Oe.width)!==o||(Oe==null?void 0:Oe.height)!==i)&&(Oe=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas"),(Oe==null?void 0:Oe.width)!==o&&(Oe.width=o),(Oe==null?void 0:Oe.height)!==i&&(Oe.height=i));let l=Oe.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(s,0),l.scale(-1,1),l.drawImage(e,0,0,s,a,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,s,a,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),t.filter.enabled){if((!tn||!Lt||Oe.width!==Lt.width||(Oe==null?void 0:Oe.height)!==(Lt==null?void 0:Lt.height))&&(Lt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height):document.createElement("canvas"),(Lt==null?void 0:Lt.width)!==(Oe==null?void 0:Oe.width)&&(Lt.width=Oe==null?void 0:Oe.width),(Lt==null?void 0:Lt.height)!==(Oe==null?void 0:Oe.height)&&(Lt.height=Oe==null?void 0:Oe.height),tn=kr.flags.IS_BROWSER?new U$({canvas:Lt}):null),!tn)return{tensor:null,canvas:Oe};tn.reset(),tn.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&tn.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&tn.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&tn.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&tn.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&tn.addFilter("hue",t.filter.hue),t.filter.negative&&tn.addFilter("negative"),t.filter.sepia&&tn.addFilter("sepia"),t.filter.vintage&&tn.addFilter("brownie"),t.filter.sepia&&tn.addFilter("sepia"),t.filter.kodachrome&&tn.addFilter("kodachrome"),t.filter.technicolor&&tn.addFilter("technicolor"),t.filter.polaroid&&tn.addFilter("polaroid"),t.filter.pixelate!==0&&tn.addFilter("pixelate",t.filter.pixelate),tn.apply(Oe)}else Lt=Oe,tn&&(tn=null);let u;if(Lt.data){let c=[Lt.height,Lt.width,3];u=fp(Lt.data,c,"int32")}else if(Lt instanceof ImageData)u=Br?Br.fromPixels(Lt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(Lt,0,0),u=Br?Br.fromPixels(c):null}else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(o,i):document.createElement("canvas");c.width=o,c.height=i;let d=c.getContext("2d");d==null||d.drawImage(Lt,0,0);let h=d==null?void 0:d.getImageData(0,0,o,i);u=Br?Br.fromPixels(h):null}if(u){let c=u.toFloat();n=c.expandDims(0),u.dispose(),c.dispose()}}let r=t.filter.return?Lt:null;return{tensor:n,canvas:r}}var Pr,t3=!1;async function f0(e){return Pr?e.debug&&fe("cached model:",Pr.modelUrl):(Pr=await Nt(Ct(e.modelBasePath,e.segmentation.modelPath)),!Pr||!Pr.modelUrl?fe("load model failed:",e.segmentation.modelPath):e.debug&&fe("load model:",Pr.modelUrl)),Pr}async function n3(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!Pr||!Pr.inputs[0].shape)return null;let r=Ze.resizeBilinear(e.tensor,[Pr.inputs[0].shape[1],Pr.inputs[0].shape[2]],!1),s=r.div(255),a=Pr.predict(s);We(r),We(s);let o=Xn(a,0),i;if(o.shape[2]===2){let g=o.softmax(),[y,A]=pc(g,2),x=A.expandDims(2),b=x.expandDims(0);We(g),We(y),We(A);let v=Ze.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=v.squeeze(0),We(v),We(x),We(b)}else i=Ze.resizeBilinear(o,[t,n]);if(typeof document=="undefined")return i.dataSync();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,Br&&await Br.toPixels(i,l),We(i),We(o),We(a);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");h.width=t,h.height=n;let p=h.getContext("2d");return e.canvas&&await p.drawImage(e.canvas,0,0),p.globalCompositeOperation="darken",p.filter="blur(8px)",await p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none",e.canvas=h,d}async function H$(e,t,n){var a;if(t3)return null;t3=!0,Pr||await f0(n);let r=vi(e,n),s=await n3(r);if(We(r.tensor),t&&s){let o=vi(t,n),i=o.canvas;We(o.tensor);let l=r.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let h=d.getImageData(0,0,c.width,c.height);for(let p=0;p{let t=(d,h)=>Math.atan2(d[1]-h[1],d[0]-h[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],r=1,s=e.mesh[33][2]>e.mesh[263][2],a=s?e.mesh[473]:e.mesh[468],o=s?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=s?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],r*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Nwe=(e,t)=>{let n=g=>{let y=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=y,g[1]/=y,g[2]/=y,g},r=(g,y)=>{let A=g[0]-y[0],x=g[1]-y[1],b=g[2]-y[2];return[A,x,b]},s=(g,y)=>{let A=g[1]*y[2]-g[2]*y[1],x=g[2]*y[0]-g[0]*y[2],b=g[0]*y[1]-g[1]*y[0];return[A,x,b]},a=g=>{let[y,A,x,b,v,I,w,S,E]=g,D,$,R;return b<1?b>-1?(R=Math.asin(b),$=Math.atan2(-w,y),D=Math.atan2(-I,v)):(R=-Math.PI/2,$=-Math.atan2(S,E),D=0):(R=Math.PI/2,$=Math.atan2(S,E),D=0),{pitch:2*-D,yaw:2*-$,roll:2*-R}},o=g=>{let y=(x,b,v,I)=>Math.atan2(I-b,v-x);return{pitch:y(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:y(g[33][0],g[33][2],g[263][0],g[263][2]),roll:y(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),c=n(r(u[1],u[0])),d=n(r(u[3],u[2])),h=n(s(d,c));d=s(c,h);let p=[d[0],d[1],d[2],c[0],c[1],c[2],h[0],h[1],h[2]],f=a(p),m=i.length===478?Twe(e):{bearing:0,strength:0};return{angle:f,matrix:p,gaze:m}},r3=async(e,t)=>{var c,d,h,p,f,m;let n,r,s,a,o,i,l=[];e.state="run:face",n=nt();let u=await m$(t,e.config);if(e.performance.face=Math.trunc(nt()-n),!t.shape||t.shape.length!==4)return[];if(!u)return[];for(let g=0;g{if(!e)return[];let t=[];for(let n=0;nl.part==="leftWrist"),s=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&r&&s&&r.position.yl.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},q$=e=>{if(!e)return[];let t=[];for(let n=0;n0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${r<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},K$=e=>{if(!e)return[];let t=[];for(let n=0;n.06||d>.06)&&(u=!1),h>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let p=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||p<.01||f>.022||p>.022)&&(u=!1),(f<.01||p<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||p>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},X$=e=>{if(!e)return[];let t=[];for(let n=0;n0){let s=r.reduce((o,i)=>o.position[2]o.position[1]$we,body:()=>J$,canvas:()=>Ewe,face:()=>Y$,gesture:()=>Z$,hand:()=>Q$,object:()=>eR,options:()=>oo,person:()=>Cwe});var oo={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},m0=e=>Math.round(e*180/Math.PI);function s3(e,t,n,r=0,s){e.fillStyle=s.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:s.color,e.beginPath(),e.arc(t,n,s.pointSize,0,2*Math.PI),e.fill()}function Ih(e,t,n,r,s,a){if(e.beginPath(),a.useCurves){let o=(t+t+r)/2,i=(n+n+s)/2;e.ellipse(o,i,r/2,s/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+r-a.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+a.roundRect),e.lineTo(t+r,n+s-a.roundRect),e.quadraticCurveTo(t+r,n+s,t+r-a.roundRect,n+s),e.lineTo(t+a.roundRect,n+s),e.quadraticCurveTo(t,n+s,t,n+s-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function a3(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let r of t){let s=r[2]||0;e.strokeStyle=n.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:n.color,e.lineTo(r[0],Math.round(r[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Sh(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){a3(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let r=0;r1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText(c,8,2+a*r.lineHeight)),s.fillStyle=r.labelColor,s.fillText(c,6,0+a*r.lineHeight),a+=1}}}async function Y$(e,t,n){var a,o,i,l;let r=Fn(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s)for(let u of t){s.font=r.font,s.strokeStyle=r.color,s.fillStyle=r.color,r.drawBoxes&&Ih(s,u.box[0],u.box[1],u.box[2],u.box[3],r);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${m0(u.rotation.angle.roll)}\xB0 yaw:${m0(u.rotation.angle.yaw)}\xB0 pitch:${m0(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${m0(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),s.fillStyle=r.color;for(let d=c.length-1;d>=0;d--){let h=Math.max(u.box[0],0),p=d*r.lineHeight+u.box[1];r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText(c[d],h+5,p+16)),s.fillStyle=r.labelColor,s.fillText(c[d],h+4,p+15)}if(s.lineWidth=1,u.mesh&&u.mesh.length>0){if(r.drawPoints)for(let d of u.mesh)s3(s,d[0],d[1],d[2],r);if(r.drawPolygons){s.lineWidth=1;for(let d=0;du.mesh[p]);a3(s,h,r)}if(u.annotations&&u.annotations.leftEyeIris){s.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,s.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,h=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;s.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,h,0,0,2*Math.PI),s.stroke(),r.fillPolygons&&(s.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,s.fill())}if(u.annotations&&u.annotations.rightEyeIris){s.strokeStyle=r.useDepth?"rgba(255, 200, 255, 0.3)":r.color,s.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,h=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;s.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,h,0,0,2*Math.PI),s.stroke(),r.fillPolygons&&(s.fillStyle=r.useDepth?"rgba(255, 255, 200, 0.3)":r.color,s.fill())}if(r.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){s.strokeStyle="pink",s.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];s.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),s.lineTo(d[0],d[1]);let h=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];s.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),s.lineTo(h[0],h[1]),s.stroke()}}}}}async function J$(e,t,n){var a;let r=Fn(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round";for(let o=0;ou.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),Sh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&a3(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),Sh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),Sh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),Sh(s,l,r),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),Sh(s,l,r)}}}}async function Q$(e,t,n){let r=Fn(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round",s.font=r.font;for(let a of t){if(r.drawBoxes&&(s.strokeStyle=r.color,s.fillStyle=r.color,Ih(s,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels&&(r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText("hand",a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),s.fillStyle=r.labelColor,s.fillText("hand",a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])),s.stroke()),r.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)s.fillStyle=r.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:r.color,s3(s,o[0],o[1],0,r);if(r.drawLabels){let o=(i,l)=>{s.fillStyle=r.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:r.color,s.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};s.font=r.font,o(a.annotations.indexFinger,"index"),o(a.annotations.middleFinger,"middle"),o(a.annotations.ringFinger,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palmBase,"palm")}if(r.drawPolygons){let o=i=>{if(!!i)for(let l=0;l0?l-1:0][0],i[l>0?l-1:0][1]),s.lineTo(i[l][0],i[l][1]),s.stroke()};s.lineWidth=r.lineWidth,o(a.annotations.indexFinger),o(a.annotations.middleFinger),o(a.annotations.ringFinger),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function eR(e,t,n){let r=Fn(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round",s.font=r.font;for(let a of t)if(r.drawBoxes){if(s.strokeStyle=r.color,s.fillStyle=r.color,Ih(s,a.box[0],a.box[1],a.box[2],a.box[3],r),r.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;r.shadowColor&&r.shadowColor!==""&&(s.fillStyle=r.shadowColor,s.fillText(o,a.box[0]+3,1+a.box[1]+r.lineHeight,a.box[2])),s.fillStyle=r.labelColor,s.fillText(o,a.box[0]+2,0+a.box[1]+r.lineHeight,a.box[2])}s.stroke()}}}async function Cwe(e,t,n){let r=Fn(oo,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let s=e.getContext("2d");if(!!s){s.lineJoin="round",s.font=r.font;for(let a=0;aM.box[0]&&w.box[0]M.box[1]&&w.box[1]+w.box[3]S.body.box[0]&&M.box[0]+M.box[2]S.body.box[1]&&M.box[1]+M.box[3]S.body.box[0]&&M.box[1]+M.box[3]>S.body.box[1]&&M.box[1]+M.box[3]{M&&M.length===4&&(E.push(M[0],M[0]+M[2]),D.push(M[1],M[1]+M[3]))};$((y=S.face)==null?void 0:y.box),$((A=S.body)==null?void 0:A.box),$((b=(x=S.hands)==null?void 0:x.left)==null?void 0:b.box),$((I=(v=S.hands)==null?void 0:v.right)==null?void 0:I.box);let R=Math.min(...E),N=Math.min(...D);S.box=[R,N,Math.max(...E)-R,Math.max(...D)-N],s&&s.length===4&&(S.boxRaw=[S.box[0]/s[2],S.box[1]/s[1],S.box[2]/s[2],S.box[3]/s[1]]),o.push(S)}return o}var Le={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function nR(e){var r,s,a,o,i,l,u,c,d,h,p,f,m,g,y,A,x,b,v,I,w;let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t):1;if(Le.canvas=e.canvas,!Le.body||e.body.length!==Le.body.length)Le.body=JSON.parse(JSON.stringify(e.body));else for(let S=0;S((n-1)*Le.body[S].box[N]+R)/n),D=e.body[S].boxRaw.map((R,N)=>((n-1)*Le.body[S].boxRaw[N]+R)/n),$=e.body[S].keypoints.map((R,N)=>({score:R.score,part:R.part,position:[Le.body[S].keypoints[N]?((n-1)*Le.body[S].keypoints[N].position[0]+R.position[0])/n:R.position[0],Le.body[S].keypoints[N]?((n-1)*Le.body[S].keypoints[N].position[1]+R.position[1])/n:R.position[1]],positionRaw:[Le.body[S].keypoints[N]?((n-1)*Le.body[S].keypoints[N].positionRaw[0]+R.positionRaw[0])/n:R.position[0],Le.body[S].keypoints[N]?((n-1)*Le.body[S].keypoints[N].positionRaw[1]+R.positionRaw[1])/n:R.position[1]]}));Le.body[S]={...e.body[S],box:E,boxRaw:D,keypoints:$}}if(!Le.hand||e.hand.length!==Le.hand.length)Le.hand=JSON.parse(JSON.stringify(e.hand));else for(let S=0;S((n-1)*Le.hand[S].box[B]+M)/n),D=e.hand[S].boxRaw.map((M,B)=>((n-1)*Le.hand[S].boxRaw[B]+M)/n),$=e.hand[S].keypoints.map((M,B)=>M.map((q,X)=>((n-1)*Le.hand[S].keypoints[B][X]+q)/n)),R=Object.keys(e.hand[S].annotations),N={};for(let M of R)N[M]=e.hand[S].annotations[M].map((B,q)=>B.map((X,J)=>((n-1)*Le.hand[S].annotations[M][q][J]+X)/n));Le.hand[S]={...e.hand[S],box:E,boxRaw:D,keypoints:$,annotations:N}}if(!Le.face||e.face.length!==Le.face.length)Le.face=JSON.parse(JSON.stringify(e.face));else for(let S=0;S((n-1)*Le.face[S].box[N]+R)/n),D=e.face[S].boxRaw.map((R,N)=>((n-1)*Le.face[S].boxRaw[N]+R)/n),$={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};$.matrix=(r=e.face[S].rotation)==null?void 0:r.matrix,$.angle={roll:((n-1)*(((a=(s=Le.face[S].rotation)==null?void 0:s.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[S].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Le.face[S].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[S].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((p=(h=Le.face[S].rotation)==null?void 0:h.angle)==null?void 0:p.pitch)||0)+(((m=(f=e.face[S].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},$.gaze={bearing:((n-1)*(((y=(g=Le.face[S].rotation)==null?void 0:g.gaze)==null?void 0:y.bearing)||0)+(((x=(A=e.face[S].rotation)==null?void 0:A.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Le.face[S].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((w=(I=e.face[S].rotation)==null?void 0:I.gaze)==null?void 0:w.strength)||0))/n},Le.face[S]={...e.face[S],rotation:$,box:E,boxRaw:D}}if(!Le.object||e.object.length!==Le.object.length)Le.object=JSON.parse(JSON.stringify(e.object));else for(let S=0;S((n-1)*Le.object[S].box[R]+$)/n),D=e.object[S].boxRaw.map(($,R)=>((n-1)*Le.object[S].boxRaw[R]+$)/n);Le.object[S]={...e.object[S],box:E,boxRaw:D}}if(e.persons){let S=e.persons;if(!Le.persons||S.length!==Le.persons.length)Le.persons=JSON.parse(JSON.stringify(S));else for(let E=0;E((n-1)*Le.persons[E].box[$]+D)/n)}return e.gesture&&(Le.gesture=e.gesture),e.performance&&(Le.performance=e.performance),Le}var g0=` /9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob @@ -4444,7 +4790,7 @@ PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1 8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3 ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY -euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,k0=` +euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,y0=` /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA @@ -5012,7 +5358,7 @@ AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2 SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/ -2Q==`;var p_="2.0.3";var Du,Ch,Eh,ki,Ii,Fu,I0,$h,S0,T0,N0,C0,pwe=class{constructor(t){Ir(this,Du,void 0);Ir(this,Ch,void 0);Ir(this,Eh,void 0);Ir(this,ki,void 0);Ir(this,Ii,void 0);Ir(this,Fu,void 0);this.analyze=(...t)=>{if(!Fn(this,Ch))return;let n=this.tf.engine().state.numTensors,r=Fn(this,Du);Qr(this,Du,n);let s=n-r;s!==0&&me(...t,s)};Ir(this,I0,t=>{if(!Fn(this,Eh))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Tt))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Ir(this,$h,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=at();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&me("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&me("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&me("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let s=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&me(`wasm execution: ${s?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),this.config.debug&&!s&&me("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&p$();try{await this.tf.setBackend(this.config.backend)}catch(s){me("error: cannot set backend:",this.config.backend,s)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(me("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let s=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&me(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(at()-r)}});this.next=t=>h_(t||this.result);Ir(this,S0,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32,r=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),s=r.dataSync(),a=0;for(let l=0;l10*this.config.cacheSensitivity?0:o),i});Ir(this,T0,async()=>{let t=(s,a="application/octet-stream")=>fetch(`data:${a};base64,${s}`).then(o=>o.blob()),n,r;switch(this.config.warmup){case"face":n=await t(w0);break;case"full":n=await t(k0);break;default:n=null}if(n){let s=await createImageBitmap(n);r=await this.detect(s,this.config),s.close()}return r});Ir(this,N0,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+w0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+k0;break;default:n=null}let s=new Image;s.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");a.width=s.naturalWidth,a.height=s.naturalHeight;let o=a.getContext("2d");o==null||o.drawImage(s,0,0);let i=await this.detect(a,this.config);t(i)},n?s.src=n:t(null)}));Ir(this,C0,async()=>{let t=s=>Buffer.from(s,"base64"),n;if(this.config.warmup==="face"&&(n=t(w0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(k0)),!n)return null;let r;if(typeof void 0!="undefined"){let s=(void 0).decodeJpeg(n),a=s.expandDims(0);this.tf.dispose(s),r=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&me("Warmup tfjs-node not loaded");return r});this.config=lr(F3,t||{}),this.tf=bh,this.draw=A3,this.version=p_,this.state="idle",Qr(this,Du,0),Qr(this,Ch,!1),Qr(this,Eh,!1),Qr(this,ki,!0),Qr(this,Fu,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.image=n=>wi(n,this.config),this.faceTriangulation=T$,this.faceUVMap=N$,this.sysinfo=M3(),Qr(this,Ii,1)}similarity(t,n){return Eb(t,n)}segmentation(t,n){return e_(t,n,this.config)}enhance(t){return $b(t)}match(t,n,r=0){return E$(t,n,r)}async load(t){this.state="load";let n=at();t&&(this.config=lr(this.config,t)),Fn(this,ki)&&(this.config.debug&&me(`version: ${this.version}`),this.config.debug&&me(`tfjs version: ${this.tf.version_core}`),this.config.debug&&me("platform:",this.sysinfo.platform),this.config.debug&&me("agent:",this.sysinfo.agent),await Fn(this,$h).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&me("configuration:",this.config),this.config.debug&&me("tf flags:",this.tf.ENV.flags))),await t_(this),Fn(this,ki)&&(this.config.debug&&me("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Qr(this,ki,!1));let r=Math.trunc(at()-n);r>(this.performance.load||0)&&(this.performance.load=r)}async detect(t,n){return new Promise(async r=>{this.state="config";let s,a;this.config=lr(this.config,n),this.state="check";let o=Fn(this,I0).call(this,t);o&&(me(o,t),r({error:o}));let i=at();await Fn(this,$h).call(this),await this.load(),s=at();let l=wi(t,this.config);if(this.performance.image=Math.trunc(at()-s),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",s=at(),await f3(l),a=Math.trunc(at()-s),a>0&&(this.performance.segmentation=a),l.canvas&&(l.tensor.dispose(),l=wi(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){me("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}s=at(),this.config.skipFrame=await Fn(this,S0).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(at()-s),this.analyze("Check Changed:");let u,c,d,h;this.config.async?(u=this.config.face.enabled?m3(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",s=at(),u=this.config.face.enabled?await m3(this,l.tensor):[],a=Math.trunc(at()-s),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?Wb(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Xb(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?Qb(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?s3(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",s=at(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await Wb(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Xb(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await Qb(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await s3(l.tensor,this.config):[]),a=Math.trunc(at()-s),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?qb(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",s=at(),d=this.config.hand.enabled?await qb(l.tensor,this.config):[],a=Math.trunc(at()-s),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?l3(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?h3(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",s=at(),this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?await l3(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?await h3(l.tensor,this.config):[]),a=Math.trunc(at()-s),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,h]=await Promise.all([u,c,d,h]));let p=[];this.config.gesture.enabled&&(s=at(),p=[...r_(u),...n_(c),...a_(d),...s_(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(at()-s)),this.performance.total=Math.trunc(at()-i),this.state="idle",this.result={face:u,body:c,hand:d,gesture:p,object:h,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var f;return d_(u,c,d,p,(f=l==null?void 0:l.tensor)==null?void 0:f.shape)}},Ve(l.tensor),r(this.result)})}async warmup(t){let n=at();if(t&&(this.config=lr(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r;typeof createImageBitmap=="function"?r=await Fn(this,T0).call(this):typeof Image!="undefined"?r=await Fn(this,N0).call(this):r=await Fn(this,C0).call(this);let s=at();return this.config.debug&&me("Warmup",this.config.warmup,Math.round(s-n),"ms",r),r}};Du=new WeakMap,Ch=new WeakMap,Eh=new WeakMap,ki=new WeakMap,Ii=new WeakMap,Fu=new WeakMap,I0=new WeakMap,$h=new WeakMap,S0=new WeakMap,T0=new WeakMap,N0=new WeakMap,C0=new WeakMap;export{pwe as Human,pwe as default}; +2Q==`;var rR="2.0.3";var _u,Th,Nh,wi,ki,Du,A0,Ch,x0,b0,v0,w0,_we=class{constructor(t){wr(this,_u,void 0);wr(this,Th,void 0);wr(this,Nh,void 0);wr(this,wi,void 0);wr(this,ki,void 0);wr(this,Du,void 0);this.analyze=(...t)=>{if(!Dn(this,Th))return;let n=this.tf.engine().state.numTensors,r=Dn(this,_u);es(this,_u,n);let s=n-r;s!==0&&fe(...t,s)};wr(this,A0,t=>{if(!Dn(this,Nh))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof It))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});wr(this,Ch,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let r=nt();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&fe("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&fe("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&fe("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let s=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&fe(`wasm execution: ${s?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),this.config.debug&&!s&&fe("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&r$();try{await this.tf.setBackend(this.config.backend)}catch(s){fe("error: cannot set backend:",this.config.backend,s)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(fe("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let s=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&fe(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(nt()-r)}});this.next=t=>nR(t||this.result);wr(this,x0,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32,r=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),s=r.dataSync(),a=0;for(let l=0;l10*this.config.cacheSensitivity?0:o),i});wr(this,b0,async()=>{let t=(s,a="application/octet-stream")=>fetch(`data:${a};base64,${s}`).then(o=>o.blob()),n,r;switch(this.config.warmup){case"face":n=await t(g0);break;case"full":n=await t(y0);break;default:n=null}if(n){let s=await createImageBitmap(n);r=await this.detect(s,this.config),s.close()}return r});wr(this,v0,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+g0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+y0;break;default:n=null}let s=new Image;s.onload=async()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");a.width=s.naturalWidth,a.height=s.naturalHeight;let o=a.getContext("2d");o==null||o.drawImage(s,0,0);let i=await this.detect(a,this.config);t(i)},n?s.src=n:t(null)}));wr(this,w0,async()=>{let t=s=>Buffer.from(s,"base64"),n;if(this.config.warmup==="face"&&(n=t(g0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(y0)),!n)return null;let r;if(typeof void 0!="undefined"){let s=(void 0).decodeJpeg(n),a=s.expandDims(0);this.tf.dispose(s),r=await this.detect(a,this.config),this.tf.dispose(a)}else this.config.debug&&fe("Warmup tfjs-node not loaded");return r});this.config=Fn(w3,t||{}),this.tf=Ah,this.draw=o3,this.version=rR,this.state="idle",es(this,_u,0),es(this,Th,!1),es(this,Nh,!1),es(this,wi,!0),es(this,Du,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.image=n=>vi(n,this.config),this.faceTriangulation=g$,this.faceUVMap=y$,this.sysinfo=k3(),es(this,ki,1)}similarity(t,n){return yb(t,n)}segmentation(t,n){return H$(t,n,this.config)}enhance(t){return Ab(t)}match(t,n,r=0){return x$(t,n,r)}async load(t){this.state="load";let n=nt();t&&(this.config=Fn(this.config,t)),Dn(this,wi)&&(this.config.debug&&fe(`version: ${this.version}`),this.config.debug&&fe(`tfjs version: ${this.tf.version_core}`),this.config.debug&&fe("platform:",this.sysinfo.platform),this.config.debug&&fe("agent:",this.sysinfo.agent),await Dn(this,Ch).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&fe("configuration:",this.config),this.config.debug&&fe("tf flags:",this.tf.ENV.flags))),await G$(this),Dn(this,wi)&&(this.config.debug&&fe("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),es(this,wi,!1));let r=Math.trunc(nt()-n);r>(this.performance.load||0)&&(this.performance.load=r)}async detect(t,n){return new Promise(async r=>{this.state="config";let s,a;this.config=Fn(this.config,n),this.state="check";let o=Dn(this,A0).call(this,t);o&&(fe(o,t),r({error:o}));let i=nt();await Dn(this,Ch).call(this),await this.load(),s=nt();let l=vi(t,this.config);if(this.performance.image=Math.trunc(nt()-s),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",s=nt(),await n3(l),a=Math.trunc(nt()-s),a>0&&(this.performance.segmentation=a),l.canvas&&(l.tensor.dispose(),l=vi(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){fe("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}s=nt(),this.config.skipFrame=await Dn(this,x0).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(nt()-s),this.analyze("Check Changed:");let u,c,d,h;this.config.async?(u=this.config.face.enabled?r3(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",s=nt(),u=this.config.face.enabled?await r3(this,l.tensor):[],a=Math.trunc(nt()-s),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?Eb(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?Pb(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?Wb(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?jb(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",s=nt(),this.config.body.modelPath.includes("posenet")?c=this.config.body.enabled?await Eb(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?c=this.config.body.enabled?await Pb(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?c=this.config.body.enabled?await Wb(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(c=this.config.body.enabled?await jb(l.tensor,this.config):[]),a=Math.trunc(nt()-s),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?Mb(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",s=nt(),d=this.config.hand.enabled?await Mb(l.tensor,this.config):[],a=Math.trunc(nt()-s),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?Zb(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?e3(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",s=nt(),this.config.object.modelPath.includes("nanodet")?h=this.config.object.enabled?await Zb(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(h=this.config.object.enabled?await e3(l.tensor,this.config):[]),a=Math.trunc(nt()-s),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,h]=await Promise.all([u,c,d,h]));let p=[];this.config.gesture.enabled&&(s=nt(),p=[...q$(u),...j$(c),...X$(d),...K$(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(nt()-s)),this.performance.total=Math.trunc(nt()-i),this.state="idle",this.result={face:u,body:c,hand:d,gesture:p,object:h,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var f;return tR(u,c,d,p,(f=l==null?void 0:l.tensor)==null?void 0:f.shape)}},We(l.tensor),r(this.result)})}async warmup(t){let n=nt();if(t&&(this.config=Fn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let r;typeof createImageBitmap=="function"?r=await Dn(this,b0).call(this):typeof Image!="undefined"?r=await Dn(this,v0).call(this):r=await Dn(this,w0).call(this);let s=nt();return this.config.debug&&fe("Warmup",this.config.warmup,Math.round(s-n),"ms",r),r}};_u=new WeakMap,Th=new WeakMap,Nh=new WeakMap,wi=new WeakMap,ki=new WeakMap,Du=new WeakMap,A0=new WeakMap,Ch=new WeakMap,x0=new WeakMap,b0=new WeakMap,v0=new WeakMap,w0=new WeakMap;export{_we as Human,_we as default}; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/human.esm.js.map b/dist/human.esm.js.map index 2c1953b0..d81a8ee7 100644 --- a/dist/human.esm.js.map +++ b/dist/human.esm.js.map @@ -1,7 +1,7 @@ { "version": 3, - "sources": ["../src/helpers.ts", "../src/config.ts", "../src/sysinfo.ts", "../node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js", "../node_modules/.pnpm/node-fetch@2.6.1/node_modules/node-fetch/browser.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js", "(disabled):crypto", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js", "../node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js", "../node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js", "(disabled):path", "(disabled):worker_threads", "(disabled):perf_hooks", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/util_base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/environment.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/global_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/kernel_names.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/kernel_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/hash_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/profiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor_format.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/engine.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/device_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/flags.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor_util_env.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/operation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/io_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/router_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/indexed_db.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/local_storage.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/model_management.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_node.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/print.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/base_side_effects.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/io.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/browser_files.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/progress.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/weights_loader.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/http.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/passthrough.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/confusion_matrix.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/test_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/model_types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/globals.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/add_n.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/basic_lstm_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dense_bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/eye.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linspace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/axis_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_with_argmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ones.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/meshgrid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/moments.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/multi_rnn_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/outer_product.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rand.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rand_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/random_gamma.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/random_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/random_uniform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/setdiff1d_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor6d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/truncated_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/variable.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/where_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/where_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/boolean_mask.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/moving_average.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/in_top_k.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hamming_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hann_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/frame.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/stft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/crop_and_resize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/flip_left_right.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/rotate_with_offset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/nonmax_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/threshold.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/band_part.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/gram_schmidt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/qr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/loss_ops_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/compute_weighted_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/absolute_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/cosine_distance.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/hinge_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/huber_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/log_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/mean_squared_error.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/sigmoid_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/softmax_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_fill_empty_rows.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_segment_mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_n_grams.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_to_hash_bucket_fast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adadelta_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adagrad_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adam_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adamax_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/sgd_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/momentum_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/rmsprop_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor_types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer_constructors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/train.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/browser_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/backend_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reduce_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rotate_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/array_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/selu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/erf_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/complex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/einsum_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/split_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/segment_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/kernel_impls.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/util_base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/environment.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/global_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/kernel_names.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/kernel_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/hash_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/profiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor_format.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/engine.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/device_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/flags.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/tensor_util_env.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/operation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/io_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/router_registry.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/indexed_db.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/local_storage.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/model_management.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/platforms/platform_node.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/print.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/base_side_effects.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/io.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/browser_files.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/progress.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/weights_loader.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/http.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/io/passthrough.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/confusion_matrix.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/browser.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/test_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/globals.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/add_n.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/basic_lstm_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/batchnorm4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dense_bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/broadcast_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/eye.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linspace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/axis_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_with_argmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/zeros.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ones.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/meshgrid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/moments.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/multi_rnn_cell.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/outer_product.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pad4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rand.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rand_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/random_gamma.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/random_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/random_uniform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reverse_4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/setdiff1d_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/slice4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/spectral/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/tensor6d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/truncated_normal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/variable.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/where_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/where_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/boolean_mask.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/moving_average.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/scatter_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse_to_dense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/gather_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/dropout.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/in_top_k.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv2d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/depthwise_conv2d_native_backprop_input.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/fused/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hamming_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/hann_window.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/frame.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/signal/stft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/crop_and_resize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/flip_left_right.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/rotate_with_offset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/nonmax_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/non_max_suppression_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_with_score_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/non_max_suppression_padded_async.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/threshold.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/image/transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/band_part.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/gram_schmidt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/linalg/qr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/loss_ops_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/compute_weighted_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/absolute_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/cosine_distance.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/hinge_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/huber_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/log_loss.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/mean_squared_error.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/sigmoid_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/losses/softmax_cross_entropy.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_fill_empty_rows.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_segment_mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/sparse/sparse_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_n_grams.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/string/string_to_hash_bucket_fast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adadelta_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adagrad_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adam_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/adamax_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/sgd_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/momentum_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/rmsprop_optimizer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/optimizers/optimizer_constructors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/train.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/browser_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/backend_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/concat_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/reduce_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/rotate_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/array_ops_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/selu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/erf_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/complex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/einsum_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/split_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/segment_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/backends/kernel_impls.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/all.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/arg_min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_scalar.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as_type.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as3d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as4d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/as5d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/avg_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batch_to_space_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/batchnorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/broadcast_to.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/clip_by_value.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv1d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d_transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depth_to_space.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/depthwise_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dilation2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div_no_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/div.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/dot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expand_dims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/fft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/flatten.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/floorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/gather.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ifft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/irfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_finite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_inf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/is_nan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/leaky_relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/local_response_normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log_sum_exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_and.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_not.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_or.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/logical_xor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mat_mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max_pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mirror_pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/mul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/norm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/not_equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/one_hot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/ones_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape_as.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_bilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/resize_nearest_neighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rfft.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/separable_conv2d.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/space_to_batch_nd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/split.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squared_difference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/squeeze.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/stack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/strided_slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_bool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_float.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/to_int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/topk.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unsorted_segment_sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/unstack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/where.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/zeros_like.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/public/chained_ops/register_all_chained_ops.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Abs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Acosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Add_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/AddN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ArgMin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Asinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Atanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/avg_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/AvgPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchMatMul_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/BatchToSpaceND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/BroadcastTo_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cast_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Ceil_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ClipByValue_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ComplexAbs_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Concat_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv2DBackpropInput_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/conv3d_backprop_filter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Conv3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cos_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cosh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Cumsum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/DepthwiseConv2dNative_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Dilation2D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Elu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Erf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Exp_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ExpandDims_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Expm1_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Floor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/FloorDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/FusedBatchNorm_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/GatherV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/GreaterEqual_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Identity_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsFinite_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsInf_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/IsNan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/LeakyRelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log1p_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Log_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/LogSoftmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/local_response_normalization_backprop.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/LRN_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/min_max_grad_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Max_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Maximum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_3d_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool3D_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/max_pool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/MaxPool_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mean_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Min_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Minimum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/MirrorPad_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Mod_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Multiply_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Neg_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/OneHot_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/OnesLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/PadV2_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Pow_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Prelu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/RealDiv_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reciprocal_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu6_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Relu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reshape_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeBilinear_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ResizeNearestNeighbor_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Reverse_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Round_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Rsqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Select_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Selu_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sigmoid_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sign_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sin_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sinh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Slice_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softmax_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Softplus_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/SpaceToBatchND_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/SplitV_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sqrt_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Square_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/SquaredDifference_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Step_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sub_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Sum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tan_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tanh_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Tile_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Transpose_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/Unpack_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/UnsortedSegmentSum_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/gradients/ZerosLike_grad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/register_all_gradients.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/exports_constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/backend/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/errors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/utils/generic_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/constraints.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/exports_initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/common.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/utils/math_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/backend/tfjs_backend.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/keras_format/initializer_config.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/initializers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/exports_layers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/backend/state.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/utils/types_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/utils/variable_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/variables.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/topology.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/input_layer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/logs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/base_callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/serialization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/losses.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/optimizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/user_defined_metadata.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/utils/layer_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/utils/serialization_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/container.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/training_tensors.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/engine/training.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/exports.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/advanced_activations.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/utils/conv_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/convolutional_recurrent.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/core.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/embeddings.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/merge.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/noise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/padding.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/pooling.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/layers/wrappers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/exports_metrics.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/exports_models.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/exports_regularizers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/callbacks.ts", "../node_modules/.pnpm/@tensorflow+tfjs-layers@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-layers/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/data/compiled_api.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/register.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/arithmetic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/basic_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/control.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/convolution.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/creation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/dynamic.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/evaluation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/graph.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/image.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/logical.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/matrices.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/normalization.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/reduction.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/slice_join.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/sparse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/spectral.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/string.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/op_list/transformation.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_mapper.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/custom_op/node_value_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-core/src/ops/ops_for_converter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/arithmetic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/basic_math_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_array.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/tensor_list.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/control_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/convolution_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/creation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/dynamic_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/evaluation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/hash_table.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/hash_table_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/image_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/logical_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/matrices_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/normalization_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/reduction_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/slice_join_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/sparse_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/spectral_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/string_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/executors/transformation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/operation_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/execution_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/model_analysis.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_executor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/resource_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/executor/graph_model.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/operations/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-converter@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-converter/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/iterators/lazy_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/util/deep_map.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/util/deep_clone.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/util/ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/util/growing_ring_buffer.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/datasets/text_line_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/datasets/csv_dataset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/iterators/microphone_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/iterators/webcam_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/datasource.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/iterators/string_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/iterators/byte_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/iterators/file_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/iterators/url_chunk_iterator.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/util/source_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/sources/file_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/sources/url_data_source.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/readers.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-data@3.7.0_2d23fca999276b6587569019c21cba8f/node_modules/@tensorflow/tfjs-data/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/cpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/backend_cpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/zeros_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd_Impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseFillEmptyRows_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseSegmentReduction_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringNGrams_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringSplit_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringToHashBucketFast_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fused_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/pool_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Clip.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Dilation2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/fft_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Scatter_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseFillEmptyRows.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseSegmentMean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringNGrams.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringSplit.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringToHashBucketFast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/canvas_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tex_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flags_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/glsl_version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/decode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_float_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/encode_matrix_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_context.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/shader_compiler.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gpgpu_math.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/cpu_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/zeros_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/binary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Bincount_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/utils/unary_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherNd_Impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GatherV2_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/LinSpace_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Range_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseFillEmptyRows_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseReshape_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SparseSegmentReduction_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StridedSlice_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringNGrams_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringSplit_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/StringToHashBucketFast_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Tile_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/TopK_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-cpu@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-cpu/src/kernels/Unique_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/packing_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reshape_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/texture_manager.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/unpack_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/backend_webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/webgl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Complex.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/kernel_funcs_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mulmat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/binaryop_complex_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mean_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reduce_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/reduce.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transpose_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Acosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/addn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/argminmax_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/arg_min_max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ArgMin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Asinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atan2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Atanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pool_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/avg_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/AvgPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/batchnorm_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/slice_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/BatchToSpaceND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Bincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Real.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernel_utils/int.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/clip_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/complex_abs_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ComplexAbs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/concat_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Imag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/im2col_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropFilterV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Conv3DBackpropInputV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cosh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/crop_and_resize_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/cumsum_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DenseBincount.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/depth_to_space_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_packed_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/conv_backprop_gpu_depthwise.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropFilter.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/DepthwiseConv2dNativeBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/diag_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Diag.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/dilation_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Dilation2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Einsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Elu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/EluGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Erf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Expm1.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fft_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/fill_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/flip_left_right_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels_utils/from_pixels_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FromPixels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_nd_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/gather_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IFFT.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsFinite.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsInf.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/IsNaN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LinSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Log1p.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalNot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LogicalOr.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/lrn_grad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/LRNGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/max_pool_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPool3DGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MaxPoolWithArgmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean_impl.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/mirror_pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Mod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/multinomial_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Multinomial.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/onehot_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/pad_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reciprocal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_bilinear_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeBilinearGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighbor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/resize_nearest_neighbor_backprop_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ResizeNearestNeighborGrad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/reverse_packed_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/rotate_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/scatter_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/select_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Selu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sign.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sinh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Softplus.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SpaceToBatchND.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseFillEmptyRows.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseReshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseSegmentMean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SparseToDense.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/strided_slice_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StringNGrams.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StringSplit.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/StringToHashBucketFast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/tile_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/transform_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unique.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/segment_gpu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/kernels/UnsortedSegmentSum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-webgl@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-webgl/src/index.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/types.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/_FusedMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/unary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Abs.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/binary_kernel.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Add.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AddN.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Identity.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transpose.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/kernel_utils.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/All.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Any.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ArgMax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/AvgPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reshape.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/BatchMatMul.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cast.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Ceil.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ClipByValue.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernel_utils/shared.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Concat.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Conv2DBackpropInput.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cos.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/CropAndResize.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Cumsum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthToSpace.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/DepthwiseConv2dNative.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Equal.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Exp.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ExpandDims.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Fill.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FlipLeftRight.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Floor.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FloorDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedBatchNorm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/FusedDepthwiseConv2D.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GatherV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Greater.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/GreaterEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LeakyRelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Less.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LessEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Log.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/LogicalAnd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Max.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Maximum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MaxPool.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Mean.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Min.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Minimum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/MirrorPad.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Multiply.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Neg.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppression_util.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV3.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV4.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NonMaxSuppressionV5.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/NotEqual.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OneHot.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/OnesLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/PadV2.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Pow.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prelu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Prod.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Range.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RealDiv.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Relu6.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ResizeBilinear.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Reverse.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/RotateWithOffset.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Round.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Rsqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ScatterNd.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Select.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sigmoid.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sin.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Slice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Softmax.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SplitV.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sqrt.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Square.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/SquaredDifference.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Step.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/StridedSlice.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sub.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Sum.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tan.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tanh.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Tile.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/TopK.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Transform.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/Unpack.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/kernels/ZerosLike.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/register_all_kernels.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/flags_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/backend_wasm.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/version.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/base.ts", "../node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.7.0_@tensorflow+tfjs-core@3.7.0/node_modules/@tensorflow/tfjs-backend-wasm/src/index.ts", "../tfjs/tf-browser.ts", "../src/tfjs/backend.ts", "../src/blazeface/box.ts", "../src/blazeface/util.ts", "../src/blazeface/blazeface.ts", "../src/blazeface/coords.ts", "../src/blazeface/facepipeline.ts", "../src/blazeface/facemesh.ts", "../src/faceres/faceres.ts", "../src/emotion/emotion.ts", "../src/posenet/keypoints.ts", "../src/posenet/utils.ts", "../src/posenet/poses.ts", "../src/posenet/posenet.ts", "../src/handpose/box.ts", "../src/handpose/anchors.ts", "../src/handpose/handdetector.ts", "../src/handpose/util.ts", "../src/handpose/handpipeline.ts", "../src/handpose/handpose.ts", "../src/blazepose/annotations.ts", "../src/blazepose/blazepose.ts", "../src/efficientpose/efficientpose.ts", "../src/movenet/movenet.ts", "../src/object/labels.ts", "../src/object/nanodet.ts", "../src/object/centernet.ts", "../src/image/imagefx.js", "../src/image/image.ts", "../src/segmentation/segmentation.ts", "../src/models.ts", "../src/face.ts", "../src/gesture/gesture.ts", "../src/draw/draw.ts", "../src/persons.ts", "../src/interpolate.ts", "../src/sample.ts", "../src/human.ts"], - "sourcesContent": ["/**\n * Simple helper functions used accross codebase\n */\n\n// helper function: join two paths\nexport function join(folder: string, file: string): string {\n const separator = folder.endsWith('/') ? '' : '/';\n const skipJoin = file.startsWith('.') || file.startsWith('/') || file.startsWith('http:') || file.startsWith('https:') || file.startsWith('file:');\n const path = skipJoin ? `${file}` : `${folder}${separator}${file}`;\n if (!path.toLocaleLowerCase().includes('.json')) throw new Error(`Human: ModelPath Error: ${path} Expecting JSON file`);\n return path;\n}\n\n// helper function: wrapper around console output\nexport function log(...msg): void {\n const dt = new Date();\n const ts = `${dt.getHours().toString().padStart(2, '0')}:${dt.getMinutes().toString().padStart(2, '0')}:${dt.getSeconds().toString().padStart(2, '0')}.${dt.getMilliseconds().toString().padStart(3, '0')}`;\n // eslint-disable-next-line no-console\n if (msg) console.log(ts, 'Human:', ...msg);\n}\n\n// helper function: gets elapsed time on both browser and nodejs\nexport const now = () => {\n if (typeof performance !== 'undefined') return performance.now();\n return parseInt((Number(process.hrtime.bigint()) / 1000 / 1000).toString());\n};\n\n// helper function: perform deep merge of multiple objects so it allows full inheriance with overrides\nexport function mergeDeep(...objects) {\n const isObject = (obj) => obj && typeof obj === 'object';\n return objects.reduce((prev, obj) => {\n Object.keys(obj || {}).forEach((key) => {\n const pVal = prev[key];\n const oVal = obj[key];\n if (Array.isArray(pVal) && Array.isArray(oVal)) prev[key] = pVal.concat(...oVal);\n else if (isObject(pVal) && isObject(oVal)) prev[key] = mergeDeep(pVal, oVal);\n else prev[key] = oVal;\n });\n return prev;\n }, {});\n}\n\n// helper function: return min and max from input array\nexport const minmax = (data) => data.reduce((acc, val) => {\n acc[0] = (acc[0] === undefined || val < acc[0]) ? val : acc[0];\n acc[1] = (acc[1] === undefined || val > acc[1]) ? val : acc[1];\n return acc;\n}, []);\n", "/* eslint-disable indent */\n/* eslint-disable no-multi-spaces */\n\n/**\n * Configuration interface definition for **Human** library\n *\n * Contains all configurable parameters\n * @typedef Config\n */\nexport interface Config {\n /** Backend used for TFJS operations */\n backend: null | '' | 'cpu' | 'wasm' | 'webgl' | 'humangl' | 'tensorflow',\n\n /** Path to *.wasm files if backend is set to `wasm` */\n wasmPath: string,\n\n /** Print debug statements to console */\n debug: boolean,\n\n /** Perform model loading and inference concurrently or sequentially */\n async: boolean,\n\n /** What to use for `human.warmup()`\n * - warmup pre-initializes all models for faster inference but can take significant time on startup\n * - only used for `webgl` and `humangl` backends\n */\n warmup: 'none' | 'face' | 'full' | 'body',\n\n /** Base model path (typically starting with file://, http:// or https://) for all models\n * - individual modelPath values are relative to this path\n */\n modelBasePath: string,\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n cacheSensitivity: number;\n\n /** Cache sensitivity\n * - values 0..1 where 0.01 means reset cache if input changed more than 1%\n * - set to 0 to disable caching\n */\n skipFrame: boolean;\n\n /** Run input through image filters before inference\n * - image filters run with near-zero latency as they are executed on the GPU\n */\n filter: {\n enabled: boolean,\n /** Resize input width\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n width: number,\n /** Resize input height\n * - if both width and height are set to 0, there is no resizing\n * - if just one is set, second one is scaled automatically\n * - if both are set, values are used as-is\n */\n height: number,\n /** Return processed canvas imagedata in result */\n return: boolean,\n /** Flip input as mirror image */\n flip: boolean,\n /** Range: -1 (darken) to 1 (lighten) */\n brightness: number,\n /** Range: -1 (reduce contrast) to 1 (increase contrast) */\n contrast: number,\n /** Range: 0 (no sharpening) to 1 (maximum sharpening) */\n sharpness: number,\n /** Range: 0 (no blur) to N (blur radius in pixels) */\n blur: number\n /** Range: -1 (reduce saturation) to 1 (increase saturation) */\n saturation: number,\n /** Range: 0 (no change) to 360 (hue rotation in degrees) */\n hue: number,\n /** Image negative */\n negative: boolean,\n /** Image sepia colors */\n sepia: boolean,\n /** Image vintage colors */\n vintage: boolean,\n /** Image kodachrome colors */\n kodachrome: boolean,\n /** Image technicolor colors */\n technicolor: boolean,\n /** Image polaroid camera effect */\n polaroid: boolean,\n /** Range: 0 (no pixelate) to N (number of pixels to pixelate) */\n pixelate: number,\n },\n // type definition end\n\n /** Controlls gesture detection */\n gesture: {\n enabled: boolean,\n },\n\n /** Controlls and configures all face-specific options:\n * - face detection, face mesh detection, age, gender, emotion detection and face description\n * Parameters:\n * - enabled: true/false\n * - modelPath: path for each of face models\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of faces detected in the input, should be set to the minimum number for performance\n * - rotation: use calculated rotated face image or just box with rotation as-is, false means higher performance, but incorrect mesh mapping on higher face angles\n * - return: return extracted face as tensor for futher user processing, in which case user is reponsible for manually disposing the tensor\n */\n face: {\n enabled: boolean,\n detector: {\n modelPath: string,\n rotation: boolean,\n maxDetected: number,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n return: boolean,\n },\n mesh: {\n enabled: boolean,\n modelPath: string,\n },\n iris: {\n enabled: boolean,\n modelPath: string,\n },\n description: {\n enabled: boolean,\n modelPath: string,\n skipFrames: number,\n minConfidence: number,\n },\n emotion: {\n enabled: boolean,\n minConfidence: number,\n skipFrames: number,\n modelPath: string,\n },\n },\n\n /** Controlls and configures all body detection specific options\n * - enabled: true/false\n * - modelPath: body pose model, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - maxDetected: maximum number of people detected in the input, should be set to the minimum number for performance\n */\n body: {\n enabled: boolean,\n modelPath: string,\n maxDetected: number,\n minConfidence: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all hand detection specific options\n * - enabled: true/false\n * - landmarks: detect hand landmarks or just hand boundary box\n * - modelPath: paths for hand detector and hand skeleton models, can be absolute path or relative to modelBasePath\n * - minConfidence: threshold for discarding a prediction\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of hands detected in the input, should be set to the minimum number for performance\n * - rotation: use best-guess rotated hand image or just box with rotation as-is, false means higher performance, but incorrect finger mapping if hand is inverted\n */\n hand: {\n enabled: boolean,\n rotation: boolean,\n skipFrames: number,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n landmarks: boolean,\n detector: {\n modelPath: string,\n },\n skeleton: {\n modelPath: string,\n },\n },\n\n /** Controlls and configures all object detection specific options\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n * - minConfidence: minimum score that detection must have to return as valid object\n * - iouThreshold: ammount of overlap between two detected objects before one object is removed\n * - maxDetected: maximum number of detections to return\n */\n object: {\n enabled: boolean,\n modelPath: string,\n minConfidence: number,\n iouThreshold: number,\n maxDetected: number,\n skipFrames: number,\n },\n\n /** Controlls and configures all body segmentation module\n * removes background from input containing person\n * if segmentation is enabled it will run as preprocessing task before any other model\n * alternatively leave it disabled and use it on-demand using human.segmentation method which can\n * remove background or replace it with user-provided background\n *\n * - enabled: true/false\n * - modelPath: object detection model, can be absolute path or relative to modelBasePath\n */\n segmentation: {\n enabled: boolean,\n modelPath: string,\n },\n}\n\nconst config: Config = {\n backend: 'webgl', // select tfjs backend to use, leave empty to use default backend\n // can be 'webgl', 'wasm', 'cpu', or 'humangl' which is a custom version of webgl\n modelBasePath: '../models/', // base path for all models\n wasmPath: '../node_modules/@tensorflow/tfjs-backend-wasm/dist/', // path for wasm binaries, only used for backend: wasm\n debug: true, // print additional status messages to console\n async: true, // execute enabled models in parallel\n warmup: 'full', // what to use for human.warmup(), can be 'none', 'face', 'full'\n // warmup pre-initializes all models for faster inference but can take\n // significant time on startup\n // only used for `webgl` and `humangl` backends\n cacheSensitivity: 0.75, // cache sensitivity\n // values 0..1 where 0.01 means reset cache if input changed more than 1%\n // set to 0 to disable caching\n skipFrame: false, // internal & dynamic\n filter: { // run input through image filters before inference\n // image filters run with near-zero latency as they are executed on the GPU\n enabled: true, // enable image pre-processing filters\n width: 0, // resize input width\n height: 0, // resize input height\n // if both width and height are set to 0, there is no resizing\n // if just one is set, second one is scaled automatically\n // if both are set, values are used as-is\n flip: false, // flip input as mirror image\n return: true, // return processed canvas imagedata in result\n brightness: 0, // range: -1 (darken) to 1 (lighten)\n contrast: 0, // range: -1 (reduce contrast) to 1 (increase contrast)\n sharpness: 0, // range: 0 (no sharpening) to 1 (maximum sharpening)\n blur: 0, // range: 0 (no blur) to N (blur radius in pixels)\n saturation: 0, // range: -1 (reduce saturation) to 1 (increase saturation)\n hue: 0, // range: 0 (no change) to 360 (hue rotation in degrees)\n negative: false, // image negative\n sepia: false, // image sepia colors\n vintage: false, // image vintage colors\n kodachrome: false, // image kodachrome colors\n technicolor: false, // image technicolor colors\n polaroid: false, // image polaroid camera effect\n pixelate: 0, // range: 0 (no pixelate) to N (number of pixels to pixelate)\n },\n\n gesture: {\n enabled: true, // enable gesture recognition based on model results\n },\n\n face: {\n enabled: true, // controls if specified modul is enabled\n // face.enabled is required for all face models:\n // detector, mesh, iris, age, gender, emotion\n // (note: module is not loaded until it is required)\n detector: {\n modelPath: 'blazeface.json', // detector model, can be absolute path or relative to modelBasePath\n rotation: true, // use best-guess rotated face image or just box with rotation as-is\n // false means higher performance, but incorrect mesh mapping if face angle is above 20 degrees\n // this parameter is not valid in nodejs\n maxDetected: 15, // maximum number of faces detected in the input\n // should be set to the minimum number for performance\n skipFrames: 15, // how many max frames to go without re-running the face bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated face analysis as the head probably hasn't moved much\n // in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n return: false, // return extracted face as tensor\n // in which case user is reponsible for disposing the tensor\n },\n\n mesh: {\n enabled: true,\n modelPath: 'facemesh.json', // facemesh model, can be absolute path or relative to modelBasePath\n },\n\n iris: {\n enabled: true,\n modelPath: 'iris.json', // face iris model\n // can be either absolute path or relative to modelBasePath\n },\n\n description: {\n enabled: true, // to improve accuracy of face description extraction it is\n // recommended to enable detector.rotation and mesh.enabled\n modelPath: 'faceres.json', // face description model\n // can be either absolute path or relative to modelBasePath\n skipFrames: 11, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n minConfidence: 0.1, // threshold for discarding a prediction\n },\n\n emotion: {\n enabled: true,\n minConfidence: 0.1, // threshold for discarding a prediction\n skipFrames: 17, // how max many frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n modelPath: 'emotion.json', // face emotion model, can be absolute path or relative to modelBasePath\n },\n },\n\n body: {\n enabled: true,\n modelPath: 'movenet-lightning.json', // body model, can be absolute path or relative to modelBasePath\n // can be 'posenet', 'blazepose', 'efficientpose', 'movenet-lightning', 'movenet-thunder'\n maxDetected: 1, // maximum number of people detected in the input\n // should be set to the minimum number for performance\n // only valid for posenet as other models detects single pose\n minConfidence: 0.2, // threshold for discarding a prediction\n skipFrames: 1, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n},\n\n hand: {\n enabled: true,\n rotation: true, // use best-guess rotated hand image or just box with rotation as-is\n // false means higher performance, but incorrect finger mapping if hand is inverted\n skipFrames: 18, // how many max frames to go without re-running the hand bounding box detector\n // only used when cacheSensitivity is not zero\n // e.g., if model is running st 25 FPS, we can re-use existing bounding\n // box for updated hand skeleton analysis as the hand probably\n // hasn't moved much in short time (10 * 1/25 = 0.25 sec)\n minConfidence: 0.1, // threshold for discarding a prediction\n iouThreshold: 0.1, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 2, // maximum number of hands detected in the input\n // should be set to the minimum number for performance\n landmarks: true, // detect hand landmarks or just hand boundary box\n detector: {\n modelPath: 'handdetect.json', // hand detector model, can be absolute path or relative to modelBasePath\n },\n skeleton: {\n modelPath: 'handskeleton.json', // hand skeleton model, can be absolute path or relative to modelBasePath\n },\n },\n\n object: {\n enabled: false,\n modelPath: 'mb3-centernet.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'mb3-centernet' or 'nanodet'\n minConfidence: 0.2, // threshold for discarding a prediction\n iouThreshold: 0.4, // ammount of overlap between two detected objects before one object is removed\n maxDetected: 10, // maximum number of objects detected in the input\n skipFrames: 19, // how many max frames to go without re-running the detector\n // only used when cacheSensitivity is not zero\n },\n\n segmentation: {\n enabled: false, // controlls and configures all body segmentation module\n // removes background from input containing person\n // if segmentation is enabled it will run as preprocessing task before any other model\n // alternatively leave it disabled and use it on-demand using human.segmentation method which can\n // remove background or replace it with user-provided background\n modelPath: 'selfie.json', // experimental: object detection model, can be absolute path or relative to modelBasePath\n // can be 'selfie' or 'meet'\n },\n};\nexport { config as defaults };\n", "/**\n * Helper function that returns basic system info\n */\nexport function info(): { platform: string, agent: string } {\n let platform;\n let agent;\n if (typeof navigator !== 'undefined') {\n const raw = navigator.userAgent.match(/\\(([^()]+)\\)/g);\n if (raw && raw[0]) {\n const platformMatch = raw[0].match(/\\(([^()]+)\\)/g);\n platform = platformMatch ? platformMatch[0].replace(/\\(|\\)/g, '') : '';\n agent = navigator.userAgent.replace(raw[0], '');\n if (platform[1]) agent = agent.replace(raw[1], '');\n agent = agent.replace(/ /g, ' ');\n }\n } else if (typeof process !== 'undefined') {\n platform = `${process.platform} ${process.arch}`;\n agent = `NodeJS ${process.version}`;\n }\n return { platform, agent };\n}\n", "module.exports = Long;\r\n\r\n/**\r\n * wasm optimizations, to do native i64 multiplication and divide\r\n */\r\nvar wasm = null;\r\n\r\ntry {\r\n wasm = new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([\r\n 0, 97, 115, 109, 1, 0, 0, 0, 1, 13, 2, 96, 0, 1, 127, 96, 4, 127, 127, 127, 127, 1, 127, 3, 7, 6, 0, 1, 1, 1, 1, 1, 6, 6, 1, 127, 1, 65, 0, 11, 7, 50, 6, 3, 109, 117, 108, 0, 1, 5, 100, 105, 118, 95, 115, 0, 2, 5, 100, 105, 118, 95, 117, 0, 3, 5, 114, 101, 109, 95, 115, 0, 4, 5, 114, 101, 109, 95, 117, 0, 5, 8, 103, 101, 116, 95, 104, 105, 103, 104, 0, 0, 10, 191, 1, 6, 4, 0, 35, 0, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 126, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 127, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 128, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 129, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11, 36, 1, 1, 126, 32, 0, 173, 32, 1, 173, 66, 32, 134, 132, 32, 2, 173, 32, 3, 173, 66, 32, 134, 132, 130, 34, 4, 66, 32, 135, 167, 36, 0, 32, 4, 167, 11\r\n ])), {}).exports;\r\n} catch (e) {\r\n // no wasm support :(\r\n}\r\n\r\n/**\r\n * Constructs a 64 bit two's-complement integer, given its low and high 32 bit values as *signed* integers.\r\n * See the from* functions below for more convenient ways of constructing Longs.\r\n * @exports Long\r\n * @class A Long class for representing a 64 bit two's-complement integer value.\r\n * @param {number} low The low (signed) 32 bits of the long\r\n * @param {number} high The high (signed) 32 bits of the long\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @constructor\r\n */\r\nfunction Long(low, high, unsigned) {\r\n\r\n /**\r\n * The low 32 bits as a signed value.\r\n * @type {number}\r\n */\r\n this.low = low | 0;\r\n\r\n /**\r\n * The high 32 bits as a signed value.\r\n * @type {number}\r\n */\r\n this.high = high | 0;\r\n\r\n /**\r\n * Whether unsigned or not.\r\n * @type {boolean}\r\n */\r\n this.unsigned = !!unsigned;\r\n}\r\n\r\n// The internal representation of a long is the two given signed, 32-bit values.\r\n// We use 32-bit pieces because these are the size of integers on which\r\n// Javascript performs bit-operations. For operations like addition and\r\n// multiplication, we split each number into 16 bit pieces, which can easily be\r\n// multiplied within Javascript's floating-point representation without overflow\r\n// or change in sign.\r\n//\r\n// In the algorithms below, we frequently reduce the negative case to the\r\n// positive case by negating the input(s) and then post-processing the result.\r\n// Note that we must ALWAYS check specially whether those values are MIN_VALUE\r\n// (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as\r\n// a positive number, it overflows back into a negative). Not handling this\r\n// case would often result in infinite recursion.\r\n//\r\n// Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the from*\r\n// methods on which they depend.\r\n\r\n/**\r\n * An indicator used to reliably determine if an object is a Long or not.\r\n * @type {boolean}\r\n * @const\r\n * @private\r\n */\r\nLong.prototype.__isLong__;\r\n\r\nObject.defineProperty(Long.prototype, \"__isLong__\", { value: true });\r\n\r\n/**\r\n * @function\r\n * @param {*} obj Object\r\n * @returns {boolean}\r\n * @inner\r\n */\r\nfunction isLong(obj) {\r\n return (obj && obj[\"__isLong__\"]) === true;\r\n}\r\n\r\n/**\r\n * Tests if the specified object is a Long.\r\n * @function\r\n * @param {*} obj Object\r\n * @returns {boolean}\r\n */\r\nLong.isLong = isLong;\r\n\r\n/**\r\n * A cache of the Long representations of small integer values.\r\n * @type {!Object}\r\n * @inner\r\n */\r\nvar INT_CACHE = {};\r\n\r\n/**\r\n * A cache of the Long representations of small unsigned integer values.\r\n * @type {!Object}\r\n * @inner\r\n */\r\nvar UINT_CACHE = {};\r\n\r\n/**\r\n * @param {number} value\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromInt(value, unsigned) {\r\n var obj, cachedObj, cache;\r\n if (unsigned) {\r\n value >>>= 0;\r\n if (cache = (0 <= value && value < 256)) {\r\n cachedObj = UINT_CACHE[value];\r\n if (cachedObj)\r\n return cachedObj;\r\n }\r\n obj = fromBits(value, (value | 0) < 0 ? -1 : 0, true);\r\n if (cache)\r\n UINT_CACHE[value] = obj;\r\n return obj;\r\n } else {\r\n value |= 0;\r\n if (cache = (-128 <= value && value < 128)) {\r\n cachedObj = INT_CACHE[value];\r\n if (cachedObj)\r\n return cachedObj;\r\n }\r\n obj = fromBits(value, value < 0 ? -1 : 0, false);\r\n if (cache)\r\n INT_CACHE[value] = obj;\r\n return obj;\r\n }\r\n}\r\n\r\n/**\r\n * Returns a Long representing the given 32 bit integer value.\r\n * @function\r\n * @param {number} value The 32 bit integer in question\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromInt = fromInt;\r\n\r\n/**\r\n * @param {number} value\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromNumber(value, unsigned) {\r\n if (isNaN(value))\r\n return unsigned ? UZERO : ZERO;\r\n if (unsigned) {\r\n if (value < 0)\r\n return UZERO;\r\n if (value >= TWO_PWR_64_DBL)\r\n return MAX_UNSIGNED_VALUE;\r\n } else {\r\n if (value <= -TWO_PWR_63_DBL)\r\n return MIN_VALUE;\r\n if (value + 1 >= TWO_PWR_63_DBL)\r\n return MAX_VALUE;\r\n }\r\n if (value < 0)\r\n return fromNumber(-value, unsigned).neg();\r\n return fromBits((value % TWO_PWR_32_DBL) | 0, (value / TWO_PWR_32_DBL) | 0, unsigned);\r\n}\r\n\r\n/**\r\n * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.\r\n * @function\r\n * @param {number} value The number in question\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromNumber = fromNumber;\r\n\r\n/**\r\n * @param {number} lowBits\r\n * @param {number} highBits\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromBits(lowBits, highBits, unsigned) {\r\n return new Long(lowBits, highBits, unsigned);\r\n}\r\n\r\n/**\r\n * Returns a Long representing the 64 bit integer that comes by concatenating the given low and high bits. Each is\r\n * assumed to use 32 bits.\r\n * @function\r\n * @param {number} lowBits The low 32 bits\r\n * @param {number} highBits The high 32 bits\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromBits = fromBits;\r\n\r\n/**\r\n * @function\r\n * @param {number} base\r\n * @param {number} exponent\r\n * @returns {number}\r\n * @inner\r\n */\r\nvar pow_dbl = Math.pow; // Used 4 times (4*8 to 15+4)\r\n\r\n/**\r\n * @param {string} str\r\n * @param {(boolean|number)=} unsigned\r\n * @param {number=} radix\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromString(str, unsigned, radix) {\r\n if (str.length === 0)\r\n throw Error('empty string');\r\n if (str === \"NaN\" || str === \"Infinity\" || str === \"+Infinity\" || str === \"-Infinity\")\r\n return ZERO;\r\n if (typeof unsigned === 'number') {\r\n // For goog.math.long compatibility\r\n radix = unsigned,\r\n unsigned = false;\r\n } else {\r\n unsigned = !! unsigned;\r\n }\r\n radix = radix || 10;\r\n if (radix < 2 || 36 < radix)\r\n throw RangeError('radix');\r\n\r\n var p;\r\n if ((p = str.indexOf('-')) > 0)\r\n throw Error('interior hyphen');\r\n else if (p === 0) {\r\n return fromString(str.substring(1), unsigned, radix).neg();\r\n }\r\n\r\n // Do several (8) digits each time through the loop, so as to\r\n // minimize the calls to the very expensive emulated div.\r\n var radixToPower = fromNumber(pow_dbl(radix, 8));\r\n\r\n var result = ZERO;\r\n for (var i = 0; i < str.length; i += 8) {\r\n var size = Math.min(8, str.length - i),\r\n value = parseInt(str.substring(i, i + size), radix);\r\n if (size < 8) {\r\n var power = fromNumber(pow_dbl(radix, size));\r\n result = result.mul(power).add(fromNumber(value));\r\n } else {\r\n result = result.mul(radixToPower);\r\n result = result.add(fromNumber(value));\r\n }\r\n }\r\n result.unsigned = unsigned;\r\n return result;\r\n}\r\n\r\n/**\r\n * Returns a Long representation of the given string, written using the specified radix.\r\n * @function\r\n * @param {string} str The textual representation of the Long\r\n * @param {(boolean|number)=} unsigned Whether unsigned or not, defaults to signed\r\n * @param {number=} radix The radix in which the text is written (2-36), defaults to 10\r\n * @returns {!Long} The corresponding Long value\r\n */\r\nLong.fromString = fromString;\r\n\r\n/**\r\n * @function\r\n * @param {!Long|number|string|!{low: number, high: number, unsigned: boolean}} val\r\n * @param {boolean=} unsigned\r\n * @returns {!Long}\r\n * @inner\r\n */\r\nfunction fromValue(val, unsigned) {\r\n if (typeof val === 'number')\r\n return fromNumber(val, unsigned);\r\n if (typeof val === 'string')\r\n return fromString(val, unsigned);\r\n // Throws for non-objects, converts non-instanceof Long:\r\n return fromBits(val.low, val.high, typeof unsigned === 'boolean' ? unsigned : val.unsigned);\r\n}\r\n\r\n/**\r\n * Converts the specified value to a Long using the appropriate from* function for its type.\r\n * @function\r\n * @param {!Long|number|string|!{low: number, high: number, unsigned: boolean}} val Value\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {!Long}\r\n */\r\nLong.fromValue = fromValue;\r\n\r\n// NOTE: the compiler should inline these constant values below and then remove these variables, so there should be\r\n// no runtime penalty for these.\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_16_DBL = 1 << 16;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_24_DBL = 1 << 24;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL;\r\n\r\n/**\r\n * @type {number}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2;\r\n\r\n/**\r\n * @type {!Long}\r\n * @const\r\n * @inner\r\n */\r\nvar TWO_PWR_24 = fromInt(TWO_PWR_24_DBL);\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar ZERO = fromInt(0);\r\n\r\n/**\r\n * Signed zero.\r\n * @type {!Long}\r\n */\r\nLong.ZERO = ZERO;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar UZERO = fromInt(0, true);\r\n\r\n/**\r\n * Unsigned zero.\r\n * @type {!Long}\r\n */\r\nLong.UZERO = UZERO;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar ONE = fromInt(1);\r\n\r\n/**\r\n * Signed one.\r\n * @type {!Long}\r\n */\r\nLong.ONE = ONE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar UONE = fromInt(1, true);\r\n\r\n/**\r\n * Unsigned one.\r\n * @type {!Long}\r\n */\r\nLong.UONE = UONE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar NEG_ONE = fromInt(-1);\r\n\r\n/**\r\n * Signed negative one.\r\n * @type {!Long}\r\n */\r\nLong.NEG_ONE = NEG_ONE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar MAX_VALUE = fromBits(0xFFFFFFFF|0, 0x7FFFFFFF|0, false);\r\n\r\n/**\r\n * Maximum signed value.\r\n * @type {!Long}\r\n */\r\nLong.MAX_VALUE = MAX_VALUE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar MAX_UNSIGNED_VALUE = fromBits(0xFFFFFFFF|0, 0xFFFFFFFF|0, true);\r\n\r\n/**\r\n * Maximum unsigned value.\r\n * @type {!Long}\r\n */\r\nLong.MAX_UNSIGNED_VALUE = MAX_UNSIGNED_VALUE;\r\n\r\n/**\r\n * @type {!Long}\r\n * @inner\r\n */\r\nvar MIN_VALUE = fromBits(0, 0x80000000|0, false);\r\n\r\n/**\r\n * Minimum signed value.\r\n * @type {!Long}\r\n */\r\nLong.MIN_VALUE = MIN_VALUE;\r\n\r\n/**\r\n * @alias Long.prototype\r\n * @inner\r\n */\r\nvar LongPrototype = Long.prototype;\r\n\r\n/**\r\n * Converts the Long to a 32 bit integer, assuming it is a 32 bit integer.\r\n * @returns {number}\r\n */\r\nLongPrototype.toInt = function toInt() {\r\n return this.unsigned ? this.low >>> 0 : this.low;\r\n};\r\n\r\n/**\r\n * Converts the Long to a the nearest floating-point representation of this value (double, 53 bit mantissa).\r\n * @returns {number}\r\n */\r\nLongPrototype.toNumber = function toNumber() {\r\n if (this.unsigned)\r\n return ((this.high >>> 0) * TWO_PWR_32_DBL) + (this.low >>> 0);\r\n return this.high * TWO_PWR_32_DBL + (this.low >>> 0);\r\n};\r\n\r\n/**\r\n * Converts the Long to a string written in the specified radix.\r\n * @param {number=} radix Radix (2-36), defaults to 10\r\n * @returns {string}\r\n * @override\r\n * @throws {RangeError} If `radix` is out of range\r\n */\r\nLongPrototype.toString = function toString(radix) {\r\n radix = radix || 10;\r\n if (radix < 2 || 36 < radix)\r\n throw RangeError('radix');\r\n if (this.isZero())\r\n return '0';\r\n if (this.isNegative()) { // Unsigned Longs are never negative\r\n if (this.eq(MIN_VALUE)) {\r\n // We need to change the Long value before it can be negated, so we remove\r\n // the bottom-most digit in this base and then recurse to do the rest.\r\n var radixLong = fromNumber(radix),\r\n div = this.div(radixLong),\r\n rem1 = div.mul(radixLong).sub(this);\r\n return div.toString(radix) + rem1.toInt().toString(radix);\r\n } else\r\n return '-' + this.neg().toString(radix);\r\n }\r\n\r\n // Do several (6) digits each time through the loop, so as to\r\n // minimize the calls to the very expensive emulated div.\r\n var radixToPower = fromNumber(pow_dbl(radix, 6), this.unsigned),\r\n rem = this;\r\n var result = '';\r\n while (true) {\r\n var remDiv = rem.div(radixToPower),\r\n intval = rem.sub(remDiv.mul(radixToPower)).toInt() >>> 0,\r\n digits = intval.toString(radix);\r\n rem = remDiv;\r\n if (rem.isZero())\r\n return digits + result;\r\n else {\r\n while (digits.length < 6)\r\n digits = '0' + digits;\r\n result = '' + digits + result;\r\n }\r\n }\r\n};\r\n\r\n/**\r\n * Gets the high 32 bits as a signed integer.\r\n * @returns {number} Signed high bits\r\n */\r\nLongPrototype.getHighBits = function getHighBits() {\r\n return this.high;\r\n};\r\n\r\n/**\r\n * Gets the high 32 bits as an unsigned integer.\r\n * @returns {number} Unsigned high bits\r\n */\r\nLongPrototype.getHighBitsUnsigned = function getHighBitsUnsigned() {\r\n return this.high >>> 0;\r\n};\r\n\r\n/**\r\n * Gets the low 32 bits as a signed integer.\r\n * @returns {number} Signed low bits\r\n */\r\nLongPrototype.getLowBits = function getLowBits() {\r\n return this.low;\r\n};\r\n\r\n/**\r\n * Gets the low 32 bits as an unsigned integer.\r\n * @returns {number} Unsigned low bits\r\n */\r\nLongPrototype.getLowBitsUnsigned = function getLowBitsUnsigned() {\r\n return this.low >>> 0;\r\n};\r\n\r\n/**\r\n * Gets the number of bits needed to represent the absolute value of this Long.\r\n * @returns {number}\r\n */\r\nLongPrototype.getNumBitsAbs = function getNumBitsAbs() {\r\n if (this.isNegative()) // Unsigned Longs are never negative\r\n return this.eq(MIN_VALUE) ? 64 : this.neg().getNumBitsAbs();\r\n var val = this.high != 0 ? this.high : this.low;\r\n for (var bit = 31; bit > 0; bit--)\r\n if ((val & (1 << bit)) != 0)\r\n break;\r\n return this.high != 0 ? bit + 33 : bit + 1;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals zero.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isZero = function isZero() {\r\n return this.high === 0 && this.low === 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals zero. This is an alias of {@link Long#isZero}.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.eqz = LongPrototype.isZero;\r\n\r\n/**\r\n * Tests if this Long's value is negative.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isNegative = function isNegative() {\r\n return !this.unsigned && this.high < 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is positive.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isPositive = function isPositive() {\r\n return this.unsigned || this.high >= 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is odd.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isOdd = function isOdd() {\r\n return (this.low & 1) === 1;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is even.\r\n * @returns {boolean}\r\n */\r\nLongPrototype.isEven = function isEven() {\r\n return (this.low & 1) === 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.equals = function equals(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n if (this.unsigned !== other.unsigned && (this.high >>> 31) === 1 && (other.high >>> 31) === 1)\r\n return false;\r\n return this.high === other.high && this.low === other.low;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value equals the specified's. This is an alias of {@link Long#equals}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.eq = LongPrototype.equals;\r\n\r\n/**\r\n * Tests if this Long's value differs from the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.notEquals = function notEquals(other) {\r\n return !this.eq(/* validates */ other);\r\n};\r\n\r\n/**\r\n * Tests if this Long's value differs from the specified's. This is an alias of {@link Long#notEquals}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.neq = LongPrototype.notEquals;\r\n\r\n/**\r\n * Tests if this Long's value differs from the specified's. This is an alias of {@link Long#notEquals}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.ne = LongPrototype.notEquals;\r\n\r\n/**\r\n * Tests if this Long's value is less than the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lessThan = function lessThan(other) {\r\n return this.comp(/* validates */ other) < 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is less than the specified's. This is an alias of {@link Long#lessThan}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lt = LongPrototype.lessThan;\r\n\r\n/**\r\n * Tests if this Long's value is less than or equal the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lessThanOrEqual = function lessThanOrEqual(other) {\r\n return this.comp(/* validates */ other) <= 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is less than or equal the specified's. This is an alias of {@link Long#lessThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.lte = LongPrototype.lessThanOrEqual;\r\n\r\n/**\r\n * Tests if this Long's value is less than or equal the specified's. This is an alias of {@link Long#lessThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.le = LongPrototype.lessThanOrEqual;\r\n\r\n/**\r\n * Tests if this Long's value is greater than the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.greaterThan = function greaterThan(other) {\r\n return this.comp(/* validates */ other) > 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is greater than the specified's. This is an alias of {@link Long#greaterThan}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.gt = LongPrototype.greaterThan;\r\n\r\n/**\r\n * Tests if this Long's value is greater than or equal the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.greaterThanOrEqual = function greaterThanOrEqual(other) {\r\n return this.comp(/* validates */ other) >= 0;\r\n};\r\n\r\n/**\r\n * Tests if this Long's value is greater than or equal the specified's. This is an alias of {@link Long#greaterThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.gte = LongPrototype.greaterThanOrEqual;\r\n\r\n/**\r\n * Tests if this Long's value is greater than or equal the specified's. This is an alias of {@link Long#greaterThanOrEqual}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {boolean}\r\n */\r\nLongPrototype.ge = LongPrototype.greaterThanOrEqual;\r\n\r\n/**\r\n * Compares this Long's value with the specified's.\r\n * @param {!Long|number|string} other Other value\r\n * @returns {number} 0 if they are the same, 1 if the this is greater and -1\r\n * if the given one is greater\r\n */\r\nLongPrototype.compare = function compare(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n if (this.eq(other))\r\n return 0;\r\n var thisNeg = this.isNegative(),\r\n otherNeg = other.isNegative();\r\n if (thisNeg && !otherNeg)\r\n return -1;\r\n if (!thisNeg && otherNeg)\r\n return 1;\r\n // At this point the sign bits are the same\r\n if (!this.unsigned)\r\n return this.sub(other).isNegative() ? -1 : 1;\r\n // Both are positive if at least one is unsigned\r\n return (other.high >>> 0) > (this.high >>> 0) || (other.high === this.high && (other.low >>> 0) > (this.low >>> 0)) ? -1 : 1;\r\n};\r\n\r\n/**\r\n * Compares this Long's value with the specified's. This is an alias of {@link Long#compare}.\r\n * @function\r\n * @param {!Long|number|string} other Other value\r\n * @returns {number} 0 if they are the same, 1 if the this is greater and -1\r\n * if the given one is greater\r\n */\r\nLongPrototype.comp = LongPrototype.compare;\r\n\r\n/**\r\n * Negates this Long's value.\r\n * @returns {!Long} Negated Long\r\n */\r\nLongPrototype.negate = function negate() {\r\n if (!this.unsigned && this.eq(MIN_VALUE))\r\n return MIN_VALUE;\r\n return this.not().add(ONE);\r\n};\r\n\r\n/**\r\n * Negates this Long's value. This is an alias of {@link Long#negate}.\r\n * @function\r\n * @returns {!Long} Negated Long\r\n */\r\nLongPrototype.neg = LongPrototype.negate;\r\n\r\n/**\r\n * Returns the sum of this and the specified Long.\r\n * @param {!Long|number|string} addend Addend\r\n * @returns {!Long} Sum\r\n */\r\nLongPrototype.add = function add(addend) {\r\n if (!isLong(addend))\r\n addend = fromValue(addend);\r\n\r\n // Divide each number into 4 chunks of 16 bits, and then sum the chunks.\r\n\r\n var a48 = this.high >>> 16;\r\n var a32 = this.high & 0xFFFF;\r\n var a16 = this.low >>> 16;\r\n var a00 = this.low & 0xFFFF;\r\n\r\n var b48 = addend.high >>> 16;\r\n var b32 = addend.high & 0xFFFF;\r\n var b16 = addend.low >>> 16;\r\n var b00 = addend.low & 0xFFFF;\r\n\r\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\r\n c00 += a00 + b00;\r\n c16 += c00 >>> 16;\r\n c00 &= 0xFFFF;\r\n c16 += a16 + b16;\r\n c32 += c16 >>> 16;\r\n c16 &= 0xFFFF;\r\n c32 += a32 + b32;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c48 += a48 + b48;\r\n c48 &= 0xFFFF;\r\n return fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the difference of this and the specified Long.\r\n * @param {!Long|number|string} subtrahend Subtrahend\r\n * @returns {!Long} Difference\r\n */\r\nLongPrototype.subtract = function subtract(subtrahend) {\r\n if (!isLong(subtrahend))\r\n subtrahend = fromValue(subtrahend);\r\n return this.add(subtrahend.neg());\r\n};\r\n\r\n/**\r\n * Returns the difference of this and the specified Long. This is an alias of {@link Long#subtract}.\r\n * @function\r\n * @param {!Long|number|string} subtrahend Subtrahend\r\n * @returns {!Long} Difference\r\n */\r\nLongPrototype.sub = LongPrototype.subtract;\r\n\r\n/**\r\n * Returns the product of this and the specified Long.\r\n * @param {!Long|number|string} multiplier Multiplier\r\n * @returns {!Long} Product\r\n */\r\nLongPrototype.multiply = function multiply(multiplier) {\r\n if (this.isZero())\r\n return ZERO;\r\n if (!isLong(multiplier))\r\n multiplier = fromValue(multiplier);\r\n\r\n // use wasm support if present\r\n if (wasm) {\r\n var low = wasm.mul(this.low,\r\n this.high,\r\n multiplier.low,\r\n multiplier.high);\r\n return fromBits(low, wasm.get_high(), this.unsigned);\r\n }\r\n\r\n if (multiplier.isZero())\r\n return ZERO;\r\n if (this.eq(MIN_VALUE))\r\n return multiplier.isOdd() ? MIN_VALUE : ZERO;\r\n if (multiplier.eq(MIN_VALUE))\r\n return this.isOdd() ? MIN_VALUE : ZERO;\r\n\r\n if (this.isNegative()) {\r\n if (multiplier.isNegative())\r\n return this.neg().mul(multiplier.neg());\r\n else\r\n return this.neg().mul(multiplier).neg();\r\n } else if (multiplier.isNegative())\r\n return this.mul(multiplier.neg()).neg();\r\n\r\n // If both longs are small, use float multiplication\r\n if (this.lt(TWO_PWR_24) && multiplier.lt(TWO_PWR_24))\r\n return fromNumber(this.toNumber() * multiplier.toNumber(), this.unsigned);\r\n\r\n // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.\r\n // We can skip products that would overflow.\r\n\r\n var a48 = this.high >>> 16;\r\n var a32 = this.high & 0xFFFF;\r\n var a16 = this.low >>> 16;\r\n var a00 = this.low & 0xFFFF;\r\n\r\n var b48 = multiplier.high >>> 16;\r\n var b32 = multiplier.high & 0xFFFF;\r\n var b16 = multiplier.low >>> 16;\r\n var b00 = multiplier.low & 0xFFFF;\r\n\r\n var c48 = 0, c32 = 0, c16 = 0, c00 = 0;\r\n c00 += a00 * b00;\r\n c16 += c00 >>> 16;\r\n c00 &= 0xFFFF;\r\n c16 += a16 * b00;\r\n c32 += c16 >>> 16;\r\n c16 &= 0xFFFF;\r\n c16 += a00 * b16;\r\n c32 += c16 >>> 16;\r\n c16 &= 0xFFFF;\r\n c32 += a32 * b00;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c32 += a16 * b16;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c32 += a00 * b32;\r\n c48 += c32 >>> 16;\r\n c32 &= 0xFFFF;\r\n c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;\r\n c48 &= 0xFFFF;\r\n return fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the product of this and the specified Long. This is an alias of {@link Long#multiply}.\r\n * @function\r\n * @param {!Long|number|string} multiplier Multiplier\r\n * @returns {!Long} Product\r\n */\r\nLongPrototype.mul = LongPrototype.multiply;\r\n\r\n/**\r\n * Returns this Long divided by the specified. The result is signed if this Long is signed or\r\n * unsigned if this Long is unsigned.\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Quotient\r\n */\r\nLongPrototype.divide = function divide(divisor) {\r\n if (!isLong(divisor))\r\n divisor = fromValue(divisor);\r\n if (divisor.isZero())\r\n throw Error('division by zero');\r\n\r\n // use wasm support if present\r\n if (wasm) {\r\n // guard against signed division overflow: the largest\r\n // negative number / -1 would be 1 larger than the largest\r\n // positive number, due to two's complement.\r\n if (!this.unsigned &&\r\n this.high === -0x80000000 &&\r\n divisor.low === -1 && divisor.high === -1) {\r\n // be consistent with non-wasm code path\r\n return this;\r\n }\r\n var low = (this.unsigned ? wasm.div_u : wasm.div_s)(\r\n this.low,\r\n this.high,\r\n divisor.low,\r\n divisor.high\r\n );\r\n return fromBits(low, wasm.get_high(), this.unsigned);\r\n }\r\n\r\n if (this.isZero())\r\n return this.unsigned ? UZERO : ZERO;\r\n var approx, rem, res;\r\n if (!this.unsigned) {\r\n // This section is only relevant for signed longs and is derived from the\r\n // closure library as a whole.\r\n if (this.eq(MIN_VALUE)) {\r\n if (divisor.eq(ONE) || divisor.eq(NEG_ONE))\r\n return MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE\r\n else if (divisor.eq(MIN_VALUE))\r\n return ONE;\r\n else {\r\n // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.\r\n var halfThis = this.shr(1);\r\n approx = halfThis.div(divisor).shl(1);\r\n if (approx.eq(ZERO)) {\r\n return divisor.isNegative() ? ONE : NEG_ONE;\r\n } else {\r\n rem = this.sub(divisor.mul(approx));\r\n res = approx.add(rem.div(divisor));\r\n return res;\r\n }\r\n }\r\n } else if (divisor.eq(MIN_VALUE))\r\n return this.unsigned ? UZERO : ZERO;\r\n if (this.isNegative()) {\r\n if (divisor.isNegative())\r\n return this.neg().div(divisor.neg());\r\n return this.neg().div(divisor).neg();\r\n } else if (divisor.isNegative())\r\n return this.div(divisor.neg()).neg();\r\n res = ZERO;\r\n } else {\r\n // The algorithm below has not been made for unsigned longs. It's therefore\r\n // required to take special care of the MSB prior to running it.\r\n if (!divisor.unsigned)\r\n divisor = divisor.toUnsigned();\r\n if (divisor.gt(this))\r\n return UZERO;\r\n if (divisor.gt(this.shru(1))) // 15 >>> 1 = 7 ; with divisor = 8 ; true\r\n return UONE;\r\n res = UZERO;\r\n }\r\n\r\n // Repeat the following until the remainder is less than other: find a\r\n // floating-point that approximates remainder / other *from below*, add this\r\n // into the result, and subtract it from the remainder. It is critical that\r\n // the approximate value is less than or equal to the real value so that the\r\n // remainder never becomes negative.\r\n rem = this;\r\n while (rem.gte(divisor)) {\r\n // Approximate the result of division. This may be a little greater or\r\n // smaller than the actual value.\r\n approx = Math.max(1, Math.floor(rem.toNumber() / divisor.toNumber()));\r\n\r\n // We will tweak the approximate result by changing it in the 48-th digit or\r\n // the smallest non-fractional digit, whichever is larger.\r\n var log2 = Math.ceil(Math.log(approx) / Math.LN2),\r\n delta = (log2 <= 48) ? 1 : pow_dbl(2, log2 - 48),\r\n\r\n // Decrease the approximation until it is smaller than the remainder. Note\r\n // that if it is too large, the product overflows and is negative.\r\n approxRes = fromNumber(approx),\r\n approxRem = approxRes.mul(divisor);\r\n while (approxRem.isNegative() || approxRem.gt(rem)) {\r\n approx -= delta;\r\n approxRes = fromNumber(approx, this.unsigned);\r\n approxRem = approxRes.mul(divisor);\r\n }\r\n\r\n // We know the answer can't be zero... and actually, zero would cause\r\n // infinite recursion since we would make no progress.\r\n if (approxRes.isZero())\r\n approxRes = ONE;\r\n\r\n res = res.add(approxRes);\r\n rem = rem.sub(approxRem);\r\n }\r\n return res;\r\n};\r\n\r\n/**\r\n * Returns this Long divided by the specified. This is an alias of {@link Long#divide}.\r\n * @function\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Quotient\r\n */\r\nLongPrototype.div = LongPrototype.divide;\r\n\r\n/**\r\n * Returns this Long modulo the specified.\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Remainder\r\n */\r\nLongPrototype.modulo = function modulo(divisor) {\r\n if (!isLong(divisor))\r\n divisor = fromValue(divisor);\r\n\r\n // use wasm support if present\r\n if (wasm) {\r\n var low = (this.unsigned ? wasm.rem_u : wasm.rem_s)(\r\n this.low,\r\n this.high,\r\n divisor.low,\r\n divisor.high\r\n );\r\n return fromBits(low, wasm.get_high(), this.unsigned);\r\n }\r\n\r\n return this.sub(this.div(divisor).mul(divisor));\r\n};\r\n\r\n/**\r\n * Returns this Long modulo the specified. This is an alias of {@link Long#modulo}.\r\n * @function\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Remainder\r\n */\r\nLongPrototype.mod = LongPrototype.modulo;\r\n\r\n/**\r\n * Returns this Long modulo the specified. This is an alias of {@link Long#modulo}.\r\n * @function\r\n * @param {!Long|number|string} divisor Divisor\r\n * @returns {!Long} Remainder\r\n */\r\nLongPrototype.rem = LongPrototype.modulo;\r\n\r\n/**\r\n * Returns the bitwise NOT of this Long.\r\n * @returns {!Long}\r\n */\r\nLongPrototype.not = function not() {\r\n return fromBits(~this.low, ~this.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the bitwise AND of this Long and the specified.\r\n * @param {!Long|number|string} other Other Long\r\n * @returns {!Long}\r\n */\r\nLongPrototype.and = function and(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n return fromBits(this.low & other.low, this.high & other.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the bitwise OR of this Long and the specified.\r\n * @param {!Long|number|string} other Other Long\r\n * @returns {!Long}\r\n */\r\nLongPrototype.or = function or(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n return fromBits(this.low | other.low, this.high | other.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns the bitwise XOR of this Long and the given one.\r\n * @param {!Long|number|string} other Other Long\r\n * @returns {!Long}\r\n */\r\nLongPrototype.xor = function xor(other) {\r\n if (!isLong(other))\r\n other = fromValue(other);\r\n return fromBits(this.low ^ other.low, this.high ^ other.high, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns this Long with bits shifted to the left by the given amount.\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shiftLeft = function shiftLeft(numBits) {\r\n if (isLong(numBits))\r\n numBits = numBits.toInt();\r\n if ((numBits &= 63) === 0)\r\n return this;\r\n else if (numBits < 32)\r\n return fromBits(this.low << numBits, (this.high << numBits) | (this.low >>> (32 - numBits)), this.unsigned);\r\n else\r\n return fromBits(0, this.low << (numBits - 32), this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns this Long with bits shifted to the left by the given amount. This is an alias of {@link Long#shiftLeft}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shl = LongPrototype.shiftLeft;\r\n\r\n/**\r\n * Returns this Long with bits arithmetically shifted to the right by the given amount.\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shiftRight = function shiftRight(numBits) {\r\n if (isLong(numBits))\r\n numBits = numBits.toInt();\r\n if ((numBits &= 63) === 0)\r\n return this;\r\n else if (numBits < 32)\r\n return fromBits((this.low >>> numBits) | (this.high << (32 - numBits)), this.high >> numBits, this.unsigned);\r\n else\r\n return fromBits(this.high >> (numBits - 32), this.high >= 0 ? 0 : -1, this.unsigned);\r\n};\r\n\r\n/**\r\n * Returns this Long with bits arithmetically shifted to the right by the given amount. This is an alias of {@link Long#shiftRight}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shr = LongPrototype.shiftRight;\r\n\r\n/**\r\n * Returns this Long with bits logically shifted to the right by the given amount.\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shiftRightUnsigned = function shiftRightUnsigned(numBits) {\r\n if (isLong(numBits))\r\n numBits = numBits.toInt();\r\n numBits &= 63;\r\n if (numBits === 0)\r\n return this;\r\n else {\r\n var high = this.high;\r\n if (numBits < 32) {\r\n var low = this.low;\r\n return fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits, this.unsigned);\r\n } else if (numBits === 32)\r\n return fromBits(high, 0, this.unsigned);\r\n else\r\n return fromBits(high >>> (numBits - 32), 0, this.unsigned);\r\n }\r\n};\r\n\r\n/**\r\n * Returns this Long with bits logically shifted to the right by the given amount. This is an alias of {@link Long#shiftRightUnsigned}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shru = LongPrototype.shiftRightUnsigned;\r\n\r\n/**\r\n * Returns this Long with bits logically shifted to the right by the given amount. This is an alias of {@link Long#shiftRightUnsigned}.\r\n * @function\r\n * @param {number|!Long} numBits Number of bits\r\n * @returns {!Long} Shifted Long\r\n */\r\nLongPrototype.shr_u = LongPrototype.shiftRightUnsigned;\r\n\r\n/**\r\n * Converts this Long to signed.\r\n * @returns {!Long} Signed long\r\n */\r\nLongPrototype.toSigned = function toSigned() {\r\n if (!this.unsigned)\r\n return this;\r\n return fromBits(this.low, this.high, false);\r\n};\r\n\r\n/**\r\n * Converts this Long to unsigned.\r\n * @returns {!Long} Unsigned long\r\n */\r\nLongPrototype.toUnsigned = function toUnsigned() {\r\n if (this.unsigned)\r\n return this;\r\n return fromBits(this.low, this.high, true);\r\n};\r\n\r\n/**\r\n * Converts this Long to its byte representation.\r\n * @param {boolean=} le Whether little or big endian, defaults to big endian\r\n * @returns {!Array.} Byte representation\r\n */\r\nLongPrototype.toBytes = function toBytes(le) {\r\n return le ? this.toBytesLE() : this.toBytesBE();\r\n};\r\n\r\n/**\r\n * Converts this Long to its little endian byte representation.\r\n * @returns {!Array.} Little endian byte representation\r\n */\r\nLongPrototype.toBytesLE = function toBytesLE() {\r\n var hi = this.high,\r\n lo = this.low;\r\n return [\r\n lo & 0xff,\r\n lo >>> 8 & 0xff,\r\n lo >>> 16 & 0xff,\r\n lo >>> 24 ,\r\n hi & 0xff,\r\n hi >>> 8 & 0xff,\r\n hi >>> 16 & 0xff,\r\n hi >>> 24\r\n ];\r\n};\r\n\r\n/**\r\n * Converts this Long to its big endian byte representation.\r\n * @returns {!Array.} Big endian byte representation\r\n */\r\nLongPrototype.toBytesBE = function toBytesBE() {\r\n var hi = this.high,\r\n lo = this.low;\r\n return [\r\n hi >>> 24 ,\r\n hi >>> 16 & 0xff,\r\n hi >>> 8 & 0xff,\r\n hi & 0xff,\r\n lo >>> 24 ,\r\n lo >>> 16 & 0xff,\r\n lo >>> 8 & 0xff,\r\n lo & 0xff\r\n ];\r\n};\r\n\r\n/**\r\n * Creates a Long from its byte representation.\r\n * @param {!Array.} bytes Byte representation\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @param {boolean=} le Whether little or big endian, defaults to big endian\r\n * @returns {Long} The corresponding Long value\r\n */\r\nLong.fromBytes = function fromBytes(bytes, unsigned, le) {\r\n return le ? Long.fromBytesLE(bytes, unsigned) : Long.fromBytesBE(bytes, unsigned);\r\n};\r\n\r\n/**\r\n * Creates a Long from its little endian byte representation.\r\n * @param {!Array.} bytes Little endian byte representation\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {Long} The corresponding Long value\r\n */\r\nLong.fromBytesLE = function fromBytesLE(bytes, unsigned) {\r\n return new Long(\r\n bytes[0] |\r\n bytes[1] << 8 |\r\n bytes[2] << 16 |\r\n bytes[3] << 24,\r\n bytes[4] |\r\n bytes[5] << 8 |\r\n bytes[6] << 16 |\r\n bytes[7] << 24,\r\n unsigned\r\n );\r\n};\r\n\r\n/**\r\n * Creates a Long from its big endian byte representation.\r\n * @param {!Array.} bytes Big endian byte representation\r\n * @param {boolean=} unsigned Whether unsigned or not, defaults to signed\r\n * @returns {Long} The corresponding Long value\r\n */\r\nLong.fromBytesBE = function fromBytesBE(bytes, unsigned) {\r\n return new Long(\r\n bytes[4] << 24 |\r\n bytes[5] << 16 |\r\n bytes[6] << 8 |\r\n bytes[7],\r\n bytes[0] << 24 |\r\n bytes[1] << 16 |\r\n bytes[2] << 8 |\r\n bytes[3],\r\n unsigned\r\n );\r\n};\r\n", "", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n// \n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n// \n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = data.toString();\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "", "/*\nCopyright 2014 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\nvar global = this,\n width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\nmath['seed' + rngname] = seedrandom;\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n}\n\n// End anonymous scope, and pass initial values.\n})(\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "// A port of an algorithm by Johannes Baag\u00F8e , 2010\n// http://baagoe.com/en/RandomMusings/javascript/\n// https://github.com/nquinlan/better-random-numbers-for-javascript-mirror\n// Original work is under MIT license -\n\n// Copyright (C) 2010 by Johannes Baag\u00F8e \n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to deal\n// in the Software without restriction, including without limitation the rights\n// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n// copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n//\n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n//\n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\n// THE SOFTWARE.\n\n\n\n(function(global, module, define) {\n\nfunction Alea(seed) {\n var me = this, mash = Mash();\n\n me.next = function() {\n var t = 2091639 * me.s0 + me.c * 2.3283064365386963e-10; // 2^-32\n me.s0 = me.s1;\n me.s1 = me.s2;\n return me.s2 = t - (me.c = t | 0);\n };\n\n // Apply the seeding algorithm from Baagoe.\n me.c = 1;\n me.s0 = mash(' ');\n me.s1 = mash(' ');\n me.s2 = mash(' ');\n me.s0 -= mash(seed);\n if (me.s0 < 0) { me.s0 += 1; }\n me.s1 -= mash(seed);\n if (me.s1 < 0) { me.s1 += 1; }\n me.s2 -= mash(seed);\n if (me.s2 < 0) { me.s2 += 1; }\n mash = null;\n}\n\nfunction copy(f, t) {\n t.c = f.c;\n t.s0 = f.s0;\n t.s1 = f.s1;\n t.s2 = f.s2;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new Alea(seed),\n state = opts && opts.state,\n prng = xg.next;\n prng.int32 = function() { return (xg.next() * 0x100000000) | 0; }\n prng.double = function() {\n return prng() + (prng() * 0x200000 | 0) * 1.1102230246251565e-16; // 2^-53\n };\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nfunction Mash() {\n var n = 0xefc8249d;\n\n var mash = function(data) {\n data = String(data);\n for (var i = 0; i < data.length; i++) {\n n += data.charCodeAt(i);\n var h = 0.02519603282416938 * n;\n n = h >>> 0;\n h -= n;\n h *= n;\n n = h >>> 0;\n h -= n;\n n += h * 0x100000000; // 2^32\n }\n return (n >>> 0) * 2.3283064365386963e-10; // 2^-32\n };\n\n return mash;\n}\n\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.alea = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xor128\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n\n // Set up generator function.\n me.next = function() {\n var t = me.x ^ (me.x << 11);\n me.x = me.y;\n me.y = me.z;\n me.z = me.w;\n return me.w ^= (me.w >>> 19) ^ t ^ (t >>> 8);\n };\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor128 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorwow\" prng algorithm by\n// George Marsaglia. See http://www.jstatsoft.org/v08/i14/paper\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var t = (me.x ^ (me.x >>> 2));\n me.x = me.y; me.y = me.z; me.z = me.w; me.w = me.v;\n return (me.d = (me.d + 362437 | 0)) +\n (me.v = (me.v ^ (me.v << 4)) ^ (t ^ (t << 1))) | 0;\n };\n\n me.x = 0;\n me.y = 0;\n me.z = 0;\n me.w = 0;\n me.v = 0;\n\n if (seed === (seed | 0)) {\n // Integer seed.\n me.x = seed;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 64; k++) {\n me.x ^= strseed.charCodeAt(k) | 0;\n if (k == strseed.length) {\n me.d = me.x << 10 ^ me.x >>> 4;\n }\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.x = f.x;\n t.y = f.y;\n t.z = f.z;\n t.w = f.w;\n t.v = f.v;\n t.d = f.d;\n return t;\n}\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorwow = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "// A Javascript implementaion of the \"xorshift7\" algorithm by\n// Fran\u00E7ois Panneton and Pierre L'ecuyer:\n// \"On the Xorgshift Random Number Generators\"\n// http://saluc.engr.uconn.edu/refs/crypto/rng/panneton05onthexorshift.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n // Update xor generator.\n var X = me.x, i = me.i, t, v, w;\n t = X[i]; t ^= (t >>> 7); v = t ^ (t << 24);\n t = X[(i + 1) & 7]; v ^= t ^ (t >>> 10);\n t = X[(i + 3) & 7]; v ^= t ^ (t >>> 3);\n t = X[(i + 4) & 7]; v ^= t ^ (t << 7);\n t = X[(i + 7) & 7]; t = t ^ (t << 13); v ^= t ^ (t << 9);\n X[i] = v;\n me.i = (i + 1) & 7;\n return v;\n };\n\n function init(me, seed) {\n var j, w, X = [];\n\n if (seed === (seed | 0)) {\n // Seed state array using a 32-bit integer.\n w = X[0] = seed;\n } else {\n // Seed state using a string.\n seed = '' + seed;\n for (j = 0; j < seed.length; ++j) {\n X[j & 7] = (X[j & 7] << 15) ^\n (seed.charCodeAt(j) + X[(j + 1) & 7] << 13);\n }\n }\n // Enforce an array length of 8, not all zeroes.\n while (X.length < 8) X.push(0);\n for (j = 0; j < 8 && X[j] === 0; ++j);\n if (j == 8) w = X[7] = -1; else w = X[j];\n\n me.x = X;\n me.i = 0;\n\n // Discard an initial 256 values.\n for (j = 256; j > 0; --j) {\n me.next();\n }\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.x = f.x.slice();\n t.i = f.i;\n return t;\n}\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.x) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xorshift7 = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n", "// A Javascript implementaion of Richard Brent's Xorgens xor4096 algorithm.\n//\n// This fast non-cryptographic random number generator is designed for\n// use in Monte-Carlo algorithms. It combines a long-period xorshift\n// generator with a Weyl generator, and it passes all common batteries\n// of stasticial tests for randomness while consuming only a few nanoseconds\n// for each prng generated. For background on the generator, see Brent's\n// paper: \"Some long-period random number generators using shifts and xors.\"\n// http://arxiv.org/pdf/1004.3115v1.pdf\n//\n// Usage:\n//\n// var xor4096 = require('xor4096');\n// random = xor4096(1); // Seed with int32 or string.\n// assert.equal(random(), 0.1520436450538547); // (0, 1) range, 53 bits.\n// assert.equal(random.int32(), 1806534897); // signed int32, 32 bits.\n//\n// For nonzero numeric keys, this impelementation provides a sequence\n// identical to that by Brent's xorgens 3 implementaion in C. This\n// implementation also provides for initalizing the generator with\n// string seeds, or for saving and restoring the state of the generator.\n//\n// On Chrome, this prng benchmarks about 2.1 times slower than\n// Javascript's built-in Math.random().\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this;\n\n // Set up generator function.\n me.next = function() {\n var w = me.w,\n X = me.X, i = me.i, t, v;\n // Update Weyl generator.\n me.w = w = (w + 0x61c88647) | 0;\n // Update xor generator.\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n // Update Xor generator array state.\n v = X[i] = v ^ t;\n me.i = i;\n // Result is the combination.\n return (v + (w ^ (w >>> 16))) | 0;\n };\n\n function init(me, seed) {\n var t, v, i, j, w, X = [], limit = 128;\n if (seed === (seed | 0)) {\n // Numeric seeds initialize v, which is used to generates X.\n v = seed;\n seed = null;\n } else {\n // String seeds are mixed into v and X one character at a time.\n seed = seed + '\\0';\n v = 0;\n limit = Math.max(limit, seed.length);\n }\n // Initialize circular array and weyl value.\n for (i = 0, j = -32; j < limit; ++j) {\n // Put the unicode characters into the array, and shuffle them.\n if (seed) v ^= seed.charCodeAt((j + 32) % seed.length);\n // After 32 shuffles, take v as the starting w value.\n if (j === 0) w = v;\n v ^= v << 10;\n v ^= v >>> 15;\n v ^= v << 4;\n v ^= v >>> 13;\n if (j >= 0) {\n w = (w + 0x61c88647) | 0; // Weyl.\n t = (X[j & 127] ^= (v + w)); // Combine xor and weyl to init array.\n i = (0 == t) ? i + 1 : 0; // Count zeroes.\n }\n }\n // We have detected all zeroes; make the key nonzero.\n if (i >= 128) {\n X[(seed && seed.length || 0) & 127] = -1;\n }\n // Run the generator 512 times to further mix the state before using it.\n // Factoring this as a function slows the main generator, so it is just\n // unrolled here. The weyl generator is not advanced while warming up.\n i = 127;\n for (j = 4 * 128; j > 0; --j) {\n v = X[(i + 34) & 127];\n t = X[i = ((i + 1) & 127)];\n v ^= v << 13;\n t ^= t << 17;\n v ^= v >>> 15;\n t ^= t >>> 12;\n X[i] = v ^ t;\n }\n // Storing state as object members is faster than using closure variables.\n me.w = w;\n me.X = X;\n me.i = i;\n }\n\n init(me, seed);\n}\n\nfunction copy(f, t) {\n t.i = f.i;\n t.w = f.w;\n t.X = f.X.slice();\n return t;\n};\n\nfunction impl(seed, opts) {\n if (seed == null) seed = +(new Date);\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (state.X) copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.xor4096 = impl;\n}\n\n})(\n this, // window object or global\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n", "// A Javascript implementaion of the \"Tyche-i\" prng algorithm by\n// Samuel Neves and Filipe Araujo.\n// See https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n\n(function(global, module, define) {\n\nfunction XorGen(seed) {\n var me = this, strseed = '';\n\n // Set up generator function.\n me.next = function() {\n var b = me.b, c = me.c, d = me.d, a = me.a;\n b = (b << 25) ^ (b >>> 7) ^ c;\n c = (c - d) | 0;\n d = (d << 24) ^ (d >>> 8) ^ a;\n a = (a - b) | 0;\n me.b = b = (b << 20) ^ (b >>> 12) ^ c;\n me.c = c = (c - d) | 0;\n me.d = (d << 16) ^ (c >>> 16) ^ a;\n return me.a = (a - b) | 0;\n };\n\n /* The following is non-inverted tyche, which has better internal\n * bit diffusion, but which is about 25% slower than tyche-i in JS.\n me.next = function() {\n var a = me.a, b = me.b, c = me.c, d = me.d;\n a = (me.a + me.b | 0) >>> 0;\n d = me.d ^ a; d = d << 16 ^ d >>> 16;\n c = me.c + d | 0;\n b = me.b ^ c; b = b << 12 ^ d >>> 20;\n me.a = a = a + b | 0;\n d = d ^ a; me.d = d = d << 8 ^ d >>> 24;\n me.c = c = c + d | 0;\n b = b ^ c;\n return me.b = (b << 7 ^ b >>> 25);\n }\n */\n\n me.a = 0;\n me.b = 0;\n me.c = 2654435769 | 0;\n me.d = 1367130551;\n\n if (seed === Math.floor(seed)) {\n // Integer seed.\n me.a = (seed / 0x100000000) | 0;\n me.b = seed | 0;\n } else {\n // String seed.\n strseed += seed;\n }\n\n // Mix in string seed, then discard an initial batch of 64 values.\n for (var k = 0; k < strseed.length + 20; k++) {\n me.b ^= strseed.charCodeAt(k) | 0;\n me.next();\n }\n}\n\nfunction copy(f, t) {\n t.a = f.a;\n t.b = f.b;\n t.c = f.c;\n t.d = f.d;\n return t;\n};\n\nfunction impl(seed, opts) {\n var xg = new XorGen(seed),\n state = opts && opts.state,\n prng = function() { return (xg.next() >>> 0) / 0x100000000; };\n prng.double = function() {\n do {\n var top = xg.next() >>> 11,\n bot = (xg.next() >>> 0) / 0x100000000,\n result = (top + bot) / (1 << 21);\n } while (result === 0);\n return result;\n };\n prng.int32 = xg.next;\n prng.quick = prng;\n if (state) {\n if (typeof(state) == 'object') copy(state, xg);\n prng.state = function() { return copy(xg, {}); }\n }\n return prng;\n}\n\nif (module && module.exports) {\n module.exports = impl;\n} else if (define && define.amd) {\n define(function() { return impl; });\n} else {\n this.tychei = impl;\n}\n\n})(\n this,\n (typeof module) == 'object' && module, // present in node.js\n (typeof define) == 'function' && define // present with an AMD loader\n);\n\n\n", "/*\nCopyright 2019 David Bau.\n\nPermission is hereby granted, free of charge, to any person obtaining\na copy of this software and associated documentation files (the\n\"Software\"), to deal in the Software without restriction, including\nwithout limitation the rights to use, copy, modify, merge, publish,\ndistribute, sublicense, and/or sell copies of the Software, and to\npermit persons to whom the Software is furnished to do so, subject to\nthe following conditions:\n\nThe above copyright notice and this permission notice shall be\nincluded in all copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\nEXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\nMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.\nIN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY\nCLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,\nTORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\nSOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n*/\n\n(function (global, pool, math) {\n//\n// The following constants are related to IEEE 754 limits.\n//\n\nvar width = 256, // each RC4 output is 0 <= x < 256\n chunks = 6, // at least six RC4 outputs for each double\n digits = 52, // there are 52 significant digits in a double\n rngname = 'random', // rngname: name for Math.random and Math.seedrandom\n startdenom = math.pow(width, chunks),\n significance = math.pow(2, digits),\n overflow = significance * 2,\n mask = width - 1,\n nodecrypto; // node.js crypto module, initialized at the bottom.\n\n//\n// seedrandom()\n// This is the seedrandom function described above.\n//\nfunction seedrandom(seed, options, callback) {\n var key = [];\n options = (options == true) ? { entropy: true } : (options || {});\n\n // Flatten the seed string or build one from local entropy if needed.\n var shortseed = mixkey(flatten(\n options.entropy ? [seed, tostring(pool)] :\n (seed == null) ? autoseed() : seed, 3), key);\n\n // Use the seed to initialize an ARC4 generator.\n var arc4 = new ARC4(key);\n\n // This function returns a random double in [0, 1) that contains\n // randomness in every bit of the mantissa of the IEEE 754 value.\n var prng = function() {\n var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48\n d = startdenom, // and denominator d = 2 ^ 48.\n x = 0; // and no 'extra last byte'.\n while (n < significance) { // Fill up all significant digits by\n n = (n + x) * width; // shifting numerator and\n d *= width; // denominator and generating a\n x = arc4.g(1); // new least-significant-byte.\n }\n while (n >= overflow) { // To avoid rounding up, before adding\n n /= 2; // last byte, shift everything\n d /= 2; // right using integer math until\n x >>>= 1; // we have exactly the desired bits.\n }\n return (n + x) / d; // Form the number within [0, 1).\n };\n\n prng.int32 = function() { return arc4.g(4) | 0; }\n prng.quick = function() { return arc4.g(4) / 0x100000000; }\n prng.double = prng;\n\n // Mix the randomness into accumulated entropy.\n mixkey(tostring(arc4.S), pool);\n\n // Calling convention: what to return as a function of prng, seed, is_math.\n return (options.pass || callback ||\n function(prng, seed, is_math_call, state) {\n if (state) {\n // Load the arc4 state from the given state if it has an S array.\n if (state.S) { copy(state, arc4); }\n // Only provide the .state method if requested via options.state.\n prng.state = function() { return copy(arc4, {}); }\n }\n\n // If called as a method of Math (Math.seedrandom()), mutate\n // Math.random because that is how seedrandom.js has worked since v1.0.\n if (is_math_call) { math[rngname] = prng; return seed; }\n\n // Otherwise, it is a newer calling convention, so return the\n // prng directly.\n else return prng;\n })(\n prng,\n shortseed,\n 'global' in options ? options.global : (this == math),\n options.state);\n}\n\n//\n// ARC4\n//\n// An ARC4 implementation. The constructor takes a key in the form of\n// an array of at most (width) integers that should be 0 <= x < (width).\n//\n// The g(count) method returns a pseudorandom integer that concatenates\n// the next (count) outputs from ARC4. Its return value is a number x\n// that is in the range 0 <= x < (width ^ count).\n//\nfunction ARC4(key) {\n var t, keylen = key.length,\n me = this, i = 0, j = me.i = me.j = 0, s = me.S = [];\n\n // The empty key [] is treated as [0].\n if (!keylen) { key = [keylen++]; }\n\n // Set up S using the standard key scheduling algorithm.\n while (i < width) {\n s[i] = i++;\n }\n for (i = 0; i < width; i++) {\n s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];\n s[j] = t;\n }\n\n // The \"g\" method returns the next (count) outputs as one number.\n (me.g = function(count) {\n // Using instance members instead of closure state nearly doubles speed.\n var t, r = 0,\n i = me.i, j = me.j, s = me.S;\n while (count--) {\n t = s[i = mask & (i + 1)];\n r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))];\n }\n me.i = i; me.j = j;\n return r;\n // For robust unpredictability, the function call below automatically\n // discards an initial batch of values. This is called RC4-drop[256].\n // See http://google.com/search?q=rsa+fluhrer+response&btnI\n })(width);\n}\n\n//\n// copy()\n// Copies internal state of ARC4 to or from a plain object.\n//\nfunction copy(f, t) {\n t.i = f.i;\n t.j = f.j;\n t.S = f.S.slice();\n return t;\n};\n\n//\n// flatten()\n// Converts an object tree to nested arrays of strings.\n//\nfunction flatten(obj, depth) {\n var result = [], typ = (typeof obj), prop;\n if (depth && typ == 'object') {\n for (prop in obj) {\n try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {}\n }\n }\n return (result.length ? result : typ == 'string' ? obj : obj + '\\0');\n}\n\n//\n// mixkey()\n// Mixes a string seed into a key that is an array of integers, and\n// returns a shortened string seed that is equivalent to the result key.\n//\nfunction mixkey(seed, key) {\n var stringseed = seed + '', smear, j = 0;\n while (j < stringseed.length) {\n key[mask & j] =\n mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++));\n }\n return tostring(key);\n}\n\n//\n// autoseed()\n// Returns an object for autoseeding, using window.crypto and Node crypto\n// module if available.\n//\nfunction autoseed() {\n try {\n var out;\n if (nodecrypto && (out = nodecrypto.randomBytes)) {\n // The use of 'out' to remember randomBytes makes tight minified code.\n out = out(width);\n } else {\n out = new Uint8Array(width);\n (global.crypto || global.msCrypto).getRandomValues(out);\n }\n return tostring(out);\n } catch (e) {\n var browser = global.navigator,\n plugins = browser && browser.plugins;\n return [+new Date, global, plugins, global.screen, tostring(pool)];\n }\n}\n\n//\n// tostring()\n// Converts an array of charcodes to a string\n//\nfunction tostring(a) {\n return String.fromCharCode.apply(0, a);\n}\n\n//\n// When seedrandom.js is loaded, we immediately mix a few bits\n// from the built-in RNG into the entropy pool. Because we do\n// not want to interfere with deterministic PRNG state later,\n// seedrandom will not call math.random on its own again after\n// initialization.\n//\nmixkey(math.random(), pool);\n\n//\n// Nodejs and AMD support: export the implementation as a module using\n// either convention.\n//\nif ((typeof module) == 'object' && module.exports) {\n module.exports = seedrandom;\n // When in node.js, try using crypto package for autoseeding.\n try {\n nodecrypto = require('crypto');\n } catch (ex) {}\n} else if ((typeof define) == 'function' && define.amd) {\n define(function() { return seedrandom; });\n} else {\n // When included as a plain script, set up Math.seedrandom global.\n math['seed' + rngname] = seedrandom;\n}\n\n\n// End anonymous scope, and pass initial values.\n})(\n // global: `self` in browsers (including strict mode and web workers),\n // otherwise `this` in Node and other environments\n (typeof self !== 'undefined') ? self : this,\n [], // pool: entropy pool starts empty\n Math // math: package containing random, pow, and seedrandom\n);\n", "// A library of seedable RNGs implemented in Javascript.\n//\n// Usage:\n//\n// var seedrandom = require('seedrandom');\n// var random = seedrandom(1); // or any seed.\n// var x = random(); // 0 <= x < 1. Every bit is random.\n// var x = random.quick(); // 0 <= x < 1. 32 bits of randomness.\n\n// alea, a 53-bit multiply-with-carry generator by Johannes Baag\u00F8e.\n// Period: ~2^116\n// Reported to pass all BigCrush tests.\nvar alea = require('./lib/alea');\n\n// xor128, a pure xor-shift generator by George Marsaglia.\n// Period: 2^128-1.\n// Reported to fail: MatrixRank and LinearComp.\nvar xor128 = require('./lib/xor128');\n\n// xorwow, George Marsaglia's 160-bit xor-shift combined plus weyl.\n// Period: 2^192-2^32\n// Reported to fail: CollisionOver, SimpPoker, and LinearComp.\nvar xorwow = require('./lib/xorwow');\n\n// xorshift7, by Fran\u00E7ois Panneton and Pierre L'ecuyer, takes\n// a different approach: it adds robustness by allowing more shifts\n// than Marsaglia's original three. It is a 7-shift generator\n// with 256 bits, that passes BigCrush with no systmatic failures.\n// Period 2^256-1.\n// No systematic BigCrush failures reported.\nvar xorshift7 = require('./lib/xorshift7');\n\n// xor4096, by Richard Brent, is a 4096-bit xor-shift with a\n// very long period that also adds a Weyl generator. It also passes\n// BigCrush with no systematic failures. Its long period may\n// be useful if you have many generators and need to avoid\n// collisions.\n// Period: 2^4128-2^32.\n// No systematic BigCrush failures reported.\nvar xor4096 = require('./lib/xor4096');\n\n// Tyche-i, by Samuel Neves and Filipe Araujo, is a bit-shifting random\n// number generator derived from ChaCha, a modern stream cipher.\n// https://eden.dei.uc.pt/~sneves/pubs/2011-snfa2.pdf\n// Period: ~2^127\n// No systematic BigCrush failures reported.\nvar tychei = require('./lib/tychei');\n\n// The original ARC4-based prng included in this library.\n// Period: ~2^1600\nvar sr = require('./seedrandom');\n\nsr.alea = alea;\nsr.xor128 = xor128;\nsr.xorwow = xorwow;\nsr.xorshift7 = xorshift7;\nsr.xor4096 = xor4096;\nsr.tychei = tychei;\n\nmodule.exports = sr;\n", "", "", "", "", "\nvar WasmBackendModuleThreadedSimd = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModuleThreadedSimd) {\n WasmBackendModuleThreadedSimd = WasmBackendModuleThreadedSimd || {};\n\nfunction GROWABLE_HEAP_I8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP8}function GROWABLE_HEAP_U8(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU8}function GROWABLE_HEAP_I32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAP32}function GROWABLE_HEAP_U32(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPU32}function GROWABLE_HEAP_F64(){if(wasmMemory.buffer!=buffer){updateGlobalBufferAndViews(wasmMemory.buffer)}return HEAPF64}var Module=typeof WasmBackendModuleThreadedSimd!==\"undefined\"?WasmBackendModuleThreadedSimd:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var ENVIRONMENT_IS_PTHREAD=Module[\"ENVIRONMENT_IS_PTHREAD\"]||false;if(ENVIRONMENT_IS_PTHREAD){buffer=Module[\"buffer\"]}var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"};var nodeWorkerThreads;try{nodeWorkerThreads=require(\"worker_threads\")}catch(e){console.error('The \"worker_threads\" module is not supported in this node.js build - perhaps a newer version is needed?');throw e}global.Worker=nodeWorkerThreads.Worker}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(typeof _scriptDir !== \"undefined\" && _scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}if(ENVIRONMENT_IS_NODE){read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret}}else{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}if(ENVIRONMENT_IS_NODE){if(typeof performance===\"undefined\"){global.performance=require(\"perf_hooks\").performance}}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var Atomics_load=Atomics.load;var Atomics_store=Atomics.store;var Atomics_compareExchange=Atomics.compareExchange;var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var wasmModule;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx)){var u0=heap[idx++];if(!u0)return str;if(!(u0&128)){str+=String.fromCharCode(u0);continue}var u1=heap[idx++]&63;if((u0&224)==192){str+=String.fromCharCode((u0&31)<<6|u1);continue}var u2=heap[idx++]&63;if((u0&240)==224){u0=(u0&15)<<12|u1<<6|u2}else{u0=(u0&7)<<18|u1<<12|u2<<6|heap[idx++]&63}if(u0<65536){str+=String.fromCharCode(u0)}else{var ch=u0-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(GROWABLE_HEAP_U8(),ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,GROWABLE_HEAP_U8(),outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function writeArrayToMemory(array,buffer){GROWABLE_HEAP_I8().set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;if(ENVIRONMENT_IS_PTHREAD){wasmMemory=Module[\"wasmMemory\"];buffer=Module[\"buffer\"]}else{if(Module[\"wasmMemory\"]){wasmMemory=Module[\"wasmMemory\"]}else{wasmMemory=new WebAssembly.Memory({\"initial\":INITIAL_MEMORY/65536,\"maximum\":2147483648/65536,\"shared\":true});if(!(wasmMemory.buffer instanceof SharedArrayBuffer)){err(\"requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag\");if(ENVIRONMENT_IS_NODE){console.log(\"(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)\")}throw Error(\"bad memory\")}}}if(wasmMemory){buffer=wasmMemory.buffer}INITIAL_MEMORY=buffer.byteLength;updateGlobalBufferAndViews(buffer);var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;if(!ENVIRONMENT_IS_PTHREAD)__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATINIT__)}function preMain(){if(ENVIRONMENT_IS_PTHREAD)return;callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){if(ENVIRONMENT_IS_PTHREAD)return;runtimeExited=true}function postRun(){if(ENVIRONMENT_IS_PTHREAD)return;if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){assert(!ENVIRONMENT_IS_PTHREAD,\"addRunDependency cannot be used in a pthread worker\");runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}if(ENVIRONMENT_IS_PTHREAD)console.error(\"Pthread aborting at \"+(new Error).stack);what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm-threaded-simd.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmTable=Module[\"asm\"][\"F\"];wasmModule=module;if(!ENVIRONMENT_IS_PTHREAD){var numWorkersToLoad=PThread.unusedWorkers.length;PThread.unusedWorkers.forEach(function(w){PThread.loadWasmModuleToWorker(w,function(){if(!--numWorkersToLoad)removeRunDependency(\"wasm-instantiate\")})})}}if(!ENVIRONMENT_IS_PTHREAD){addRunDependency(\"wasm-instantiate\")}function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"],output[\"module\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}var ASM_CONSTS={9816:function(){throw\"Canceled!\"},9834:function($0,$1){setTimeout(function(){__emscripten_do_dispatch_to_thread($0,$1)},0)}};function initPthreadsJS(){PThread.initRuntime()}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _emscripten_futex_wake(addr,count){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0||count<0)return-28;if(count==0)return 0;if(count>=2147483647)count=Infinity;var mainThreadWaitAddress=Atomics.load(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2);var mainThreadWoken=0;if(mainThreadWaitAddress==addr){var loadedAddr=Atomics.compareExchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,mainThreadWaitAddress,0);if(loadedAddr==mainThreadWaitAddress){--count;mainThreadWoken=1;if(count<=0)return 1}}var ret=Atomics.notify(GROWABLE_HEAP_I32(),addr>>2,count);if(ret>=0)return ret+mainThreadWoken;throw\"Atomics.notify returned an unexpected value \"+ret}Module[\"_emscripten_futex_wake\"]=_emscripten_futex_wake;function killThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! killThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in killThread!\";GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var pthread=PThread.pthreads[pthread_ptr];pthread.worker.terminate();PThread.freeThreadData(pthread);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(pthread.worker),1);pthread.worker.pthread=undefined}function cancelThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cancelThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cancelThread!\";var pthread=PThread.pthreads[pthread_ptr];pthread.worker.postMessage({\"cmd\":\"cancel\"})}function cleanupThread(pthread_ptr){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! cleanupThread() can only ever be called from main application thread!\";if(!pthread_ptr)throw\"Internal Error! Null pthread_ptr in cleanupThread!\";var pthread=PThread.pthreads[pthread_ptr];if(pthread){GROWABLE_HEAP_I32()[pthread_ptr+12>>2]=0;var worker=pthread.worker;PThread.returnWorkerToPool(worker)}}var PThread={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){var pthreadPoolSize=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2));for(var i=0;i>2]=tb;var headPtr=tb+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var tlsMemory=_malloc(512);for(var i=0;i<128;++i)GROWABLE_HEAP_U32()[tlsMemory/4+i]=0;Atomics.store(GROWABLE_HEAP_U32(),tb+100>>2,tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tb+40>>2,tb);__emscripten_thread_init(tb,!ENVIRONMENT_IS_WORKER,1);_emscripten_register_main_browser_thread_id(tb)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){while(PThread.threadExitHandlers.length>0){PThread.threadExitHandlers.pop()()}if(ENVIRONMENT_IS_PTHREAD&&_pthread_self())___pthread_tsd_run_dtors()},runExitHandlersAndDeinitThread:function(tb,exitCode){Atomics.store(GROWABLE_HEAP_U32(),tb+56>>2,1);Atomics.store(GROWABLE_HEAP_U32(),tb+60>>2,0);PThread.runExitHandlers();Atomics.store(GROWABLE_HEAP_U32(),tb+4>>2,exitCode);Atomics.store(GROWABLE_HEAP_U32(),tb+0>>2,1);_emscripten_futex_wake(tb+0,2147483647);__emscripten_thread_init(0,0,0)},threadExit:function(exitCode){var tb=_pthread_self();if(tb){PThread.runExitHandlersAndDeinitThread(tb,exitCode);if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exit\"})}}},threadCancel:function(){PThread.runExitHandlersAndDeinitThread(_pthread_self(),-1);postMessage({\"cmd\":\"cancelDone\"})},terminateAllThreads:function(){for(var t in PThread.pthreads){var pthread=PThread.pthreads[t];if(pthread&&pthread.worker){PThread.returnWorkerToPool(pthread.worker)}}PThread.pthreads={};for(var i=0;i>2];GROWABLE_HEAP_I32()[pthread.threadInfoStruct+100>>2]=0;_free(tlsMemory);_free(pthread.threadInfoStruct)}pthread.threadInfoStruct=0;if(pthread.allocatedOwnStack&&pthread.stackBase)_free(pthread.stackBase);pthread.stackBase=0;if(pthread.worker)pthread.worker.pthread=null},returnWorkerToPool:function(worker){PThread.runWithoutMainThreadQueuedCalls(function(){delete PThread.pthreads[worker.pthread.threadInfoStruct];PThread.unusedWorkers.push(worker);PThread.runningWorkers.splice(PThread.runningWorkers.indexOf(worker),1);PThread.freeThreadData(worker.pthread);worker.pthread=undefined})},runWithoutMainThreadQueuedCalls:function(func){GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=0;try{func()}finally{GROWABLE_HEAP_I32()[__emscripten_allow_main_runtime_queued_calls>>2]=1}},receiveObjectTransfer:function(data){},loadWasmModuleToWorker:function(worker,onFinishedLoading){worker.onmessage=function(e){var d=e[\"data\"];var cmd=d[\"cmd\"];if(worker.pthread)PThread.currentProxiedOperationCallerThread=worker.pthread.threadInfoStruct;if(d[\"targetThread\"]&&d[\"targetThread\"]!=_pthread_self()){var thread=PThread.pthreads[d.targetThread];if(thread){thread.worker.postMessage(e.data,d[\"transferList\"])}else{console.error('Internal error! Worker sent a message \"'+cmd+'\" to target pthread '+d[\"targetThread\"]+\", but that thread no longer exists!\")}PThread.currentProxiedOperationCallerThread=undefined;return}if(cmd===\"processQueuedMainThreadWork\"){_emscripten_main_thread_process_queued_calls()}else if(cmd===\"spawnThread\"){spawnThread(e.data)}else if(cmd===\"cleanupThread\"){cleanupThread(d[\"thread\"])}else if(cmd===\"killThread\"){killThread(d[\"thread\"])}else if(cmd===\"cancelThread\"){cancelThread(d[\"thread\"])}else if(cmd===\"loaded\"){worker.loaded=true;if(onFinishedLoading)onFinishedLoading(worker);if(worker.runPthread){worker.runPthread();delete worker.runPthread}}else if(cmd===\"print\"){out(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"printErr\"){err(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"alert\"){alert(\"Thread \"+d[\"threadId\"]+\": \"+d[\"text\"])}else if(cmd===\"exit\"){var detached=worker.pthread&&Atomics.load(GROWABLE_HEAP_U32(),worker.pthread.threadInfoStruct+64>>2);if(detached){PThread.returnWorkerToPool(worker)}}else if(cmd===\"exitProcess\"){try{exit(d[\"returnCode\"])}catch(e){if(e instanceof ExitStatus)return;throw e}}else if(cmd===\"cancelDone\"){PThread.returnWorkerToPool(worker)}else if(cmd===\"objectTransfer\"){PThread.receiveObjectTransfer(e.data)}else if(e.data.target===\"setimmediate\"){worker.postMessage(e.data)}else{err(\"worker sent an unknown command \"+cmd)}PThread.currentProxiedOperationCallerThread=undefined};worker.onerror=function(e){err(\"pthread sent an error! \"+e.filename+\":\"+e.lineno+\": \"+e.message)};if(ENVIRONMENT_IS_NODE){worker.on(\"message\",function(data){worker.onmessage({data:data})});worker.on(\"error\",function(data){worker.onerror(data)});worker.on(\"exit\",function(data){})}worker.postMessage({\"cmd\":\"load\",\"urlOrBlob\":Module[\"mainScriptUrlOrBlob\"]||_scriptDir,\"wasmMemory\":wasmMemory,\"wasmModule\":wasmModule})},allocateUnusedWorker:function(){var pthreadMainJs=locateFile(\"tfjs-backend-wasm-threaded-simd.worker.js\");PThread.unusedWorkers.push(new Worker(pthreadMainJs))},getNewWorker:function(){if(PThread.unusedWorkers.length==0){PThread.allocateUnusedWorker();PThread.loadWasmModuleToWorker(PThread.unusedWorkers[0])}if(PThread.unusedWorkers.length>0)return PThread.unusedWorkers.pop();else return null},busySpinWait:function(msecs){var t=performance.now()+msecs;while(performance.now()>2]=value;return value}function _atexit(func,arg){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(1,1,func,arg)}function __emscripten_notify_thread_queue(targetThreadId,mainThreadId){if(targetThreadId==mainThreadId){postMessage({\"cmd\":\"processQueuedMainThreadWork\"})}else if(ENVIRONMENT_IS_PTHREAD){postMessage({\"targetThread\":targetThreadId,\"cmd\":\"processThreadQueue\"})}else{var pthread=PThread.pthreads[targetThreadId];var worker=pthread&&pthread.worker;if(!worker){return}worker.postMessage({\"cmd\":\"processThreadQueue\"})}return 1}function _abort(){abort()}function _emscripten_asm_const_int(code,sigPtr,argbuf){var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}function _emscripten_conditional_set_current_thread_status(expectedStatus,newStatus){}function _emscripten_futex_wait(addr,val,timeout){if(addr<=0||addr>GROWABLE_HEAP_I8().length||addr&3!=0)return-28;if(!ENVIRONMENT_IS_WEB){var ret=Atomics.wait(GROWABLE_HEAP_I32(),addr>>2,val,timeout);if(ret===\"timed-out\")return-73;if(ret===\"not-equal\")return-6;if(ret===\"ok\")return 0;throw\"Atomics.wait returned an unexpected value \"+ret}else{if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}var tNow=performance.now();var tEnd=tNow+timeout;var lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr);while(1){tNow=performance.now();if(tNow>tEnd){lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);return-73}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,0);if(lastAddr==0){break}_emscripten_main_thread_process_queued_calls();if(Atomics.load(GROWABLE_HEAP_I32(),addr>>2)!=val){return-6}lastAddr=Atomics.exchange(GROWABLE_HEAP_I32(),__emscripten_main_thread_futex>>2,addr)}return 0}}function _emscripten_memcpy_big(dest,src,num){GROWABLE_HEAP_U8().copyWithin(dest,src,src+num)}function _emscripten_num_logical_cores(){if(ENVIRONMENT_IS_NODE)return require(\"os\").cpus().length;return navigator[\"hardwareConcurrency\"]}function _emscripten_proxy_to_main_thread_js(index,sync){var numCallArgs=arguments.length-2;var stack=stackSave();var serializedNumCallArgs=numCallArgs;var args=stackAlloc(serializedNumCallArgs*8);var b=args>>3;for(var i=0;i>=2;while(ch=GROWABLE_HEAP_U8()[sigPtr++]){var double=ch<105;if(double&&buf&1)buf++;readAsmConstArgsArray.push(double?GROWABLE_HEAP_F64()[buf++>>1]:GROWABLE_HEAP_I32()[buf]);++buf}return readAsmConstArgsArray}function _emscripten_receive_on_main_thread_js(index,numCallArgs,args){_emscripten_receive_on_main_thread_js_callArgs.length=numCallArgs;var b=args>>3;for(var i=0;i>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();if(requestedSize<=oldSize){return false}var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var JSEvents={inEventHandler:0,removeAllEventListeners:function(){for(var i=JSEvents.eventHandlers.length-1;i>=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i in arrA){if(arrA[i]!=arrB[i])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction:targetFunction,precedence:precedence,argsList:argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence>2]=eventTypeId;GROWABLE_HEAP_I32()[varargs+4>>2]=eventData;GROWABLE_HEAP_I32()[varargs+8>>2]=userData;__emscripten_call_on_thread(0,targetThread,637534208,eventHandlerFunc,eventData,varargs);stackRestore(stackTop)},getTargetThreadForEventCallback:function(targetThread){switch(targetThread){case 1:return 0;case 2:return PThread.currentProxiedOperationCallerThread;default:return targetThread}},getNodeNameForTarget:function(target){if(!target)return\"\";if(target==window)return\"#window\";if(target==screen)return\"#screen\";return target&&target.nodeName?target.nodeName:\"\"},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}function _emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height){var stackTop=stackSave();var varargs=stackAlloc(12);var targetCanvasPtr=0;if(targetCanvas){targetCanvasPtr=stringToNewUTF8(targetCanvas)}GROWABLE_HEAP_I32()[varargs>>2]=targetCanvasPtr;GROWABLE_HEAP_I32()[varargs+4>>2]=width;GROWABLE_HEAP_I32()[varargs+8>>2]=height;__emscripten_call_on_thread(0,targetThread,657457152,0,targetCanvasPtr,varargs);stackRestore(stackTop)}function _emscripten_set_offscreencanvas_size_on_target_thread(targetThread,targetCanvas,width,height){targetCanvas=targetCanvas?UTF8ToString(targetCanvas):\"\";_emscripten_set_offscreencanvas_size_on_target_thread_js(targetThread,targetCanvas,width,height)}function maybeCStringToJsString(cString){return cString>2?UTF8ToString(cString):cString}var specialHTMLTargets=[0,typeof document!==\"undefined\"?document:0,typeof window!==\"undefined\"?window:0];function findEventTarget(target){target=maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!==\"undefined\"?document.querySelector(target):undefined);return domElement}function findCanvasEventTarget(target){return findEventTarget(target)}function _emscripten_set_canvas_element_size_calling_thread(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;if(canvas.canvasSharedPtr){GROWABLE_HEAP_I32()[canvas.canvasSharedPtr>>2]=width;GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+4>>2]=height}if(canvas.offscreenCanvas||!canvas.controlTransferredOffscreen){if(canvas.offscreenCanvas)canvas=canvas.offscreenCanvas;var autoResizeViewport=false;if(canvas.GLctxObject&&canvas.GLctxObject.GLctx){var prevViewport=canvas.GLctxObject.GLctx.getParameter(2978);autoResizeViewport=prevViewport[0]===0&&prevViewport[1]===0&&prevViewport[2]===canvas.width&&prevViewport[3]===canvas.height}canvas.width=width;canvas.height=height;if(autoResizeViewport){canvas.GLctxObject.GLctx.viewport(0,0,width,height)}}else if(canvas.canvasSharedPtr){var targetThread=GROWABLE_HEAP_I32()[canvas.canvasSharedPtr+8>>2];_emscripten_set_offscreencanvas_size_on_target_thread(targetThread,target,width,height);return 1}else{return-4}return 0}function _emscripten_set_canvas_element_size_main_thread(target,width,height){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(2,1,target,width,height);return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}function _emscripten_set_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(canvas){return _emscripten_set_canvas_element_size_calling_thread(target,width,height)}else{return _emscripten_set_canvas_element_size_main_thread(target,width,height)}}function _emscripten_set_current_thread_status(newStatus){}function _emscripten_set_thread_name(threadId,name){}function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension(\"ANGLE_instanced_arrays\");if(ext){ctx[\"vertexAttribDivisor\"]=function(index,divisor){ext[\"vertexAttribDivisorANGLE\"](index,divisor)};ctx[\"drawArraysInstanced\"]=function(mode,first,count,primcount){ext[\"drawArraysInstancedANGLE\"](mode,first,count,primcount)};ctx[\"drawElementsInstanced\"]=function(mode,count,type,indices,primcount){ext[\"drawElementsInstancedANGLE\"](mode,count,type,indices,primcount)};return 1}}function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension(\"OES_vertex_array_object\");if(ext){ctx[\"createVertexArray\"]=function(){return ext[\"createVertexArrayOES\"]()};ctx[\"deleteVertexArray\"]=function(vao){ext[\"deleteVertexArrayOES\"](vao)};ctx[\"bindVertexArray\"]=function(vao){ext[\"bindVertexArrayOES\"](vao)};ctx[\"isVertexArray\"]=function(vao){return ext[\"isVertexArrayOES\"](vao)};return 1}}function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension(\"WEBGL_draw_buffers\");if(ext){ctx[\"drawBuffers\"]=function(n,bufs){ext[\"drawBuffersWEBGL\"](n,bufs)};return 1}}function __webgl_enable_WEBGL_multi_draw(ctx){return!!(ctx.multiDrawWebgl=ctx.getExtension(\"WEBGL_multi_draw\"))}var GL={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i>2]:-1;source+=UTF8ToString(GROWABLE_HEAP_I32()[string+i*4>>2],len<0?undefined:len)}return source},createContext:function(canvas,webGLContextAttributes){var ctx=canvas.getContext(\"webgl\",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=_malloc(8);GROWABLE_HEAP_I32()[handle+4>>2]=_pthread_self();var context={handle:handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault===\"undefined\"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents===\"object\")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=undefined;_free(GL.contexts[contextHandle].handle);GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx);__webgl_enable_OES_vertex_array_object(GLctx);__webgl_enable_WEBGL_draw_buffers(GLctx);GLctx.disjointTimerQueryExt=GLctx.getExtension(\"EXT_disjoint_timer_query\");__webgl_enable_WEBGL_multi_draw(GLctx);var exts=GLctx.getSupportedExtensions()||[];exts.forEach(function(ext){if(ext.indexOf(\"lose_context\")<0&&ext.indexOf(\"debug\")<0){GLctx.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i>2;var powerPreference=GROWABLE_HEAP_I32()[a+(24>>2)];var contextAttributes={\"alpha\":!!GROWABLE_HEAP_I32()[a+(0>>2)],\"depth\":!!GROWABLE_HEAP_I32()[a+(4>>2)],\"stencil\":!!GROWABLE_HEAP_I32()[a+(8>>2)],\"antialias\":!!GROWABLE_HEAP_I32()[a+(12>>2)],\"premultipliedAlpha\":!!GROWABLE_HEAP_I32()[a+(16>>2)],\"preserveDrawingBuffer\":!!GROWABLE_HEAP_I32()[a+(20>>2)],\"powerPreference\":__emscripten_webgl_power_preferences[powerPreference],\"failIfMajorPerformanceCaveat\":!!GROWABLE_HEAP_I32()[a+(28>>2)],majorVersion:GROWABLE_HEAP_I32()[a+(32>>2)],minorVersion:GROWABLE_HEAP_I32()[a+(36>>2)],enableExtensionsByDefault:GROWABLE_HEAP_I32()[a+(40>>2)],explicitSwapControl:GROWABLE_HEAP_I32()[a+(44>>2)],proxyContextToMainThread:GROWABLE_HEAP_I32()[a+(48>>2)],renderViaOffscreenBackBuffer:GROWABLE_HEAP_I32()[a+(52>>2)]};var canvas=findCanvasEventTarget(target);if(!canvas){return 0}if(contextAttributes.explicitSwapControl){return 0}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=GROWABLE_HEAP_I32()[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(3,1,fd);return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(4,1,fd,offset_low,offset_high,whence,newOffset)}function _fd_write(fd,iov,iovcnt,pnum){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(5,1,fd,iov,iovcnt,pnum);var num=0;for(var i=0;i>2];var len=GROWABLE_HEAP_I32()[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_cleanup_pop(execute){var routine=PThread.threadExitHandlers.pop();if(execute)routine()}function _pthread_cleanup_push(routine,arg){PThread.threadExitHandlers.push(function(){wasmTable.get(routine)(arg)})}function spawnThread(threadParams){if(ENVIRONMENT_IS_PTHREAD)throw\"Internal Error! spawnThread() can only ever be called from main application thread!\";var worker=PThread.getNewWorker();if(worker.pthread!==undefined)throw\"Internal error!\";if(!threadParams.pthread_ptr)throw\"Internal error, no pthread ptr!\";PThread.runningWorkers.push(worker);var tlsMemory=_malloc(128*4);for(var i=0;i<128;++i){GROWABLE_HEAP_I32()[tlsMemory+i*4>>2]=0}var stackHigh=threadParams.stackBase+threadParams.stackSize;var pthread=PThread.pthreads[threadParams.pthread_ptr]={worker:worker,stackBase:threadParams.stackBase,stackSize:threadParams.stackSize,allocatedOwnStack:threadParams.allocatedOwnStack,threadInfoStruct:threadParams.pthread_ptr};var tis=pthread.threadInfoStruct>>2;Atomics.store(GROWABLE_HEAP_U32(),tis+(64>>2),threadParams.detached);Atomics.store(GROWABLE_HEAP_U32(),tis+(100>>2),tlsMemory);Atomics.store(GROWABLE_HEAP_U32(),tis+(40>>2),pthread.threadInfoStruct);Atomics.store(GROWABLE_HEAP_U32(),tis+(80>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(76>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104>>2),threadParams.stackSize);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+8>>2),stackHigh);Atomics.store(GROWABLE_HEAP_U32(),tis+(104+12>>2),threadParams.detached);var global_libc=_emscripten_get_global_libc();var global_locale=global_libc+40;Atomics.store(GROWABLE_HEAP_U32(),tis+(172>>2),global_locale);worker.pthread=pthread;var msg={\"cmd\":\"run\",\"start_routine\":threadParams.startRoutine,\"arg\":threadParams.arg,\"threadInfoStruct\":threadParams.pthread_ptr,\"stackBase\":threadParams.stackBase,\"stackSize\":threadParams.stackSize};worker.runPthread=function(){msg.time=performance.now();worker.postMessage(msg,threadParams.transferList)};if(worker.loaded){worker.runPthread();delete worker.runPthread}}function _pthread_create(pthread_ptr,attr,start_routine,arg){if(typeof SharedArrayBuffer===\"undefined\"){err(\"Current environment does not support SharedArrayBuffer, pthreads are not available!\");return 6}if(!pthread_ptr){err(\"pthread_create called with a null thread pointer!\");return 28}var transferList=[];var error=0;if(ENVIRONMENT_IS_PTHREAD&&(transferList.length===0||error)){return _emscripten_sync_run_in_main_thread_4(687865856,pthread_ptr,attr,start_routine,arg)}if(error)return error;var stackSize=0;var stackBase=0;var detached=0;if(attr&&attr!=-1){stackSize=GROWABLE_HEAP_I32()[attr>>2];stackSize+=81920;stackBase=GROWABLE_HEAP_I32()[attr+8>>2];detached=GROWABLE_HEAP_I32()[attr+12>>2]!==0}else{stackSize=2097152}var allocatedOwnStack=stackBase==0;if(allocatedOwnStack){stackBase=_memalign(16,stackSize)}else{stackBase-=stackSize;assert(stackBase>0)}var threadInfoStruct=_malloc(228);for(var i=0;i<228>>2;++i)GROWABLE_HEAP_U32()[(threadInfoStruct>>2)+i]=0;GROWABLE_HEAP_I32()[pthread_ptr>>2]=threadInfoStruct;GROWABLE_HEAP_I32()[threadInfoStruct+12>>2]=threadInfoStruct;var headPtr=threadInfoStruct+152;GROWABLE_HEAP_I32()[headPtr>>2]=headPtr;var threadParams={stackBase:stackBase,stackSize:stackSize,allocatedOwnStack:allocatedOwnStack,detached:detached,startRoutine:start_routine,pthread_ptr:threadInfoStruct,arg:arg,transferList:transferList};if(ENVIRONMENT_IS_PTHREAD){threadParams.cmd=\"spawnThread\";postMessage(threadParams,transferList)}else{spawnThread(threadParams)}return 0}function _sysconf(name){if(ENVIRONMENT_IS_PTHREAD)return _emscripten_proxy_to_main_thread_js(6,1,name);switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}if(!ENVIRONMENT_IS_PTHREAD)PThread.initMainThreadBlock();var GLctx;var proxiedFunctionTable=[null,_atexit,_emscripten_set_canvas_element_size_main_thread,_fd_close,_fd_seek,_fd_write,_sysconf];var asmLibraryArg={\"e\":___assert_fail,\"r\":___call_main,\"x\":__emscripten_notify_thread_queue,\"b\":_abort,\"y\":_emscripten_asm_const_int,\"j\":_emscripten_conditional_set_current_thread_status,\"c\":_emscripten_futex_wait,\"d\":_emscripten_futex_wake,\"f\":_emscripten_get_now,\"p\":_emscripten_memcpy_big,\"z\":_emscripten_num_logical_cores,\"u\":_emscripten_receive_on_main_thread_js,\"q\":_emscripten_resize_heap,\"v\":_emscripten_set_canvas_element_size,\"i\":_emscripten_set_current_thread_status,\"t\":_emscripten_set_thread_name,\"w\":_emscripten_webgl_create_context,\"m\":_fd_close,\"n\":_fd_seek,\"g\":_fd_write,\"o\":initPthreadsJS,\"a\":wasmMemory||Module[\"wasmMemory\"],\"k\":_pthread_cleanup_pop,\"l\":_pthread_cleanup_push,\"h\":_pthread_create,\"s\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Ua\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Va\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Wa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Xa\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ya\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Za\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"_a\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"$a\"]).apply(null,arguments)};var _Transform=Module[\"_Transform\"]=function(){return(_Transform=Module[\"_Transform\"]=Module[\"asm\"][\"ab\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"bb\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"cb\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"db\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"eb\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"fb\"]).apply(null,arguments)};var _emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=function(){return(_emscripten_get_global_libc=Module[\"_emscripten_get_global_libc\"]=Module[\"asm\"][\"gb\"]).apply(null,arguments)};var _pthread_self=Module[\"_pthread_self\"]=function(){return(_pthread_self=Module[\"_pthread_self\"]=Module[\"asm\"][\"hb\"]).apply(null,arguments)};var ___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=function(){return(___pthread_tsd_run_dtors=Module[\"___pthread_tsd_run_dtors\"]=Module[\"asm\"][\"ib\"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=function(){return(_emscripten_main_thread_process_queued_calls=Module[\"_emscripten_main_thread_process_queued_calls\"]=Module[\"asm\"][\"jb\"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=function(){return(_emscripten_current_thread_process_queued_calls=Module[\"_emscripten_current_thread_process_queued_calls\"]=Module[\"asm\"][\"kb\"]).apply(null,arguments)};var _emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=function(){return(_emscripten_register_main_browser_thread_id=Module[\"_emscripten_register_main_browser_thread_id\"]=Module[\"asm\"][\"lb\"]).apply(null,arguments)};var __emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=function(){return(__emscripten_do_dispatch_to_thread=Module[\"__emscripten_do_dispatch_to_thread\"]=Module[\"asm\"][\"mb\"]).apply(null,arguments)};var _emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=function(){return(_emscripten_sync_run_in_main_thread_4=Module[\"_emscripten_sync_run_in_main_thread_4\"]=Module[\"asm\"][\"nb\"]).apply(null,arguments)};var _emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=function(){return(_emscripten_run_in_main_runtime_thread_js=Module[\"_emscripten_run_in_main_runtime_thread_js\"]=Module[\"asm\"][\"ob\"]).apply(null,arguments)};var __emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=function(){return(__emscripten_call_on_thread=Module[\"__emscripten_call_on_thread\"]=Module[\"asm\"][\"pb\"]).apply(null,arguments)};var _emscripten_tls_init=Module[\"_emscripten_tls_init\"]=function(){return(_emscripten_tls_init=Module[\"_emscripten_tls_init\"]=Module[\"asm\"][\"qb\"]).apply(null,arguments)};var __emscripten_thread_init=Module[\"__emscripten_thread_init\"]=function(){return(__emscripten_thread_init=Module[\"__emscripten_thread_init\"]=Module[\"asm\"][\"rb\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"sb\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"tb\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"ub\"]).apply(null,arguments)};var _emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=function(){return(_emscripten_stack_set_limits=Module[\"_emscripten_stack_set_limits\"]=Module[\"asm\"][\"vb\"]).apply(null,arguments)};var _memalign=Module[\"_memalign\"]=function(){return(_memalign=Module[\"_memalign\"]=Module[\"asm\"][\"wb\"]).apply(null,arguments)};var __emscripten_allow_main_runtime_queued_calls=Module[\"__emscripten_allow_main_runtime_queued_calls\"]=9808;var __emscripten_main_thread_futex=Module[\"__emscripten_main_thread_futex\"]=11432;Module[\"cwrap\"]=cwrap;Module[\"PThread\"]=PThread;Module[\"PThread\"]=PThread;Module[\"wasmMemory\"]=wasmMemory;Module[\"ExitStatus\"]=ExitStatus;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}if(ENVIRONMENT_IS_PTHREAD){readyPromiseResolve(Module);initRuntime();postMessage({\"cmd\":\"loaded\"});return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;function exit(status,implicit){if(implicit&&noExitRuntime&&status===0){return}if(!implicit){if(ENVIRONMENT_IS_PTHREAD){postMessage({\"cmd\":\"exitProcess\",\"returnCode\":status});throw new ExitStatus(status)}else{}}if(noExitRuntime){}else{PThread.terminateAllThreads();EXITSTATUS=status;exitRuntime();if(Module[\"onExit\"])Module[\"onExit\"](status);ABORT=true}quit_(status,new ExitStatus(status))}if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}if(ENVIRONMENT_IS_PTHREAD){noExitRuntime=false;PThread.initWorker()}run();\n\n\n return WasmBackendModuleThreadedSimd.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModuleThreadedSimd;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModuleThreadedSimd; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModuleThreadedSimd\"] = WasmBackendModuleThreadedSimd;\n", "\nvar WasmBackendModule = (function() {\n var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined;\n if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename;\n return (\nfunction(WasmBackendModule) {\n WasmBackendModule = WasmBackendModule || {};\n\nvar Module=typeof WasmBackendModule!==\"undefined\"?WasmBackendModule:{};var readyPromiseResolve,readyPromiseReject;Module[\"ready\"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram=\"./this.program\";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window===\"object\";ENVIRONMENT_IS_WORKER=typeof importScripts===\"function\";ENVIRONMENT_IS_NODE=typeof process===\"object\"&&typeof process.versions===\"object\"&&typeof process.versions.node===\"string\";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory=\"\";function locateFile(path){if(Module[\"locateFile\"]){return Module[\"locateFile\"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require(\"path\").dirname(scriptDirectory)+\"/\"}else{scriptDirectory=__dirname+\"/\"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require(\"fs\");if(!nodePath)nodePath=require(\"path\");filename=nodePath[\"normalize\"](filename);return nodeFS[\"readFileSync\"](filename,binary?null:\"utf8\")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process[\"argv\"].length>1){thisProgram=process[\"argv\"][1].replace(/\\\\/g,\"/\")}arguments_=process[\"argv\"].slice(2);process[\"on\"](\"uncaughtException\",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process[\"on\"](\"unhandledRejection\",abort);quit_=function(status){process[\"exit\"](status)};Module[\"inspect\"]=function(){return\"[Emscripten Module object]\"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!=\"undefined\"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer===\"function\"){return new Uint8Array(readbuffer(f))}data=read(f,\"binary\");assert(typeof data===\"object\");return data};if(typeof scriptArgs!=\"undefined\"){arguments_=scriptArgs}else if(typeof arguments!=\"undefined\"){arguments_=arguments}if(typeof quit===\"function\"){quit_=function(status){quit(status)}}if(typeof print!==\"undefined\"){if(typeof console===\"undefined\")console={};console.log=print;console.warn=console.error=typeof printErr!==\"undefined\"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!==\"undefined\"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf(\"blob:\")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf(\"/\")+1)}else{scriptDirectory=\"\"}{read_=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,false);xhr.responseType=\"arraybuffer\";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open(\"GET\",url,true);xhr.responseType=\"arraybuffer\";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module[\"print\"]||console.log.bind(console);var err=Module[\"printErr\"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module[\"arguments\"])arguments_=Module[\"arguments\"];if(Module[\"thisProgram\"])thisProgram=Module[\"thisProgram\"];if(Module[\"quit\"])quit_=Module[\"quit\"];var wasmBinary;if(Module[\"wasmBinary\"])wasmBinary=Module[\"wasmBinary\"];var noExitRuntime=Module[\"noExitRuntime\"]||true;if(typeof WebAssembly!==\"object\"){abort(\"no native wasm support detected\")}var wasmMemory;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort(\"Assertion failed: \"+text)}}function getCFunc(ident){var func=Module[\"_\"+ident];assert(func,\"Cannot call unknown function \"+ident+\", make sure it is exported\");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={\"string\":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},\"array\":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType===\"string\")return UTF8ToString(ret);if(returnType===\"boolean\")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str=\"\";while(idx>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):\"\"}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module[\"HEAP8\"]=HEAP8=new Int8Array(buf);Module[\"HEAP16\"]=HEAP16=new Int16Array(buf);Module[\"HEAP32\"]=HEAP32=new Int32Array(buf);Module[\"HEAPU8\"]=HEAPU8=new Uint8Array(buf);Module[\"HEAPU16\"]=HEAPU16=new Uint16Array(buf);Module[\"HEAPU32\"]=HEAPU32=new Uint32Array(buf);Module[\"HEAPF32\"]=HEAPF32=new Float32Array(buf);Module[\"HEAPF64\"]=HEAPF64=new Float64Array(buf)}var INITIAL_MEMORY=Module[\"INITIAL_MEMORY\"]||16777216;var wasmTable;var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;__ATINIT__.push({func:function(){___wasm_call_ctors()}});function preRun(){if(Module[\"preRun\"]){if(typeof Module[\"preRun\"]==\"function\")Module[\"preRun\"]=[Module[\"preRun\"]];while(Module[\"preRun\"].length){addOnPreRun(Module[\"preRun\"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;callRuntimeCallbacks(__ATINIT__)}function preMain(){callRuntimeCallbacks(__ATMAIN__)}function postRun(){if(Module[\"postRun\"]){if(typeof Module[\"postRun\"]==\"function\")Module[\"postRun\"]=[Module[\"postRun\"]];while(Module[\"postRun\"].length){addOnPostRun(Module[\"postRun\"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function addRunDependency(id){runDependencies++;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module[\"monitorRunDependencies\"]){Module[\"monitorRunDependencies\"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module[\"preloadedImages\"]={};Module[\"preloadedAudios\"]={};function abort(what){if(Module[\"onAbort\"]){Module[\"onAbort\"](what)}what+=\"\";err(what);ABORT=true;EXITSTATUS=1;what=\"abort(\"+what+\"). Build with -s ASSERTIONS=1 for more info.\";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix=\"data:application/octet-stream;base64,\";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix=\"file://\";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile=\"tfjs-backend-wasm.wasm\";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw\"both async and sync fetching of the wasm failed\"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch===\"function\"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){if(!response[\"ok\"]){throw\"failed to load wasm binary file at '\"+wasmBinaryFile+\"'\"}return response[\"arrayBuffer\"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={\"a\":asmLibraryArg};function receiveInstance(instance,module){var exports=instance.exports;Module[\"asm\"]=exports;wasmMemory=Module[\"asm\"][\"i\"];updateGlobalBufferAndViews(wasmMemory.buffer);wasmTable=Module[\"asm\"][\"o\"];removeRunDependency(\"wasm-instantiate\")}addRunDependency(\"wasm-instantiate\");function receiveInstantiatedSource(output){receiveInstance(output[\"instance\"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){return WebAssembly.instantiate(binary,info)}).then(receiver,function(reason){err(\"failed to asynchronously prepare wasm: \"+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming===\"function\"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch===\"function\"){return fetch(wasmBinaryFile,{credentials:\"same-origin\"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err(\"wasm streaming compile failed: \"+reason);err(\"falling back to ArrayBuffer instantiation\");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module[\"instantiateWasm\"]){try{var exports=Module[\"instantiateWasm\"](info,receiveInstance);return exports}catch(e){err(\"Module.instantiateWasm callback failed with error: \"+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}function callRuntimeCallbacks(callbacks){while(callbacks.length>0){var callback=callbacks.shift();if(typeof callback==\"function\"){callback(Module);continue}var func=callback.func;if(typeof func===\"number\"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}function _abort(){abort()}function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}function _emscripten_get_heap_size(){return HEAPU8.length}function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}function _emscripten_resize_heap(requestedSize){var oldSize=_emscripten_get_heap_size();var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}var SYSCALLS={mappings:{},buffers:[null,[],[]],printChar:function(stream,curr){var buffer=SYSCALLS.buffers[stream];if(curr===0||curr===10){(stream===1?out:err)(UTF8ArrayToString(buffer,0));buffer.length=0}else{buffer.push(curr)}},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},get64:function(low,high){return low}};function _fd_close(fd){return 0}function _fd_seek(fd,offset_low,offset_high,whence,newOffset){}function _fd_write(fd,iov,iovcnt,pnum){var num=0;for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];for(var j=0;j>2]=num;return 0}function _pthread_create(){return 6}function setErrNo(value){HEAP32[___errno_location()>>2]=value;return value}function _sysconf(name){switch(name){case 30:return 16384;case 85:var maxHeapSize=2147483648;return maxHeapSize/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:{if(typeof navigator===\"object\")return navigator[\"hardwareConcurrency\"]||1;return 1}}setErrNo(28);return-1}var asmLibraryArg={\"a\":_abort,\"d\":_emscripten_memcpy_big,\"e\":_emscripten_resize_heap,\"f\":_fd_close,\"c\":_fd_seek,\"b\":_fd_write,\"g\":_pthread_create,\"h\":_sysconf};var asm=createWasm();var ___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=function(){return(___wasm_call_ctors=Module[\"___wasm_call_ctors\"]=Module[\"asm\"][\"j\"]).apply(null,arguments)};var _init=Module[\"_init\"]=function(){return(_init=Module[\"_init\"]=Module[\"asm\"][\"k\"]).apply(null,arguments)};var _register_tensor=Module[\"_register_tensor\"]=function(){return(_register_tensor=Module[\"_register_tensor\"]=Module[\"asm\"][\"l\"]).apply(null,arguments)};var _dispose_data=Module[\"_dispose_data\"]=function(){return(_dispose_data=Module[\"_dispose_data\"]=Module[\"asm\"][\"m\"]).apply(null,arguments)};var _dispose=Module[\"_dispose\"]=function(){return(_dispose=Module[\"_dispose\"]=Module[\"asm\"][\"n\"]).apply(null,arguments)};var _Abs=Module[\"_Abs\"]=function(){return(_Abs=Module[\"_Abs\"]=Module[\"asm\"][\"p\"]).apply(null,arguments)};var _Add=Module[\"_Add\"]=function(){return(_Add=Module[\"_Add\"]=Module[\"asm\"][\"q\"]).apply(null,arguments)};var _AddN=Module[\"_AddN\"]=function(){return(_AddN=Module[\"_AddN\"]=Module[\"asm\"][\"r\"]).apply(null,arguments)};var _All=Module[\"_All\"]=function(){return(_All=Module[\"_All\"]=Module[\"asm\"][\"s\"]).apply(null,arguments)};var _Any=Module[\"_Any\"]=function(){return(_Any=Module[\"_Any\"]=Module[\"asm\"][\"t\"]).apply(null,arguments)};var _ArgMax=Module[\"_ArgMax\"]=function(){return(_ArgMax=Module[\"_ArgMax\"]=Module[\"asm\"][\"u\"]).apply(null,arguments)};var _AvgPool=Module[\"_AvgPool\"]=function(){return(_AvgPool=Module[\"_AvgPool\"]=Module[\"asm\"][\"v\"]).apply(null,arguments)};var _BatchMatMul=Module[\"_BatchMatMul\"]=function(){return(_BatchMatMul=Module[\"_BatchMatMul\"]=Module[\"asm\"][\"w\"]).apply(null,arguments)};var _Ceil=Module[\"_Ceil\"]=function(){return(_Ceil=Module[\"_Ceil\"]=Module[\"asm\"][\"x\"]).apply(null,arguments)};var _ClipByValue=Module[\"_ClipByValue\"]=function(){return(_ClipByValue=Module[\"_ClipByValue\"]=Module[\"asm\"][\"y\"]).apply(null,arguments)};var _Conv2D=Module[\"_Conv2D\"]=function(){return(_Conv2D=Module[\"_Conv2D\"]=Module[\"asm\"][\"z\"]).apply(null,arguments)};var _Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=function(){return(_Conv2DBackpropInput=Module[\"_Conv2DBackpropInput\"]=Module[\"asm\"][\"A\"]).apply(null,arguments)};var _Cos=Module[\"_Cos\"]=function(){return(_Cos=Module[\"_Cos\"]=Module[\"asm\"][\"B\"]).apply(null,arguments)};var _CropAndResize=Module[\"_CropAndResize\"]=function(){return(_CropAndResize=Module[\"_CropAndResize\"]=Module[\"asm\"][\"C\"]).apply(null,arguments)};var _Cumsum=Module[\"_Cumsum\"]=function(){return(_Cumsum=Module[\"_Cumsum\"]=Module[\"asm\"][\"D\"]).apply(null,arguments)};var _DepthToSpace=Module[\"_DepthToSpace\"]=function(){return(_DepthToSpace=Module[\"_DepthToSpace\"]=Module[\"asm\"][\"E\"]).apply(null,arguments)};var _DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=function(){return(_DepthwiseConv2dNative=Module[\"_DepthwiseConv2dNative\"]=Module[\"asm\"][\"F\"]).apply(null,arguments)};var _Equal=Module[\"_Equal\"]=function(){return(_Equal=Module[\"_Equal\"]=Module[\"asm\"][\"G\"]).apply(null,arguments)};var _Exp=Module[\"_Exp\"]=function(){return(_Exp=Module[\"_Exp\"]=Module[\"asm\"][\"H\"]).apply(null,arguments)};var _FlipLeftRight=Module[\"_FlipLeftRight\"]=function(){return(_FlipLeftRight=Module[\"_FlipLeftRight\"]=Module[\"asm\"][\"I\"]).apply(null,arguments)};var _Floor=Module[\"_Floor\"]=function(){return(_Floor=Module[\"_Floor\"]=Module[\"asm\"][\"J\"]).apply(null,arguments)};var _FloorDiv=Module[\"_FloorDiv\"]=function(){return(_FloorDiv=Module[\"_FloorDiv\"]=Module[\"asm\"][\"K\"]).apply(null,arguments)};var _FusedBatchNorm=Module[\"_FusedBatchNorm\"]=function(){return(_FusedBatchNorm=Module[\"_FusedBatchNorm\"]=Module[\"asm\"][\"L\"]).apply(null,arguments)};var _FusedConv2D=Module[\"_FusedConv2D\"]=function(){return(_FusedConv2D=Module[\"_FusedConv2D\"]=Module[\"asm\"][\"M\"]).apply(null,arguments)};var _FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=function(){return(_FusedDepthwiseConv2D=Module[\"_FusedDepthwiseConv2D\"]=Module[\"asm\"][\"N\"]).apply(null,arguments)};var _Gather=Module[\"_Gather\"]=function(){return(_Gather=Module[\"_Gather\"]=Module[\"asm\"][\"O\"]).apply(null,arguments)};var _GatherNd=Module[\"_GatherNd\"]=function(){return(_GatherNd=Module[\"_GatherNd\"]=Module[\"asm\"][\"P\"]).apply(null,arguments)};var _Greater=Module[\"_Greater\"]=function(){return(_Greater=Module[\"_Greater\"]=Module[\"asm\"][\"Q\"]).apply(null,arguments)};var _GreaterEqual=Module[\"_GreaterEqual\"]=function(){return(_GreaterEqual=Module[\"_GreaterEqual\"]=Module[\"asm\"][\"R\"]).apply(null,arguments)};var _LeakyRelu=Module[\"_LeakyRelu\"]=function(){return(_LeakyRelu=Module[\"_LeakyRelu\"]=Module[\"asm\"][\"S\"]).apply(null,arguments)};var _Less=Module[\"_Less\"]=function(){return(_Less=Module[\"_Less\"]=Module[\"asm\"][\"T\"]).apply(null,arguments)};var _LessEqual=Module[\"_LessEqual\"]=function(){return(_LessEqual=Module[\"_LessEqual\"]=Module[\"asm\"][\"U\"]).apply(null,arguments)};var _Log=Module[\"_Log\"]=function(){return(_Log=Module[\"_Log\"]=Module[\"asm\"][\"V\"]).apply(null,arguments)};var _LogicalAnd=Module[\"_LogicalAnd\"]=function(){return(_LogicalAnd=Module[\"_LogicalAnd\"]=Module[\"asm\"][\"W\"]).apply(null,arguments)};var _Max=Module[\"_Max\"]=function(){return(_Max=Module[\"_Max\"]=Module[\"asm\"][\"X\"]).apply(null,arguments)};var _MaxPool=Module[\"_MaxPool\"]=function(){return(_MaxPool=Module[\"_MaxPool\"]=Module[\"asm\"][\"Y\"]).apply(null,arguments)};var _Maximum=Module[\"_Maximum\"]=function(){return(_Maximum=Module[\"_Maximum\"]=Module[\"asm\"][\"Z\"]).apply(null,arguments)};var _Mean=Module[\"_Mean\"]=function(){return(_Mean=Module[\"_Mean\"]=Module[\"asm\"][\"_\"]).apply(null,arguments)};var _Min=Module[\"_Min\"]=function(){return(_Min=Module[\"_Min\"]=Module[\"asm\"][\"$\"]).apply(null,arguments)};var _Minimum=Module[\"_Minimum\"]=function(){return(_Minimum=Module[\"_Minimum\"]=Module[\"asm\"][\"aa\"]).apply(null,arguments)};var _MirrorPad=Module[\"_MirrorPad\"]=function(){return(_MirrorPad=Module[\"_MirrorPad\"]=Module[\"asm\"][\"ba\"]).apply(null,arguments)};var _Multiply=Module[\"_Multiply\"]=function(){return(_Multiply=Module[\"_Multiply\"]=Module[\"asm\"][\"ca\"]).apply(null,arguments)};var _Neg=Module[\"_Neg\"]=function(){return(_Neg=Module[\"_Neg\"]=Module[\"asm\"][\"da\"]).apply(null,arguments)};var _NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=function(){return(_NonMaxSuppressionV3=Module[\"_NonMaxSuppressionV3\"]=Module[\"asm\"][\"ea\"]).apply(null,arguments)};var _NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=function(){return(_NonMaxSuppressionV4=Module[\"_NonMaxSuppressionV4\"]=Module[\"asm\"][\"fa\"]).apply(null,arguments)};var _NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=function(){return(_NonMaxSuppressionV5=Module[\"_NonMaxSuppressionV5\"]=Module[\"asm\"][\"ga\"]).apply(null,arguments)};var _NotEqual=Module[\"_NotEqual\"]=function(){return(_NotEqual=Module[\"_NotEqual\"]=Module[\"asm\"][\"ha\"]).apply(null,arguments)};var _OneHot=Module[\"_OneHot\"]=function(){return(_OneHot=Module[\"_OneHot\"]=Module[\"asm\"][\"ia\"]).apply(null,arguments)};var _PadV2=Module[\"_PadV2\"]=function(){return(_PadV2=Module[\"_PadV2\"]=Module[\"asm\"][\"ja\"]).apply(null,arguments)};var _Pow=Module[\"_Pow\"]=function(){return(_Pow=Module[\"_Pow\"]=Module[\"asm\"][\"ka\"]).apply(null,arguments)};var _Prelu=Module[\"_Prelu\"]=function(){return(_Prelu=Module[\"_Prelu\"]=Module[\"asm\"][\"la\"]).apply(null,arguments)};var _Prod=Module[\"_Prod\"]=function(){return(_Prod=Module[\"_Prod\"]=Module[\"asm\"][\"ma\"]).apply(null,arguments)};var _RealDiv=Module[\"_RealDiv\"]=function(){return(_RealDiv=Module[\"_RealDiv\"]=Module[\"asm\"][\"na\"]).apply(null,arguments)};var _Relu=Module[\"_Relu\"]=function(){return(_Relu=Module[\"_Relu\"]=Module[\"asm\"][\"oa\"]).apply(null,arguments)};var _Relu6=Module[\"_Relu6\"]=function(){return(_Relu6=Module[\"_Relu6\"]=Module[\"asm\"][\"pa\"]).apply(null,arguments)};var _ResizeBilinear=Module[\"_ResizeBilinear\"]=function(){return(_ResizeBilinear=Module[\"_ResizeBilinear\"]=Module[\"asm\"][\"qa\"]).apply(null,arguments)};var _Reverse=Module[\"_Reverse\"]=function(){return(_Reverse=Module[\"_Reverse\"]=Module[\"asm\"][\"ra\"]).apply(null,arguments)};var _RotateWithOffset=Module[\"_RotateWithOffset\"]=function(){return(_RotateWithOffset=Module[\"_RotateWithOffset\"]=Module[\"asm\"][\"sa\"]).apply(null,arguments)};var _Round=Module[\"_Round\"]=function(){return(_Round=Module[\"_Round\"]=Module[\"asm\"][\"ta\"]).apply(null,arguments)};var _Rsqrt=Module[\"_Rsqrt\"]=function(){return(_Rsqrt=Module[\"_Rsqrt\"]=Module[\"asm\"][\"ua\"]).apply(null,arguments)};var _ScatterNd=Module[\"_ScatterNd\"]=function(){return(_ScatterNd=Module[\"_ScatterNd\"]=Module[\"asm\"][\"va\"]).apply(null,arguments)};var _SelectV2=Module[\"_SelectV2\"]=function(){return(_SelectV2=Module[\"_SelectV2\"]=Module[\"asm\"][\"wa\"]).apply(null,arguments)};var _Sigmoid=Module[\"_Sigmoid\"]=function(){return(_Sigmoid=Module[\"_Sigmoid\"]=Module[\"asm\"][\"xa\"]).apply(null,arguments)};var _Sin=Module[\"_Sin\"]=function(){return(_Sin=Module[\"_Sin\"]=Module[\"asm\"][\"ya\"]).apply(null,arguments)};var _Softmax=Module[\"_Softmax\"]=function(){return(_Softmax=Module[\"_Softmax\"]=Module[\"asm\"][\"za\"]).apply(null,arguments)};var _Sqrt=Module[\"_Sqrt\"]=function(){return(_Sqrt=Module[\"_Sqrt\"]=Module[\"asm\"][\"Aa\"]).apply(null,arguments)};var _Square=Module[\"_Square\"]=function(){return(_Square=Module[\"_Square\"]=Module[\"asm\"][\"Ba\"]).apply(null,arguments)};var _SquaredDifference=Module[\"_SquaredDifference\"]=function(){return(_SquaredDifference=Module[\"_SquaredDifference\"]=Module[\"asm\"][\"Ca\"]).apply(null,arguments)};var _Step=Module[\"_Step\"]=function(){return(_Step=Module[\"_Step\"]=Module[\"asm\"][\"Da\"]).apply(null,arguments)};var _StridedSlice=Module[\"_StridedSlice\"]=function(){return(_StridedSlice=Module[\"_StridedSlice\"]=Module[\"asm\"][\"Ea\"]).apply(null,arguments)};var _Sub=Module[\"_Sub\"]=function(){return(_Sub=Module[\"_Sub\"]=Module[\"asm\"][\"Fa\"]).apply(null,arguments)};var _Sum=Module[\"_Sum\"]=function(){return(_Sum=Module[\"_Sum\"]=Module[\"asm\"][\"Ga\"]).apply(null,arguments)};var _Tan=Module[\"_Tan\"]=function(){return(_Tan=Module[\"_Tan\"]=Module[\"asm\"][\"Ha\"]).apply(null,arguments)};var _Tanh=Module[\"_Tanh\"]=function(){return(_Tanh=Module[\"_Tanh\"]=Module[\"asm\"][\"Ia\"]).apply(null,arguments)};var _Tile=Module[\"_Tile\"]=function(){return(_Tile=Module[\"_Tile\"]=Module[\"asm\"][\"Ja\"]).apply(null,arguments)};var _TopK=Module[\"_TopK\"]=function(){return(_TopK=Module[\"_TopK\"]=Module[\"asm\"][\"Ka\"]).apply(null,arguments)};var _Transform=Module[\"_Transform\"]=function(){return(_Transform=Module[\"_Transform\"]=Module[\"asm\"][\"La\"]).apply(null,arguments)};var _Transpose=Module[\"_Transpose\"]=function(){return(_Transpose=Module[\"_Transpose\"]=Module[\"asm\"][\"Ma\"]).apply(null,arguments)};var __FusedMatMul=Module[\"__FusedMatMul\"]=function(){return(__FusedMatMul=Module[\"__FusedMatMul\"]=Module[\"asm\"][\"Na\"]).apply(null,arguments)};var _malloc=Module[\"_malloc\"]=function(){return(_malloc=Module[\"_malloc\"]=Module[\"asm\"][\"Oa\"]).apply(null,arguments)};var _free=Module[\"_free\"]=function(){return(_free=Module[\"_free\"]=Module[\"asm\"][\"Pa\"]).apply(null,arguments)};var ___errno_location=Module[\"___errno_location\"]=function(){return(___errno_location=Module[\"___errno_location\"]=Module[\"asm\"][\"Qa\"]).apply(null,arguments)};var stackSave=Module[\"stackSave\"]=function(){return(stackSave=Module[\"stackSave\"]=Module[\"asm\"][\"Ra\"]).apply(null,arguments)};var stackRestore=Module[\"stackRestore\"]=function(){return(stackRestore=Module[\"stackRestore\"]=Module[\"asm\"][\"Sa\"]).apply(null,arguments)};var stackAlloc=Module[\"stackAlloc\"]=function(){return(stackAlloc=Module[\"stackAlloc\"]=Module[\"asm\"][\"Ta\"]).apply(null,arguments)};Module[\"cwrap\"]=cwrap;var calledRun;function ExitStatus(status){this.name=\"ExitStatus\";this.message=\"Program terminated with exit(\"+status+\")\";this.status=status}dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function run(args){args=args||arguments_;if(runDependencies>0){return}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module[\"calledRun\"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module[\"onRuntimeInitialized\"])Module[\"onRuntimeInitialized\"]();postRun()}if(Module[\"setStatus\"]){Module[\"setStatus\"](\"Running...\");setTimeout(function(){setTimeout(function(){Module[\"setStatus\"](\"\")},1);doRun()},1)}else{doRun()}}Module[\"run\"]=run;if(Module[\"preInit\"]){if(typeof Module[\"preInit\"]==\"function\")Module[\"preInit\"]=[Module[\"preInit\"]];while(Module[\"preInit\"].length>0){Module[\"preInit\"].pop()()}}run();\n\n\n return WasmBackendModule.ready\n}\n);\n})();\nif (typeof exports === 'object' && typeof module === 'object')\n module.exports = WasmBackendModule;\nelse if (typeof define === 'function' && define['amd'])\n define([], function() { return WasmBackendModule; });\nelse if (typeof exports === 'object')\n exports[\"WasmBackendModule\"] = WasmBackendModule;\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Backend, DataId} from '../tensor';\nimport {BackendValues, DataType} from '../types';\n\nexport const EPSILON_FLOAT32 = 1e-7;\nexport const EPSILON_FLOAT16 = 1e-4;\n\n// Required information for all backends.\nexport interface BackendTimingInfo {\n kernelMs: number|{error: string};\n getExtraProfileInfo?(): string; // a field for additional timing information\n // e.g. packing / unpacking for WebGL backend\n}\n\nexport interface TensorStorage {\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n disposeData(dataId: DataId, force?: boolean): boolean;\n write(values: BackendValues, shape: number[], dtype: DataType): DataId;\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void;\n memory(): {unreliable: boolean;}; // Backend-specific information.\n /** Returns number of data ids currently in the storage. */\n numDataIds(): number;\n refCount(dataId: DataId): number;\n}\n\n/** Convenient class for storing tensor-related data. */\nexport class DataStorage {\n private data = new WeakMap();\n private dataIdsCount = 0;\n\n constructor(private backend: KernelBackend, private dataMover: DataMover) {}\n\n get(dataId: DataId) {\n if (!this.data.has(dataId)) {\n this.dataMover.moveData(this.backend, dataId);\n }\n return this.data.get(dataId);\n }\n\n set(dataId: DataId, value: T): void {\n this.dataIdsCount++;\n this.data.set(dataId, value);\n }\n\n has(dataId: DataId): boolean {\n return this.data.has(dataId);\n }\n\n delete(dataId: DataId): boolean {\n this.dataIdsCount--;\n return this.data.delete(dataId);\n }\n\n numDataIds(): number {\n return this.dataIdsCount;\n }\n}\n\nexport interface DataMover {\n /**\n * To be called by backends whenever they see a dataId that they don't own.\n * Upon calling this method, the mover will fetch the tensor from another\n * backend and register it with the current active backend.\n */\n moveData(backend: KernelBackend, dataId: DataId): void;\n}\n\nexport interface BackendTimer {\n // check if backend timer is available\n timerAvailable(): boolean;\n time(f: () => void): Promise;\n}\n\n/**\n * The interface that defines the kernels that should be implemented when\n * adding a new backend. New backends don't need to implement every one of the\n * methods, this can be done gradually (throw an error for unimplemented\n * methods).\n */\nexport class KernelBackend implements TensorStorage, Backend, BackendTimer {\n refCount(dataId: DataId): number {\n return notYetImplemented('refCount');\n }\n incRef(dataId: DataId): void {\n return notYetImplemented('incRef');\n }\n timerAvailable(): boolean {\n return true;\n }\n time(f: () => void): Promise {\n return notYetImplemented('time');\n }\n read(dataId: object): Promise {\n return notYetImplemented('read');\n }\n readSync(dataId: object): BackendValues {\n return notYetImplemented('readSync');\n }\n numDataIds(): number {\n return notYetImplemented('numDataIds');\n }\n disposeData(dataId: object, force?: boolean): boolean {\n return notYetImplemented('disposeData');\n }\n write(values: BackendValues, shape: number[], dtype: DataType): DataId {\n return notYetImplemented('write');\n }\n move(\n dataId: DataId, values: BackendValues, shape: number[], dtype: DataType,\n refCount: number): void {\n return notYetImplemented('move');\n }\n memory(): {unreliable: boolean; reasons?: string[]} {\n return notYetImplemented('memory');\n }\n /** Returns the highest precision for floats in bits (e.g. 16 or 32) */\n floatPrecision(): 16|32 {\n return notYetImplemented('floatPrecision');\n }\n /** Returns the smallest representable number. */\n epsilon(): number {\n return this.floatPrecision() === 32 ? EPSILON_FLOAT32 : EPSILON_FLOAT16;\n }\n dispose(): void {\n return notYetImplemented('dispose');\n }\n}\n\nfunction notYetImplemented(kernelName: string): never {\n throw new Error(\n `'${kernelName}' not yet implemented or not found in the registry. ` +\n `This kernel may not be supported by the tfjs backend you have chosen`);\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, DataTypeMap, FlatVector, NumericDataType, RecursiveArray, TensorLike, TypedArray} from './types';\n\n/**\n * Shuffles the array in-place using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1, 2, 3, 4, 5];\n * tf.util.shuffle(a);\n * console.log(a);\n * ```\n *\n * @param array The array to shuffle in-place.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\n// tslint:disable-next-line:no-any\nexport function shuffle(array: any[]|Uint32Array|Int32Array|\n Float32Array): void {\n let counter = array.length;\n let temp = 0;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element with it\n temp = array[counter];\n array[counter] = array[index];\n array[index] = temp;\n }\n}\n\n/**\n * Shuffles two arrays in-place the same way using Fisher-Yates algorithm.\n *\n * ```js\n * const a = [1,2,3,4,5];\n * const b = [11,22,33,44,55];\n * tf.util.shuffleCombo(a, b);\n * console.log(a, b);\n * ```\n *\n * @param array The first array to shuffle in-place.\n * @param array2 The second array to shuffle in-place with the same permutation\n * as the first array.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function shuffleCombo(\n // tslint:disable-next-line:no-any\n array: any[]|Uint32Array|Int32Array|Float32Array,\n // tslint:disable-next-line:no-any\n array2: any[]|Uint32Array|Int32Array|Float32Array): void {\n if (array.length !== array2.length) {\n throw new Error(\n `Array sizes must match to be shuffled together ` +\n `First array length was ${array.length}` +\n `Second array length was ${array2.length}`);\n }\n let counter = array.length;\n let temp, temp2;\n let index = 0;\n // While there are elements in the array\n while (counter > 0) {\n // Pick a random index\n index = (Math.random() * counter) | 0;\n // Decrease counter by 1\n counter--;\n // And swap the last element of each array with it\n temp = array[counter];\n temp2 = array2[counter];\n array[counter] = array[index];\n array2[counter] = array2[index];\n array[index] = temp;\n array2[index] = temp2;\n }\n}\n\n/** Clamps a value to a specified range. */\nexport function clamp(min: number, x: number, max: number): number {\n return Math.max(min, Math.min(x, max));\n}\n\nexport function nearestLargerEven(val: number): number {\n return val % 2 === 0 ? val : val + 1;\n}\n\nexport function sum(arr: number[]): number {\n let sum = 0;\n for (let i = 0; i < arr.length; i++) {\n sum += arr[i];\n }\n return sum;\n}\n\n/**\n * Returns a sample from a uniform [a, b) distribution.\n *\n * @param a The minimum support (inclusive).\n * @param b The maximum support (exclusive).\n * @return A pseudorandom number on the half-open interval [a,b).\n */\nexport function randUniform(a: number, b: number) {\n const r = Math.random();\n return (b * r) + (1 - r) * a;\n}\n\n/** Returns the squared Euclidean distance between two vectors. */\nexport function distSquared(a: FlatVector, b: FlatVector): number {\n let result = 0;\n for (let i = 0; i < a.length; i++) {\n const diff = Number(a[i]) - Number(b[i]);\n result += diff * diff;\n }\n return result;\n}\n\n/**\n * Asserts that the expression is true. Otherwise throws an error with the\n * provided message.\n *\n * ```js\n * const x = 2;\n * tf.util.assert(x === 2, 'x is not 2');\n * ```\n *\n * @param expr The expression to assert (as a boolean).\n * @param msg A function that returns the message to report when throwing an\n * error. We use a function for performance reasons.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function assert(expr: boolean, msg: () => string) {\n if (!expr) {\n throw new Error(typeof msg === 'string' ? msg : msg());\n }\n}\n\nexport function assertShapesMatch(\n shapeA: number[], shapeB: number[], errorMessagePrefix = ''): void {\n assert(\n arraysEqual(shapeA, shapeB),\n () => errorMessagePrefix + ` Shapes ${shapeA} and ${shapeB} must match`);\n}\n\nexport function assertNonNull(a: TensorLike): void {\n assert(\n a != null,\n () => `The input to the tensor constructor must be a non-null value.`);\n}\n\n// NOTE: We explicitly type out what T extends instead of any so that\n// util.flatten on a nested array of number doesn't try to infer T as a\n// number[][], causing us to explicitly type util.flatten().\n/**\n * Flattens an arbitrarily nested array.\n *\n * ```js\n * const a = [[1, 2], [3, 4], [5, [6, [7]]]];\n * const flat = tf.util.flatten(a);\n * console.log(flat);\n * ```\n *\n * @param arr The nested array to flatten.\n * @param result The destination array which holds the elements.\n * @param skipTypedArray If true, avoids flattening the typed arrays. Defaults\n * to false.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function\nflatten|TypedArray>(\n arr: T|RecursiveArray, result: T[] = [], skipTypedArray = false): T[] {\n if (result == null) {\n result = [];\n }\n if (Array.isArray(arr) || isTypedArray(arr) && !skipTypedArray) {\n for (let i = 0; i < arr.length; ++i) {\n flatten(arr[i], result, skipTypedArray);\n }\n } else {\n result.push(arr as T);\n }\n return result;\n}\n\n/**\n * Returns the size (number of elements) of the tensor given its shape.\n *\n * ```js\n * const shape = [3, 4, 2];\n * const size = tf.util.sizeFromShape(shape);\n * console.log(size);\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function sizeFromShape(shape: number[]): number {\n if (shape.length === 0) {\n // Scalar.\n return 1;\n }\n let size = shape[0];\n for (let i = 1; i < shape.length; i++) {\n size *= shape[i];\n }\n return size;\n}\n\nexport function isScalarShape(shape: number[]): boolean {\n return shape.length === 0;\n}\n\nexport function arraysEqual(n1: FlatVector, n2: FlatVector) {\n if (n1 === n2) {\n return true;\n }\n if (n1 == null || n2 == null) {\n return false;\n }\n\n if (n1.length !== n2.length) {\n return false;\n }\n for (let i = 0; i < n1.length; i++) {\n if (n1[i] !== n2[i]) {\n return false;\n }\n }\n return true;\n}\n\nexport function isInt(a: number): boolean {\n return a % 1 === 0;\n}\n\nexport function tanh(x: number): number {\n // tslint:disable-next-line:no-any\n if ((Math as any).tanh != null) {\n // tslint:disable-next-line:no-any\n return (Math as any).tanh(x);\n }\n if (x === Infinity) {\n return 1;\n } else if (x === -Infinity) {\n return -1;\n } else {\n const e2x = Math.exp(2 * x);\n return (e2x - 1) / (e2x + 1);\n }\n}\n\nexport function sizeToSquarishShape(size: number): [number, number] {\n const width = Math.ceil(Math.sqrt(size));\n return [width, Math.ceil(size / width)];\n}\n\n/**\n * Creates a new array with randomized indicies to a given quantity.\n *\n * ```js\n * const randomTen = tf.util.createShuffledIndices(10);\n * console.log(randomTen);\n * ```\n *\n * @param number Quantity of how many shuffled indicies to create.\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function createShuffledIndices(n: number): Uint32Array {\n const shuffledIndices = new Uint32Array(n);\n for (let i = 0; i < n; ++i) {\n shuffledIndices[i] = i;\n }\n shuffle(shuffledIndices);\n return shuffledIndices;\n}\n\nexport function rightPad(a: string, size: number): string {\n if (size <= a.length) {\n return a;\n }\n return a + ' '.repeat(size - a.length);\n}\n\nexport function repeatedTry(\n checkFn: () => boolean, delayFn = (counter: number) => 0,\n maxCounter?: number): Promise {\n return new Promise((resolve, reject) => {\n let tryCount = 0;\n\n const tryFn = () => {\n if (checkFn()) {\n resolve();\n return;\n }\n\n tryCount++;\n\n const nextBackoff = delayFn(tryCount);\n\n if (maxCounter != null && tryCount >= maxCounter) {\n reject();\n return;\n }\n setTimeout(tryFn, nextBackoff);\n };\n\n tryFn();\n });\n}\n\n/**\n * Given the full size of the array and a shape that may contain -1 as the\n * implicit dimension, returns the inferred shape where -1 is replaced.\n * E.g. For shape=[2, -1, 3] and size=24, it will return [2, 4, 3].\n *\n * @param shape The shape, which may contain -1 in some dimension.\n * @param size The full size (number of elements) of the array.\n * @return The inferred shape where -1 is replaced with the inferred size.\n */\nexport function inferFromImplicitShape(\n shape: number[], size: number): number[] {\n let shapeProd = 1;\n let implicitIdx = -1;\n\n for (let i = 0; i < shape.length; ++i) {\n if (shape[i] >= 0) {\n shapeProd *= shape[i];\n } else if (shape[i] === -1) {\n if (implicitIdx !== -1) {\n throw Error(\n `Shapes can only have 1 implicit size. ` +\n `Found -1 at dim ${implicitIdx} and dim ${i}`);\n }\n implicitIdx = i;\n } else if (shape[i] < 0) {\n throw Error(`Shapes can not be < 0. Found ${shape[i]} at dim ${i}`);\n }\n }\n\n if (implicitIdx === -1) {\n if (size > 0 && size !== shapeProd) {\n throw Error(`Size(${size}) must match the product of shape ${shape}`);\n }\n return shape;\n }\n\n if (shapeProd === 0) {\n throw Error(\n `Cannot infer the missing size in [${shape}] when ` +\n `there are 0 elements`);\n }\n if (size % shapeProd !== 0) {\n throw Error(\n `The implicit shape can't be a fractional number. ` +\n `Got ${size} / ${shapeProd}`);\n }\n\n const newShape = shape.slice();\n newShape[implicitIdx] = size / shapeProd;\n return newShape;\n}\n\nexport function parseAxisParam(\n axis: number|number[], shape: number[]): number[] {\n const rank = shape.length;\n\n // Normalize input\n axis = axis == null ? shape.map((s, i) => i) : [].concat(axis);\n\n // Check for valid range\n assert(\n axis.every(ax => ax >= -rank && ax < rank),\n () =>\n `All values in axis param must be in range [-${rank}, ${rank}) but ` +\n `got axis ${axis}`);\n\n // Check for only integers\n assert(\n axis.every(ax => isInt(ax)),\n () => `All values in axis param must be integers but ` +\n `got axis ${axis}`);\n\n // Handle negative axis.\n return axis.map(a => a < 0 ? rank + a : a);\n}\n\n/** Reduces the shape by removing all dimensions of shape 1. */\nexport function squeezeShape(shape: number[], axis?: number[]):\n {newShape: number[], keptDims: number[]} {\n const newShape: number[] = [];\n const keptDims: number[] = [];\n const isEmptyArray = axis != null && Array.isArray(axis) && axis.length === 0;\n const axes = (axis == null || isEmptyArray) ?\n null :\n parseAxisParam(axis, shape).sort();\n let j = 0;\n for (let i = 0; i < shape.length; ++i) {\n if (axes != null) {\n if (axes[j] === i && shape[i] !== 1) {\n throw new Error(\n `Can't squeeze axis ${i} since its dim '${shape[i]}' is not 1`);\n }\n if ((axes[j] == null || axes[j] > i) && shape[i] === 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n if (axes[j] <= i) {\n j++;\n }\n }\n if (shape[i] !== 1) {\n newShape.push(shape[i]);\n keptDims.push(i);\n }\n }\n return {newShape, keptDims};\n}\n\nexport function getTypedArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function getArrayFromDType(\n dtype: D, size: number): DataTypeMap[D] {\n let values = null;\n if (dtype == null || dtype === 'float32') {\n values = new Float32Array(size);\n } else if (dtype === 'int32') {\n values = new Int32Array(size);\n } else if (dtype === 'bool') {\n values = new Uint8Array(size);\n } else if (dtype === 'string') {\n values = new Array<'string'>(size);\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n return values as DataTypeMap[D];\n}\n\nexport function checkConversionForErrors(\n vals: DataTypeMap[D]|number[], dtype: D): void {\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n throw Error(`A tensor of type ${dtype} being uploaded contains ${num}.`);\n }\n }\n}\n\n/** Returns true if the dtype is valid. */\nexport function isValidDtype(dtype: DataType): boolean {\n return dtype === 'bool' || dtype === 'complex64' || dtype === 'float32' ||\n dtype === 'int32' || dtype === 'string';\n}\n\n/**\n * Returns true if the new type can't encode the old type without loss of\n * precision.\n */\nexport function hasEncodingLoss(oldType: DataType, newType: DataType): boolean {\n if (newType === 'complex64') {\n return false;\n }\n if (newType === 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'int32' && oldType !== 'float32' && oldType !== 'complex64') {\n return false;\n }\n if (newType === 'bool' && oldType === 'bool') {\n return false;\n }\n return true;\n}\n\nexport function isTypedArray(a: {}): a is Float32Array|Int32Array|Uint8Array {\n return a instanceof Float32Array || a instanceof Int32Array ||\n a instanceof Uint8Array;\n}\n\nexport function bytesPerElement(dtype: DataType): number {\n if (dtype === 'float32' || dtype === 'int32') {\n return 4;\n } else if (dtype === 'complex64') {\n return 8;\n } else if (dtype === 'bool') {\n return 1;\n } else {\n throw new Error(`Unknown dtype ${dtype}`);\n }\n}\n\n/**\n * Returns the approximate number of bytes allocated in the string array - 2\n * bytes per character. Computing the exact bytes for a native string in JS is\n * not possible since it depends on the encoding of the html page that serves\n * the website.\n */\nexport function bytesFromStringArray(arr: Uint8Array[]): number {\n if (arr == null) {\n return 0;\n }\n let bytes = 0;\n arr.forEach(x => bytes += x.length);\n return bytes;\n}\n\n/** Returns true if the value is a string. */\nexport function isString(value: {}): value is string {\n return typeof value === 'string' || value instanceof String;\n}\n\nexport function isBoolean(value: {}): boolean {\n return typeof value === 'boolean';\n}\n\nexport function isNumber(value: {}): boolean {\n return typeof value === 'number';\n}\n\nexport function inferDtype(values: TensorLike): DataType {\n if (Array.isArray(values)) {\n return inferDtype(values[0]);\n }\n if (values instanceof Float32Array) {\n return 'float32';\n } else if (values instanceof Int32Array || values instanceof Uint8Array) {\n return 'int32';\n } else if (isNumber(values)) {\n return 'float32';\n } else if (isString(values)) {\n return 'string';\n } else if (isBoolean(values)) {\n return 'bool';\n }\n return 'float32';\n}\n\nexport function isFunction(f: Function) {\n return !!(f && f.constructor && f.call && f.apply);\n}\n\nexport function nearestDivisor(size: number, start: number): number {\n for (let i = start; i < size; ++i) {\n if (size % i === 0) {\n return i;\n }\n }\n return size;\n}\n\nexport function computeStrides(shape: number[]): number[] {\n const rank = shape.length;\n if (rank < 2) {\n return [];\n }\n\n // Last dimension has implicit stride of 1, thus having D-1 (instead of D)\n // strides.\n const strides = new Array(rank - 1);\n strides[rank - 2] = shape[rank - 1];\n for (let i = rank - 3; i >= 0; --i) {\n strides[i] = strides[i + 1] * shape[i + 1];\n }\n return strides;\n}\n\nfunction createNestedArray(\n offset: number, shape: number[], a: TypedArray, isComplex = false) {\n const ret = new Array();\n if (shape.length === 1) {\n const d = shape[0] * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = a[offset + i];\n }\n } else {\n const d = shape[0];\n const rest = shape.slice(1);\n const len = rest.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n for (let i = 0; i < d; i++) {\n ret[i] = createNestedArray(offset + i * len, rest, a, isComplex);\n }\n }\n return ret;\n}\n\n// Provide a nested array of TypedArray in given shape.\nexport function toNestedArray(\n shape: number[], a: TypedArray, isComplex = false) {\n if (shape.length === 0) {\n // Scalar type should return a single number.\n return a[0];\n }\n const size = shape.reduce((acc, c) => acc * c) * (isComplex ? 2 : 1);\n if (size === 0) {\n // A tensor with shape zero should be turned into empty list.\n return [];\n }\n if (size !== a.length) {\n throw new Error(`[${shape}] does not match the input size ${a.length}${\n isComplex ? ' for a complex tensor' : ''}.`);\n }\n\n return createNestedArray(0, shape, a, isComplex);\n}\n\nexport function makeOnesTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n const array = makeZerosTypedArray(size, dtype);\n for (let i = 0; i < array.length; i++) {\n array[i] = 1;\n }\n return array;\n}\n\nexport function makeZerosTypedArray(\n size: number, dtype: D): DataTypeMap[D] {\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(size) as DataTypeMap[D];\n } else if (dtype === 'int32') {\n return new Int32Array(size) as DataTypeMap[D];\n } else if (dtype === 'bool') {\n return new Uint8Array(size) as DataTypeMap[D];\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Make nested `TypedArray` filled with zeros.\n * @param shape The shape information for the nested array.\n * @param dtype dtype of the array element.\n */\nexport function makeZerosNestedTypedArray(\n shape: number[], dtype: D) {\n const size = shape.reduce((prev, curr) => prev * curr, 1);\n if (dtype == null || dtype === 'float32') {\n return toNestedArray(shape, new Float32Array(size));\n } else if (dtype === 'int32') {\n return toNestedArray(shape, new Int32Array(size));\n } else if (dtype === 'bool') {\n return toNestedArray(shape, new Uint8Array(size));\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\nexport function assertNonNegativeIntegerDimensions(shape: number[]) {\n shape.forEach(dimSize => {\n assert(\n Number.isInteger(dimSize) && dimSize >= 0,\n () =>\n `Tensor must have a shape comprised of positive integers but got ` +\n `shape [${shape}].`);\n });\n}\n\n/**\n * Computes flat index for a given location (multidimentionsal index) in a\n * Tensor/multidimensional array.\n *\n * @param locs Location in the tensor.\n * @param rank Rank of the tensor.\n * @param strides Tensor strides.\n */\nexport function locToIndex(\n locs: number[], rank: number, strides: number[]): number {\n if (rank === 0) {\n return 0;\n } else if (rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += strides[i] * locs[i];\n }\n return index;\n}\n\n/**\n * Computes the location (multidimensional index) in a tensor/multidimentional\n * array for a given flat index.\n *\n * @param index Index in flat array.\n * @param rank Rank of tensor.\n * @param strides Strides of tensor.\n */\nexport function indexToLoc(\n index: number, rank: number, strides: number[]): number[] {\n if (rank === 0) {\n return [];\n } else if (rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(rank);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / strides[i]);\n index -= locs[i] * strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n}\n\n/**\n * This method asserts whether an object is a Promise instance.\n * @param object\n */\n// tslint:disable-next-line: no-any\nexport function isPromise(object: any) {\n // We chose to not use 'obj instanceOf Promise' for two reasons:\n // 1. It only reliably works for es6 Promise, not other Promise\n // implementations.\n // 2. It doesn't work with framework that uses zone.js. zone.js monkey patch\n // the async calls, so it is possible the obj (patched) is comparing to a\n // pre-patched Promise.\n return object && object.then && typeof object.then === 'function';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Platform} from './platforms/platform';\nimport {isPromise} from './util_base';\n\n// Expects flags from URL in the format ?tfjsflags=FLAG1:1,FLAG2:true.\nconst TENSORFLOWJS_FLAGS_PREFIX = 'tfjsflags';\n\ntype FlagValue = number|boolean;\ntype FlagEvaluationFn = (() => FlagValue)|(() => Promise);\nexport type Flags = {\n [featureName: string]: FlagValue\n};\nexport type FlagRegistryEntry = {\n evaluationFn: FlagEvaluationFn;\n setHook?: (value: FlagValue) => void;\n};\n\n/**\n * The environment contains evaluated flags as well as the registered platform.\n * This is always used as a global singleton and can be retrieved with\n * `tf.env()`.\n *\n * @doc {heading: 'Environment'}\n */\nexport class Environment {\n private flags: Flags = {};\n private flagRegistry: {[flagName: string]: FlagRegistryEntry} = {};\n\n private urlFlags: Flags = {};\n\n platformName: string;\n platform: Platform;\n\n // Jasmine spies on this in 'environment_test.ts'\n getQueryParams = getQueryParams;\n\n // tslint:disable-next-line: no-any\n constructor(public global: any) {\n this.populateURLFlags();\n }\n\n setPlatform(platformName: string, platform: Platform) {\n if (this.platform != null) {\n console.warn(\n `Platform ${this.platformName} has already been set. ` +\n `Overwriting the platform with ${platform}.`);\n }\n this.platformName = platformName;\n this.platform = platform;\n }\n\n registerFlag(\n flagName: string, evaluationFn: FlagEvaluationFn,\n setHook?: (value: FlagValue) => void) {\n this.flagRegistry[flagName] = {evaluationFn, setHook};\n\n // Override the flag value from the URL. This has to happen here because the\n // environment is initialized before flags get registered.\n if (this.urlFlags[flagName] != null) {\n const flagValue = this.urlFlags[flagName];\n console.warn(\n `Setting feature override from URL ${flagName}: ${flagValue}.`);\n this.set(flagName, flagValue);\n }\n }\n\n async getAsync(flagName: string): Promise {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n this.flags[flagName] = await this.evaluateFlag(flagName);\n return this.flags[flagName];\n }\n\n get(flagName: string): FlagValue {\n if (flagName in this.flags) {\n return this.flags[flagName];\n }\n\n const flagValue = this.evaluateFlag(flagName);\n if (isPromise(flagValue)) {\n throw new Error(\n `Flag ${flagName} cannot be synchronously evaluated. ` +\n `Please use getAsync() instead.`);\n }\n\n this.flags[flagName] = flagValue as number | boolean;\n\n return this.flags[flagName];\n }\n\n getNumber(flagName: string): number {\n return this.get(flagName) as number;\n }\n\n getBool(flagName: string): boolean {\n return this.get(flagName) as boolean;\n }\n\n getFlags(): Flags {\n return this.flags;\n }\n // For backwards compatibility.\n get features(): Flags {\n return this.flags;\n }\n\n set(flagName: string, value: FlagValue): void {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot set flag ${flagName} as it has not been registered.`);\n }\n this.flags[flagName] = value;\n if (this.flagRegistry[flagName].setHook != null) {\n this.flagRegistry[flagName].setHook(value);\n }\n }\n\n private evaluateFlag(flagName: string): FlagValue|Promise {\n if (this.flagRegistry[flagName] == null) {\n throw new Error(\n `Cannot evaluate flag '${flagName}': no evaluation function found.`);\n }\n return this.flagRegistry[flagName].evaluationFn();\n }\n\n setFlags(flags: Flags) {\n this.flags = Object.assign({}, flags);\n }\n\n reset() {\n this.flags = {};\n this.urlFlags = {};\n this.populateURLFlags();\n }\n\n private populateURLFlags(): void {\n if (typeof this.global === 'undefined' ||\n typeof this.global.location === 'undefined' ||\n typeof this.global.location.search === 'undefined') {\n return;\n }\n\n const urlParams = this.getQueryParams(this.global.location.search);\n if (TENSORFLOWJS_FLAGS_PREFIX in urlParams) {\n const keyValues = urlParams[TENSORFLOWJS_FLAGS_PREFIX].split(',');\n keyValues.forEach(keyValue => {\n const [key, value] = keyValue.split(':') as [string, string];\n this.urlFlags[key] = parseValue(key, value);\n });\n }\n }\n}\n\nexport function getQueryParams(queryString: string): {[key: string]: string} {\n const params = {};\n queryString.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, (s, ...t) => {\n decodeParam(params, t[0], t[1]);\n return t.join('=');\n });\n return params;\n}\n\nfunction decodeParam(\n params: {[key: string]: string}, name: string, value?: string) {\n params[decodeURIComponent(name)] = decodeURIComponent(value || '');\n}\n\nfunction parseValue(flagName: string, value: string): FlagValue {\n value = value.toLowerCase();\n if (value === 'true' || value === 'false') {\n return value === 'true';\n } else if (`${+ value}` === value) {\n return +value;\n }\n throw new Error(\n `Could not parse value flag value ${value} for flag ${flagName}.`);\n}\n\n/**\n * Returns the current environment (a global singleton).\n *\n * The environment object contains the evaluated feature values as well as the\n * active platform.\n *\n * @doc {heading: 'Environment'}\n */\nexport function env() {\n return ENV;\n}\n\nexport let ENV: Environment = null;\nexport function setEnvironmentGlobal(environment: Environment) {\n ENV = environment;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Note that the identifier globalNameSpace is scoped to this module, but will\n// always resolve to the same global object regardless of how the module is\n// resolved.\n// tslint:disable-next-line:no-any\nlet globalNameSpace: {_tfGlobals: Map};\n// tslint:disable-next-line:no-any\nexport function getGlobalNamespace(): {_tfGlobals: Map} {\n if (globalNameSpace == null) {\n // tslint:disable-next-line:no-any\n let ns: any;\n if (typeof (window) !== 'undefined') {\n ns = window;\n } else if (typeof (global) !== 'undefined') {\n ns = global;\n } else if (typeof (process) !== 'undefined') {\n ns = process;\n } else if (typeof (self) !== 'undefined') {\n ns = self;\n } else {\n throw new Error('Could not find a global object');\n }\n globalNameSpace = ns;\n }\n return globalNameSpace;\n}\n\n// tslint:disable-next-line:no-any\nfunction getGlobalMap(): Map {\n const ns = getGlobalNamespace();\n if (ns._tfGlobals == null) {\n ns._tfGlobals = new Map();\n }\n return ns._tfGlobals;\n}\n\n/**\n * Returns a globally accessible 'singleton' object.\n *\n * @param key the name of the object\n * @param init a function to initialize to initialize this object\n * the first time it is fetched.\n */\nexport function getGlobal(key: string, init: () => T): T {\n const globalMap = getGlobalMap();\n if (globalMap.has(key)) {\n return globalMap.get(key);\n } else {\n const singleton = init();\n globalMap.set(key, singleton);\n return globalMap.get(key);\n }\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Allow UpperCamelCase variable names\n// tslint:disable: variable-name\n// Unfortunately just enabling PascalCase per file (tslint:enable:\n// allow-pascal-case) doesn't work.\nimport {NamedTensorInfoMap, TensorInfo} from './kernel_registry';\nimport {ExplicitPadding} from './ops/conv_util';\nimport {Activation} from './ops/fused_types';\nimport {DataType, PixelData} from './types';\n\nexport const Abs = 'Abs';\nexport type AbsInputs = UnaryInputs;\n\nexport const Acos = 'Acos';\nexport type AcosInputs = UnaryInputs;\n\nexport const Acosh = 'Acosh';\nexport type AcoshInputs = UnaryInputs;\n\nexport const Add = 'Add';\nexport type AddInputs = BinaryInputs;\n\nexport const AddN = 'AddN';\nexport type AddNInputs = TensorInfo[];\n\nexport const All = 'All';\nexport type AllInputs = Pick;\nexport interface AllAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Any = 'Any';\nexport type AnyInputs = Pick;\nexport interface AnyAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const ArgMax = 'ArgMax';\nexport type ArgMaxInputs = Pick;\nexport interface ArgMaxAttrs {\n axis: number;\n}\n\nexport const ArgMin = 'ArgMin';\nexport type ArgMinInputs = Pick;\nexport interface ArgMinAttrs {\n axis: number;\n}\n\nexport const Asin = 'Asin';\nexport type AsinInputs = UnaryInputs;\n\nexport const Asinh = 'Asinh';\nexport type AsinhInputs = UnaryInputs;\n\nexport const Atan = 'Atan';\nexport type AtanInputs = UnaryInputs;\n\nexport const Atanh = 'Atanh';\nexport type AtanhInputs = UnaryInputs;\n\nexport const Atan2 = 'Atan2';\nexport type Atan2Inputs = BinaryInputs;\n\nexport const AvgPool = 'AvgPool';\nexport type AvgPoolInputs = Pick;\nexport interface AvgPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const AvgPoolGrad = 'AvgPoolGrad';\nexport type AvgPoolGradInputs = Pick;\nexport interface AvgPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n}\n\nexport const AvgPool3D = 'AvgPool3D';\nexport type AvgPool3DInputs = Pick;\nexport interface AvgPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n dataFormat: 'NDHWC'|'NCDHW';\n}\n\nexport const AvgPool3DGrad = 'AvgPool3DGrad';\nexport type AvgPool3DGradInputs = Pick;\nexport interface AvgPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const BatchMatMul = 'BatchMatMul';\nexport type BatchMatMulInputs = Pick;\nexport interface BatchMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n}\n\nexport const BatchToSpaceND = 'BatchToSpaceND';\nexport type BatchToSpaceNDInputs = Pick;\nexport interface BatchToSpaceNDAttrs {\n blockShape: number[];\n crops: number[][];\n}\n\nexport type BinaryInputs = Pick;\n\nexport const Bincount = 'Bincount';\nexport type BincountInputs = Pick;\nexport interface BincountAttrs {\n size: number;\n}\n\nexport const BroadcastTo = 'BroadcastTo';\nexport type BroadcastToInputs = Pick;\nexport interface BroadCastToAttrs {\n shape: number[];\n inputShape: number[]; // for gradient\n}\n\nexport const Cast = 'Cast';\nexport type CastInputs = UnaryInputs;\nexport interface CastAttrs {\n dtype: DataType;\n}\n\nexport const Ceil = 'Ceil';\nexport type CeilInputs = UnaryInputs;\n\nexport const ClipByValue = 'ClipByValue';\nexport type ClipByValueInputs = UnaryInputs;\nexport interface ClipByValueAttrs {\n clipValueMin: number;\n clipValueMax: number;\n}\n\nexport const Complex = 'Complex';\nexport type ComplexInputs = Pick;\n\nexport const ComplexAbs = 'ComplexAbs';\nexport type ComplexAbsInputs = UnaryInputs;\n\nexport const Concat = 'Concat';\nexport type ConcatInputs = TensorInfo[];\nexport interface ConcatAttrs {\n axis: number;\n}\n\nexport const Conv2D = 'Conv2D';\nexport type Conv2DInputs = Pick;\nexport interface Conv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const Conv2DBackpropFilter = 'Conv2DBackpropFilter';\nexport type Conv2DBackpropFilterInputs = Pick;\nexport interface Conv2DBackpropFilterAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const Conv2DBackpropInput = 'Conv2DBackpropInput';\nexport type Conv2DBackpropInputInputs = Pick;\nexport interface Conv2DBackpropInputAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Conv3D = 'Conv3D';\nexport type Conv3DInputs = Pick;\nexport interface Conv3DAttrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n dataFormat: 'NDHWC'|'NCDHW';\n dilations: [number, number, number]|number;\n}\n\nexport const Conv3DBackpropFilterV2 = 'Conv3DBackpropFilterV2';\nexport type Conv3DBackpropFilterV2Inputs = Pick;\n\nexport interface Conv3DBackpropFilterV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n filterShape: [number, number, number, number, number];\n}\n\nexport const Conv3DBackpropInputV2 = 'Conv3DBackpropInputV2';\nexport type Conv3DBackpropInputV2Inputs =\n Pick;\nexport interface Conv3DBackpropInputV2Attrs {\n strides: [number, number, number]|number;\n pad: 'valid'|'same';\n inputShape: [number, number, number, number, number];\n}\n\nexport const Cos = 'Cos';\nexport type CosInputs = UnaryInputs;\n\nexport const Cosh = 'Cosh';\nexport type CoshInputs = UnaryInputs;\n\nexport const Cumsum = 'Cumsum';\nexport type CumsumInputs = Pick;\nexport interface CumsumAttrs {\n axis: number;\n exclusive: boolean;\n reverse: boolean;\n}\n\nexport const CropAndResize = 'CropAndResize';\nexport type CropAndResizeInputs =\n Pick;\nexport interface CropAndResizeAttrs {\n cropSize: [number, number];\n method: 'bilinear'|'nearest';\n extrapolationValue: number;\n}\n\nexport const DenseBincount = 'DenseBincount';\nexport type DenseBincountInputs = Pick;\nexport interface DenseBincountAttrs {\n size: number;\n binaryOutput?: boolean;\n}\n\nexport const DepthToSpace = 'DepthToSpace';\nexport type DepthToSpaceInputs = Pick;\nexport interface DepthToSpaceAttrs {\n blockSize: number;\n dataFormat: 'NHWC'|'NCHW';\n}\n\nexport const DepthwiseConv2dNative = 'DepthwiseConv2dNative';\nexport type DepthwiseConv2dNativeInputs =\n Pick;\nexport interface DepthwiseConv2dNativeAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const DepthwiseConv2dNativeBackpropFilter =\n 'DepthwiseConv2dNativeBackpropFilter';\nexport type DepthwiseConv2dNativeBackpropFilterInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropFilterAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n filterShape: [number, number, number, number];\n}\n\nexport const DepthwiseConv2dNativeBackpropInput =\n 'DepthwiseConv2dNativeBackpropInput';\nexport type DepthwiseConv2dNativeBackpropInputInputs =\n Pick;\nexport interface DepthwiseConv2dNativeBackpropInputAttrs {\n strides: [number, number]|number;\n dilations: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n inputShape: [number, number, number, number];\n}\n\nexport const Diag = 'Diag';\nexport type DiagInputs = Pick;\n\nexport const Dilation2D = 'Dilation2D';\nexport type Dilation2DInputs = Pick;\nexport interface Dilation2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dilations: [number, number]|number;\n}\n\nexport const Dilation2DBackpropInput = 'Dilation2DBackpropInput';\nexport type Dilation2DBackpropInputInputs =\n Pick;\n\nexport const Dilation2DBackpropFilter = 'Dilation2DBackpropFilter';\nexport type Dilation2DBackpropFilterInputs =\n Pick;\n\nexport const RealDiv = 'RealDiv';\nexport type RealDivInputs = BinaryInputs;\n\nexport const Einsum = 'Einsum';\nexport type EinsumInputs = TensorInfo[];\nexport interface EinsumAttrs {\n equation: string;\n}\n\nexport const Elu = 'Elu';\nexport type EluInputs = Pick;\n\nexport const EluGrad = 'EluGrad';\nexport type EluGradInputs = Pick;\n\nexport const Erf = 'Erf';\nexport type ErfInputs = UnaryInputs;\n\nexport const Equal = 'Equal';\nexport type EqualInputs = BinaryInputs;\n\nexport const Exp = 'Exp';\nexport type ExpInputs = UnaryInputs;\n\nexport const ExpandDims = 'ExpandDims';\nexport type ExpandDimsInputs = Pick;\nexport interface ExpandDimsAttrs {\n dim: number;\n}\n\nexport const Expm1 = 'Expm1';\nexport type Expm1Inputs = UnaryInputs;\n\nexport const FFT = 'FFT';\nexport type FFTInputs = Pick;\n\nexport const Fill = 'Fill';\nexport interface FillAttrs {\n shape: number[];\n value: number|string;\n dtype: DataType;\n}\n\nexport const FlipLeftRight = 'FlipLeftRight';\nexport type FlipLeftRightInputs = Pick;\n\nexport const Floor = 'Floor';\nexport type FloorInputs = UnaryInputs;\n\nexport const FloorDiv = 'FloorDiv';\nexport type FloorDivInputs = BinaryInputs;\n\nexport const FusedBatchNorm = 'FusedBatchNorm';\nexport type FusedBatchNormInputs =\n Pick;\nexport interface FusedBatchNormAttrs {\n varianceEpsilon: number;\n}\n\nexport const GatherV2 = 'GatherV2';\nexport type GatherV2Inputs = Pick;\nexport interface GatherV2Attrs {\n axis: number;\n batchDims: number;\n}\n\nexport const GatherNd = 'GatherNd';\nexport type GatherNdInputs = Pick;\n\nexport const Greater = 'Greater';\nexport type GreaterInputs = BinaryInputs;\n\nexport const GreaterEqual = 'GreaterEqual';\nexport type GreaterEqualInputs = BinaryInputs;\n\nexport const Identity = 'Identity';\nexport type IdentityInputs = Pick;\n\nexport const IFFT = 'IFFT';\nexport type IFFTInputs = Pick;\n\nexport const Imag = 'Imag';\nexport type ImagInputs = Pick;\n\nexport const IsFinite = 'IsFinite';\nexport type IsFiniteInputs = UnaryInputs;\n\nexport const IsInf = 'IsInf';\nexport type IsInfInputs = UnaryInputs;\n\nexport const IsNan = 'IsNan';\nexport type IsNanInputs = UnaryInputs;\n\nexport const LeakyRelu = 'LeakyRelu';\nexport type LeakyReluInputs = Pick;\nexport interface LeakyReluAttrs {\n alpha: number;\n}\n\nexport const Less = 'Less';\nexport type LessInputs = BinaryInputs;\n\nexport const LessEqual = 'LessEqual';\nexport type LessEqualInputs = BinaryInputs;\n\nexport const LinSpace = 'LinSpace';\nexport interface LinSpaceAttrs {\n start: number;\n stop: number;\n num: number;\n}\nexport const Log = 'Log';\nexport type LogInputs = UnaryInputs;\n\nexport const Log1p = 'Log1p';\nexport type Log1pInputs = UnaryInputs;\n\nexport const LogicalAnd = 'LogicalAnd';\nexport type LogicalAndInputs = BinaryInputs;\n\nexport const LogicalNot = 'LogicalNot';\nexport type LogicalNotInputs = Pick;\n\nexport const LogicalOr = 'LogicalOr';\nexport type LogicalOrInputs = BinaryInputs;\n\nexport const LogSoftmax = 'LogSoftmax';\nexport type LogSoftmaxInputs = Pick;\nexport interface LogSoftmaxAttrs {\n axis: number;\n}\n\nexport const LRN = 'LRN';\nexport type LRNInputs = Pick;\nexport interface LRNAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const LRNGrad = 'LRNGrad';\nexport type LRNGradInputs = Pick;\nexport interface LRNGradAttrs {\n depthRadius: number;\n bias: number;\n alpha: number;\n beta: number;\n}\n\nexport const Max = 'Max';\nexport type MaxInputs = Pick;\nexport interface MaxAttrs {\n reductionIndices: number|number[];\n keepDims: boolean;\n}\n\nexport const Maximum = 'Maximum';\nexport type MaximumInputs = BinaryInputs;\n\nexport const MaxPool = 'MaxPool';\nexport type MaxPoolInputs = Pick;\nexport interface MaxPoolAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolGrad = 'MaxPoolGrad';\nexport type MaxPoolGradInputs = Pick;\nexport interface MaxPoolGradAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3D = 'MaxPool3D';\nexport type MaxPool3DInputs = Pick;\nexport interface MaxPool3DAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dataFormat: 'NDHWC'|'NCDHW';\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPool3DGrad = 'MaxPool3DGrad';\nexport type MaxPool3DGradInputs =\n Pick;\nexport interface MaxPool3DGradAttrs {\n filterSize: [number, number, number]|number;\n strides: [number, number, number]|number;\n pad: 'valid'|'same'|number;\n dimRoundingMode?: 'floor'|'round'|'ceil';\n}\n\nexport const MaxPoolWithArgmax = 'MaxPoolWithArgmax';\nexport type MaxPoolWithArgmaxInputs = Pick;\nexport interface MaxPoolWithArgmaxAttrs {\n filterSize: [number, number]|number;\n strides: [number, number]|number;\n pad: 'valid'|'same'|number;\n includeBatchInIndex: boolean;\n}\n\nexport const Mean = 'Mean';\nexport type MeanInputs = Pick;\nexport interface MeanAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Min = 'Min';\nexport type MinInputs = Pick;\nexport interface MinAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Minimum = 'Minimum';\nexport type MinimumInputs = BinaryInputs;\n\nexport const MirrorPad = 'MirrorPad';\nexport type MirrorPadInputs = Pick;\nexport interface MirrorPadAttrs {\n paddings: Array<[number, number]>;\n mode: 'reflect'|'symmetric';\n}\n\nexport const Mod = 'Mod';\nexport type ModInputs = BinaryInputs;\n\nexport const Multinomial = 'Multinomial';\nexport type MultinomialInputs = Pick;\nexport interface MultinomialAttrs {\n numSamples: number;\n seed: number;\n normalized: boolean;\n}\n\nexport const Multiply = 'Multiply';\nexport type MultiplyInputs = BinaryInputs;\n\nexport const Neg = 'Neg';\nexport type NegInputs = UnaryInputs;\n\nexport const NotEqual = 'NotEqual';\nexport type NotEqualInputs = BinaryInputs;\n\nexport const NonMaxSuppressionV3 = 'NonMaxSuppressionV3';\nexport type NonMaxSuppressionV3Inputs =\n Pick;\nexport interface NonMaxSuppressionV3Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n}\n\nexport const NonMaxSuppressionV4 = 'NonMaxSuppressionV4';\nexport type NonMaxSuppressionV4Inputs =\n Pick;\nexport interface NonMaxSuppressionV4Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n padToMaxOutputSize: boolean;\n}\n\nexport const NonMaxSuppressionV5 = 'NonMaxSuppressionV5';\nexport type NonMaxSuppressionV5Inputs =\n Pick;\nexport interface NonMaxSuppressionV5Attrs {\n maxOutputSize: number;\n iouThreshold: number;\n scoreThreshold: number;\n softNmsSigma: number;\n}\n\nexport const OnesLike = 'OnesLike';\nexport type OnesLikeInputs = UnaryInputs;\n\nexport const OneHot = 'OneHot';\nexport type OneHotInputs = Pick;\nexport interface OneHotAttrs {\n depth: number;\n onValue: number;\n offValue: number;\n}\n\nexport const Pack = 'Pack';\nexport type PackInputs = TensorInfo[];\nexport interface PackAttrs {\n axis: number;\n}\n\nexport const PadV2 = 'PadV2';\nexport type PadV2Inputs = Pick;\nexport interface PadV2Attrs {\n paddings: Array<[number, number]>;\n constantValue: number;\n}\n\nexport const Pool = 'Pool';\nexport type PoolInputs = Pick;\n\nexport const Pow = 'Pow';\nexport type PowInputs = BinaryInputs;\n\nexport const Prelu = 'Prelu';\nexport type PreluInputs = Pick;\n\nexport const Prod = 'Prod';\nexport type ProdInputs = Pick;\nexport interface ProdAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const Range = 'Range';\nexport interface RangeAttrs {\n start: number;\n stop: number;\n step: number;\n dtype: 'float32'|'int32';\n}\n\nexport const Real = 'Real';\nexport type RealInputs = Pick;\n\nexport const Reciprocal = 'Reciprocal';\nexport type ReciprocalInputs = UnaryInputs;\n\nexport const Relu = 'Relu';\nexport type ReluInputs = Pick;\n\nexport const Reshape = 'Reshape';\nexport type ReshapeInputs = Pick;\nexport interface ReshapeAttrs {\n shape: number[];\n}\n\nexport const ResizeNearestNeighbor = 'ResizeNearestNeighbor';\nexport type ResizeNearestNeighborInputs = Pick;\nexport interface ResizeNearestNeighborAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeNearestNeighborGrad = 'ResizeNearestNeighborGrad';\nexport type ResizeNearestNeighborGradInputs =\n Pick;\nexport type ResizeNearestNeighborGradAttrs = ResizeNearestNeighborAttrs;\n\nexport const ResizeBilinear = 'ResizeBilinear';\nexport type ResizeBilinearInputs = Pick;\nexport interface ResizeBilinearAttrs {\n alignCorners: boolean;\n halfPixelCenters: boolean;\n size: [number, number];\n}\n\nexport const ResizeBilinearGrad = 'ResizeBilinearGrad';\nexport type ResizeBilinearGradInputs = Pick;\nexport type ResizeBilinearGradAttrs = ResizeBilinearAttrs;\n\nexport const Relu6 = 'Relu6';\nexport type Relu6Inputs = Pick;\n\nexport const Reverse = 'Reverse';\nexport type ReverseInputs = Pick;\nexport interface ReverseAttrs {\n dims: number|number[];\n}\n\nexport const Round = 'Round';\nexport type RoundInputs = UnaryInputs;\n\nexport const Rsqrt = 'Rsqrt';\nexport type RsqrtInputs = UnaryInputs;\n\nexport const ScatterNd = 'ScatterNd';\nexport type ScatterNdInputs = Pick;\nexport interface ScatterNdAttrs {\n shape: number[];\n}\n\nexport const Select = 'Select';\nexport type SelectInputs = Pick;\n\nexport const Selu = 'Selu';\nexport type SeluInputs = Pick;\n\nexport const Slice = 'Slice';\nexport type SliceInputs = Pick;\nexport interface SliceAttrs {\n begin: number|number[];\n size: number|number[];\n}\nexport const Sin = 'Sin';\nexport type SinInputs = UnaryInputs;\n\nexport const Sinh = 'Sinh';\nexport type SinhInputs = UnaryInputs;\n\nexport const Sign = 'Sign';\nexport type SignInputs = UnaryInputs;\n\nexport const Sigmoid = 'Sigmoid';\nexport type SigmoidInputs = UnaryInputs;\n\nexport const Softplus = 'Softplus';\nexport type SoftplusInputs = UnaryInputs;\n\nexport const Sqrt = 'Sqrt';\nexport type SqrtInputs = UnaryInputs;\n\nexport const Sum = 'Sum';\nexport type SumInputs = Pick;\nexport interface SumAttrs {\n axis: number|number[];\n keepDims: boolean;\n}\n\nexport const SpaceToBatchND = 'SpaceToBatchND';\nexport type SpaceToBatchNDInputs = Pick;\nexport interface SpaceToBatchNDAttrs {\n blockShape: number[];\n paddings: number[][];\n}\n\nexport const SplitV = 'SplitV';\nexport type SplitVInputs = Pick;\nexport interface SplitVAttrs {\n numOrSizeSplits: number[]|number;\n axis: number;\n}\n\nexport const Softmax = 'Softmax';\nexport type SoftmaxInputs = Pick;\nexport interface SoftmaxAttrs {\n dim: number;\n}\n\nexport const SparseFillEmptyRows = 'SparseFillEmptyRows';\nexport type SparseFillEmptyRowsInputs =\n Pick;\n\nexport const SparseReshape = 'SparseReshape';\nexport type SparseReshapeInputs =\n Pick;\n\nexport const SparseSegmentMean = 'SparseSegmentMean';\nexport type SparseSegmentMeanInputs =\n Pick;\n\nexport const SparseSegmentSum = 'SparseSegmentSum';\nexport type SparseSegmentSumInputs =\n Pick;\n\nexport const SparseToDense = 'SparseToDense';\nexport type SparseToDenseInputs =\n Pick;\nexport interface SparseToDenseAttrs {\n outputShape: number[];\n}\n\nexport const SquaredDifference = 'SquaredDifference';\nexport type SquaredDifferenceInputs = BinaryInputs;\n\nexport const Square = 'Square';\nexport type SquareInputs = Pick;\n\nexport const StridedSlice = 'StridedSlice';\nexport type StridedSliceInputs = Pick;\nexport interface StridedSliceAttrs {\n begin: number[];\n end: number[];\n strides: number[];\n beginMask: number;\n endMask: number;\n ellipsisMask: number;\n newAxisMask: number;\n shrinkAxisMask: number;\n}\n\nexport const StringNGrams = 'StringNGrams';\nexport type StringNGramsInputs = Pick;\nexport interface StringNGramsAttrs {\n separator: string;\n nGramWidths: number[];\n leftPad: string;\n rightPad: string;\n padWidth: number;\n preserveShortSequences: boolean;\n}\n\nexport const StringSplit = 'StringSplit';\nexport type StringSplitInputs = Pick;\nexport interface StringSplitAttrs {\n skipEmpty: boolean;\n}\n\nexport const StringToHashBucketFast = 'StringToHashBucketFast';\nexport type StringToHashBucketFastInputs = Pick;\nexport interface StringToHashBucketFastAttrs {\n numBuckets: number;\n}\n\nexport const Sub = 'Sub';\nexport type SubInputs = BinaryInputs;\n\nexport const Tan = 'Tan';\nexport type TanInputs = UnaryInputs;\n\nexport const Tanh = 'Tanh';\nexport type TanhInputs = UnaryInputs;\n\nexport const Tile = 'Tile';\nexport type TileInputs = Pick;\nexport interface TileAttrs {\n reps: number[];\n}\n\nexport const TopK = 'TopK';\nexport type TopKInputs = Pick;\nexport interface TopKAttrs {\n k: number;\n sorted: boolean;\n}\n\nexport const Transform = 'Transform';\nexport type TransformInputs = Pick;\nexport interface TransformAttrs {\n interpolation: 'nearest'|'bilinear';\n fillMode: 'constant'|'reflect'|'wrap'|'nearest';\n fillValue: number;\n outputShape?: [number, number];\n}\n\nexport const Transpose = 'Transpose';\nexport type TransposeInputs = Pick;\nexport interface TransposeAttrs {\n perm: number[];\n}\n\nexport const Unique = 'Unique';\nexport type UniqueInputs = Pick;\nexport interface UniqueAttrs {\n axis: number;\n}\n\nexport type UnaryInputs = Pick;\n\nexport const Unpack = 'Unpack';\nexport type UnpackInputs = Pick;\nexport interface UnpackAttrs {\n axis: number;\n}\n\nexport const UnsortedSegmentSum = 'UnsortedSegmentSum';\nexport type UnsortedSegmentSumInputs =\n Pick;\nexport interface UnsortedSegmentSumAttrs {\n numSegments: number;\n}\n\nexport const ZerosLike = 'ZerosLike';\nexport type ZerosLikeInputs = UnaryInputs;\n\n/**\n * TensorFlow.js-only kernels\n */\nexport const Step = 'Step';\nexport type StepInputs = UnaryInputs;\nexport interface StepAttrs {\n alpha: number;\n}\n\nexport const FromPixels = 'FromPixels';\nexport interface FromPixelsInputs {\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap;\n}\nexport interface FromPixelsAttrs {\n numChannels: number;\n}\n\nexport const RotateWithOffset = 'RotateWithOffset';\nexport type RotateWithOffsetInputs = Pick;\nexport interface RotateWithOffsetAttrs {\n radians: number;\n fillValue: number|[number, number, number];\n center: number|[number, number];\n}\n\nexport const _FusedMatMul = '_FusedMatMul';\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulInputs extends NamedTensorInfoMap {\n a: TensorInfo;\n b: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\n// tslint:disable-next-line: class-name\nexport interface _FusedMatMulAttrs {\n transposeA: boolean;\n transposeB: boolean;\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedConv2D = 'FusedConv2D';\nexport interface FusedConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n\nexport const FusedDepthwiseConv2D = 'FusedDepthwiseConv2D';\nexport interface FusedDepthwiseConv2DInputs extends NamedTensorInfoMap {\n x: TensorInfo;\n filter: TensorInfo;\n bias?: TensorInfo;\n preluActivationWeights?: TensorInfo;\n}\nexport interface FusedDepthwiseConv2DAttrs {\n strides: [number, number]|number;\n pad: 'valid'|'same'|number|ExplicitPadding;\n dataFormat: 'NHWC'|'NCHW';\n dilations: [number, number]|number;\n dimRoundingMode: 'floor'|'round'|'ceil';\n activation: Activation;\n leakyreluAlpha?: number;\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from './environment';\n\nimport {getGlobal} from './global_util';\nimport {NamedGradientMap} from './tape';\nimport {Tensor} from './tensor';\nimport {DataType, RecursiveArray} from './types';\n\nconst kernelRegistry =\n getGlobal('kernelRegistry', () => new Map());\nconst gradRegistry =\n getGlobal('gradRegistry', () => new Map());\n\nexport type DataId = object;\n\ntype AttributeValue =\n number|number[]|boolean|boolean[]|string|string[]|NamedAttrMap;\n\n/** These are extra non-tensor/primitive params passed to kernel functions. */\nexport type Attribute = AttributeValue|RecursiveArray;\n\n/** Specifies the code to run when executing a kernel. */\nexport type KernelFunc = (params: {\n inputs: NamedTensorInfoMap,\n backend: {},\n attrs?: NamedAttrMap,\n}) => TensorInfo|TensorInfo[];\n\n/** The function to run when computing a gradient during backprop. */\nexport type GradFunc =\n (dy: Tensor|Tensor[], saved: Tensor[], attrs: NamedAttrMap) =>\n NamedGradientMap;\n\n/** Function that gets called after the backend initializes. */\nexport type KernelSetupFunc = (backend: {}) => void;\n/** Function that gets called right before the backend is disposed. */\nexport type KernelDisposeFunc = KernelSetupFunc;\n\n/** Config object for registering a kernel in the global registry. */\nexport interface KernelConfig {\n kernelName: string;\n backendName: string;\n kernelFunc: KernelFunc;\n setupFunc?: KernelSetupFunc;\n disposeFunc?: KernelDisposeFunc;\n}\n\n/** Config object for registering a gradient in the global registry. */\nexport interface GradConfig {\n kernelName: string;\n inputsToSave?: string[];\n // When saveAllInputs is true, all inputs will be saved. Only use this flag\n // if inputs is an array of Tensors.\n saveAllInputs?: boolean;\n outputsToSave?: boolean[];\n gradFunc: GradFunc;\n}\n\n/** Holds metadata for a given tensor. */\nexport interface TensorInfo {\n dataId: DataId;\n shape: number[];\n dtype: DataType;\n}\n\nexport interface NamedTensorInfoMap {\n [name: string]: TensorInfo;\n}\n\nexport interface NamedAttrMap {\n [name: string]: Attribute;\n}\n\n/**\n * Returns the kernel function (code) associated with the provided names.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n */\nexport function getKernel(\n kernelName: string, backendName: string): KernelConfig {\n const key = makeKey(kernelName, backendName);\n return kernelRegistry.get(key);\n}\n\n/**\n * Returns the registered gradient info associated with the provided kernel.\n * @param kernelName The official TF kernel name.\n */\nexport function getGradient(kernelName: string): GradConfig {\n return gradRegistry.get(kernelName);\n}\n\nexport function getKernelsForBackend(backendName: string): KernelConfig[] {\n const it = kernelRegistry.entries();\n const result: KernelConfig[] = [];\n\n while (true) {\n const {done, value} = it.next();\n if (done) {\n break;\n }\n const [key, config] = value;\n const [backend, ] = key.split('_');\n if (backend === backendName) {\n result.push(config);\n }\n }\n return result;\n}\n\n/**\n * Registers the function (forward pass) for the kernel in a global registry.\n *\n * @param config A config object with the following properties:\n * - `kernelName` The official name of the kernel.\n * - `backendName` The official name of the backend.\n * - `kernelFunc` The function to run during the forward pass of the kernel.\n * - `setupFunc` Optional. Gets called once, after the backend initializes.\n * - `disposeFunc` Optional. Gets called once, right before the backend is\n * disposed.\n */\nexport function registerKernel(config: KernelConfig) {\n const {kernelName, backendName} = config;\n const key = makeKey(kernelName, backendName);\n if (kernelRegistry.has(key)) {\n console.warn(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is already registered`);\n }\n kernelRegistry.set(key, config);\n}\n\n/**\n * Registers a gradient function for a given kernel in the global registry,\n * to be used during the back-propagation of that kernel.\n *\n * @param config An object with the following properties:\n * - `kernelName` The name of the kernel that the gradient function is for.\n * - `gradFunc` The function to run during back-propagation.\n */\nexport function registerGradient(config: GradConfig) {\n const {kernelName} = config;\n\n if (gradRegistry.has(kernelName)) {\n // TODO (yassogba) after 3.0 assess whether we need to keep this gated\n // to debug mode.\n if (env().getBool('DEBUG')) {\n console.warn(`Overriding the gradient for '${kernelName}'`);\n }\n }\n gradRegistry.set(kernelName, config);\n}\n\n/**\n * Removes the kernel function from the registry.\n *\n * @param kernelName The official name of the kernel.\n * @param backendName The official name of the backend.\n *\n */\nexport function unregisterKernel(\n kernelName: string, backendName: string): void {\n const key = makeKey(kernelName, backendName);\n if (!kernelRegistry.has(key)) {\n throw new Error(\n `The kernel '${kernelName}' for backend ` +\n `'${backendName}' is not registered`);\n }\n kernelRegistry.delete(key);\n}\n\n/** Removes the registered gradient from the global registry. */\nexport function unregisterGradient(kernelName: string): void {\n if (!gradRegistry.has(kernelName)) {\n throw new Error(\n `The gradient '${kernelName}' for backend is not registered`);\n }\n gradRegistry.delete(kernelName);\n}\n\n/**\n * Finds kernels that have already been registered to a backend and re-registers\n * them for a new backend. Useful for registering custom backends.\n * @param registeredBackendName Already registered backend.\n * @param newBackendName New backend.\n */\nexport function copyRegisteredKernels(\n registeredBackendName: string, newBackendName: string): void {\n const kernels = getKernelsForBackend(registeredBackendName);\n kernels.forEach(kernelConfig => {\n const newKernelConfig =\n Object.assign({}, kernelConfig, {backendName: newBackendName});\n registerKernel(newKernelConfig);\n });\n}\n\nfunction makeKey(kernelName: string, backendName: string) {\n return `${backendName}_${kernelName}`;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from './environment';\nimport {BackendValues, DataType, TensorLike, TypedArray} from './types';\nimport * as base from './util_base';\nexport * from './util_base';\nexport * from './hash_util';\n\n/**\n * Create typed array for scalar value. Used for storing in `DataStorage`.\n */\nexport function createScalarValue(\n value: DataType, dtype: DataType): BackendValues {\n if (dtype === 'string') {\n return encodeString(value);\n }\n\n return toTypedArray([value], dtype);\n}\n\nfunction noConversionNeeded(a: TensorLike, dtype: DataType): boolean {\n return (a instanceof Float32Array && dtype === 'float32') ||\n (a instanceof Int32Array && dtype === 'int32') ||\n (a instanceof Uint8Array && dtype === 'bool');\n}\n\nexport function toTypedArray(a: TensorLike, dtype: DataType): TypedArray {\n if (dtype === 'string') {\n throw new Error('Cannot convert a string[] to a TypedArray');\n }\n if (Array.isArray(a)) {\n a = base.flatten(a);\n }\n\n if (env().getBool('DEBUG')) {\n base.checkConversionForErrors(a as number[], dtype);\n }\n if (noConversionNeeded(a, dtype)) {\n return a as TypedArray;\n }\n if (dtype == null || dtype === 'float32' || dtype === 'complex64') {\n return new Float32Array(a as number[]);\n } else if (dtype === 'int32') {\n return new Int32Array(a as number[]);\n } else if (dtype === 'bool') {\n const bool = new Uint8Array((a as number[]).length);\n for (let i = 0; i < bool.length; ++i) {\n if (Math.round((a as number[])[i]) !== 0) {\n bool[i] = 1;\n }\n }\n return bool;\n } else {\n throw new Error(`Unknown data type ${dtype}`);\n }\n}\n\n/**\n * Returns the current high-resolution time in milliseconds relative to an\n * arbitrary time in the past. It works across different platforms (node.js,\n * browsers).\n *\n * ```js\n * console.log(tf.util.now());\n * ```\n *\n * @doc {heading: 'Util', namespace: 'util'}\n */\nexport function now(): number {\n return env().platform.now();\n}\n\n/**\n * Returns a platform-specific implementation of\n * [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n *\n * If `fetch` is defined on the global object (`window`, `process`, etc.),\n * `tf.util.fetch` returns that function.\n *\n * If not, `tf.util.fetch` returns a platform-specific solution.\n *\n * ```js\n * const resource = await tf.util.fetch('https://unpkg.com/@tensorflow/tfjs');\n * // handle response\n * ```\n *\n * @doc {heading: 'Util'}\n */\nexport function fetch(\n path: string, requestInits?: RequestInit): Promise {\n return env().platform.fetch(path, requestInits);\n}\n\n/**\n * Encodes the provided string into bytes using the provided encoding scheme.\n *\n * @param s The string to encode.\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function encodeString(s: string, encoding = 'utf-8'): Uint8Array {\n encoding = encoding || 'utf-8';\n return env().platform.encode(s, encoding);\n}\n\n/**\n * Decodes the provided bytes into a string using the provided encoding scheme.\n * @param bytes The bytes to decode.\n *\n * @param encoding The encoding scheme. Defaults to utf-8.\n *\n * @doc {heading: 'Util'}\n */\nexport function decodeString(bytes: Uint8Array, encoding = 'utf-8'): string {\n encoding = encoding || 'utf-8';\n return env().platform.decode(bytes, encoding);\n}\n", "/**\n * @license\n * Copyright 2021 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n// Workaround for allowing cjs module to be included in bundle created by\n// rollup.\nimport * as LongExports from 'long';\n// tslint:disable-next-line\nconst Long: LongExports.LongConstructor =\n // tslint:disable-next-line\n (LongExports as any).default || LongExports;\n\nexport function hexToLong(hex: string): Long {\n return Long.fromString(hex, true, 16);\n}\n\n// Some primes between 2^63 and 2^64 for various uses.\n// Hex 0xc3a5c85c97cb3127\nconst k0: Long = hexToLong('c3a5c85c97cb3127');\n// Hex 0xb492b66fbe98f273\nconst k1: Long = hexToLong('b492b66fbe98f273');\n// Hex 0x9ae16a3b2f90404f\nconst k2: Long = hexToLong('9ae16a3b2f90404f');\n\nfunction shiftMix(val: Long): Long {\n return val.xor(val.shru(47));\n}\n\nfunction fetch(s: Uint8Array, offset: number, numBytes: number): Long {\n const bytes = s.slice(offset, offset + numBytes);\n return Long.fromBytes(Array.from(bytes), true, true);\n}\n\nfunction fetch64(s: Uint8Array, offset: number): Long {\n return fetch(s, offset, 8);\n}\n\nfunction fetch32(s: Uint8Array, offset: number): Long {\n return fetch(s, offset, 4);\n}\n\nfunction rotate64(val: Long, shift: number): Long {\n // Avoid shifting by 64: doing so yields an undefined result.\n return shift === 0 ? val : val.shru(shift).or(val.shl(64 - shift));\n}\n\nfunction hashLen16(u: Long, v: Long, mul = hexToLong('9ddfea08eb382d69')) {\n // Murmur-inspired hashing.\n let a = u.xor(v).mul(mul);\n a = a.xor(a.shru(47));\n let b = v.xor(a).mul(mul);\n b = b.xor(b.shru(47));\n b = b.mul(mul);\n return b;\n}\n\n// Return a 16-byte hash for 48 bytes. Quick and dirty.\n// Callers do best to use \"random-looking\" values for a and b.\nfunction weakHashLen32WithSeeds(\n w: Long, x: Long, y: Long, z: Long, a: Long, b: Long) {\n a = a.add(w);\n b = rotate64(b.add(a).add(z), 21);\n const c = a;\n a = a.add(x);\n a = a.add(y);\n b = b.add(rotate64(a, 44));\n return [a.add(z), b.add(c)];\n}\n\nfunction weakHashLen32WithSeedsStr(\n s: Uint8Array, offset: number, a: Long, b: Long) {\n return weakHashLen32WithSeeds(\n fetch64(s, offset), fetch64(s, offset + 8), fetch64(s, offset + 16),\n fetch64(s, offset + 24), a, b);\n}\n\nfunction hashLen0to16(s: Uint8Array, len = s.length): Long {\n if (len >= 8) {\n const mul = k2.add(len * 2);\n const a = fetch64(s, 0).add(k2);\n const b = fetch64(s, len - 8);\n const c = rotate64(b, 37).mul(mul).add(a);\n const d = rotate64(a, 25).add(b).mul(mul);\n return hashLen16(c, d, mul);\n }\n if (len >= 4) {\n const mul = k2.add(len * 2);\n const a = fetch32(s, 0);\n return hashLen16(a.shl(3).add(len), fetch32(s, len - 4), mul);\n }\n if (len > 0) {\n const a = s[0];\n const b = s[len >> 1];\n const c = s[len - 1];\n const y = a + (b << 8);\n const z = len + (c << 2);\n return shiftMix(k2.mul(y).xor(k0.mul(z))).mul(k2);\n }\n return k2;\n}\n\nfunction hashLen17to32(s: Uint8Array, len = s.length): Long {\n const mul = k2.add(len * 2);\n const a = fetch64(s, 0).mul(k1);\n const b = fetch64(s, 8);\n const c = fetch64(s, len - 8).mul(mul);\n const d = fetch64(s, len - 16).mul(k2);\n return hashLen16(\n rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d),\n a.add(rotate64(b.add(k2), 18)).add(c), mul);\n}\n\nfunction hashLen33to64(s: Uint8Array, len = s.length): Long {\n const mul = k2.add(len * 2);\n const a = fetch64(s, 0).mul(k2);\n const b = fetch64(s, 8);\n const c = fetch64(s, len - 8).mul(mul);\n const d = fetch64(s, len - 16).mul(k2);\n const y = rotate64(a.add(b), 43).add(rotate64(c, 30)).add(d);\n const z = hashLen16(y, a.add(rotate64(b.add(k2), 18)).add(c), mul);\n const e = fetch64(s, 16).mul(mul);\n const f = fetch64(s, 24);\n const g = y.add(fetch64(s, len - 32)).mul(mul);\n const h = z.add(fetch64(s, len - 24)).mul(mul);\n return hashLen16(\n rotate64(e.add(f), 43).add(rotate64(g, 30)).add(h),\n e.add(rotate64(f.add(a), 18)).add(g), mul);\n}\n\nexport function fingerPrint64(s: Uint8Array, len = s.length): Long {\n const seed: Long = Long.fromNumber(81, true);\n if (len <= 32) {\n if (len <= 16) {\n return hashLen0to16(s, len);\n } else {\n return hashLen17to32(s, len);\n }\n } else if (len <= 64) {\n return hashLen33to64(s, len);\n }\n\n // For strings over 64 bytes we loop. Internal state consists of\n // 56 bytes: v, w, x, y, and z.\n let x = seed;\n let y = seed.mul(k1).add(113);\n\n let z = shiftMix(y.mul(k2).add(113)).mul(k2);\n let v = [Long.UZERO, Long.UZERO];\n let w = [Long.UZERO, Long.UZERO];\n x = x.mul(k2).add(fetch64(s, 0));\n\n let offset = 0;\n // Set end so that after the loop we have 1 to 64 bytes left to process.\n const end = ((len - 1) >> 6) * 64;\n const last64 = end + ((len - 1) & 63) - 63;\n\n do {\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s, offset + 8)), 37).mul(k1);\n y = rotate64(y.add(v[1]).add(fetch64(s, offset + 48)), 42).mul(k1);\n x = x.xor(w[1]);\n y = y.add(v[0]).add(fetch64(s, offset + 40));\n z = rotate64(z.add(w[0]), 33).mul(k1);\n v = weakHashLen32WithSeedsStr(s, offset, v[1].mul(k1), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(\n s, offset + 32, z.add(w[1]), y.add(fetch64(s, offset + 16)));\n\n [z, x] = [x, z];\n offset += 64;\n } while (offset !== end);\n const mul = k1.add(z.and(0xff).shl(1));\n // Point to the last 64 bytes of input.\n offset = last64;\n\n w[0] = w[0].add((len - 1) & 63);\n v[0] = v[0].add(w[0]);\n w[0] = w[0].add(v[0]);\n\n x = rotate64(x.add(y).add(v[0]).add(fetch64(s, offset + 8)), 37).mul(mul);\n y = rotate64(y.add(v[1]).add(fetch64(s, offset + 48)), 42).mul(mul);\n x = x.xor(w[1].mul(9));\n y = y.add(v[0].mul(9).add(fetch64(s, offset + 40)));\n z = rotate64(z.add(w[0]), 33).mul(mul);\n v = weakHashLen32WithSeedsStr(s, offset, v[1].mul(mul), x.add(w[0]));\n w = weakHashLen32WithSeedsStr(\n s, offset + 32, z.add(w[1]), y.add(fetch64(s, offset + 16)));\n\n [z, x] = [x, z];\n\n return hashLen16(\n hashLen16(v[0], w[0], mul).add(shiftMix(y).mul(k0)).add(z),\n hashLen16(v[1], w[1], mul).add(x), mul);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimer, BackendTimingInfo} from './backends/backend';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport {DataType, DataTypeMap, TypedArray} from './types';\nimport * as util from './util';\n\nexport type KernelProfile = {\n kernelName: string,\n outputs: Tensor[],\n inputs: NamedTensorMap,\n timeMs: Promise,\n extraInfo: Promise\n};\n\nexport class Profiler {\n constructor(private backendTimer: BackendTimer, private logger?: Logger) {\n if (logger == null) {\n this.logger = new Logger();\n }\n }\n\n profileKernel(kernelName: string, inputs: NamedTensorMap, f: () => Tensor[]):\n KernelProfile {\n let outputs: Tensor[];\n const holdResultWrapperFn = () => {\n outputs = f();\n };\n let timer: Promise;\n const start = util.now();\n if (this.backendTimer.timerAvailable()) {\n timer = this.backendTimer.time(holdResultWrapperFn);\n } else {\n holdResultWrapperFn();\n for (const output of outputs) {\n output.dataSync();\n }\n timer = Promise.resolve({kernelMs: util.now() - start});\n }\n if (env().getBool('CHECK_COMPUTATION_FOR_ERRORS')) {\n for (let i = 0; i < outputs.length; i++) {\n const output = outputs[i];\n // Dangling promise here because we don't want to propagate up\n // asynchronicity.\n output.data().then(tensorVals => {\n checkComputationForErrors(tensorVals, output.dtype, kernelName);\n });\n }\n }\n\n const kernelProfile = {\n kernelName,\n outputs,\n inputs,\n timeMs: timer.then(timing => timing.kernelMs),\n extraInfo: timer.then(\n timing => timing.getExtraProfileInfo != null ?\n timing.getExtraProfileInfo() :\n '')\n };\n return kernelProfile;\n }\n\n logKernelProfile(kernelProfile: KernelProfile): void {\n const {kernelName, outputs, timeMs, inputs, extraInfo} = kernelProfile;\n\n outputs.forEach(result => {\n Promise.all([result.data(), timeMs, extraInfo]).then(valueContainer => {\n this.logger.logKernelProfile(\n kernelName, result, valueContainer[0], valueContainer[1], inputs,\n valueContainer[2]);\n });\n });\n }\n}\n\nexport function checkComputationForErrors(\n vals: DataTypeMap[D], dtype: D, kernelName: string): boolean {\n if (dtype !== 'float32') {\n // Only floating point computations will generate NaN values\n return false;\n }\n for (let i = 0; i < vals.length; i++) {\n const num = vals[i] as number;\n if (isNaN(num) || !isFinite(num)) {\n // Throwing custom exception so behavior is testable.\n console.warn(`Found ${num} in the result of '${kernelName}'`);\n return true;\n }\n }\n return false;\n}\n\nexport class Logger {\n logKernelProfile(\n name: string, result: Tensor, vals: TypedArray,\n timeMs: number|{error: string}, inputs: NamedTensorMap,\n extraInfo?: string) {\n const time = typeof timeMs === 'number' ? util.rightPad(`${timeMs}ms`, 9) :\n timeMs['error'];\n const paddedName = util.rightPad(name, 25);\n const rank = result.rank;\n const size = result.size;\n const shape = util.rightPad(result.shape.toString(), 14);\n let inputShapesDescription = '';\n\n for (const name in inputs) {\n const input = inputs[name];\n if (input != null) {\n // The input might be a non-tensor (e.g HTMLImageElement), in which case\n // we claim the output shape as input shape.\n const inputShape = input.shape || result.shape;\n const inputRank = inputShape.length;\n inputShapesDescription +=\n `${name}: ${inputRank}D ${inputRank > 0 ? inputShape : ''} `;\n }\n }\n\n console.log(\n `%c${paddedName}\\t%c${time}\\t%c${rank}D ${shape}\\t%c${size}\\t%c${\n inputShapesDescription}\\t%c${extraInfo}`,\n 'font-weight:bold', 'color:red', 'color:blue', 'color: orange',\n 'color: green', 'color: steelblue');\n }\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {NamedTensorMap} from './tensor_types';\nimport * as util from './util';\n\nexport interface TapeNode {\n id: number;\n kernelName: string;\n outputs: Tensor[];\n inputs: NamedTensorMap;\n // Optional params, defined only for ops with gradient impl.\n gradient?: (dys: Tensor[]) => NamedGradientMap;\n saved?: Tensor[];\n}\n\nexport type NamedGradientMap = {\n [inputName: string]: () => Tensor;\n};\n\n/**\n * Computes a list of TapeNodes that connect x to y, filtering everything else\n * out and preserving the order of the original tape elements.\n *\n * @param tape The tape elements to filter.\n * @param xs The input Tensors.\n * @param y The output Tensor.\n */\nexport function getFilteredNodesXToY(\n tape: TapeNode[], xs: Tensor[], y: Tensor): TapeNode[] {\n // Forward pass to compute all the nodes and Tensors that are transitively a\n // function of x.\n const tensorsFromX: {[tensorId: number]: boolean} = {};\n const nodesFromX: {[nodeId: number]: boolean} = {};\n for (let i = 0; i < xs.length; i++) {\n tensorsFromX[xs[i].id] = true;\n }\n\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n for (const inputName in nodeInputs) {\n const input = nodeInputs[inputName];\n\n let anyInputFromX = false;\n for (let j = 0; j < xs.length; j++) {\n if (tensorsFromX[input.id]) {\n node.outputs.forEach(output => tensorsFromX[output.id] = true);\n anyInputFromX = true;\n nodesFromX[node.id] = true;\n break;\n }\n }\n\n if (anyInputFromX) {\n break;\n }\n }\n }\n\n // Backward pass to find all of the nodes and Tensors that lead to y.\n const tensorsLeadToY: {[tensorId: number]: boolean} = {};\n tensorsLeadToY[y.id] = true;\n const nodesToY: {[nodeId: number]: boolean} = {};\n\n for (let i = tape.length - 1; i >= 0; i--) {\n const node = tape[i];\n const nodeInputs = node.inputs;\n\n // If any of the outputs lead to y, mark all of the inputs as leading to y.\n for (let j = 0; j < node.outputs.length; j++) {\n if (tensorsLeadToY[node.outputs[j].id]) {\n for (const inputName in nodeInputs) {\n tensorsLeadToY[nodeInputs[inputName].id] = true;\n nodesToY[node.id] = true;\n }\n break;\n }\n }\n }\n\n // Return the paths that come from x and lead to y.\n const filteredTape: TapeNode[] = [];\n for (let i = 0; i < tape.length; i++) {\n const node = tape[i];\n\n if (nodesFromX[node.id] && nodesToY[node.id]) {\n // Prune the inputs from the node that aren't a function of x.\n const prunedInputs: {[inputName: string]: Tensor} = {};\n for (const inputName in node.inputs) {\n const nodeInput = node.inputs[inputName];\n if (tensorsFromX[nodeInput.id]) {\n prunedInputs[inputName] = nodeInput;\n }\n }\n\n // Copy the node and overwrite inputsAndArgs to the pruned version.\n const prunedNode = Object.assign({}, node);\n prunedNode.inputs = prunedInputs;\n prunedNode.outputs = node.outputs;\n\n filteredTape.push(prunedNode);\n }\n }\n\n return filteredTape;\n}\n\n/**\n * Backpropagate gradients through the filtered TapeNodes.\n *\n * @param tensorAccumulatedGradientMap A map of Tensor to its gradient. This map\n * is mutated by this method.\n * @param filteredTape The filtered TapeNodes to backprop through.\n */\nexport function backpropagateGradients(\n tensorAccumulatedGradientMap: {[tensorId: number]: Tensor},\n filteredTape: TapeNode[], tidy: (f: Function) => Tensor,\n add: (a: Tensor, b: Tensor) => Tensor) {\n // Walk the tape backward and keep a map of Tensor to its gradient.\n for (let i = filteredTape.length - 1; i >= 0; i--) {\n const node = filteredTape[i];\n\n const dys: Tensor[] = [];\n node.outputs.forEach(o => {\n const gradTensor = tensorAccumulatedGradientMap[o.id];\n if (gradTensor != null) {\n dys.push(gradTensor);\n } else {\n // This particular output is not in the back-propagation subgraph, so it\n // does not affect the final output, thus we put null for its dy.\n dys.push(null);\n }\n });\n\n if (node.gradient == null) {\n throw new Error(\n `Cannot compute gradient: gradient function not found ` +\n `for ${node.kernelName}.`);\n }\n\n // Backprop dy through this node and accumulate gradients over the inputs.\n const inputGradients = node.gradient(dys);\n\n for (const inputName in node.inputs) {\n if (!(inputName in inputGradients)) {\n throw new Error(\n `Cannot backprop through input ${inputName}. ` +\n `Available gradients found: ${Object.keys(inputGradients)}.`);\n }\n\n // Call the gradient function.\n const dx = tidy(() => inputGradients[inputName]());\n if (dx.dtype !== 'float32') {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `${inputName} must have 'float32' dtype, but has '${dx.dtype}'`);\n }\n const x = node.inputs[inputName];\n if (!util.arraysEqual(dx.shape, x.shape)) {\n throw new Error(\n `Error in gradient for op ${\n node.kernelName}. The gradient of input ` +\n `'${inputName}' has shape '${dx.shape}', which does not match ` +\n `the shape of the input '${x.shape}'`);\n }\n\n if (tensorAccumulatedGradientMap[x.id] == null) {\n tensorAccumulatedGradientMap[x.id] = dx;\n } else {\n const curGradient = tensorAccumulatedGradientMap[x.id];\n tensorAccumulatedGradientMap[x.id] = add(curGradient, dx);\n curGradient.dispose();\n }\n }\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {DataType, TypedArray} from './types';\nimport {computeStrides, isString, rightPad, sizeFromShape} from './util';\n\n// Maximum number of values before we decide to show ellipsis.\nconst FORMAT_LIMIT_NUM_VALS = 20;\n// Number of first and last values to show when displaying a, b,...,y, z.\nconst FORMAT_NUM_FIRST_LAST_VALS = 3;\n// Number of significant digits to show.\nconst FORMAT_NUM_SIG_DIGITS = 7;\n\nexport function tensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n verbose: boolean) {\n const strides = computeStrides(shape);\n const padPerCol = computeMaxSizePerColumn(vals, shape, dtype, strides);\n const rank = shape.length;\n const valsLines = subTensorToString(vals, shape, dtype, strides, padPerCol);\n const lines = ['Tensor'];\n if (verbose) {\n lines.push(` dtype: ${dtype}`);\n lines.push(` rank: ${rank}`);\n lines.push(` shape: [${shape}]`);\n lines.push(` values:`);\n }\n lines.push(valsLines.map(l => ' ' + l).join('\\n'));\n return lines.join('\\n');\n}\n\nfunction computeMaxSizePerColumn(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[]): number[] {\n const n = sizeFromShape(shape);\n const numCols = strides[strides.length - 1];\n const padPerCol = new Array(numCols).fill(0);\n const rank = shape.length;\n const valuesOrTuples =\n dtype === 'complex64' ? createComplexTuples(vals) : vals;\n\n if (rank > 1) {\n for (let row = 0; row < n / numCols; row++) {\n const offset = row * numCols;\n for (let j = 0; j < numCols; j++) {\n padPerCol[j] = Math.max(\n padPerCol[j],\n valToString(valuesOrTuples[offset + j], 0, dtype).length);\n }\n }\n }\n return padPerCol;\n}\n\nfunction valToString(\n val: number|string|[number, number], pad: number, dtype: DataType) {\n let valStr: string;\n if (Array.isArray(val)) {\n valStr = `${parseFloat(val[0].toFixed(FORMAT_NUM_SIG_DIGITS))} + ` +\n `${parseFloat(val[1].toFixed(FORMAT_NUM_SIG_DIGITS))}j`;\n } else if (isString(val)) {\n valStr = `'${val}'`;\n } else if (dtype === 'bool') {\n valStr = boolNumToString(val);\n } else {\n valStr = parseFloat(val.toFixed(FORMAT_NUM_SIG_DIGITS)).toString();\n }\n\n return rightPad(valStr, pad);\n}\n\nfunction boolNumToString(v: number): string {\n return v === 0 ? 'false' : 'true';\n}\n\nfunction subTensorToString(\n vals: TypedArray|string[], shape: number[], dtype: DataType,\n strides: number[], padPerCol: number[], isLast = true): string[] {\n const storagePerElement = dtype === 'complex64' ? 2 : 1;\n\n const size = shape[0];\n const rank = shape.length;\n if (rank === 0) {\n if (dtype === 'complex64') {\n const complexTuple = createComplexTuples(vals);\n return [valToString(complexTuple[0], 0, dtype)];\n }\n if (dtype === 'bool') {\n return [boolNumToString(vals[0] as number)];\n }\n return [vals[0].toString()];\n }\n\n if (rank === 1) {\n if (size > FORMAT_LIMIT_NUM_VALS) {\n const firstValsSize = FORMAT_NUM_FIRST_LAST_VALS * storagePerElement;\n\n let firstVals = Array.from(\n vals.slice(0, firstValsSize));\n let lastVals = Array.from(vals.slice(\n (size - FORMAT_NUM_FIRST_LAST_VALS) * storagePerElement,\n size * storagePerElement));\n if (dtype === 'complex64') {\n firstVals = createComplexTuples(firstVals);\n lastVals = createComplexTuples(lastVals);\n }\n return [\n '[' +\n firstVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ', ..., ' +\n lastVals\n .map(\n (x, i) => valToString(\n x, padPerCol[size - FORMAT_NUM_FIRST_LAST_VALS + i], dtype))\n .join(', ') +\n ']'\n ];\n }\n const displayVals: Array =\n dtype === 'complex64' ? createComplexTuples(vals) :\n Array.from(vals);\n\n return [\n '[' +\n displayVals.map((x, i) => valToString(x, padPerCol[i], dtype))\n .join(', ') +\n ']'\n ];\n }\n\n // The array is rank 2 or more.\n const subshape = shape.slice(1);\n const substrides = strides.slice(1);\n const stride = strides[0] * storagePerElement;\n const lines: string[] = [];\n if (size > FORMAT_LIMIT_NUM_VALS) {\n for (let i = 0; i < FORMAT_NUM_FIRST_LAST_VALS; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n false /* isLast */));\n }\n lines.push('...');\n for (let i = size - FORMAT_NUM_FIRST_LAST_VALS; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n } else {\n for (let i = 0; i < size; i++) {\n const start = i * stride;\n const end = start + stride;\n lines.push(...subTensorToString(\n vals.slice(start, end), subshape, dtype, substrides, padPerCol,\n i === size - 1 /* isLast */));\n }\n }\n const sep = rank === 2 ? ',' : '';\n lines[0] = '[' + lines[0] + sep;\n for (let i = 1; i < lines.length - 1; i++) {\n lines[i] = ' ' + lines[i] + sep;\n }\n let newLineSep = ',\\n';\n for (let i = 2; i < rank; i++) {\n newLineSep += '\\n';\n }\n lines[lines.length - 1] =\n ' ' + lines[lines.length - 1] + ']' + (isLast ? '' : newLineSep);\n return lines;\n}\n\nfunction createComplexTuples(vals: Array<{}>|\n TypedArray): Array<[number, number]> {\n const complexTuples: Array<[number, number]> = [];\n for (let i = 0; i < vals.length; i += 2) {\n complexTuples.push([vals[i], vals[i + 1]] as [number, number]);\n }\n return complexTuples;\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {getGlobal} from './global_util';\nimport {tensorToString} from './tensor_format';\nimport {ArrayMap, BackendValues, DataType, DataTypeMap, DataValues, NumericDataType, Rank, ShapeMap, SingleValueMap, TypedArray} from './types';\nimport * as util from './util';\nimport {computeStrides, toNestedArray} from './util';\n\nexport interface TensorData {\n dataId?: DataId;\n values?: DataTypeMap[D];\n}\n\n// This interface mimics KernelBackend (in backend.ts), which would create a\n// circular dependency if imported.\nexport interface Backend {}\n\n/**\n * A mutable object, similar to `tf.Tensor`, that allows users to set values\n * at locations before converting to an immutable `tf.Tensor`.\n *\n * See `tf.buffer` for creating a tensor buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class TensorBuffer {\n size: number;\n shape: ShapeMap[R];\n strides: number[];\n values: DataTypeMap[D];\n\n constructor(shape: ShapeMap[R], public dtype: D, values?: DataTypeMap[D]) {\n this.shape = shape.slice() as ShapeMap[R];\n this.size = util.sizeFromShape(shape);\n\n if (values != null) {\n const n = values.length;\n util.assert(\n n === this.size,\n () => `Length of values '${n}' does not match the size ` +\n `inferred by the shape '${this.size}'.`);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `complex64 dtype TensorBuffers are not supported. Please create ` +\n `a TensorBuffer for the real and imaginary parts separately and ` +\n `call tf.complex(real, imag).`);\n }\n this.values = values || util.getArrayFromDType(dtype, this.size);\n this.strides = computeStrides(shape);\n }\n\n /**\n * Sets a value in the buffer at a given location.\n *\n * @param value The value to set.\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n set(value: SingleValueMap[D], ...locs: number[]): void {\n if (locs.length === 0) {\n locs = [0];\n }\n util.assert(\n locs.length === this.rank,\n () => `The number of provided coordinates (${locs.length}) must ` +\n `match the rank (${this.rank})`);\n\n const index = this.locToIndex(locs);\n this.values[index] = value as number;\n }\n\n /**\n * Returns the value in the buffer at the provided location.\n *\n * @param locs The location indices.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n get(...locs: number[]): SingleValueMap[D] {\n if (locs.length === 0) {\n locs = [0];\n }\n let i = 0;\n for (const loc of locs) {\n if (loc < 0 || loc >= this.shape[i]) {\n const msg = `Requested out of range element at ${locs}. ` +\n ` Buffer shape=${this.shape}`;\n throw new Error(msg);\n }\n i++;\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return this.values[index] as SingleValueMap[D];\n }\n\n locToIndex(locs: number[]): number {\n if (this.rank === 0) {\n return 0;\n } else if (this.rank === 1) {\n return locs[0];\n }\n let index = locs[locs.length - 1];\n for (let i = 0; i < locs.length - 1; ++i) {\n index += this.strides[i] * locs[i];\n }\n return index;\n }\n\n indexToLoc(index: number): number[] {\n if (this.rank === 0) {\n return [];\n } else if (this.rank === 1) {\n return [index];\n }\n const locs: number[] = new Array(this.shape.length);\n for (let i = 0; i < locs.length - 1; ++i) {\n locs[i] = Math.floor(index / this.strides[i]);\n index -= locs[i] * this.strides[i];\n }\n locs[locs.length - 1] = index;\n return locs;\n }\n\n get rank() {\n return this.shape.length;\n }\n\n /**\n * Creates an immutable `tf.Tensor` object from the buffer.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\n toTensor(): Tensor {\n return trackerFn().makeTensor(this.values, this.shape, this.dtype) as\n Tensor;\n }\n}\n\nexport interface TensorTracker {\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: Backend): Tensor;\n makeVariable(\n initialValue: Tensor, trainable?: boolean, name?: string,\n dtype?: DataType): Variable;\n incRef(a: Tensor, backend: Backend): void;\n disposeTensor(t: Tensor): void;\n disposeVariable(v: Variable): void;\n read(dataId: DataId): Promise;\n readSync(dataId: DataId): BackendValues;\n}\n\n/**\n * The Tensor class calls into this handler to delegate chaining operations.\n */\nexport interface OpHandler {\n cast(x: T, dtype: DataType): T;\n buffer(\n shape: ShapeMap[R], dtype: D,\n values?: DataTypeMap[D]): TensorBuffer;\n print(x: T, verbose: boolean): void;\n clone(x: T): T;\n // TODO(yassogba) bring reshape back?\n}\n\n// For tracking tensor creation and disposal.\nlet trackerFn: () => TensorTracker = null;\n// Used by chaining methods to call into ops.\nlet opHandler: OpHandler = null;\n// Used to warn about deprecated methods.\nlet deprecationWarningFn: (msg: string) => void = null;\n// This here so that we can use this method on dev branches and keep the\n// functionality at master.\n// tslint:disable-next-line:no-unused-expression\n[deprecationWarningFn];\n\n/**\n * An external consumer can register itself as the tensor tracker. This way\n * the Tensor class can notify the tracker for every tensor created and\n * disposed.\n */\nexport function setTensorTracker(fn: () => TensorTracker) {\n trackerFn = fn;\n}\n\n/**\n * An external consumer can register itself as the op handler. This way the\n * Tensor class can have chaining methods that call into ops via the op\n * handler.\n */\nexport function setOpHandler(handler: OpHandler) {\n opHandler = handler;\n}\n\n/**\n * Sets the deprecation warning function to be used by this file. This way the\n * Tensor class can be a leaf but still use the environment.\n */\nexport function setDeprecationWarningFn(fn: (msg: string) => void) {\n deprecationWarningFn = fn;\n}\n\n/**\n * We wrap data id since we use weak map to avoid memory leaks.\n * Since we have our own memory management, we have a reference counter\n * mapping a tensor to its data, so there is always a pointer (even if that\n * data is otherwise garbage collectable).\n * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/\n * Global_Objects/WeakMap\n */\nexport type DataId = object; // object instead of {} to force non-primitive.\n\n// Declare this namespace to make Tensor class augmentation work in google3.\nexport declare namespace Tensor {}\n/**\n * A `tf.Tensor` object represents an immutable, multidimensional array of\n * numbers that has a shape and a data type.\n *\n * For performance reasons, functions that create tensors do not necessarily\n * perform a copy of the data passed to them (e.g. if the data is passed as a\n * `Float32Array`), and changes to the data will change the tensor. This is not\n * a feature and is not supported. To avoid this behavior, use the tensor before\n * changing the input data or create a copy with `copy = tf.add(yourTensor, 0)`.\n *\n * See `tf.tensor` for details on how to create a `tf.Tensor`.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Tensor {\n /** Unique id of this tensor. */\n readonly id: number;\n /**\n * Id of the bucket holding the data for this tensor. Multiple arrays can\n * point to the same bucket (e.g. when calling array.reshape()).\n */\n dataId: DataId;\n /** The shape of the tensor. */\n readonly shape: ShapeMap[R];\n /** Number of elements in the tensor. */\n readonly size: number;\n /** The data type for the array. */\n readonly dtype: DataType;\n /** The rank type for the array (see `Rank` enum). */\n readonly rankType: R;\n\n /** Whether this tensor has been globally kept. */\n kept = false;\n /** The id of the scope this tensor is being tracked in. */\n scopeId: number;\n\n /**\n * Number of elements to skip in each dimension when indexing. See\n * https://docs.scipy.org/doc/numpy/reference/generated/\\\n * numpy.ndarray.strides.html\n */\n readonly strides: number[];\n\n constructor(shape: ShapeMap[R], dtype: DataType, dataId: DataId, id: number) {\n this.shape = shape.slice() as ShapeMap[R];\n this.dtype = dtype || 'float32';\n this.size = util.sizeFromShape(shape);\n this.strides = computeStrides(shape);\n this.dataId = dataId;\n this.id = id;\n this.rankType = (this.rank < 5 ? this.rank.toString() : 'higher') as R;\n }\n\n get rank(): number {\n return this.shape.length;\n }\n\n /**\n * Returns a promise of `tf.TensorBuffer` that holds the underlying data.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async buffer(): Promise> {\n const vals = await this.data();\n return opHandler.buffer(this.shape, this.dtype as D, vals);\n }\n\n /**\n * Returns a `tf.TensorBuffer` that holds the underlying data.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n bufferSync(): TensorBuffer {\n return opHandler.buffer(this.shape, this.dtype as D, this.dataSync());\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * asynchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async array(): Promise {\n const vals = await this.data();\n return toNestedArray(this.shape, vals, this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Returns the tensor data as a nested array. The transfer of data is done\n * synchronously.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n arraySync(): ArrayMap[R] {\n return toNestedArray(\n this.shape, this.dataSync(), this.dtype === 'complex64') as\n ArrayMap[R];\n }\n\n /**\n * Asynchronously downloads the values from the `tf.Tensor`. Returns a\n * promise of `TypedArray` that resolves when the computation has finished.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n async data(): Promise {\n this.throwIfDisposed();\n const data = trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n const bytes = await data as Uint8Array[];\n try {\n return bytes.map(b => util.decodeString(b)) as DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as Promise;\n }\n\n /**\n * Synchronously downloads the values from the `tf.Tensor`. This blocks the\n * UI thread until the values are ready, which can cause performance issues.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dataSync(): DataTypeMap[D] {\n this.throwIfDisposed();\n const data = trackerFn().readSync(this.dataId);\n if (this.dtype === 'string') {\n try {\n return (data as Uint8Array[]).map(b => util.decodeString(b)) as\n DataTypeMap[D];\n } catch {\n throw new Error(\n 'Failed to decode the string bytes into utf-8. ' +\n 'To get the original bytes, call tensor.bytes().');\n }\n }\n return data as DataTypeMap[D];\n }\n\n /** Returns the underlying bytes of the tensor's data. */\n async bytes(): Promise {\n this.throwIfDisposed();\n const data = await trackerFn().read(this.dataId);\n if (this.dtype === 'string') {\n return data as Uint8Array[];\n } else {\n return new Uint8Array((data as TypedArray).buffer);\n }\n }\n\n /**\n * Disposes `tf.Tensor` from memory.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n dispose(): void {\n if (this.isDisposed) {\n return;\n }\n trackerFn().disposeTensor(this);\n this.isDisposedInternal = true;\n }\n\n protected isDisposedInternal = false;\n get isDisposed(): boolean {\n return this.isDisposedInternal;\n }\n\n throwIfDisposed() {\n if (this.isDisposed) {\n throw new Error(`Tensor is disposed.`);\n }\n }\n\n /**\n * Prints the `tf.Tensor`. See `tf.print` for details.\n *\n * @param verbose Whether to print verbose information about the tensor,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n print(verbose = false): void {\n return opHandler.print(this, verbose);\n }\n\n /**\n * Returns a copy of the tensor. See `tf.clone` for details.\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n clone(this: T): T {\n this.throwIfDisposed();\n return opHandler.clone(this);\n }\n\n /**\n * Returns a human-readable description of the tensor. Useful for logging.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n toString(verbose = false): string {\n const vals = this.dataSync();\n return tensorToString(vals, this.shape, this.dtype, verbose);\n }\n\n cast(dtype: DataType): T {\n this.throwIfDisposed();\n return opHandler.cast(this as T, dtype);\n }\n variable(trainable = true, name?: string, dtype?: DataType): Variable {\n this.throwIfDisposed();\n return trackerFn().makeVariable(this, trainable, name, dtype) as\n Variable;\n }\n}\nObject.defineProperty(Tensor, Symbol.hasInstance, {\n value: (instance: Tensor) => {\n // Implementation note: we should use properties of the object that will be\n // defined before the constructor body has finished executing (methods).\n // This is because when this code is transpiled by babel, babel will call\n // classCallCheck before the constructor body is run.\n // See https://github.com/tensorflow/tfjs/issues/3384 for backstory.\n return !!instance && instance.data != null && instance.dataSync != null &&\n instance.throwIfDisposed != null;\n }\n});\n\nexport function getGlobalTensorClass() {\n // Use getGlobal so that we can augment the Tensor class across package\n // boundaries becase the node resolution alg may result in different modules\n // being returned for this file depending on the path they are loaded from.\n return getGlobal('Tensor', () => {\n return Tensor;\n });\n}\n\n// Global side effect. Cache global reference to Tensor class\ngetGlobalTensorClass();\n\nexport interface NumericTensor extends Tensor {\n dtype: NumericDataType;\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\nexport interface StringTensor extends Tensor {\n dtype: 'string';\n dataSync(): DataTypeMap[D];\n data(): Promise;\n}\n\n/** @doclink Tensor */\nexport type Scalar = Tensor;\n/** @doclink Tensor */\nexport type Tensor1D = Tensor;\n/** @doclink Tensor */\nexport type Tensor2D = Tensor;\n/** @doclink Tensor */\nexport type Tensor3D = Tensor;\n/** @doclink Tensor */\nexport type Tensor4D = Tensor;\n/** @doclink Tensor */\nexport type Tensor5D = Tensor;\n/** @doclink Tensor */\nexport type Tensor6D = Tensor;\n\n/**\n * A mutable `tf.Tensor`, useful for persisting state, e.g. for training.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\nexport class Variable extends Tensor {\n name: string;\n\n constructor(\n initialValue: Tensor, public trainable: boolean, name: string,\n tensorId: number) {\n super(\n initialValue.shape, initialValue.dtype, initialValue.dataId, tensorId);\n this.name = name;\n }\n\n /**\n * Assign a new `tf.Tensor` to this variable. The new `tf.Tensor` must have\n * the same shape and dtype as the old `tf.Tensor`.\n *\n * @param newValue New tensor to be assigned to this variable.\n *\n * @doc {heading: 'Tensors', subheading: 'Classes'}\n */\n assign(newValue: Tensor): void {\n if (newValue.dtype !== this.dtype) {\n throw new Error(\n `dtype of the new value (${newValue.dtype}) and ` +\n `previous value (${this.dtype}) must match`);\n }\n if (!util.arraysEqual(newValue.shape, this.shape)) {\n throw new Error(\n `shape of the new value (${newValue.shape}) and ` +\n `previous value (${this.shape}) must match`);\n }\n trackerFn().disposeTensor(this);\n this.dataId = newValue.dataId;\n trackerFn().incRef(this, null /* backend */);\n }\n\n dispose(): void {\n trackerFn().disposeVariable(this);\n this.isDisposedInternal = true;\n }\n}\n\nObject.defineProperty(Variable, Symbol.hasInstance, {\n value: (instance: Variable) => {\n return instance instanceof Tensor && instance.assign != null &&\n instance.assign instanceof Function;\n }\n});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from './tensor';\nimport {TensorContainer, TensorContainerArray} from './tensor_types';\nimport {upcastType} from './types';\nimport {assert} from './util';\n\nexport function makeTypesMatch(a: T, b: T): [T, T] {\n if (a.dtype === b.dtype) {\n return [a, b];\n }\n const dtype = upcastType(a.dtype, b.dtype);\n return [a.cast(dtype), b.cast(dtype)];\n}\n\nexport function assertTypesMatch(a: Tensor, b: Tensor): void {\n assert(\n a.dtype === b.dtype,\n () => `The dtypes of the first(${a.dtype}) and` +\n ` second(${b.dtype}) input must match`);\n}\n\nexport function isTensorInList(tensor: Tensor, tensorList: Tensor[]): boolean {\n return tensorList.some(x => x.id === tensor.id);\n}\n\n/**\n * Extracts any `Tensor`s found within the provided object.\n *\n * @param container an object that may be a `Tensor` or may directly contain\n * `Tensor`s, such as a `Tensor[]` or `{key: Tensor, ...}`. In general it\n * is safe to pass any object here, except that `Promise`s are not\n * supported.\n * @returns An array of `Tensors` found within the passed object. If the\n * argument is simply a `Tensor', a list containing that `Tensor` is\n * returned. If the object is not a `Tensor` or does not\n * contain `Tensors`, an empty list is returned.\n */\nexport function getTensorsInContainer(result: TensorContainer): Tensor[] {\n const list: Tensor[] = [];\n const seen = new Set<{}|void>();\n walkTensorContainer(result, list, seen);\n return list;\n}\n\nfunction walkTensorContainer(\n container: TensorContainer, list: Tensor[], seen: Set<{}|void>): void {\n if (container == null) {\n return;\n }\n if (container instanceof Tensor) {\n list.push(container);\n return;\n }\n if (!isIterable(container)) {\n return;\n }\n // Iteration over keys works also for arrays.\n const iterable = container as TensorContainerArray;\n for (const k in iterable) {\n const val = iterable[k];\n if (!seen.has(val)) {\n seen.add(val);\n walkTensorContainer(val, list, seen);\n }\n }\n}\n\n// tslint:disable-next-line:no-any\nfunction isIterable(obj: any): boolean {\n return Array.isArray(obj) || typeof obj === 'object';\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/** @docalias number[] */\nexport interface ShapeMap {\n R0: number[];\n R1: [number];\n R2: [number, number];\n R3: [number, number, number];\n R4: [number, number, number, number];\n R5: [number, number, number, number, number];\n R6: [number, number, number, number, number, number];\n}\n\n/** @docalias number[] */\nexport interface ArrayMap {\n R0: number;\n R1: number[];\n R2: number[][];\n R3: number[][][];\n R4: number[][][][];\n R5: number[][][][][];\n R6: number[][][][][][];\n}\n\nexport interface DataTypeMap {\n float32: Float32Array;\n int32: Int32Array;\n bool: Uint8Array;\n complex64: Float32Array;\n string: string[];\n}\n\nexport interface SingleValueMap {\n bool: boolean;\n int32: number;\n float32: number;\n complex64: number;\n string: string;\n}\n\n/** @docalias 'float32'|'int32'|'bool'|'complex64'|'string' */\nexport type DataType = keyof DataTypeMap;\nexport type NumericDataType = 'float32'|'int32'|'bool'|'complex64';\nexport type TypedArray = Float32Array|Int32Array|Uint8Array;\n/** Tensor data used in tensor creation and user-facing API. */\nexport type DataValues = DataTypeMap[DataType];\n/** The underlying tensor data that gets stored in a backend. */\nexport type BackendValues = Float32Array|Int32Array|Uint8Array|Uint8Array[];\n\nexport enum Rank {\n R0 = 'R0',\n R1 = 'R1',\n R2 = 'R2',\n R3 = 'R3',\n R4 = 'R4',\n R5 = 'R5',\n R6 = 'R6'\n}\n\nexport type FlatVector = boolean[]|number[]|TypedArray;\nexport type RegularArray =\n T[]|T[][]|T[][][]|T[][][][]|T[][][][][]|T[][][][][][];\n\n// tslint:disable-next-line:no-any\nexport interface RecursiveArray {\n [index: number]: T|RecursiveArray;\n}\n\n// Looks for upcasting types. Used, for example, in operations with mixed dtype\n// inputs.\nenum UpcastInt32AndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'int32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastBoolAndMap {\n 'float32' = 'float32',\n 'int32' = 'int32',\n 'bool' = 'bool',\n 'complex64' = 'complex64'\n}\n\nenum UpcastFloat32AndMap {\n 'float32' = 'float32',\n 'int32' = 'float32',\n 'bool' = 'float32',\n 'complex64' = 'complex64'\n}\n\nenum UpcastComplex64AndMap {\n 'float32' = 'complex64',\n 'int32' = 'complex64',\n 'bool' = 'complex64',\n 'complex64' = 'complex64'\n}\n\nconst upcastTypeMap = {\n 'float32': UpcastFloat32AndMap,\n 'int32': UpcastInt32AndMap,\n 'bool': UpcastBoolAndMap,\n 'complex64': UpcastComplex64AndMap\n};\n\nexport function upcastType(typeA: DataType, typeB: DataType): DataType {\n if (typeA === 'string' || typeB === 'string') {\n if (typeA === 'string' && typeB === 'string') {\n return 'string';\n }\n throw new Error(`Can not upcast ${typeA} with ${typeB}`);\n }\n return upcastTypeMap[typeA][typeB];\n}\n\n/** Returns the output type after summation. */\nexport function sumOutType(type: DataType): DataType {\n return upcastType(type, 'int32');\n}\n\n/** @docalias TypedArray|Array */\nexport type TensorLike =\n TypedArray|number|boolean|string|RecursiveArray|\n RecursiveArray|RecursiveArray|Uint8Array[];\nexport type ScalarLike = number|boolean|string|Uint8Array;\n/** @docalias TypedArray|Array */\nexport type TensorLike1D = TypedArray|number[]|boolean[]|string[]|Uint8Array[];\n/** @docalias TypedArray|Array */\nexport type TensorLike2D = TypedArray|number[]|number[][]|boolean[]|boolean[][]|\n string[]|string[][]|Uint8Array[]|Uint8Array[][];\n/** @docalias TypedArray|Array */\nexport type TensorLike3D = TypedArray|number[]|number[][][]|boolean[]|\n boolean[][][]|string[]|string[][][]|Uint8Array[]|Uint8Array[][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike4D = TypedArray|number[]|number[][][][]|boolean[]|\n boolean[][][][]|string[]|string[][][][]|Uint8Array[]|Uint8Array[][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike5D =\n TypedArray|number[]|number[][][][][]|boolean[]|boolean[][][][][]|string[]|\n string[][][][][]|Uint8Array[]|Uint8Array[][][][][];\n/** @docalias TypedArray|Array */\nexport type TensorLike6D =\n TypedArray|number[]|number[][][][][][]|boolean[]|boolean[][][][][][]|\n string[]|string[][][][][][]|Uint8Array[]|Uint8Array[][][][][];\n\n/** Type for representing image data in Uint8Array type. */\nexport interface PixelData {\n width: number;\n height: number;\n data: Uint8Array;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {BackendTimingInfo, DataMover, KernelBackend} from './backends/backend';\nimport {Environment, setEnvironmentGlobal} from './environment';\nimport {getGlobalNamespace} from './global_util';\nimport {Add, Cast, Identity} from './kernel_names';\nimport {getGradient, getKernel, getKernelsForBackend, GradFunc, NamedAttrMap, TensorInfo} from './kernel_registry';\nimport {KernelProfile, Profiler} from './profiler';\nimport {backpropagateGradients, getFilteredNodesXToY, TapeNode} from './tape';\nimport {DataId, setTensorTracker, Tensor, TensorTracker, Variable} from './tensor';\nimport {GradSaveFunc, NamedTensorMap, NamedVariableMap, TensorContainer} from './tensor_types';\nimport {getTensorsInContainer} from './tensor_util';\nimport {BackendValues, DataType, DataValues} from './types';\nimport * as util from './util';\nimport {bytesFromStringArray, makeOnesTypedArray, now, sizeFromShape} from './util';\n\n/**\n * A function that computes an output. The save function is for saving tensors\n * computed in the forward pass, that we need in the backward pass.\n */\nexport type ForwardFunc = (backend: KernelBackend, save?: GradSaveFunc) => T;\n\n/**\n * @docalias (a: Tensor, b: Tensor,..., save?: Function) => {\n * value: Tensor,\n * gradFunc: (dy: Tensor, saved?: NamedTensorMap) => Tensor | Tensor[]\n * }\n */\nexport type CustomGradientFunc =\n (...inputs: Array) => {\n value: T;\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[];\n };\n\nexport type MemoryInfo = {\n numTensors: number; numDataBuffers: number; numBytes: number;\n unreliable?: boolean; reasons: string[];\n};\n\ntype KernelInfo = {\n name: string; bytesAdded: number; totalBytesSnapshot: number;\n tensorsAdded: number;\n totalTensorsSnapshot: number;\n inputShapes: number[][];\n outputShapes: number[][];\n kernelTimeMs: number | {error: string} | Promise;\n extraInfo: string | Promise;\n};\n\nexport type ProfileInfo = {\n newBytes: number; newTensors: number; peakBytes: number;\n kernels: KernelInfo[];\n result: TensorContainer;\n kernelNames: string[];\n};\n\nexport interface TimingInfo extends BackendTimingInfo {\n wallMs: number;\n}\n\n/** @docalias Function */\nexport type ScopeFn = () => T;\n\ninterface ScopeState {\n track: Tensor[];\n name: string;\n id: number;\n}\n\ninterface RegisteredKernelInvocation {\n kernelName: string;\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\ninterface CustomGradKernelInvocation {\n forwardFunc: ForwardFunc;\n backwardsFunc: (dy: T, saved: Tensor[]) => {\n [P in keyof I]: () => I[P]\n };\n inputs: I;\n attrs?: NamedAttrMap;\n}\n\nfunction isRegisteredKernelInvocation(\n kernelInvocation: RegisteredKernelInvocation|\n CustomGradKernelInvocation):\n kernelInvocation is RegisteredKernelInvocation {\n return (kernelInvocation as RegisteredKernelInvocation).kernelName != null;\n}\n\nclass EngineState {\n // Public since optimizers will use it.\n registeredVariables: NamedVariableMap = {};\n\n nextTapeNodeId = 0;\n numBytes = 0;\n numTensors = 0;\n numStringTensors = 0;\n numDataBuffers = 0;\n\n activeTape: TapeNode[];\n // Number of nested tf.grad() statements when computing higher-order\n // gradients. E.g. `1` for first-order gradients and `2` for second-order\n // gradients. Used to track if the tape should be removed after a backprop.\n gradientDepth = 0;\n // Number of nested kernel calls. When kernel depth is greater than 1, we turn\n // off the tape.\n kernelDepth = 0;\n\n // Keep Tensors that parallel the tapes.\n activeScope: ScopeState;\n scopeStack: ScopeState[] = [];\n /**\n * Keeps track of the number of data moves during a kernel execution. We\n * maintain a stack since kernels can call other kernels, recursively.\n */\n numDataMovesStack: number[] = [];\n nextScopeId = 0;\n\n tensorInfo = new WeakMap();\n\n profiling = false;\n activeProfile: ProfileInfo = {\n newBytes: 0,\n newTensors: 0,\n peakBytes: 0,\n kernels: [],\n result: null,\n get kernelNames():\n string[] {\n return Array.from(new Set(this.kernels.map(k => k.name)));\n }\n };\n\n dispose() {\n for (const variableName in this.registeredVariables) {\n this.registeredVariables[variableName].dispose();\n }\n }\n}\n\nexport class Engine implements TensorTracker, DataMover {\n state: EngineState;\n backendName: string;\n registry: {[id: string]: KernelBackend} = {};\n registryFactory: {\n [id: string]: {\n factory: () => KernelBackend | Promise,\n priority: number\n }\n } = {};\n\n private profiler: Profiler;\n private backendInstance: KernelBackend;\n private pendingBackendInit: Promise;\n private pendingBackendInitId = 0;\n\n constructor(public ENV: Environment) {\n this.state = new EngineState();\n }\n\n async ready(): Promise {\n if (this.pendingBackendInit != null) {\n return this.pendingBackendInit.then(() => {});\n }\n if (this.backendInstance != null) {\n return;\n }\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const success = await this.initializeBackend(backendName).success;\n if (success) {\n await this.setBackend(backendName);\n return;\n }\n }\n\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n get backend(): KernelBackend {\n if (this.pendingBackendInit != null) {\n throw new Error(\n `Backend '${this.backendName}' has not yet been initialized. Make ` +\n `sure to await tf.ready() or await tf.setBackend() before calling ` +\n `other methods`);\n }\n if (this.backendInstance == null) {\n const {name, asyncInit} = this.initializeBackendsAndReturnBest();\n if (asyncInit) {\n throw new Error(\n `The highest priority backend '${name}' has not yet been ` +\n `initialized. Make sure to await tf.ready() or ` +\n `await tf.setBackend() before calling other methods`);\n }\n this.setBackend(name);\n }\n return this.backendInstance;\n }\n\n backendNames(): string[] {\n return Object.keys(this.registryFactory);\n }\n\n findBackend(backendName: string): KernelBackend {\n if (!(backendName in this.registry)) {\n // If the backend hasn't been initialized but we have a registry entry for\n // it, initialize it and return it.\n if (backendName in this.registryFactory) {\n const {asyncInit} = this.initializeBackend(backendName);\n if (asyncInit) {\n // Backend is not ready yet.\n return null;\n }\n } else {\n return null;\n }\n }\n return this.registry[backendName];\n }\n\n findBackendFactory(backendName: string):\n () => KernelBackend | Promise {\n if (!(backendName in this.registryFactory)) {\n return null;\n }\n return this.registryFactory[backendName].factory;\n }\n\n registerBackend(\n backendName: string,\n factory: () => KernelBackend | Promise,\n priority = 1): boolean {\n if (backendName in this.registryFactory) {\n console.warn(\n `${backendName} backend was already registered. ` +\n `Reusing existing backend factory.`);\n return false;\n }\n this.registryFactory[backendName] = {factory, priority};\n return true;\n }\n\n async setBackend(backendName: string): Promise {\n if (this.registryFactory[backendName] == null) {\n throw new Error(`Backend name '${backendName}' not found in registry`);\n }\n this.backendName = backendName;\n if (this.registry[backendName] == null) {\n this.backendInstance = null;\n const {success, asyncInit} = this.initializeBackend(backendName);\n const result = asyncInit ? await success : success;\n if (!result) {\n return false;\n }\n }\n this.backendInstance = this.registry[backendName];\n this.setupRegisteredKernels();\n // Reset the profiler.\n this.profiler = new Profiler(this.backendInstance);\n\n return true;\n }\n\n private setupRegisteredKernels(): void {\n const kernels = getKernelsForBackend(this.backendName);\n kernels.forEach(kernel => {\n if (kernel.setupFunc != null) {\n kernel.setupFunc(this.backendInstance);\n }\n });\n }\n\n private disposeRegisteredKernels(backendName: string): void {\n const kernels = getKernelsForBackend(backendName);\n kernels.forEach(kernel => {\n if (kernel.disposeFunc != null) {\n kernel.disposeFunc(this.registry[backendName]);\n }\n });\n }\n\n /**\n * Initializes a backend by looking up the backend name in the factory\n * registry and calling the factory method. Returns a boolean representing\n * whether the initialization of the backend suceeded. Throws an error if\n * there is no backend in the factory registry.\n */\n private initializeBackend(backendName: string):\n {success: boolean|Promise, asyncInit: boolean} {\n const registryFactoryEntry = this.registryFactory[backendName];\n if (registryFactoryEntry == null) {\n throw new Error(\n `Cannot initialize backend ${backendName}, no registration found.`);\n }\n\n try {\n const backend = registryFactoryEntry.factory();\n /* Test if the factory returns a promise.\n Done in a more liberal way than\n previous 'Promise.resolve(backend)===backend'\n as we needed to account for custom Promise\n implementations (e.g. Angular) */\n if (backend && !(backend instanceof KernelBackend) &&\n typeof backend.then === 'function') {\n const promiseId = ++this.pendingBackendInitId;\n const success =\n backend\n .then(backendInstance => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.registry[backendName] = backendInstance;\n this.pendingBackendInit = null;\n return true;\n })\n .catch(err => {\n // Outdated promise. Another backend was set in the meantime.\n if (promiseId < this.pendingBackendInitId) {\n return false;\n }\n this.pendingBackendInit = null;\n console.warn(\n `Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return false;\n });\n this.pendingBackendInit = success;\n return {success, asyncInit: true};\n } else {\n this.registry[backendName] = backend as KernelBackend;\n return {success: true, asyncInit: false};\n }\n } catch (err) {\n console.warn(`Initialization of backend ${backendName} failed`);\n console.warn(err.stack || err.message);\n return {success: false, asyncInit: false};\n }\n }\n\n removeBackend(backendName: string): void {\n if (!(backendName in this.registryFactory)) {\n throw new Error(`${backendName} backend not found in registry`);\n }\n if (this.backendName === backendName && this.pendingBackendInit != null) {\n // There is a pending promise of the backend we want to remove. Make it\n // obsolete.\n this.pendingBackendInitId++;\n }\n\n if (backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n\n delete this.registryFactory[backendName];\n\n // Unset the backend if it is active.\n if (this.backendName === backendName) {\n this.pendingBackendInit = null;\n this.backendName = null;\n this.backendInstance = null;\n }\n }\n\n private getSortedBackends(): string[] {\n if (Object.keys(this.registryFactory).length === 0) {\n throw new Error('No backend found in registry.');\n }\n return Object.keys(this.registryFactory).sort((a: string, b: string) => {\n // Highest priority comes first.\n return this.registryFactory[b].priority -\n this.registryFactory[a].priority;\n });\n }\n\n private initializeBackendsAndReturnBest():\n {name: string, asyncInit: boolean} {\n const sortedBackends = this.getSortedBackends();\n\n for (let i = 0; i < sortedBackends.length; i++) {\n const backendName = sortedBackends[i];\n const {success, asyncInit} = this.initializeBackend(backendName);\n if (asyncInit || success) {\n return {name: backendName, asyncInit};\n }\n }\n throw new Error(\n `Could not initialize any backends, all backend initializations ` +\n `failed.`);\n }\n\n moveData(backend: KernelBackend, dataId: DataId) {\n const info = this.state.tensorInfo.get(dataId);\n const srcBackend = info.backend;\n const values = this.readSync(dataId);\n const refCount = srcBackend.refCount(dataId);\n // Delete the tensor from the old backend and move it to the new\n // backend.\n srcBackend.disposeData(dataId, true);\n info.backend = backend;\n backend.move(dataId, values, info.shape, info.dtype, refCount);\n if (this.shouldCheckForMemLeaks()) {\n // Track the number of moves during a kernel execution to correctly\n // detect memory leaks.\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;\n }\n }\n\n tidy(nameOrFn: string|ScopeFn, fn?: ScopeFn):\n T {\n let name: string = null;\n if (fn == null) {\n // Called with only 1 argument.\n if (typeof nameOrFn !== 'function') {\n throw new Error('Please provide a function to tidy()');\n }\n fn = nameOrFn;\n } else {\n // Called with 2 arguments.\n if (typeof nameOrFn !== 'string' && !(nameOrFn instanceof String)) {\n throw new Error(\n 'When calling with two arguments, the first argument ' +\n 'to tidy() must be a string');\n }\n if (typeof fn !== 'function') {\n throw new Error(\n 'When calling with two arguments, the 2nd argument ' +\n 'to tidy() must be a function');\n }\n name = nameOrFn as string;\n // TODO(nsthorat,smilkov): Do operation logging and performance\n // profiling.\n }\n let result: T;\n return this.scopedRun(\n () => this.startScope(name), () => this.endScope(result), () => {\n result = fn();\n if (result instanceof Promise) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n return result;\n });\n }\n\n private scopedRun(start: () => void, end: () => void, f: () => T): T {\n start();\n try {\n const res = f();\n end();\n return res;\n } catch (ex) {\n end();\n throw ex;\n }\n }\n\n private static nextTensorId = 0;\n private nextTensorId(): number {\n return Engine.nextTensorId++;\n }\n\n private static nextVariableId = 0;\n private nextVariableId(): number {\n return Engine.nextVariableId++;\n }\n\n /**\n * This method is called instead of the public-facing tensor.clone() when\n * saving a tensor for backwards pass. It makes sure to add the clone\n * operation to the tape regardless of being called inside a kernel\n * execution.\n */\n private clone(x: Tensor): Tensor {\n const y: Tensor = ENGINE.runKernel(Identity, {x} as {} as NamedTensorMap);\n const inputs = {x};\n const grad = (dy: Tensor) => ({\n x: () => {\n const dtype = 'float32';\n const gradInputs = {x: dy};\n const attrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, gradInputs as {} as NamedTensorMap,\n // tslint:disable-next-line: no-unnecessary-type-assertion\n attrs as {} as NamedAttrMap) as Tensor;\n }\n });\n const saved: Tensor[] = [];\n this.addTapeNode(this.state.activeScope.name, inputs, [y], grad, saved, {});\n return y;\n }\n\n /**\n * Execute a kernel with the given name and return the output tensor.\n *\n * @param kernelName The name of the kernel to execute.\n * @param inputs A map of input names to tensors.\n * @param attrs A map of attribute names to their values. An attribute is a\n * primitive (non-tensor) input to the kernel.\n * @param inputsToSave A list of tensors, inputs to save for the backprop\n * computation.\n * @param outputsToSave A list of booleans, specifying which output to save\n * for the backprop computation. These are booleans since the output\n * tensors are not visible to the user.\n */\n runKernel(\n kernelName: string, inputs: NamedTensorMap, attrs?: NamedAttrMap): T {\n const hasKernel = getKernel(kernelName, this.backendName) != null;\n if (!hasKernel) {\n throw new Error(`Kernel '${kernelName}' not registered for backend '${\n this.backendName}'`);\n }\n return this.runKernelFunc({kernelName, inputs, attrs});\n }\n\n private shouldCheckForMemLeaks(): boolean {\n return this.ENV.getBool('IS_TEST');\n }\n\n private checkKernelForMemLeak(\n kernelName: string, numDataIdsBefore: number,\n outInfos: TensorInfo[]): void {\n const numDataIdsAfter = this.backend.numDataIds();\n\n // Count the number of data ids associated with the result of the kernel.\n let numOutputDataIds = 0;\n outInfos.forEach(info => {\n // Complex numbers allocate 3 data ids, one for 'real', one for\n // 'imaginary', and one for the container that holds the former two.\n numOutputDataIds += (info.dtype === 'complex64' ? 3 : 1);\n });\n\n // Account for the number of moves during kernel execution. A \"data move\"\n // can happen in the middle of a kernel execution, placing a new (key,value)\n // pair in the data storage. Since data moves have net zero effect (we\n // always remove the data from the old backend), we have to cancel them out\n // when detecting memory leaks.\n const numMoves =\n this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1];\n const dataIdsLeaked =\n numDataIdsAfter - numDataIdsBefore - numOutputDataIds - numMoves;\n if (dataIdsLeaked > 0) {\n throw new Error(\n `Backend '${this.backendName}' has an internal memory leak ` +\n `(${dataIdsLeaked} data ids) after running '${kernelName}'`);\n }\n }\n\n /**\n * Internal helper method to execute a kernel Func\n *\n * Use `runKernel` to execute kernels from outside of engine.\n */\n private runKernelFunc(\n kernelParams: RegisteredKernelInvocation|\n CustomGradKernelInvocation): T {\n let outputs: Tensor[];\n let saved: Tensor[] = [];\n const isTapeOn = this.isTapeOn();\n\n const startingBytecount = this.state.numBytes;\n const startingNumTensors = this.state.numTensors;\n\n if (this.shouldCheckForMemLeaks()) {\n this.state.numDataMovesStack.push(0);\n }\n\n let kernelFunc: () => Tensor[];\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n\n let out: TensorInfo|TensorInfo[];\n\n const kernelOrScopeName = isRegisteredKernelInvocation(kernelParams) ?\n kernelParams.kernelName :\n this.state.activeScope != null ? this.state.activeScope.name : '';\n\n // Create the kernelFunc from either a registered kernel OR passed in\n // forward/backward functions (used by custom grad). In this context a\n // kernelFunc wraps a kernel implementation with some bookkeeping.\n\n if (isRegisteredKernelInvocation(kernelParams)) {\n const {kernelName, inputs, attrs} = kernelParams;\n if (this.backendName == null) {\n // backend has not been initialized yet (backend initialization is lazy\n // can be deferred until an op/ kernel is run).\n // The below getter has side effects that will try to initialize the\n // backend and set properties like this.backendName\n // tslint:disable-next-line: no-unused-expression\n this.backend;\n }\n const kernel = getKernel(kernelName, this.backendName);\n util.assert(\n kernel != null,\n () => `Cannot find registered kernel '${kernelName}' for backend '${\n this.backendName}'`);\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = kernel.kernelFunc({inputs, attrs, backend: this.backend});\n const outInfos = Array.isArray(out) ? out : [out];\n if (this.shouldCheckForMemLeaks()) {\n this.checkKernelForMemLeak(kernelName, numDataIdsBefore, outInfos);\n }\n\n const outTensors = outInfos.map((outInfo: TensorInfo|Tensor) => {\n // todo (yassogba) remove this option (Tensor) when node backend\n // methods have been modularized and they all return tensorInfo.\n // TensorInfos do not have a rank attribute.\n if ((outInfo as Tensor).rank != null) {\n return outInfo as Tensor;\n }\n const {dataId, shape, dtype} = outInfo as TensorInfo;\n return this.makeTensorFromDataId(dataId, shape, dtype);\n });\n\n // Save any required inputs and outputs.\n\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since there would be no backprop for these tensors\n // (which would otherwise dispose them).\n if (isTapeOn) {\n const tensorsToSave =\n this.getTensorsForGradient(kernelName, inputs, outTensors);\n saved = this.saveTensorsForBackwardMode(tensorsToSave);\n }\n return outTensors;\n };\n } else {\n const {forwardFunc} = kernelParams;\n // Running a customGrad op.\n const saveFunc: GradSaveFunc = (tensors) => {\n // Do not save unless we are recording to the tape. Otherwise it would\n // cause a mem leak since we would never run backprop, which disposes\n // the kept tensors.\n if (!isTapeOn) {\n return;\n }\n saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n };\n\n kernelFunc = () => {\n const numDataIdsBefore = this.backend.numDataIds();\n out = this.tidy(() => forwardFunc(this.backend, saveFunc));\n const outs = (Array.isArray(out) ? out : [out]) as Tensor[];\n if (this.shouldCheckForMemLeaks()) {\n // Scope name is used to print a more helpful error message if needed.\n this.checkKernelForMemLeak(kernelOrScopeName, numDataIdsBefore, outs);\n }\n return outs;\n };\n }\n\n //\n // Run the kernelFunc. Optionally profiling it.\n //\n const {inputs, attrs} = kernelParams;\n const backwardsFunc = isRegisteredKernelInvocation(kernelParams) ?\n null :\n kernelParams.backwardsFunc;\n\n let kernelProfile: KernelProfile;\n this.scopedRun(\n // Stop recording to a tape when running a kernel.\n () => this.state.kernelDepth++, () => this.state.kernelDepth--, () => {\n if (!this.ENV.getBool('DEBUG') && !this.state.profiling) {\n outputs = kernelFunc();\n } else {\n kernelProfile = this.profiler.profileKernel(\n kernelOrScopeName, inputs, () => kernelFunc());\n if (this.ENV.getBool('DEBUG')) {\n this.profiler.logKernelProfile(kernelProfile);\n }\n outputs = kernelProfile.outputs;\n }\n });\n\n if (isTapeOn) {\n this.addTapeNode(\n kernelOrScopeName, inputs, outputs, backwardsFunc, saved, attrs);\n }\n\n if (this.state.profiling) {\n this.state.activeProfile.kernels.push({\n name: kernelOrScopeName,\n bytesAdded: this.state.numBytes - startingBytecount,\n totalBytesSnapshot: this.state.numBytes,\n tensorsAdded: this.state.numTensors - startingNumTensors,\n totalTensorsSnapshot: this.state.numTensors,\n inputShapes: Object.keys(inputs).map(\n key => inputs[key] != null ? inputs[key].shape : null),\n outputShapes: outputs.map(item => item.shape),\n kernelTimeMs: kernelProfile.timeMs,\n extraInfo: kernelProfile.extraInfo\n });\n }\n return (Array.isArray(out) ? outputs : outputs[0]) as T;\n }\n\n /**\n * Saves tensors used in forward mode for use in backward mode.\n *\n * @param tensors the list of tensors to save.\n */\n private saveTensorsForBackwardMode(tensors: Tensor[]): Tensor[] {\n const saved = tensors.map(tensor => this.keep(this.clone(tensor)));\n return saved;\n }\n\n /**\n * Returns a list of tensors to save for a given gradient calculation.\n *\n * @param kernelName name of kernel to look up gradient for.\n * @param inputs a map of input tensors.\n * @param outputs an array of output tensors from forward mode of kernel.\n */\n private getTensorsForGradient(\n kernelName: string, inputs: NamedTensorMap,\n outputs: Tensor[]): Tensor[]|null {\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n const inputsToSave: string[] = gradConfig.inputsToSave || [];\n const outputsToSave: boolean[] = gradConfig.outputsToSave || [];\n\n // If saveAllInputs is true, all inputs will be saved. Otherwise, inputs\n // specified in inputsToSave will be saved.\n let inputTensorsToSave: Tensor[];\n if (gradConfig.saveAllInputs) {\n util.assert(\n Array.isArray(inputs),\n () => 'saveAllInputs is true, expected inputs to be an array.');\n\n inputTensorsToSave = Object.keys(inputs).map((key) => inputs[key]);\n } else {\n inputTensorsToSave = inputsToSave.map((inputName) => inputs[inputName]);\n }\n\n const outputTensorsToSave: Tensor[] =\n outputs.filter((_, i) => outputsToSave[i]);\n\n return inputTensorsToSave.concat(outputTensorsToSave);\n }\n // We return an empty list rather than throw an error because the kernel we\n // are looking up may not actually be relevant to backproping through the\n // overall function\n //\n // See 'does not error if irrelevant (pruned) ops are missing grads' test\n // in gradients_test.ts for an example.\n return [];\n }\n\n /**\n * Internal method used by public APIs for tensor creation. Makes a new\n * tensor with the provided shape, dtype and values. It always\n * creates a new data id and writes the values to the underlying backend.\n */\n makeTensor(\n values: DataValues, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n if (values == null) {\n throw new Error('Values passed to engine.makeTensor() are null');\n }\n dtype = dtype || 'float32';\n backend = backend || this.backend;\n let backendVals = values as BackendValues;\n if (dtype === 'string' && util.isString(values[0])) {\n backendVals = (values as string[]).map(d => util.encodeString(d));\n }\n const dataId = backend.write(backendVals, shape, dtype);\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n\n // Count bytes for string tensors.\n if (dtype === 'string') {\n const info = this.state.tensorInfo.get(dataId);\n const newBytes = bytesFromStringArray(backendVals as Uint8Array[]);\n this.state.numBytes += newBytes - info.bytes;\n info.bytes = newBytes;\n }\n return t;\n }\n\n /**\n * Internal method used by backends. Makes a new tensor\n * that is a wrapper around an existing data id. It doesn't create\n * a new data id, only increments the ref count used in memory tracking.\n */\n makeTensorFromDataId(\n dataId: DataId, shape: number[], dtype: DataType,\n backend?: KernelBackend): Tensor {\n dtype = dtype || 'float32';\n const t = new Tensor(shape, dtype, dataId, this.nextTensorId());\n this.trackTensor(t, backend);\n return t;\n }\n\n makeVariable(\n initialValue: Tensor, trainable = true, name?: string,\n dtype?: DataType): Variable {\n name = name || this.nextVariableId().toString();\n if (dtype != null && dtype !== initialValue.dtype) {\n initialValue = initialValue.cast(dtype);\n }\n const v = new Variable(initialValue, trainable, name, this.nextTensorId());\n if (this.state.registeredVariables[v.name] != null) {\n throw new Error(`Variable with name ${v.name} was already registered`);\n }\n this.state.registeredVariables[v.name] = v;\n this.incRef(v, this.backend);\n return v;\n }\n\n trackTensor(a: Tensor, backend: KernelBackend): void {\n this.state.numTensors++;\n if (a.dtype === 'string') {\n this.state.numStringTensors++;\n }\n // Bytes for complex numbers are counted by their components. Bytes for\n // string tensors are counted when writing values.\n let bytes = 0;\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n bytes = a.size * util.bytesPerElement(a.dtype);\n }\n this.state.numBytes += bytes;\n\n if (!this.state.tensorInfo.has(a.dataId)) {\n this.state.numDataBuffers++;\n this.state.tensorInfo.set(a.dataId, {\n backend: backend || this.backend,\n dtype: a.dtype,\n shape: a.shape,\n bytes\n });\n }\n\n if (!(a instanceof Variable)) {\n this.track(a);\n }\n }\n\n // Track the tensor by dataId and increase the refCount for the dataId in the\n // backend.\n // TODO(pyu10055): This is currently used by makeVariable method, to increase\n // refCount on the backend for the dataId. It can potentially be replaced with\n // Identity op indead of calling backend directly.\n incRef(a: Tensor, backend: KernelBackend): void {\n this.trackTensor(a, backend);\n this.backend.incRef(a.dataId);\n }\n\n removeDataId(dataId: DataId, backend: KernelBackend) {\n if (this.state.tensorInfo.has(dataId) &&\n this.state.tensorInfo.get(dataId).backend === backend) {\n this.state.tensorInfo.delete(dataId);\n this.state.numDataBuffers--;\n }\n }\n disposeTensor(a: Tensor): void {\n if (!this.state.tensorInfo.has(a.dataId)) {\n return;\n }\n const info = this.state.tensorInfo.get(a.dataId);\n\n this.state.numTensors--;\n if (a.dtype === 'string') {\n this.state.numStringTensors--;\n this.state.numBytes -= info.bytes;\n }\n // Don't count bytes for complex numbers as they are counted by their\n // components.\n if (a.dtype !== 'complex64' && a.dtype !== 'string') {\n const bytes = a.size * util.bytesPerElement(a.dtype);\n this.state.numBytes -= bytes;\n }\n\n // Remove the reference to dataId if backend dispose the data successfully\n if (info.backend.disposeData(a.dataId)) {\n this.removeDataId(a.dataId, info.backend);\n }\n\n // TODO(nsthorat): Construct an error and save the stack trace for\n // debugging when in debug mode. Creating a stack trace is too expensive\n // to do unconditionally.\n }\n\n disposeVariables(): void {\n for (const varName in this.state.registeredVariables) {\n const v = this.state.registeredVariables[varName];\n this.disposeVariable(v);\n }\n }\n\n disposeVariable(v: Variable): void {\n this.disposeTensor(v);\n if (this.state.registeredVariables[v.name] != null) {\n delete this.state.registeredVariables[v.name];\n }\n }\n\n memory(): MemoryInfo {\n const info = this.backend.memory() as MemoryInfo;\n info.numTensors = this.state.numTensors;\n info.numDataBuffers = this.state.numDataBuffers;\n info.numBytes = this.state.numBytes;\n if (this.state.numStringTensors > 0) {\n info.unreliable = true;\n if (info.reasons == null) {\n info.reasons = [];\n }\n info.reasons.push(\n 'Memory usage by string tensors is approximate ' +\n '(2 bytes per character)');\n }\n return info;\n }\n\n async profile(query: () => (TensorContainer | Promise)):\n Promise {\n this.state.profiling = true;\n\n const startBytes = this.state.numBytes;\n const startNumTensors = this.state.numTensors;\n\n this.state.activeProfile.kernels = [];\n this.state.activeProfile.result = await query();\n\n this.state.profiling = false;\n\n this.state.activeProfile.peakBytes = Math.max(\n ...this.state.activeProfile.kernels.map(d => d.totalBytesSnapshot));\n this.state.activeProfile.newBytes = this.state.numBytes - startBytes;\n this.state.activeProfile.newTensors =\n this.state.numTensors - startNumTensors;\n for (const kernel of this.state.activeProfile.kernels) {\n kernel.kernelTimeMs = await kernel.kernelTimeMs;\n kernel.extraInfo = await kernel.extraInfo;\n }\n return this.state.activeProfile;\n }\n\n isTapeOn(): boolean {\n return this.state.gradientDepth > 0 && this.state.kernelDepth === 0;\n }\n\n private addTapeNode(\n kernelName: string, inputs: NamedTensorMap, outputs: Tensor[],\n gradientsFunc: GradFunc, saved: Tensor[], attrs: NamedAttrMap): void {\n const tapeNode: TapeNode =\n {id: this.state.nextTapeNodeId++, kernelName, inputs, outputs, saved};\n\n const gradConfig = getGradient(kernelName);\n if (gradConfig != null) {\n gradientsFunc = gradConfig.gradFunc;\n }\n if (gradientsFunc != null) {\n tapeNode.gradient = (dys: Tensor[]) => {\n // TODO(smilkov): To optimize back-prop, pass dys that are not used in\n // the backprop graph to the user as null instead of zeros\n dys = dys.map((dy, i) => {\n if (dy == null) {\n const output = outputs[i];\n const vals = util.makeZerosTypedArray(output.size, output.dtype);\n return this.makeTensor(vals, output.shape, output.dtype);\n }\n return dy;\n });\n // Grad functions of ops with single outputs expect a dy, while ops\n // with multiple outputs expect dys (array of dy).\n return gradientsFunc(dys.length > 1 ? dys : dys[0], saved, attrs);\n };\n }\n this.state.activeTape.push(tapeNode);\n }\n\n keep(result: T): T {\n result.kept = true;\n return result;\n }\n\n private startTape() {\n if (this.state.gradientDepth === 0) {\n this.state.activeTape = [];\n }\n this.state.gradientDepth++;\n }\n\n private endTape() {\n this.state.gradientDepth--;\n }\n\n /**\n * Start a scope. Use this with endScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n startScope(name?: string) {\n const scopeInfo: ScopeState = {\n track: [],\n name: 'unnamed scope',\n id: this.state.nextScopeId++\n };\n if (name) {\n scopeInfo.name = name;\n }\n this.state.scopeStack.push(scopeInfo);\n this.state.activeScope = scopeInfo;\n }\n\n /**\n * End a scope. Use this with startScope() to achieve the same functionality\n * as scope() without the need for a function closure.\n */\n endScope(result?: TensorContainer) {\n const tensorsToTrackInParent = getTensorsInContainer(result);\n const tensorsToTrackInParentSet =\n new Set(tensorsToTrackInParent.map(t => t.id));\n\n // Dispose the arrays tracked in this scope.\n for (let i = 0; i < this.state.activeScope.track.length; i++) {\n const tensor = this.state.activeScope.track[i];\n if (!tensor.kept && !tensorsToTrackInParentSet.has(tensor.id)) {\n tensor.dispose();\n }\n }\n\n const oldScope = this.state.scopeStack.pop();\n this.state.activeScope = this.state.scopeStack.length === 0 ?\n null :\n this.state.scopeStack[this.state.scopeStack.length - 1];\n\n // Track the current result in the parent scope.\n tensorsToTrackInParent.forEach(tensor => {\n // Only track the tensor if was allocated in the inner scope and is not\n // globally kept.\n if (!tensor.kept && tensor.scopeId === oldScope.id) {\n this.track(tensor);\n }\n });\n }\n\n /**\n * Returns gradients of `f` with respect to each of the `xs`. The gradients\n * returned are of the same length as `xs`, but some might be null if `f`\n * was not a function of that `x`. It also takes optional dy to multiply the\n * gradient, which defaults to `1`.\n */\n gradients(\n f: () => T, xs: Tensor[], dy?: T,\n allowNoGradients = false): {value: T, grads: Tensor[]} {\n util.assert(\n xs.length > 0, () => 'gradients() received an empty list of xs.');\n if (dy != null && dy.dtype !== 'float32') {\n throw new Error(`dy must have 'float32' dtype, but has '${dy.dtype}'`);\n }\n\n const y = this.scopedRun(\n () => this.startTape(), () => this.endTape(),\n () => this.tidy('forward', f));\n\n util.assert(\n y instanceof Tensor,\n () => 'The result y returned by f() must be a tensor.');\n // Filter out the nodes that don't connect x => y.\n const filteredTape = getFilteredNodesXToY(this.state.activeTape, xs, y);\n if (!allowNoGradients && filteredTape.length === 0 && xs.length > 0) {\n throw new Error(\n 'Cannot compute gradient of y=f(x) with respect to x. Make sure ' +\n 'that the f you passed encloses all operations that lead from x ' +\n 'to y.');\n }\n\n return this.tidy('backward', () => {\n const accumulatedGradientMap: {[tensorId: number]: Tensor} = {};\n accumulatedGradientMap[y.id] = (dy == null) ? ones(y.shape) : dy;\n\n // Backprop gradients through the filtered nodes.\n backpropagateGradients(\n accumulatedGradientMap, filteredTape,\n // Pass the tidy function to avoid circular dep with `tape.ts`.\n f => this.tidy(f as ScopeFn),\n // Pass an add function to avoide a circular dep with `tape.ts`.\n add);\n const grads = xs.map(x => accumulatedGradientMap[x.id]);\n\n if (this.state.gradientDepth === 0) {\n // This means that we are not computing higher-order gradients\n // and can clean up the tape.\n this.state.activeTape.forEach(node => {\n for (const tensor of node.saved) {\n tensor.dispose();\n }\n });\n this.state.activeTape = null;\n }\n return {value: y, grads};\n });\n }\n\n customGrad(f: CustomGradientFunc):\n (...args: Array) => T {\n util.assert(\n util.isFunction(f),\n () => 'The f passed in customGrad(f) must be a function.');\n return (...inputs: Tensor[]): T => {\n util.assert(\n inputs.every(t => t instanceof Tensor),\n () => 'The args passed in customGrad(f)(x1, x2,...) must all be ' +\n 'tensors');\n\n let res: {\n value: T,\n gradFunc: (dy: T, saved: Tensor[]) => Tensor | Tensor[],\n };\n const inputMap: NamedTensorMap = {};\n inputs.forEach((input, i) => {\n inputMap[i] = input;\n });\n\n const forwardFunc: ForwardFunc = (_, save) => {\n res = f(...[...inputs, save]);\n util.assert(\n res.value instanceof Tensor,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.value` is a tensor');\n util.assert(\n util.isFunction(res.gradFunc),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function.');\n return res.value;\n };\n\n const backwardsFunc = (dy: T, saved: Tensor[]) => {\n const gradRes = res.gradFunc(dy, saved);\n const grads: Tensor[] = Array.isArray(gradRes) ? gradRes : [gradRes];\n util.assert(\n grads.length === inputs.length,\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'the same number of tensors as inputs passed to f(...).');\n util.assert(\n grads.every(t => t instanceof Tensor),\n () => 'The function f passed in customGrad(f) must return an ' +\n 'object where `obj.gradFunc` is a function that returns ' +\n 'a list of only tensors.');\n const gradMap: {[key: string]: () => Tensor} = {};\n grads.forEach((grad, i) => {\n gradMap[i] = () => grad;\n });\n return gradMap;\n };\n\n return this.runKernelFunc({\n forwardFunc,\n backwardsFunc,\n inputs: inputMap,\n });\n };\n }\n\n readSync(dataId: DataId): BackendValues {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.readSync(dataId);\n }\n read(dataId: DataId): Promise {\n // Route the read to the correct backend.\n const info = this.state.tensorInfo.get(dataId);\n return info.backend.read(dataId);\n }\n\n async time(query: () => void): Promise {\n const start = now();\n const timingInfo = await this.backend.time(query) as TimingInfo;\n timingInfo.wallMs = now() - start;\n return timingInfo;\n }\n\n /**\n * Tracks a Tensor in the current scope to be automatically cleaned up\n * when the current scope ends, and returns the value.\n *\n * @param result The Tensor to track in the current scope.\n */\n private track(result: T): T {\n if (this.state.activeScope != null) {\n result.scopeId = this.state.activeScope.id;\n this.state.activeScope.track.push(result);\n }\n\n return result;\n }\n\n get registeredVariables(): NamedVariableMap {\n return this.state.registeredVariables;\n }\n\n /**\n * Resets the engine state. Removes all backends but does not remove\n * registered backend factories.\n */\n reset(): void {\n // Make any pending promise obsolete.\n this.pendingBackendInitId++;\n\n this.state.dispose();\n this.ENV.reset();\n this.state = new EngineState();\n\n for (const backendName in this.registry) {\n this.disposeRegisteredKernels(backendName);\n this.registry[backendName].dispose();\n delete this.registry[backendName];\n }\n this.backendName = null;\n this.backendInstance = null;\n this.pendingBackendInit = null;\n }\n}\n\nfunction ones(shape: number[]): Tensor {\n const values = makeOnesTypedArray(sizeFromShape(shape), 'float32');\n return ENGINE.makeTensor(values, shape, 'float32');\n}\n\nexport function getOrMakeEngine(): Engine {\n const ns = getGlobalNamespace() as {} as {_tfengine: Engine};\n if (ns._tfengine == null) {\n const environment = new Environment(ns);\n ns._tfengine = new Engine(environment);\n }\n setEnvironmentGlobal(ns._tfengine.ENV);\n\n // Tell the current tensor interface that the global engine is responsible\n // for tracking.\n setTensorTracker(() => ns._tfengine);\n return ns._tfengine;\n}\n\nexport const ENGINE = getOrMakeEngine();\n\n/**\n * A implementation of the add op for use within engine and tape.\n *\n * This allows us to avoid a circular dependency between add.ts and engine.\n * It is exported to be available in tape tests.\n */\nexport function add(a: Tensor, b: Tensor): Tensor {\n // We duplicate Add here to avoid a circular dependency with add.ts.\n const inputs = {a, b};\n return ENGINE.runKernel(Add, inputs as {} as NamedTensorMap);\n}\n", "/**\n * @license\n * Copyright 2017 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// tslint:disable-next-line:no-any\nfunction _isNavigatorDefined(): boolean {\n return typeof navigator !== 'undefined' && navigator != null;\n}\n\nexport function isMobile(nav?: Navigator): boolean {\n if (nav || _isNavigatorDefined()) {\n if (!nav) {\n nav = navigator;\n }\n if (nav.product === 'ReactNative') {\n return true;\n }\n\n // tslint:disable-next-line:no-any\n const a = nav.userAgent || nav.vendor || (window as any).opera;\n // tslint:disable-next-line:max-line-length\n return /(android|bb\\d+|meego).+mobile|avantgo|bada\\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i\n .test(a) ||\n // tslint:disable-next-line:max-line-length\n /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\\-(n|u)|c55\\/|capi|ccwa|cdm\\-|cell|chtm|cldc|cmd\\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\\-s|devi|dica|dmob|do(c|p)o|ds(12|\\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\\-|_)|g1 u|g560|gene|gf\\-5|g\\-mo|go(\\.w|od)|gr(ad|un)|haie|hcit|hd\\-(m|p|t)|hei\\-|hi(pt|ta)|hp( i|ip)|hs\\-c|ht(c(\\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\\-(20|go|ma)|i230|iac( |\\-|\\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\\/)|klon|kpt |kwc\\-|kyo(c|k)|le(no|xi)|lg( g|\\/(k|l|u)|50|54|\\-[a-w])|libw|lynx|m1\\-w|m3ga|m50\\/|ma(te|ui|xo)|mc(01|21|ca)|m\\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\\-2|po(ck|rt|se)|prox|psio|pt\\-g|qa\\-a|qc(07|12|21|32|60|\\-[2-7]|i\\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\\-|oo|p\\-)|sdk\\/|se(c(\\-|0|1)|47|mc|nd|ri)|sgh\\-|shar|sie(\\-|m)|sk\\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\\-|v\\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\\-|tdg\\-|tel(i|m)|tim\\-|t\\-mo|to(pl|sh)|ts(70|m\\-|m3|m5)|tx\\-9|up(\\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\\-|your|zeto|zte\\-/i\n .test(a.substr(0, 4));\n }\n return false;\n}\n\nexport function isBrowser(): boolean {\n return (typeof window !== 'undefined' && window.document != null) ||\n //@ts-ignore\n (typeof WorkerGlobalScope !== 'undefined');\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport './engine';\n\nimport * as device_util from './device_util';\nimport {env} from './environment';\n\nconst ENV = env();\n\n/**\n * This file contains environment-related flag registrations.\n */\n\n/** Whether to enable debug mode. */\nENV.registerFlag('DEBUG', () => false, debugValue => {\n if (debugValue) {\n console.warn(\n 'Debugging mode is ON. The output of every math call will ' +\n 'be downloaded to CPU and checked for NaNs. ' +\n 'This significantly impacts performance.');\n }\n});\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag('IS_BROWSER', () => device_util.isBrowser());\n\n/** Whether we are in a browser (as versus, say, node.js) environment. */\nENV.registerFlag(\n 'IS_NODE',\n () => (typeof process !== 'undefined') &&\n (typeof process.versions !== 'undefined') &&\n (typeof process.versions.node !== 'undefined'));\n\n/** Whether this browser is Chrome. */\nENV.registerFlag(\n 'IS_CHROME',\n () => typeof navigator !== 'undefined' && navigator != null &&\n navigator.userAgent != null && /Chrome/.test(navigator.userAgent) &&\n /Google Inc/.test(navigator.vendor));\n\n/**\n * True when the environment is \"production\" where we disable safety checks\n * to gain performance.\n */\nENV.registerFlag('PROD', () => false);\n\n/**\n * Whether to do sanity checks when inferring a shape from user-provided\n * values, used when creating a new tensor.\n */\nENV.registerFlag(\n 'TENSORLIKE_CHECK_SHAPE_CONSISTENCY', () => ENV.getBool('DEBUG'));\n\n/** Whether deprecation warnings are enabled. */\nENV.registerFlag('DEPRECATION_WARNINGS_ENABLED', () => true);\n\n/** True if running unit tests. */\nENV.registerFlag('IS_TEST', () => false);\n\n/** Whether to check computation result for errors. */\nENV.registerFlag('CHECK_COMPUTATION_FOR_ERRORS', () => true);\n\n/** Whether the backend needs to wrap input to imageBitmap. */\nENV.registerFlag('WRAP_TO_IMAGEBITMAP', () => false);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from './engine';\nimport {env} from './environment';\nimport {Tensor} from './tensor';\nimport {DataType, TensorLike} from './types';\nimport {assert, flatten, inferDtype, isTypedArray, toTypedArray} from './util';\n\nexport function inferShape(val: TensorLike, dtype?: DataType): number[] {\n let firstElem: typeof val = val;\n\n if (isTypedArray(val)) {\n return dtype === 'string' ? [] : [val.length];\n }\n if (!Array.isArray(val)) {\n return []; // Scalar.\n }\n const shape: number[] = [];\n\n while (Array.isArray(firstElem) ||\n isTypedArray(firstElem) && dtype !== 'string') {\n shape.push(firstElem.length);\n firstElem = firstElem[0];\n }\n if (Array.isArray(val) &&\n env().getBool('TENSORLIKE_CHECK_SHAPE_CONSISTENCY')) {\n deepAssertShapeConsistency(val, shape, []);\n }\n\n return shape;\n}\n\nfunction deepAssertShapeConsistency(\n val: TensorLike, shape: number[], indices: number[]) {\n indices = indices || [];\n if (!(Array.isArray(val)) && !isTypedArray(val)) {\n assert(\n shape.length === 0,\n () => `Element arr[${indices.join('][')}] is a primitive, ` +\n `but should be an array/TypedArray of ${shape[0]} elements`);\n return;\n }\n assert(\n shape.length > 0,\n () => `Element arr[${indices.join('][')}] should be a primitive, ` +\n `but is an array of ${val.length} elements`);\n assert(\n val.length === shape[0],\n () => `Element arr[${indices.join('][')}] should have ${shape[0]} ` +\n `elements, but has ${val.length} elements`);\n const subShape = shape.slice(1);\n for (let i = 0; i < val.length; ++i) {\n deepAssertShapeConsistency(val[i], subShape, indices.concat(i));\n }\n}\n\nfunction assertDtype(\n expectedDtype: DataType|'numeric'|'string_or_numeric',\n actualDType: DataType, argName: string, functionName: string) {\n if (expectedDtype === 'string_or_numeric') {\n return;\n }\n if (expectedDtype == null) {\n throw new Error(`Expected dtype cannot be null.`);\n }\n if (expectedDtype !== 'numeric' && expectedDtype !== actualDType ||\n expectedDtype === 'numeric' && actualDType === 'string') {\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must ` +\n `be ${expectedDtype} tensor, but got ${actualDType} tensor`);\n }\n}\n\nexport function convertToTensor(\n x: T|TensorLike, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T {\n if (x instanceof Tensor) {\n assertDtype(parseAsDtype, x.dtype, argName, functionName);\n return x;\n }\n let inferredDtype = inferDtype(x);\n // If the user expects a bool/int/float, use that info to update the\n // inferredDtype when it is not a string.\n if (inferredDtype !== 'string' &&\n ['bool', 'int32', 'float32'].indexOf(parseAsDtype) >= 0) {\n inferredDtype = parseAsDtype as DataType;\n }\n assertDtype(parseAsDtype, inferredDtype, argName, functionName);\n\n if ((x == null) ||\n (!isTypedArray(x) && !Array.isArray(x) && typeof x !== 'number' &&\n typeof x !== 'boolean' && typeof x !== 'string')) {\n const type = x == null ? 'null' : (x as {}).constructor.name;\n throw new Error(\n `Argument '${argName}' passed to '${functionName}' must be a ` +\n `Tensor or TensorLike, but got '${type}'`);\n }\n const inferredShape = inferShape(x, inferredDtype);\n if (!isTypedArray(x) && !Array.isArray(x)) {\n x = [x] as number[];\n }\n const skipTypedArray = true;\n const values = inferredDtype !== 'string' ?\n toTypedArray(x, inferredDtype as DataType) :\n flatten(x as string[], [], skipTypedArray) as string[];\n return ENGINE.makeTensor(values, inferredShape, inferredDtype) as T;\n}\n\nexport function convertToTensorArray(\n arg: Array, argName: string, functionName: string,\n parseAsDtype: DataType|'numeric'|'string_or_numeric' = 'numeric'): T[] {\n if (!Array.isArray(arg)) {\n throw new Error(\n `Argument ${argName} passed to ${functionName} must be a ` +\n '`Tensor[]` or `TensorLike[]`');\n }\n const tensors = arg as T[];\n return tensors.map(\n (t, i) =>\n convertToTensor(t, `${argName}[${i}]`, functionName, parseAsDtype));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {isPromise} from '../util';\n\nexport const OP_SCOPE_SUFFIX = '__op';\n\n/**\n * Used for wrapping functions that perform math operations on\n * Tensors. The function will be wrapped in a named scope that cleans all\n * memory usage after the function is done.\n */\nexport function op(f: {[name: string]: T}): T {\n const keys = Object.keys(f);\n if (keys.length !== 1) {\n throw new Error(\n `Please provide an object with a single key ` +\n `(operation name) mapping to a function. Got an object with ` +\n `${keys.length} keys.`);\n }\n\n let opName = keys[0];\n const fn = f[opName];\n\n // Strip the underscore from the end of the function name.\n if (opName.endsWith('_')) {\n opName = opName.substring(0, opName.length - 1);\n }\n\n // add an __op suffix to distinguish ops from kernels in tf.profile\n opName = opName + OP_SCOPE_SUFFIX;\n\n // tslint:disable-next-line:no-any\n const f2 = (...args: any[]) => {\n ENGINE.startScope(opName);\n try {\n const result = fn(...args);\n if (isPromise(result)) {\n console.error('Cannot return a Promise inside of tidy.');\n }\n ENGINE.endScope(result);\n return result;\n } catch (ex) {\n ENGINE.endScope(null);\n throw ex;\n }\n };\n Object.defineProperty(f2, 'name', {value: opName, configurable: true});\n\n // tslint:disable-next-line:no-any\n return f2 as any as T;\n}\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Complex, ComplexInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Converts two real numbers to a complex number.\n *\n * Given a tensor `real` representing the real part of a complex number, and a\n * tensor `imag` representing the imaginary part of a complex number, this\n * operation returns complex numbers elementwise of the form [r0, i0, r1, i1],\n * where r represents the real part and i represents the imag part.\n *\n * The input tensors real and imag must have the same shape.\n *\n * ```js\n * const real = tf.tensor1d([2.25, 3.25]);\n * const imag = tf.tensor1d([4.75, 5.75]);\n * const complex = tf.complex(real, imag);\n *\n * complex.print();\n * ```\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction complex_(real: T|TensorLike, imag: T|TensorLike): T {\n const $real = convertToTensor(real, 'real', 'complex');\n const $imag = convertToTensor(imag, 'imag', 'complex');\n util.assertShapesMatch(\n $real.shape, $imag.shape,\n `real and imag shapes, ${$real.shape} and ${$imag.shape}, ` +\n `must match in call to tf.complex().`);\n\n const inputs: ComplexInputs = {real: $real, imag: $imag};\n return ENGINE.runKernel(Complex, inputs as {} as NamedTensorMap);\n}\n\nexport const complex = op({complex_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Tensor} from '../tensor';\nimport {TensorLike, TypedArray} from '../types';\nimport {DataType} from '../types';\nimport {assert, assertNonNegativeIntegerDimensions, flatten, inferDtype, isTypedArray, sizeFromShape, toTypedArray} from '../util';\n\n/** This is shared code across all tensor creation methods. */\nexport function makeTensor(\n values: TensorLike, shape: number[], inferredShape: number[],\n dtype?: DataType): Tensor {\n if (dtype == null) {\n dtype = inferDtype(values);\n }\n if (dtype === 'complex64') {\n throw new Error(\n `Cannot construct a complex64 tensor directly. ` +\n `Please use tf.complex(real, imag).`);\n }\n if (!isTypedArray(values) && !Array.isArray(values) &&\n typeof values !== 'number' && typeof values !== 'boolean' &&\n typeof values !== 'string') {\n throw new Error(\n 'values passed to tensor(values) must be a number/boolean/string or ' +\n 'an array of numbers/booleans/strings, or a TypedArray');\n }\n if (shape != null) {\n assertNonNegativeIntegerDimensions(shape);\n\n const providedSize = sizeFromShape(shape);\n const inferredSize = sizeFromShape(inferredShape);\n assert(\n providedSize === inferredSize,\n () =>\n `Based on the provided shape, [${shape}], the tensor should have ` +\n `${providedSize} values but has ${inferredSize}`);\n\n for (let i = 0; i < inferredShape.length; ++i) {\n const inferred = inferredShape[i];\n const flatDimsDontMatch = i === inferredShape.length - 1 ?\n inferred !== sizeFromShape(shape.slice(i)) :\n true;\n assert(\n inferredShape[i] === shape[i] || !flatDimsDontMatch,\n () => `Error creating a new Tensor. Inferred shape ` +\n `(${inferredShape}) does not match the provided ` +\n `shape (${shape}). `);\n }\n }\n\n if (!isTypedArray(values) && !Array.isArray(values)) {\n values = [values] as number[];\n }\n\n shape = shape || inferredShape;\n values = dtype !== 'string' ?\n toTypedArray(values, dtype) :\n flatten(values as string[], [], true) as string[];\n return ENGINE.makeTensor(values as TypedArray, shape, dtype);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\nimport {inferShape} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport {DataType, Rank, ShapeMap} from '../types';\n\nimport {makeTensor} from './tensor_ops_util';\n\n/**\n * Creates a `tf.Tensor` with the provided values, shape and dtype.\n *\n * ```js\n * // Pass an array of values to create a vector.\n * tf.tensor([1, 2, 3, 4]).print();\n * ```\n *\n * ```js\n * // Pass a nested array of values to make a matrix or a higher\n * // dimensional tensor.\n * tf.tensor([[1, 2], [3, 4]]).print();\n * ```\n *\n * ```js\n * // Pass a flat array and specify a shape yourself.\n * tf.tensor([1, 2, 3, 4], [2, 2]).print();\n * ```\n *\n * @param values The values of the tensor. Can be nested array of numbers,\n * or a flat array, or a `TypedArray`. If the values are strings,\n * they will be encoded as utf-8 and kept as `Uint8Array[]`.\n * @param shape The shape of the tensor. Optional. If not provided,\n * it is inferred from `values`.\n * @param dtype The data type.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function tensor(\n values: TensorLike, shape?: ShapeMap[R], dtype?: DataType): Tensor {\n const inferredShape = inferShape(values, dtype);\n return makeTensor(values, shape, inferredShape, dtype) as Tensor;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/* Type definitions for exporting and importing of models. */\n\n/**\n * A map from Tensor dtype to number of bytes per element of the Tensor.\n */\nexport const DTYPE_VALUE_SIZE_MAP: {[dtype: string]: number} = {\n 'float32': 4,\n 'float16': 2,\n 'int32': 4,\n 'uint16': 2,\n 'uint8': 1,\n 'bool': 1,\n 'complex64': 8\n};\n\n/**\n * A weight manifest.\n *\n * The weight manifest consists of an ordered list of weight-manifest groups.\n * Each weight-manifest group (\"group\" for short hereafter) consists of a\n * number of weight values stored in a number of paths.\n * See the documentation of `WeightManifestGroupConfig` below for more details.\n */\nexport declare type WeightsManifestConfig = WeightsManifestGroupConfig[];\n\n/**\n * A weight-manifest group.\n *\n * Consists of an ordered list of weight values encoded in binary format,\n * stored in an ordered list of paths.\n */\nexport declare interface WeightsManifestGroupConfig {\n /**\n * An ordered list of paths.\n *\n * Paths are intentionally abstract in order to be general. For example, they\n * can be relative URL paths or relative paths on the file system.\n */\n paths: string[];\n\n /**\n * Specifications of the weights stored in the paths.\n */\n weights: WeightsManifestEntry[];\n}\n\n/**\n * Group to which the weight belongs.\n *\n * - 'optimizer': Weight from a stateful optimizer.\n */\nexport type WeightGroup = 'model'|'optimizer';\n\n/**\n * An entry in the weight manifest.\n *\n * The entry contains specification of a weight.\n */\nexport declare interface WeightsManifestEntry {\n /**\n * Name of the weight, e.g., 'Dense_1/bias'\n */\n name: string;\n\n /**\n * Shape of the weight.\n */\n shape: number[];\n\n /**\n * Data type of the weight.\n */\n dtype: 'float32'|'int32'|'bool'|'string'|'complex64';\n\n /**\n * Type of the weight.\n *\n * Optional.\n *\n * The value 'optimizer' indicates the weight belongs to an optimizer\n * (i.e., used only during model training and not during inference).\n */\n group?: WeightGroup;\n\n /**\n * Information for dequantization of the weight.\n */\n quantization?: {\n scale?: number, // The scaling constant to multiply by.\n min?: number, // The (possibly nudged) minimum weight to add.\n dtype: 'uint16'|'uint8'|'float16' // The dtype of the quantized weights.\n };\n}\n\n/**\n * Options for saving a model.\n * @innamespace io\n */\nexport interface SaveConfig {\n /**\n * Whether to save only the trainable weights of the model, ignoring the\n * non-trainable ones.\n */\n trainableOnly?: boolean;\n\n /**\n * Whether the optimizer will be saved (if exists).\n *\n * Default: `false`.\n */\n includeOptimizer?: boolean;\n}\n\n/**\n * Result of a saving operation.\n */\nexport interface SaveResult {\n /**\n * Information about the model artifacts saved.\n */\n modelArtifactsInfo: ModelArtifactsInfo;\n\n /**\n * HTTP responses from the server that handled the model-saving request (if\n * any). This is applicable only to server-based saving routes.\n */\n responses?: Response[];\n\n /**\n * Error messages and related data (if any).\n */\n errors?: Array<{}|string>;\n}\n\nexport declare interface ModelArtifactsInfo {\n /**\n * Timestamp for when the model is saved.\n */\n dateSaved: Date;\n\n /**\n * TODO (cais,yassogba) consider removing GraphDef as GraphDefs now\n * come in a JSON format and none of our IOHandlers support a non json\n * format. We could conder replacing this with 'Binary' if we want to\n * allow future handlers to save to non json formats (though they will\n * probably want more information than 'Binary').\n * Type of the model topology\n *\n * Type of the model topology\n *\n * Possible values:\n * - JSON: JSON config (human-readable, e.g., Keras JSON).\n * - GraphDef: TensorFlow\n * [GraphDef](https://www.tensorflow.org/extend/tool_developers/#graphdef)\n * protocol buffer (binary).\n */\n modelTopologyType: 'JSON'|'GraphDef';\n\n /**\n * Size of model topology (Keras JSON or GraphDef), in bytes.\n */\n modelTopologyBytes?: number;\n\n /**\n * Size of weight specification or manifest, in bytes.\n */\n weightSpecsBytes?: number;\n\n /**\n * Size of weight value data, in bytes.\n */\n weightDataBytes?: number;\n}\n\n/** Model training configuration. */\nexport declare interface TrainingConfig {\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n // See\n // tslint:disable-next-line:max-line-length\n // https://github.com/tensorflow/tfjs-layers/blob/master/src/keras_format/training_config.ts\n /** Optimizer used for the model training. */\n optimizer_config: {};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Loss function(s) for the model's output(s). */\n loss: string|string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n /** Metric function(s) for the model's output(s). */\n metrics?: string[]|{[key: string]: string};\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n weighted_metrics?: string[];\n\n // TODO(cais): Tighten the typing once keras spec is available to tfjs-core.\n sample_weight_mode?: string;\n\n loss_weights?: number[]|{[key: string]: number};\n}\n\n/**\n * The serialized artifacts of a model, including topology and weights.\n *\n * The `modelTopology`, `trainingConfig`, `weightSpecs` and `weightData` fields\n * of this interface are optional, in order to support topology- or weights-only\n * saving and loading.\n *\n * Note this interface is used internally in IOHandlers. For the file format\n * written to disk as `model.json`, see `ModelJSON`.\n */\nexport declare interface ModelArtifacts {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology?: {}|ArrayBuffer;\n\n /**\n * Serialized configuration for the model's training.\n */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weight specifications.\n *\n * This corresponds to the weightsData below.\n */\n weightSpecs?: WeightsManifestEntry[];\n\n /**\n * Binary buffer for all weight values concatenated in the order specified\n * by `weightSpecs`.\n */\n weightData?: ArrayBuffer;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * The on-disk format of the `model.json` file.\n *\n * TF.js 1.0 always populates the optional fields when writing model.json.\n * Prior versions did not provide those fields.\n */\nexport declare interface ModelJSON {\n /**\n * Model topology.\n *\n * For Keras-style `tf.Model`s, this is a JSON object.\n * For TensorFlow-style models (e.g., `SavedModel`), this is the JSON\n * encoding of the `GraphDef` protocol buffer.\n */\n modelTopology: {};\n\n /** Model training configuration. */\n trainingConfig?: TrainingConfig;\n\n /**\n * Weights manifest.\n *\n * The weights manifest consists of an ordered list of weight-manifest\n * groups. Each weight-manifest group consists of a number of weight values\n * stored in a number of paths. See the documentation of\n * `WeightsManifestConfig` for more details.\n */\n weightsManifest: WeightsManifestConfig;\n\n /**\n * Hard-coded format name for models saved from TensorFlow.js or converted\n * by TensorFlow.js Converter.\n */\n format?: string;\n\n /**\n * What library is responsible for originally generating this artifact.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js v1.0.0'.\n */\n generatedBy?: string;\n\n /**\n * What library or tool is responsible for converting the original model\n * to this format, applicable only if the model is output by a converter.\n *\n * Used for debugging purposes. E.g., 'TensorFlow.js Converter v1.0.0'.\n *\n * A value of `null` means the model artifacts are generated without any\n * conversion process (e.g., saved directly from a TensorFlow.js\n * `tf.LayersModel` instance.)\n */\n convertedBy?: string|null;\n\n /**\n * Inputs and outputs signature for saved model.\n */\n signature?: {};\n\n /**\n * User-defined metadata about the model.\n */\n userDefinedMetadata?: {[key: string]: {}};\n\n /**\n * Initializer for the model.\n */\n modelInitializer?: {};\n}\n\n/**\n * Type definition for handlers of loading operations.\n */\nexport type LoadHandler = () => Promise;\n\n/**\n * Type definition for handlers of saving operations.\n */\nexport type SaveHandler = (modelArtifact: ModelArtifacts) =>\n Promise;\n\n/**\n * Interface for a model import/export handler.\n *\n * The `save` and `load` handlers are both optional, in order to allow handlers\n * that support only saving or loading.\n */\n// tslint:disable-next-line:interface-name\nexport interface IOHandler {\n save?: SaveHandler;\n load?: LoadHandler;\n}\n\n/**\n * An interface for the manager of a model store.\n *\n * A model store is defined as a storage medium on which multiple models can\n * be stored. Each stored model has a unique `path` as its identifier.\n * A `ModelStoreManager` for the store allows actions including\n *\n * - Listing the models stored in the store.\n * - Deleting a model from the store.\n */\nexport interface ModelStoreManager {\n /**\n * List all models in the model store.\n *\n * @returns A dictionary mapping paths of existing models to their\n * model artifacts info. Model artifacts info include type of the model's\n * topology, byte sizes of the topology, weights, etc.\n */\n listModels(): Promise<{[path: string]: ModelArtifactsInfo}>;\n\n /**\n * Remove a model specified by `path`.\n *\n * @param path\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n */\n removeModel(path: string): Promise;\n}\n\n/**\n * Callback for the progress of a long-running action such as an HTTP\n * request for a large binary object.\n *\n * `fraction` should be a number in the [0, 1] interval, indicating how\n * much of the action has completed.\n */\nexport type OnProgressCallback = (fraction: number) => void;\n\n/** @innamespace io */\nexport interface LoadOptions {\n /**\n * RequestInit (options) for HTTP requests.\n *\n * For detailed information on the supported fields, see\n * [https://developer.mozilla.org/en-US/docs/Web/API/Request/Request](\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request)\n */\n requestInit?: RequestInit;\n\n /**\n * Progress callback.\n */\n onProgress?: OnProgressCallback;\n\n /**\n * A function used to override the `window.fetch` function.\n */\n fetchFunc?: Function;\n\n /**\n * Strict loading model: whether extraneous weights or missing\n * weights should trigger an `Error`.\n *\n * If `true`, require that the provided weights exactly match those\n * required by the layers. `false` means that both extra weights\n * and missing weights will be silently ignored.\n *\n * Default: `true`.\n */\n strict?: boolean;\n\n /**\n * Path prefix for weight files, by default this is calculated from the\n * path of the model JSON file.\n *\n * For instance, if the path to the model JSON file is\n * `http://localhost/foo/model.json`, then the default path prefix will be\n * `http://localhost/foo/`. If a weight file has the path value\n * `group1-shard1of2` in the weight manifest, then the weight file will be\n * loaded from `http://localhost/foo/group1-shard1of2` by default. However,\n * if you provide a `weightPathPrefix` value of\n * `http://localhost/foo/alt-weights`, then the weight file will be loaded\n * from the path `http://localhost/foo/alt-weights/group1-shard1of2` instead.\n */\n weightPathPrefix?: string;\n\n /**\n * Whether the module or model is to be loaded from TF Hub.\n *\n * Setting this to `true` allows passing a TF-Hub module URL, omitting the\n * standard model file name and the query parameters.\n *\n * Default: `false`.\n */\n fromTFHub?: boolean;\n\n /**\n * An async function to convert weight file name to URL. The weight file\n * names are stored in model.json's weightsManifest.paths field. By default we\n * consider weight files are colocated with the model.json file. For example:\n * model.json URL: https://www.google.com/models/1/model.json\n * group1-shard1of1.bin url:\n * https://www.google.com/models/1/group1-shard1of1.bin\n *\n * With this func you can convert the weight file name to any URL.\n */\n weightUrlConverter?: (weightFileName: string) => Promise;\n}\n\n/**\n * Additional options for Platform.fetch\n */\nexport interface RequestDetails {\n /**\n * Is this request for a binary file (as opposed to a json file)\n */\n isBinary?: boolean;\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {complex} from '../ops/complex';\n\nimport {tensor} from '../ops/tensor';\nimport {NamedTensor, NamedTensorMap} from '../tensor_types';\nimport {TypedArray} from '../types';\nimport {sizeFromShape} from '../util';\n\nimport {DTYPE_VALUE_SIZE_MAP, ModelArtifacts, ModelArtifactsInfo, WeightGroup, WeightsManifestEntry} from './types';\n\n/** Number of bytes reserved for the length of the string. (32bit integer). */\nconst NUM_BYTES_STRING_LENGTH = 4;\n\n/**\n * Encode a map from names to weight values as an ArrayBuffer, along with an\n * `Array` of `WeightsManifestEntry` as specification of the encoded weights.\n *\n * This function does not perform sharding.\n *\n * This function is the reverse of `decodeWeights`.\n *\n * @param tensors A map (\"dict\") from names to tensors.\n * @param group Group to which the weights belong (optional).\n * @returns A `Promise` of\n * - A flat `ArrayBuffer` with all the binary values of the `Tensor`s\n * concatenated.\n * - An `Array` of `WeightManifestEntry`s, carrying information including\n * tensor names, `dtype`s and shapes.\n * @throws Error: on unsupported tensor `dtype`.\n */\nexport async function encodeWeights(\n tensors: NamedTensorMap|NamedTensor[], group?: WeightGroup):\n Promise<{data: ArrayBuffer, specs: WeightsManifestEntry[]}> {\n // TODO(adarob, cais): Support quantization.\n const specs: WeightsManifestEntry[] = [];\n const dataPromises: Array> = [];\n\n const names: string[] = Array.isArray(tensors) ?\n tensors.map(tensor => tensor.name) :\n Object.keys(tensors);\n\n for (let i = 0; i < names.length; ++i) {\n const name = names[i];\n const t = Array.isArray(tensors) ? tensors[i].tensor : tensors[name];\n if (t.dtype !== 'float32' && t.dtype !== 'int32' && t.dtype !== 'bool' &&\n t.dtype !== 'string' && t.dtype !== 'complex64') {\n throw new Error(`Unsupported dtype in weight '${name}': ${t.dtype}`);\n }\n const spec: WeightsManifestEntry = {name, shape: t.shape, dtype: t.dtype};\n if (t.dtype === 'string') {\n const utf8bytes = new Promise(async resolve => {\n const vals = await t.bytes() as Uint8Array[];\n const totalNumBytes = vals.reduce((p, c) => p + c.length, 0) +\n NUM_BYTES_STRING_LENGTH * vals.length;\n const bytes = new Uint8Array(totalNumBytes);\n let offset = 0;\n for (let i = 0; i < vals.length; i++) {\n const val = vals[i];\n const bytesOfLength =\n new Uint8Array(new Uint32Array([val.length]).buffer);\n bytes.set(bytesOfLength, offset);\n offset += NUM_BYTES_STRING_LENGTH;\n bytes.set(val, offset);\n offset += val.length;\n }\n resolve(bytes);\n });\n dataPromises.push(utf8bytes);\n } else {\n dataPromises.push(t.data());\n }\n if (group != null) {\n spec.group = group;\n }\n specs.push(spec);\n }\n\n const tensorValues = await Promise.all(dataPromises);\n return {data: concatenateTypedArrays(tensorValues), specs};\n}\n\n/**\n * Decode flat ArrayBuffer as weights.\n *\n * This function does not handle sharding.\n *\n * This function is the reverse of `encodeWeights`.\n *\n * @param buffer A flat ArrayBuffer carrying the binary values of the tensors\n * concatenated in the order specified in `specs`.\n * @param specs Specifications of the names, dtypes and shapes of the tensors\n * whose value are encoded by `buffer`.\n * @return A map from tensor name to tensor value, with the names corresponding\n * to names in `specs`.\n * @throws Error, if any of the tensors has unsupported dtype.\n */\nexport function decodeWeights(\n buffer: ArrayBuffer, specs: WeightsManifestEntry[]): NamedTensorMap {\n // TODO(adarob, cais): Support quantization.\n const out: NamedTensorMap = {};\n let float16Decode: (buffer: Uint16Array) => Float32Array | undefined;\n let offset = 0;\n for (const spec of specs) {\n const name = spec.name;\n const dtype = spec.dtype;\n const shape = spec.shape;\n const size = sizeFromShape(shape);\n let values: TypedArray|string[]|Uint8Array[];\n\n if ('quantization' in spec) {\n const quantization = spec.quantization;\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n if (!('min' in quantization && 'scale' in quantization)) {\n throw new Error(\n `Weight ${spec.name} with quantization ${quantization.dtype} ` +\n `doesn't have corresponding metadata min and scale.`);\n }\n } else if (quantization.dtype === 'float16') {\n if (dtype !== 'float32') {\n throw new Error(\n `Weight ${spec.name} is quantized with ${quantization.dtype} ` +\n `which only supports weights of type float32 not ${dtype}.`);\n }\n } else {\n throw new Error(\n `Weight ${spec.name} has unknown ` +\n `quantization dtype ${quantization.dtype}. ` +\n `Supported quantization dtypes are: ` +\n `'uint8', 'uint16', and 'float16'.`);\n }\n const quantizationSizeFactor = DTYPE_VALUE_SIZE_MAP[quantization.dtype];\n const byteBuffer =\n buffer.slice(offset, offset + size * quantizationSizeFactor);\n const quantizedArray = (quantization.dtype === 'uint8') ?\n new Uint8Array(byteBuffer) :\n new Uint16Array(byteBuffer);\n if (dtype === 'float32') {\n if (quantization.dtype === 'uint8' || quantization.dtype === 'uint16') {\n values = new Float32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = v * quantization.scale + quantization.min;\n }\n } else if (quantization.dtype === 'float16') {\n if (float16Decode === undefined) {\n float16Decode = getFloat16Decoder();\n }\n values = float16Decode(quantizedArray as Uint16Array);\n } else {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type float32.`);\n }\n } else if (dtype === 'int32') {\n if (quantization.dtype !== 'uint8' && quantization.dtype !== 'uint16') {\n throw new Error(\n `Unsupported quantization type ${quantization.dtype} ` +\n `for weight type int32.`);\n }\n values = new Int32Array(quantizedArray.length);\n for (let i = 0; i < quantizedArray.length; i++) {\n const v = quantizedArray[i];\n values[i] = Math.round(v * quantization.scale + quantization.min);\n }\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * quantizationSizeFactor;\n } else if (dtype === 'string') {\n const size = sizeFromShape(spec.shape);\n values = [];\n for (let i = 0; i < size; i++) {\n const byteLength = new Uint32Array(\n buffer.slice(offset, offset + NUM_BYTES_STRING_LENGTH))[0];\n offset += NUM_BYTES_STRING_LENGTH;\n const bytes = new Uint8Array(buffer.slice(offset, offset + byteLength));\n (values as Uint8Array[]).push(bytes);\n offset += byteLength;\n }\n } else {\n const dtypeFactor = DTYPE_VALUE_SIZE_MAP[dtype];\n const byteBuffer = buffer.slice(offset, offset + size * dtypeFactor);\n\n if (dtype === 'float32') {\n values = new Float32Array(byteBuffer);\n } else if (dtype === 'int32') {\n values = new Int32Array(byteBuffer);\n } else if (dtype === 'bool') {\n values = new Uint8Array(byteBuffer);\n } else if (dtype === 'complex64') {\n values = new Float32Array(byteBuffer);\n const real = new Float32Array(values.length / 2);\n const image = new Float32Array(values.length / 2);\n for (let i = 0; i < real.length; i++) {\n real[i] = values[i * 2];\n image[i] = values[i * 2 + 1];\n }\n const realTensor = tensor(real, shape, 'float32');\n const imageTensor = tensor(image, shape, 'float32');\n out[name] = complex(realTensor, imageTensor);\n realTensor.dispose();\n imageTensor.dispose();\n } else {\n throw new Error(`Unsupported dtype in weight '${name}': ${dtype}`);\n }\n offset += size * dtypeFactor;\n }\n if (dtype !== 'complex64') {\n out[name] = tensor(values, shape, dtype);\n }\n }\n return out;\n}\n\n/**\n * Concatenate TypedArrays into an ArrayBuffer.\n */\nexport function concatenateTypedArrays(xs: TypedArray[]): ArrayBuffer {\n // TODO(adarob, cais): Support quantization.\n if (xs === null) {\n throw new Error(`Invalid input value: ${JSON.stringify(xs)}`);\n }\n\n let totalByteLength = 0;\n\n // `normalizedXs` is here for this reason: a `TypedArray`'s `buffer'\n // can have a different byte length from that of the `TypedArray` itself,\n // for example, when the `TypedArray` is created from an offset in an\n // `ArrayBuffer`. `normliazedXs` holds `TypedArray`s whose `buffer`s match\n // the `TypedArray` in byte length. If an element of `xs` does not show\n // this property, a new `TypedArray` that satisfy this property will be\n // constructed and pushed into `normalizedXs`.\n const normalizedXs: TypedArray[] = [];\n xs.forEach((x: TypedArray) => {\n totalByteLength += x.byteLength;\n // tslint:disable:no-any\n normalizedXs.push(\n x.byteLength === x.buffer.byteLength ? x :\n new (x.constructor as any)(x));\n if (!(x as any instanceof Float32Array || x as any instanceof Int32Array ||\n x as any instanceof Uint8Array)) {\n throw new Error(`Unsupported TypedArray subtype: ${x.constructor.name}`);\n }\n // tslint:enable:no-any\n });\n\n const y = new Uint8Array(totalByteLength);\n let offset = 0;\n normalizedXs.forEach((x: TypedArray) => {\n y.set(new Uint8Array(x.buffer), offset);\n offset += x.byteLength;\n });\n\n return y.buffer;\n}\n\n// Use Buffer on Node.js instead of Blob/atob/btoa\nconst useNodeBuffer = typeof Buffer !== 'undefined' &&\n (typeof Blob === 'undefined' || typeof atob === 'undefined' ||\n typeof btoa === 'undefined');\n\n/**\n * Calculate the byte length of a JavaScript string.\n *\n * Note that a JavaScript string can contain wide characters, therefore the\n * length of the string is not necessarily equal to the byte length.\n *\n * @param str Input string.\n * @returns Byte length.\n */\nexport function stringByteLength(str: string): number {\n if (useNodeBuffer) {\n return Buffer.byteLength(str);\n }\n return new Blob([str]).size;\n}\n\n/**\n * Encode an ArrayBuffer as a base64 encoded string.\n *\n * @param buffer `ArrayBuffer` to be converted.\n * @returns A string that base64-encodes `buffer`.\n */\nexport function arrayBufferToBase64String(buffer: ArrayBuffer): string {\n if (useNodeBuffer) {\n return Buffer.from(buffer).toString('base64');\n }\n const buf = new Uint8Array(buffer);\n let s = '';\n for (let i = 0, l = buf.length; i < l; i++) {\n s += String.fromCharCode(buf[i]);\n }\n return btoa(s);\n}\n\n/**\n * Decode a base64 string as an ArrayBuffer.\n *\n * @param str Base64 string.\n * @returns Decoded `ArrayBuffer`.\n */\nexport function base64StringToArrayBuffer(str: string): ArrayBuffer {\n if (useNodeBuffer) {\n const buf = Buffer.from(str, 'base64');\n return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);\n }\n const s = atob(str);\n const buffer = new Uint8Array(s.length);\n for (let i = 0; i < s.length; ++i) {\n buffer.set([s.charCodeAt(i)], i);\n }\n return buffer.buffer;\n}\n\n/**\n * Concatenate a number of ArrayBuffers into one.\n *\n * @param buffers A number of array buffers to concatenate.\n * @returns Result of concatenating `buffers` in order.\n */\nexport function concatenateArrayBuffers(buffers: ArrayBuffer[]): ArrayBuffer {\n if (buffers.length === 1) {\n return buffers[0];\n }\n\n let totalByteLength = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n totalByteLength += buffer.byteLength;\n });\n\n const temp = new Uint8Array(totalByteLength);\n let offset = 0;\n buffers.forEach((buffer: ArrayBuffer) => {\n temp.set(new Uint8Array(buffer), offset);\n offset += buffer.byteLength;\n });\n return temp.buffer;\n}\n\n/**\n * Get the basename of a path.\n *\n * Behaves in a way analogous to Linux's basename command.\n *\n * @param path\n */\nexport function basename(path: string): string {\n const SEPARATOR = '/';\n path = path.trim();\n while (path.endsWith(SEPARATOR)) {\n path = path.slice(0, path.length - 1);\n }\n const items = path.split(SEPARATOR);\n return items[items.length - 1];\n}\n\n/**\n * Populate ModelArtifactsInfo fields for a model with JSON topology.\n * @param modelArtifacts\n * @returns A ModelArtifactsInfo object.\n */\nexport function getModelArtifactsInfoForJSON(modelArtifacts: ModelArtifacts):\n ModelArtifactsInfo {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error('Expected JSON model topology, received ArrayBuffer.');\n }\n\n return {\n dateSaved: new Date(),\n modelTopologyType: 'JSON',\n modelTopologyBytes: modelArtifacts.modelTopology == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.modelTopology)),\n weightSpecsBytes: modelArtifacts.weightSpecs == null ?\n 0 :\n stringByteLength(JSON.stringify(modelArtifacts.weightSpecs)),\n weightDataBytes: modelArtifacts.weightData == null ?\n 0 :\n modelArtifacts.weightData.byteLength,\n };\n}\n\n/**\n * Computes mantisa table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 2048 mantissa lookup values.\n */\nfunction computeFloat16MantisaTable(): Uint32Array {\n const convertMantissa = (i: number): number => {\n let m = i << 13;\n let e = 0;\n\n while ((m & 0x00800000) === 0) {\n e -= 0x00800000;\n m <<= 1;\n }\n m &= ~0x00800000;\n e += 0x38800000;\n\n return m | e;\n };\n\n const mantisaTable = new Uint32Array(2048);\n\n mantisaTable[0] = 0;\n for (let i = 1; i < 1024; i++) {\n mantisaTable[i] = convertMantissa(i);\n }\n for (let i = 1024; i < 2048; i++) {\n mantisaTable[i] = 0x38000000 + ((i - 1024) << 13);\n }\n\n return mantisaTable;\n}\n\n/**\n * Computes exponent table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 64 exponent lookup values.\n */\nfunction computeFloat16ExponentTable(): Uint32Array {\n const exponentTable = new Uint32Array(64);\n\n exponentTable[0] = 0;\n exponentTable[31] = 0x47800000;\n exponentTable[32] = 0x80000000;\n exponentTable[63] = 0xc7800000;\n for (let i = 1; i < 31; i++) {\n exponentTable[i] = i << 23;\n }\n for (let i = 33; i < 63; i++) {\n exponentTable[i] = 0x80000000 + ((i - 32) << 23);\n }\n\n return exponentTable;\n}\n\n/**\n * Computes offset table for casting Float16 to Float32\n * See http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n *\n * @returns Uint32Array, 6d offset values.\n */\nfunction computeFloat16OffsetTable(): Uint32Array {\n const offsetTable = new Uint32Array(64);\n\n for (let i = 0; i < 64; i++) {\n offsetTable[i] = 1024;\n }\n offsetTable[0] = offsetTable[32] = 0;\n\n return offsetTable;\n}\n\n/**\n * Retrieve a Float16 decoder which will decode a ByteArray of Float16 values\n * to a Float32Array.\n *\n * @returns Function (buffer: Uint16Array) => Float32Array which decodes\n * the Uint16Array of Float16 bytes to a Float32Array.\n */\nexport function getFloat16Decoder(): (buffer: Uint16Array) => Float32Array {\n // Algorithm is based off of\n // http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf\n\n // Cache lookup tables\n const mantisaTable = computeFloat16MantisaTable();\n const exponentTable = computeFloat16ExponentTable();\n const offsetTable = computeFloat16OffsetTable();\n\n return (quantizedArray: Uint16Array) => {\n const buffer = new ArrayBuffer(4 * quantizedArray.length);\n const bufferUint32View = new Uint32Array(buffer);\n for (let index = 0; index < quantizedArray.length; index++) {\n const float16Bits = quantizedArray[index];\n const float32Bits =\n mantisaTable[offsetTable[float16Bits >> 10] + (float16Bits & 0x3ff)] +\n exponentTable[float16Bits >> 10];\n bufferUint32View[index] = float32Bits;\n }\n return new Float32Array(buffer);\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {IOHandler, LoadOptions} from './types';\n\nexport type IORouter = (url: string|string[], loadOptions?: LoadOptions) =>\n IOHandler;\n\nexport class IORouterRegistry {\n // Singleton instance.\n private static instance: IORouterRegistry;\n\n private saveRouters: IORouter[];\n private loadRouters: IORouter[];\n\n private constructor() {\n this.saveRouters = [];\n this.loadRouters = [];\n }\n\n private static getInstance(): IORouterRegistry {\n if (IORouterRegistry.instance == null) {\n IORouterRegistry.instance = new IORouterRegistry();\n }\n return IORouterRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerSaveRouter(saveRouter: IORouter) {\n IORouterRegistry.getInstance().saveRouters.push(saveRouter);\n }\n\n /**\n * Register a load-handler router.\n *\n * @param loadRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `load` method defined or `null`.\n */\n static registerLoadRouter(loadRouter: IORouter) {\n IORouterRegistry.getInstance().loadRouters.push(loadRouter);\n }\n\n /**\n * Look up IOHandler for saving, given a URL-like string.\n *\n * @param url\n * @returns If only one match is found, an instance of IOHandler with the\n * `save` method defined. If no match is found, `null`.\n * @throws Error, if more than one match is found.\n */\n static getSaveHandlers(url: string|string[]): IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'save');\n }\n\n /**\n * Look up IOHandler for loading, given a URL-like string.\n *\n * @param url\n * @param loadOptions Optional, custom load options.\n * @returns All valid handlers for `url`, given the currently registered\n * handler routers.\n */\n static getLoadHandlers(url: string|string[], loadOptions?: LoadOptions):\n IOHandler[] {\n return IORouterRegistry.getHandlers(url, 'load', loadOptions);\n }\n\n private static getHandlers(\n url: string|string[], handlerType: 'save'|'load',\n loadOptions?: LoadOptions): IOHandler[] {\n const validHandlers: IOHandler[] = [];\n const routers = handlerType === 'load' ?\n IORouterRegistry.getInstance().loadRouters :\n IORouterRegistry.getInstance().saveRouters;\n routers.forEach(router => {\n const handler = router(url, loadOptions);\n if (handler !== null) {\n validHandlers.push(handler);\n }\n });\n return validHandlers;\n }\n}\n\nexport const registerSaveRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerSaveRouter(loudRouter);\nexport const registerLoadRouter = (loudRouter: IORouter) =>\n IORouterRegistry.registerLoadRouter(loudRouter);\nexport const getSaveHandlers = (url: string|string[]) =>\n IORouterRegistry.getSaveHandlers(url);\nexport const getLoadHandlers =\n (url: string|string[], loadOptions?: LoadOptions) =>\n IORouterRegistry.getLoadHandlers(url, loadOptions);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\n\nimport {getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst DATABASE_NAME = 'tensorflowjs';\nconst DATABASE_VERSION = 1;\n\n// Model data and ModelArtifactsInfo (metadata) are stored in two separate\n// stores for efficient access of the list of stored models and their metadata.\n// 1. The object store for model data: topology, weights and weight manifests.\nconst MODEL_STORE_NAME = 'models_store';\n// 2. The object store for ModelArtifactsInfo, including meta-information such\n// as the type of topology (JSON vs binary), byte size of the topology, byte\n// size of the weights, etc.\nconst INFO_STORE_NAME = 'model_info_store';\n\n/**\n * Delete the entire database for tensorflow.js, including the models store.\n */\nexport async function deleteDatabase(): Promise {\n const idbFactory = getIndexedDBFactory();\n\n return new Promise((resolve, reject) => {\n const deleteRequest = idbFactory.deleteDatabase(DATABASE_NAME);\n deleteRequest.onsuccess = () => resolve();\n deleteRequest.onerror = error => reject(error);\n });\n}\n\nfunction getIndexedDBFactory(): IDBFactory {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Add more info about what IOHandler subtypes are available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'Failed to obtain IndexedDB factory because the current environment' +\n 'is not a web browser.');\n }\n // tslint:disable-next-line:no-any\n const theWindow: any = typeof window === 'undefined' ? self : window;\n const factory = theWindow.indexedDB || theWindow.mozIndexedDB ||\n theWindow.webkitIndexedDB || theWindow.msIndexedDB ||\n theWindow.shimIndexedDB;\n if (factory == null) {\n throw new Error(\n 'The current browser does not appear to support IndexedDB.');\n }\n return factory;\n}\n\nfunction setUpDatabase(openRequest: IDBRequest) {\n const db = openRequest.result as IDBDatabase;\n db.createObjectStore(MODEL_STORE_NAME, {keyPath: 'modelPath'});\n db.createObjectStore(INFO_STORE_NAME, {keyPath: 'modelPath'});\n}\n\n/**\n * IOHandler subclass: Browser IndexedDB.\n *\n * See the doc string of `browserIndexedDB` for more details.\n */\nexport class BrowserIndexedDB implements IOHandler {\n protected readonly indexedDB: IDBFactory;\n protected readonly modelPath: string;\n\n static readonly URL_SCHEME = 'indexeddb://';\n\n constructor(modelPath: string) {\n this.indexedDB = getIndexedDBFactory();\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For IndexedDB, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n // TODO(cais): Support saving GraphDef models.\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n return this.databaseAction(this.modelPath, modelArtifacts) as\n Promise;\n }\n\n async load(): Promise {\n return this.databaseAction(this.modelPath) as Promise;\n }\n\n /**\n * Perform database action to put model artifacts into or read model artifacts\n * from IndexedDB object store.\n *\n * Whether the action is put or get depends on whether `modelArtifacts` is\n * specified. If it is specified, the action will be put; otherwise the action\n * will be get.\n *\n * @param modelPath A unique string path for the model.\n * @param modelArtifacts If specified, it will be the model artifacts to be\n * stored in IndexedDB.\n * @returns A `Promise` of `SaveResult`, if the action is put, or a `Promise`\n * of `ModelArtifacts`, if the action is get.\n */\n private databaseAction(modelPath: string, modelArtifacts?: ModelArtifacts):\n Promise {\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n\n if (modelArtifacts == null) {\n // Read model out from object store.\n const modelTx = db.transaction(MODEL_STORE_NAME, 'readonly');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const getRequest = modelStore.get(this.modelPath);\n getRequest.onsuccess = () => {\n if (getRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${this.modelPath}' ` +\n `in IndexedDB.`));\n } else {\n resolve(getRequest.result.modelArtifacts);\n }\n };\n getRequest.onerror = error => {\n db.close();\n return reject(getRequest.error);\n };\n modelTx.oncomplete = () => db.close();\n } else {\n // Put model into object store.\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n // First, put ModelArtifactsInfo into info store.\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n let infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const putInfoRequest =\n infoStore.put({modelPath: this.modelPath, modelArtifactsInfo});\n let modelTx: IDBTransaction;\n putInfoRequest.onsuccess = () => {\n // Second, put model data into model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const putModelRequest = modelStore.put({\n modelPath: this.modelPath,\n modelArtifacts,\n modelArtifactsInfo\n });\n putModelRequest.onsuccess = () => resolve({modelArtifactsInfo});\n putModelRequest.onerror = error => {\n // If the put-model request fails, roll back the info entry as\n // well.\n infoStore = infoTx.objectStore(INFO_STORE_NAME);\n const deleteInfoRequest = infoStore.delete(this.modelPath);\n deleteInfoRequest.onsuccess = () => {\n db.close();\n return reject(putModelRequest.error);\n };\n deleteInfoRequest.onerror = error => {\n db.close();\n return reject(putModelRequest.error);\n };\n };\n };\n putInfoRequest.onerror = error => {\n db.close();\n return reject(putInfoRequest.error);\n };\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n }\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n\nexport const indexedDBRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserIndexedDB.URL_SCHEME)) {\n return browserIndexedDB(url.slice(BrowserIndexedDB.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(indexedDBRouter);\nIORouterRegistry.registerLoadRouter(indexedDBRouter);\n\n/**\n * Creates a browser IndexedDB IOHandler for saving and loading models.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save('indexeddb://MyModel'));\n * console.log(saveResult);\n * ```\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `BrowserIndexedDB` (sublcass of `IOHandler`),\n * which can be used with, e.g., `tf.Model.save`.\n */\nexport function browserIndexedDB(modelPath: string): IOHandler {\n return new BrowserIndexedDB(modelPath);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserIndexedDB.URL_SCHEME) ?\n key.slice(BrowserIndexedDB.URL_SCHEME.length) :\n key;\n}\n\nexport class BrowserIndexedDBManager implements ModelStoreManager {\n private indexedDB: IDBFactory;\n\n constructor() {\n this.indexedDB = getIndexedDBFactory();\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n return new Promise<{[path: string]: ModelArtifactsInfo}>(\n (resolve, reject) => {\n const openRequest =\n this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const tx = db.transaction(INFO_STORE_NAME, 'readonly');\n const store = tx.objectStore(INFO_STORE_NAME);\n // tslint:disable:max-line-length\n // Need to cast `store` as `any` here because TypeScript's DOM\n // library does not have the `getAll()` method even though the\n // method is supported in the latest version of most mainstream\n // browsers:\n // https://developer.mozilla.org/en-US/docs/Web/API/IDBObjectStore/getAll\n // tslint:enable:max-line-length\n // tslint:disable-next-line:no-any\n const getAllInfoRequest = (store as any).getAll() as IDBRequest;\n getAllInfoRequest.onsuccess = () => {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n for (const item of getAllInfoRequest.result) {\n out[item.modelPath] = item.modelArtifactsInfo;\n }\n resolve(out);\n };\n getAllInfoRequest.onerror = error => {\n db.close();\n return reject(getAllInfoRequest.error);\n };\n tx.oncomplete = () => db.close();\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n return new Promise((resolve, reject) => {\n const openRequest = this.indexedDB.open(DATABASE_NAME, DATABASE_VERSION);\n openRequest.onupgradeneeded = () => setUpDatabase(openRequest);\n\n openRequest.onsuccess = () => {\n const db = openRequest.result;\n const infoTx = db.transaction(INFO_STORE_NAME, 'readwrite');\n const infoStore = infoTx.objectStore(INFO_STORE_NAME);\n\n const getInfoRequest = infoStore.get(path);\n let modelTx: IDBTransaction;\n getInfoRequest.onsuccess = () => {\n if (getInfoRequest.result == null) {\n db.close();\n return reject(new Error(\n `Cannot find model with path '${path}' ` +\n `in IndexedDB.`));\n } else {\n // First, delete the entry in the info store.\n const deleteInfoRequest = infoStore.delete(path);\n const deleteModelData = () => {\n // Second, delete the entry in the model store.\n modelTx = db.transaction(MODEL_STORE_NAME, 'readwrite');\n const modelStore = modelTx.objectStore(MODEL_STORE_NAME);\n const deleteModelRequest = modelStore.delete(path);\n deleteModelRequest.onsuccess = () =>\n resolve(getInfoRequest.result.modelArtifactsInfo);\n deleteModelRequest.onerror = error =>\n reject(getInfoRequest.error);\n };\n // Proceed with deleting model data regardless of whether deletion\n // of info data succeeds or not.\n deleteInfoRequest.onsuccess = deleteModelData;\n deleteInfoRequest.onerror = error => {\n deleteModelData();\n db.close();\n return reject(getInfoRequest.error);\n };\n }\n };\n getInfoRequest.onerror = error => {\n db.close();\n return reject(getInfoRequest.error);\n };\n\n infoTx.oncomplete = () => {\n if (modelTx == null) {\n db.close();\n } else {\n modelTx.oncomplete = () => db.close();\n }\n };\n };\n openRequest.onerror = error => reject(openRequest.error);\n });\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {arrayBufferToBase64String, base64StringToArrayBuffer, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelArtifactsInfo, ModelStoreManager, SaveResult} from './types';\n\nconst PATH_SEPARATOR = '/';\nconst PATH_PREFIX = 'tensorflowjs_models';\nconst INFO_SUFFIX = 'info';\nconst MODEL_TOPOLOGY_SUFFIX = 'model_topology';\nconst WEIGHT_SPECS_SUFFIX = 'weight_specs';\nconst WEIGHT_DATA_SUFFIX = 'weight_data';\nconst MODEL_METADATA_SUFFIX = 'model_metadata';\n\n/**\n * Purge all tensorflow.js-saved model artifacts from local storage.\n *\n * @returns Paths of the models purged.\n */\nexport function purgeLocalStorageArtifacts(): string[] {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n throw new Error(\n 'purgeLocalStorageModels() cannot proceed because local storage is ' +\n 'unavailable in the current environment.');\n }\n const LS = window.localStorage;\n const purgedModelPaths: string[] = [];\n for (let i = 0; i < LS.length; ++i) {\n const key = LS.key(i);\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n if (key.startsWith(prefix) && key.length > prefix.length) {\n LS.removeItem(key);\n const modelName = getModelPathFromKey(key);\n if (purgedModelPaths.indexOf(modelName) === -1) {\n purgedModelPaths.push(modelName);\n }\n }\n }\n return purgedModelPaths;\n}\n\nfunction getModelKeys(path: string): {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n} {\n return {\n info: [PATH_PREFIX, path, INFO_SUFFIX].join(PATH_SEPARATOR),\n topology: [PATH_PREFIX, path, MODEL_TOPOLOGY_SUFFIX].join(PATH_SEPARATOR),\n weightSpecs: [PATH_PREFIX, path, WEIGHT_SPECS_SUFFIX].join(PATH_SEPARATOR),\n weightData: [PATH_PREFIX, path, WEIGHT_DATA_SUFFIX].join(PATH_SEPARATOR),\n modelMetadata:\n [PATH_PREFIX, path, MODEL_METADATA_SUFFIX].join(PATH_SEPARATOR)\n };\n}\n\n/**\n * Get model path from a local-storage key.\n *\n * E.g., 'tensorflowjs_models/my/model/1/info' --> 'my/model/1'\n *\n * @param key\n */\nfunction getModelPathFromKey(key: string) {\n const items = key.split(PATH_SEPARATOR);\n if (items.length < 3) {\n throw new Error(`Invalid key format: ${key}`);\n }\n return items.slice(1, items.length - 1).join(PATH_SEPARATOR);\n}\n\nfunction maybeStripScheme(key: string) {\n return key.startsWith(BrowserLocalStorage.URL_SCHEME) ?\n key.slice(BrowserLocalStorage.URL_SCHEME.length) :\n key;\n}\n\ndeclare type LocalStorageKeys = {\n info: string,\n topology: string,\n weightSpecs: string,\n weightData: string,\n modelMetadata: string\n};\n\n/**\n * IOHandler subclass: Browser Local Storage.\n *\n * See the doc string to `browserLocalStorage` for more details.\n */\nexport class BrowserLocalStorage implements IOHandler {\n protected readonly LS: Storage;\n protected readonly modelPath: string;\n protected readonly keys: LocalStorageKeys;\n\n static readonly URL_SCHEME = 'localstorage://';\n\n constructor(modelPath: string) {\n if (!env().getBool('IS_BROWSER') || typeof window === 'undefined' ||\n typeof window.localStorage === 'undefined') {\n // TODO(cais): Add more info about what IOHandler subtypes are\n // available.\n // Maybe point to a doc page on the web and/or automatically determine\n // the available IOHandlers and print them in the error message.\n throw new Error(\n 'The current environment does not support local storage.');\n }\n this.LS = window.localStorage;\n\n if (modelPath == null || !modelPath) {\n throw new Error(\n 'For local storage, modelPath must not be null, undefined or empty.');\n }\n this.modelPath = modelPath;\n this.keys = getModelKeys(this.modelPath);\n }\n\n /**\n * Save model artifacts to browser local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @param modelArtifacts The model artifacts to be stored.\n * @returns An instance of SaveResult.\n */\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserLocalStorage.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const topology = JSON.stringify(modelArtifacts.modelTopology);\n const weightSpecs = JSON.stringify(modelArtifacts.weightSpecs);\n\n const modelArtifactsInfo: ModelArtifactsInfo =\n getModelArtifactsInfoForJSON(modelArtifacts);\n\n try {\n this.LS.setItem(this.keys.info, JSON.stringify(modelArtifactsInfo));\n this.LS.setItem(this.keys.topology, topology);\n this.LS.setItem(this.keys.weightSpecs, weightSpecs);\n this.LS.setItem(\n this.keys.weightData,\n arrayBufferToBase64String(modelArtifacts.weightData));\n const result: ModelArtifacts = {\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy\n };\n if (modelArtifacts.signature != null) {\n result.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n result.modelInitializer = modelArtifacts.modelInitializer;\n }\n this.LS.setItem(this.keys.modelMetadata, JSON.stringify(result));\n\n return {modelArtifactsInfo};\n } catch (err) {\n // If saving failed, clean up all items saved so far.\n this.LS.removeItem(this.keys.info);\n this.LS.removeItem(this.keys.topology);\n this.LS.removeItem(this.keys.weightSpecs);\n this.LS.removeItem(this.keys.weightData);\n this.LS.removeItem(this.keys.modelMetadata);\n\n throw new Error(\n `Failed to save model '${this.modelPath}' to local storage: ` +\n `size quota being exceeded is a possible cause of this failure: ` +\n `modelTopologyBytes=${modelArtifactsInfo.modelTopologyBytes}, ` +\n `weightSpecsBytes=${modelArtifactsInfo.weightSpecsBytes}, ` +\n `weightDataBytes=${modelArtifactsInfo.weightDataBytes}.`);\n }\n }\n }\n\n /**\n * Load a model from local storage.\n *\n * See the documentation to `browserLocalStorage` for details on the saved\n * artifacts.\n *\n * @returns The loaded model (if loading succeeds).\n */\n async load(): Promise {\n const info =\n JSON.parse(this.LS.getItem(this.keys.info)) as ModelArtifactsInfo;\n if (info == null) {\n throw new Error(\n `In local storage, there is no model with name '${this.modelPath}'`);\n }\n\n if (info.modelTopologyType !== 'JSON') {\n throw new Error(\n 'BrowserLocalStorage does not support loading non-JSON model ' +\n 'topology yet.');\n }\n\n const out: ModelArtifacts = {};\n\n // Load topology.\n const topology = JSON.parse(this.LS.getItem(this.keys.topology));\n if (topology == null) {\n throw new Error(\n `In local storage, the topology of model '${this.modelPath}' ` +\n `is missing.`);\n }\n out.modelTopology = topology;\n\n // Load weight specs.\n const weightSpecs = JSON.parse(this.LS.getItem(this.keys.weightSpecs));\n if (weightSpecs == null) {\n throw new Error(\n `In local storage, the weight specs of model '${this.modelPath}' ` +\n `are missing.`);\n }\n out.weightSpecs = weightSpecs;\n\n // Load meta-data fields.\n const metadataString = this.LS.getItem(this.keys.modelMetadata);\n if (metadataString != null) {\n const metadata = JSON.parse(metadataString) as ModelArtifacts;\n out.format = metadata['format'];\n out.generatedBy = metadata['generatedBy'];\n out.convertedBy = metadata['convertedBy'];\n if (metadata['signature'] != null) {\n out.signature = metadata['signature'];\n }\n if (metadata['userDefinedMetadata'] != null) {\n out.userDefinedMetadata = metadata['userDefinedMetadata'];\n }\n if (metadata['modelInitializer'] != null) {\n out.modelInitializer = metadata['modelInitializer'];\n }\n }\n\n // Load weight data.\n const weightDataBase64 = this.LS.getItem(this.keys.weightData);\n if (weightDataBase64 == null) {\n throw new Error(\n `In local storage, the binary weight values of model ` +\n `'${this.modelPath}' are missing.`);\n }\n out.weightData = base64StringToArrayBuffer(weightDataBase64);\n\n return out;\n }\n}\n\nexport const localStorageRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserLocalStorage.URL_SCHEME)) {\n return browserLocalStorage(\n url.slice(BrowserLocalStorage.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(localStorageRouter);\nIORouterRegistry.registerLoadRouter(localStorageRouter);\n\n/**\n * Factory function for local storage IOHandler.\n *\n * This `IOHandler` supports both `save` and `load`.\n *\n * For each model's saved artifacts, four items are saved to local storage.\n * - `${PATH_SEPARATOR}/${modelPath}/info`: Contains meta-info about the\n * model, such as date saved, type of the topology, size in bytes, etc.\n * - `${PATH_SEPARATOR}/${modelPath}/topology`: Model topology. For Keras-\n * style models, this is a stringized JSON.\n * - `${PATH_SEPARATOR}/${modelPath}/weight_specs`: Weight specs of the\n * model, can be used to decode the saved binary weight values (see\n * item below).\n * - `${PATH_SEPARATOR}/${modelPath}/weight_data`: Concatenated binary\n * weight values, stored as a base64-encoded string.\n *\n * Saving may throw an `Error` if the total size of the artifacts exceed the\n * browser-specific quota.\n *\n * @param modelPath A unique identifier for the model to be saved. Must be a\n * non-empty string.\n * @returns An instance of `IOHandler`, which can be used with, e.g.,\n * `tf.Model.save`.\n */\nexport function browserLocalStorage(modelPath: string): IOHandler {\n return new BrowserLocalStorage(modelPath);\n}\n\nexport class BrowserLocalStorageManager implements ModelStoreManager {\n private readonly LS: Storage;\n\n constructor() {\n assert(\n env().getBool('IS_BROWSER'),\n () => 'Current environment is not a web browser');\n assert(\n typeof window === 'undefined' ||\n typeof window.localStorage !== 'undefined',\n () => 'Current browser does not appear to support localStorage');\n this.LS = window.localStorage;\n }\n\n async listModels(): Promise<{[path: string]: ModelArtifactsInfo}> {\n const out: {[path: string]: ModelArtifactsInfo} = {};\n const prefix = PATH_PREFIX + PATH_SEPARATOR;\n const suffix = PATH_SEPARATOR + INFO_SUFFIX;\n for (let i = 0; i < this.LS.length; ++i) {\n const key = this.LS.key(i);\n if (key.startsWith(prefix) && key.endsWith(suffix)) {\n const modelPath = getModelPathFromKey(key);\n out[modelPath] = JSON.parse(this.LS.getItem(key)) as ModelArtifactsInfo;\n }\n }\n return out;\n }\n\n async removeModel(path: string): Promise {\n path = maybeStripScheme(path);\n const keys = getModelKeys(path);\n if (this.LS.getItem(keys.info) == null) {\n throw new Error(`Cannot find model at path '${path}'`);\n }\n const info = JSON.parse(this.LS.getItem(keys.info)) as ModelArtifactsInfo;\n\n this.LS.removeItem(keys.info);\n this.LS.removeItem(keys.topology);\n this.LS.removeItem(keys.weightSpecs);\n this.LS.removeItem(keys.weightData);\n return info;\n }\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Classes and functions for model management across multiple storage mediums.\n *\n * Supported client actions:\n * - Listing models on all registered storage mediums.\n * - Remove model by URL from any registered storage mediums, by using URL\n * string.\n * - Moving or copying model from one path to another in the same medium or from\n * one medium to another, by using URL strings.\n */\n\nimport {assert} from '../util';\n\nimport {IORouterRegistry} from './router_registry';\nimport {ModelArtifactsInfo, ModelStoreManager} from './types';\n\nconst URL_SCHEME_SUFFIX = '://';\n\nexport class ModelStoreManagerRegistry {\n // Singleton instance.\n private static instance: ModelStoreManagerRegistry;\n\n private managers: {[scheme: string]: ModelStoreManager};\n\n private constructor() {\n this.managers = {};\n }\n\n private static getInstance(): ModelStoreManagerRegistry {\n if (ModelStoreManagerRegistry.instance == null) {\n ModelStoreManagerRegistry.instance = new ModelStoreManagerRegistry();\n }\n return ModelStoreManagerRegistry.instance;\n }\n\n /**\n * Register a save-handler router.\n *\n * @param saveRouter A function that maps a URL-like string onto an instance\n * of `IOHandler` with the `save` method defined or `null`.\n */\n static registerManager(scheme: string, manager: ModelStoreManager) {\n assert(scheme != null, () => 'scheme must not be undefined or null.');\n if (scheme.endsWith(URL_SCHEME_SUFFIX)) {\n scheme = scheme.slice(0, scheme.indexOf(URL_SCHEME_SUFFIX));\n }\n assert(scheme.length > 0, () => 'scheme must not be an empty string.');\n const registry = ModelStoreManagerRegistry.getInstance();\n assert(\n registry.managers[scheme] == null,\n () => `A model store manager is already registered for scheme '${\n scheme}'.`);\n registry.managers[scheme] = manager;\n }\n\n static getManager(scheme: string): ModelStoreManager {\n const manager = this.getInstance().managers[scheme];\n if (manager == null) {\n throw new Error(`Cannot find model manager for scheme '${scheme}'`);\n }\n return manager;\n }\n\n static getSchemes(): string[] {\n return Object.keys(this.getInstance().managers);\n }\n}\n\n/**\n * Helper method for parsing a URL string into a scheme and a path.\n *\n * @param url E.g., 'localstorage://my-model'\n * @returns A dictionary with two fields: scheme and path.\n * Scheme: e.g., 'localstorage' in the example above.\n * Path: e.g., 'my-model' in the example above.\n */\nfunction parseURL(url: string): {scheme: string, path: string} {\n if (url.indexOf(URL_SCHEME_SUFFIX) === -1) {\n throw new Error(\n `The url string provided does not contain a scheme. ` +\n `Supported schemes are: ` +\n `${ModelStoreManagerRegistry.getSchemes().join(',')}`);\n }\n return {\n scheme: url.split(URL_SCHEME_SUFFIX)[0],\n path: url.split(URL_SCHEME_SUFFIX)[1],\n };\n}\n\nasync function cloneModelInternal(\n sourceURL: string, destURL: string,\n deleteSource = false): Promise {\n assert(\n sourceURL !== destURL,\n () => `Old path and new path are the same: '${sourceURL}'`);\n\n const loadHandlers = IORouterRegistry.getLoadHandlers(sourceURL);\n assert(\n loadHandlers.length > 0,\n () => `Copying failed because no load handler is found for source URL ${\n sourceURL}.`);\n assert(\n loadHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `load handlers for source URL ${sourceURL}.`);\n const loadHandler = loadHandlers[0];\n\n const saveHandlers = IORouterRegistry.getSaveHandlers(destURL);\n assert(\n saveHandlers.length > 0,\n () => `Copying failed because no save handler is found for destination ` +\n `URL ${destURL}.`);\n assert(\n saveHandlers.length < 2,\n () => `Copying failed because more than one (${loadHandlers.length}) ` +\n `save handlers for destination URL ${destURL}.`);\n const saveHandler = saveHandlers[0];\n\n const sourceScheme = parseURL(sourceURL).scheme;\n const sourcePath = parseURL(sourceURL).path;\n const sameMedium = sourceScheme === parseURL(sourceURL).scheme;\n\n const modelArtifacts = await loadHandler.load();\n\n // If moving within the same storage medium, remove the old model as soon as\n // the loading is done. Without doing this, it is possible that the combined\n // size of the two models will cause the cloning to fail.\n if (deleteSource && sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n const saveResult = await saveHandler.save(modelArtifacts);\n\n // If moving between mediums, the deletion is done after the save succeeds.\n // This guards against the case in which saving to the destination medium\n // fails.\n if (deleteSource && !sameMedium) {\n await ModelStoreManagerRegistry.getManager(sourceScheme)\n .removeModel(sourcePath);\n }\n\n return saveResult.modelArtifactsInfo;\n}\n\n/**\n * List all models stored in registered storage mediums.\n *\n * For a web browser environment, the registered mediums are Local Storage and\n * IndexedDB.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @returns A `Promise` of a dictionary mapping URLs of existing models to\n * their model artifacts info. URLs include medium-specific schemes, e.g.,\n * 'indexeddb://my/model/1'. Model artifacts info include type of the\n * model's topology, byte sizes of the topology, weights, etc.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function listModels(): Promise<{[url: string]: ModelArtifactsInfo}> {\n const schemes = ModelStoreManagerRegistry.getSchemes();\n const out: {[url: string]: ModelArtifactsInfo} = {};\n for (const scheme of schemes) {\n const schemeOut =\n await ModelStoreManagerRegistry.getManager(scheme).listModels();\n for (const path in schemeOut) {\n const url = scheme + URL_SCHEME_SUFFIX + path;\n out[url] = schemeOut[path];\n }\n }\n return out;\n}\n\n/**\n * Remove a model specified by URL from a reigstered storage medium.\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Delete the model.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n * ```\n *\n * @param url A URL to a stored model, with a scheme prefix, e.g.,\n * 'localstorage://my-model-1', 'indexeddb://my/model/2'.\n * @returns ModelArtifactsInfo of the deleted model (if and only if deletion\n * is successful).\n * @throws Error if deletion fails, e.g., if no model exists at `path`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function removeModel(url: string): Promise {\n const schemeAndPath = parseURL(url);\n const manager = ModelStoreManagerRegistry.getManager(schemeAndPath.scheme);\n return manager.removeModel(schemeAndPath.path);\n}\n\n/**\n * Copy a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Copying within a storage medium, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Copying between two storage mediums, e.g.,\n * `tf.io.copyModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Copy the model, from Local Storage to IndexedDB.\n * await tf.io.copyModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove both models.\n * await tf.io.removeModel('localstorage://demo/management/model1');\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of copying.\n * @param destURL Destination URL of copying.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if copying fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function copyModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = false;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\n/**\n * Move a model from one URL to another.\n *\n * This function supports:\n *\n * 1. Moving within a storage medium, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'localstorage://model-2')`\n * 2. Moving between two storage mediums, e.g.,\n * `tf.io.moveModel('localstorage://model-1', 'indexeddb://model-1')`\n *\n * ```js\n * // First create and save a model.\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * await model.save('localstorage://demo/management/model1');\n *\n * // Then list existing models.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Move the model, from Local Storage to IndexedDB.\n * await tf.io.moveModel(\n * 'localstorage://demo/management/model1',\n * 'indexeddb://demo/management/model1');\n *\n * // List models again.\n * console.log(JSON.stringify(await tf.io.listModels()));\n *\n * // Remove the moved model.\n * await tf.io.removeModel('indexeddb://demo/management/model1');\n * ```\n *\n * @param sourceURL Source URL of moving.\n * @param destURL Destination URL of moving.\n * @returns ModelArtifactsInfo of the copied model (if and only if copying\n * is successful).\n * @throws Error if moving fails, e.g., if no model exists at `sourceURL`, or\n * if `oldPath` and `newPath` are identical.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Management',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nasync function moveModel(\n sourceURL: string, destURL: string): Promise {\n const deleteSource = true;\n return cloneModelInternal(sourceURL, destURL, deleteSource);\n}\n\nexport {moveModel, copyModel, removeModel, listModels};\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport '../flags';\n\nimport {env} from '../environment';\nimport {BrowserIndexedDB, BrowserIndexedDBManager} from '../io/indexed_db';\nimport {BrowserLocalStorage, BrowserLocalStorageManager} from '../io/local_storage';\nimport {ModelStoreManagerRegistry} from '../io/model_management';\n\nimport {Platform} from './platform';\n\nexport class PlatformBrowser implements Platform {\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n private textEncoder: TextEncoder;\n\n fetch(path: string, init?: RequestInit): Promise {\n return fetch(path, init);\n }\n\n now(): number {\n return performance.now();\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Browser's encoder only supports utf-8, but got ${encoding}`);\n }\n if (this.textEncoder == null) {\n this.textEncoder = new TextEncoder();\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n return new TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_BROWSER')) {\n env().setPlatform('browser', new PlatformBrowser());\n\n // Register LocalStorage IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserLocalStorage.URL_SCHEME, new BrowserLocalStorageManager());\n } catch (err) {\n }\n\n // Register IndexedDB IOHandler\n try {\n ModelStoreManagerRegistry.registerManager(\n BrowserIndexedDB.URL_SCHEME, new BrowserIndexedDBManager());\n } catch (err) {\n }\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {env} from '../environment';\n\nimport {Platform} from './platform';\n\n// We are wrapping this within an object so it can be stubbed by Jasmine.\nexport const getNodeFetch = {\n // tslint:disable-next-line:no-require-imports\n importFetch: () => require('node-fetch')\n};\n\ntype FetchFn = (url: string, init?: RequestInit) => Promise;\nlet systemFetch: FetchFn;\n// These getters and setters are for testing so we don't export a mutable\n// variable.\nexport function resetSystemFetch() {\n systemFetch = null;\n}\nexport function setSystemFetch(fetchFn: FetchFn) {\n systemFetch = fetchFn;\n}\nexport function getSystemFetch(): FetchFn {\n return systemFetch;\n}\n\nexport class PlatformNode implements Platform {\n private textEncoder: TextEncoder;\n // tslint:disable-next-line:no-any\n util: any;\n\n constructor() {\n // tslint:disable-next-line:no-require-imports\n this.util = require('util');\n // According to the spec, the built-in encoder can do only UTF-8 encoding.\n // https://developer.mozilla.org/en-US/docs/Web/API/TextEncoder/TextEncoder\n this.textEncoder = new this.util.TextEncoder();\n }\n\n fetch(path: string, requestInits?: RequestInit): Promise {\n if (env().global.fetch != null) {\n return env().global.fetch(path, requestInits);\n }\n\n if (systemFetch == null) {\n systemFetch = getNodeFetch.importFetch();\n }\n return systemFetch(path, requestInits);\n }\n\n now(): number {\n const time = process.hrtime();\n return time[0] * 1000 + time[1] / 1000000;\n }\n\n encode(text: string, encoding: string): Uint8Array {\n if (encoding !== 'utf-8' && encoding !== 'utf8') {\n throw new Error(\n `Node built-in encoder only supports utf-8, but got ${encoding}`);\n }\n return this.textEncoder.encode(text);\n }\n decode(bytes: Uint8Array, encoding: string): string {\n if (bytes.length === 0) {\n return '';\n }\n return new this.util.TextDecoder(encoding).decode(bytes);\n }\n}\n\nif (env().get('IS_NODE')) {\n env().setPlatform('node', new PlatformNode());\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {TensorBuffer} from '../tensor';\nimport {DataType, DataTypeMap, Rank, ShapeMap} from '../types';\nimport * as util from '../util';\n\n/**\n * Creates an empty `tf.TensorBuffer` with the specified `shape` and `dtype`.\n *\n * The values are stored in CPU as `TypedArray`. Fill the buffer using\n * `buffer.set()`, or by modifying directly `buffer.values`.\n *\n * When done, call `buffer.toTensor()` to get an immutable `tf.Tensor` with\n * those values.\n *\n * ```js\n * // Create a buffer and set values at particular indices.\n * const buffer = tf.buffer([2, 2]);\n * buffer.set(3, 0, 0);\n * buffer.set(5, 1, 0);\n *\n * // Convert the buffer back to a tensor.\n * buffer.toTensor().print();\n * ```\n *\n * @param shape An array of integers defining the output tensor shape.\n * @param dtype The dtype of the buffer. Defaults to 'float32'.\n * @param values The values of the buffer as `TypedArray`. Defaults to\n * zeros.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function buffer(\n shape: ShapeMap[R], dtype: D = 'float32' as D,\n values?: DataTypeMap[D]): TensorBuffer {\n dtype = dtype || 'float32' as D;\n util.assertNonNegativeIntegerDimensions(shape);\n return new TensorBuffer(shape, dtype, values);\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {Cast, CastAttrs, CastInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {DataType, TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Casts a `tf.Tensor` to a new dtype.\n *\n * ```js\n * const x = tf.tensor1d([1.5, 2.5, 3]);\n * tf.cast(x, 'int32').print();\n * ```\n * @param x The input tensor to be casted.\n * @param dtype The dtype to cast the input tensor to.\n *\n * @doc {heading: 'Tensors', subheading: 'Transformations'}\n */\nfunction cast_(x: T|TensorLike, dtype: DataType): T {\n const $x = convertToTensor(x, 'x', 'cast');\n\n // Sanity checks.\n if (!util.isValidDtype(dtype)) {\n throw new Error(`Failed to cast to unknown dtype ${dtype}`);\n }\n if (dtype === 'string' && $x.dtype !== 'string' ||\n dtype !== 'string' && $x.dtype === 'string') {\n throw new Error('Only strings can be casted to strings');\n }\n\n const inputs: CastInputs = {x: $x};\n const attrs: CastAttrs = {dtype};\n\n return ENGINE.runKernel(\n Cast, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const cast = op({cast_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Identity, IdentityInputs} from '../kernel_names';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a new tensor with the same values and shape as the specified\n * tensor.\n *\n * ```js\n * const x = tf.tensor([1, 2]);\n *\n * x.clone().print();\n * ```\n *\n * @param x The tensor to clone.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction clone_(x: T|TensorLike): T {\n const $x = convertToTensor(x, 'x', 'clone', 'string_or_numeric');\n const inputs: IdentityInputs = {x: $x};\n\n // Note this op is called tf.identity in python. Hence the kernel name used\n // here.\n return ENGINE.runKernel(Identity, inputs as {} as NamedTensorMap);\n}\n\nexport const clone = op({clone_});\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor} from '../tensor';\n\n/**\n * Prints information about the `tf.Tensor` including its data.\n *\n * ```js\n * const verbose = true;\n * tf.tensor2d([1, 2, 3, 4], [2, 2]).print(verbose);\n * ```\n * @param x The tensor to be printed.\n * @param verbose Whether to print verbose information about the ` Tensor`,\n * including dtype and size.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nexport function print(x: T, verbose = false): void {\n console.log(x.toString(verbose));\n}\n", "/**\n * @license\n * Copyright 2020 Google Inc. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Required side effectful code for tfjs-core\n\n// Set up Engine and ENV\nimport {getOrMakeEngine} from './engine';\ngetOrMakeEngine();\n\n// Register backend-agnostic flags.\nimport './flags';\n// Register platforms\nimport './platforms/platform_browser';\nimport './platforms/platform_node';\n\n// Set up OpHandler\nimport {buffer} from './ops/buffer';\nimport {cast} from './ops/cast';\nimport {clone} from './ops/clone';\nimport {print} from './ops/print';\nimport {OpHandler, setOpHandler} from './tensor';\nconst opHandler: OpHandler = {\n buffer,\n cast,\n clone,\n print\n};\nsetOpHandler(opHandler);\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n// Importing local_storage and indexed_db is necessary for the routers to be\n// registered.\nimport './indexed_db';\nimport './local_storage';\n\nimport {browserFiles} from './browser_files';\nimport {browserHTTPRequest, http, isHTTPScheme} from './http';\nimport {concatenateArrayBuffers, decodeWeights, encodeWeights, getModelArtifactsInfoForJSON} from './io_utils';\nimport {fromMemory, withSaveHandler} from './passthrough';\nimport {getLoadHandlers, getSaveHandlers, registerLoadRouter, registerSaveRouter} from './router_registry';\nimport {IOHandler, LoadHandler, LoadOptions, ModelArtifacts, ModelArtifactsInfo, ModelJSON, ModelStoreManager, OnProgressCallback, RequestDetails, SaveConfig, SaveHandler, SaveResult, WeightGroup, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeights, weightsLoaderFactory} from './weights_loader';\n\nexport {copyModel, listModels, moveModel, removeModel} from './model_management';\nexport {\n browserFiles,\n browserHTTPRequest,\n concatenateArrayBuffers,\n decodeWeights,\n encodeWeights,\n fromMemory,\n getLoadHandlers,\n getModelArtifactsInfoForJSON,\n getSaveHandlers,\n http,\n IOHandler,\n isHTTPScheme,\n LoadHandler,\n LoadOptions,\n loadWeights,\n ModelArtifacts,\n ModelArtifactsInfo,\n ModelJSON,\n ModelStoreManager,\n OnProgressCallback,\n registerLoadRouter,\n registerSaveRouter,\n RequestDetails,\n SaveConfig,\n SaveHandler,\n SaveResult,\n WeightGroup,\n weightsLoaderFactory,\n WeightsManifestConfig,\n WeightsManifestEntry,\n withSaveHandler\n};\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers related to files, such as browser-triggered file downloads,\n * user-selected files in browser.\n */\n\nimport '../flags';\nimport {env} from '../environment';\n\nimport {basename, concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, ModelArtifacts, ModelJSON, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\nconst DEFAULT_FILE_NAME_PREFIX = 'model';\nconst DEFAULT_JSON_EXTENSION_NAME = '.json';\nconst DEFAULT_WEIGHT_DATA_EXTENSION_NAME = '.weights.bin';\n\nfunction defer(f: () => T): Promise {\n return new Promise(resolve => setTimeout(resolve)).then(f);\n}\n\nexport class BrowserDownloads implements IOHandler {\n private readonly modelTopologyFileName: string;\n private readonly weightDataFileName: string;\n private readonly jsonAnchor: HTMLAnchorElement;\n private readonly weightDataAnchor: HTMLAnchorElement;\n\n static readonly URL_SCHEME = 'downloads://';\n\n constructor(fileNamePrefix?: string) {\n if (!env().getBool('IS_BROWSER')) {\n // TODO(cais): Provide info on what IOHandlers are available under the\n // current environment.\n throw new Error(\n 'browserDownloads() cannot proceed because the current environment ' +\n 'is not a browser.');\n }\n\n if (fileNamePrefix.startsWith(BrowserDownloads.URL_SCHEME)) {\n fileNamePrefix = fileNamePrefix.slice(BrowserDownloads.URL_SCHEME.length);\n }\n if (fileNamePrefix == null || fileNamePrefix.length === 0) {\n fileNamePrefix = DEFAULT_FILE_NAME_PREFIX;\n }\n\n this.modelTopologyFileName = fileNamePrefix + DEFAULT_JSON_EXTENSION_NAME;\n this.weightDataFileName =\n fileNamePrefix + DEFAULT_WEIGHT_DATA_EXTENSION_NAME;\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (typeof (document) === 'undefined') {\n throw new Error(\n 'Browser downloads are not supported in ' +\n 'this environment since `document` is not present');\n }\n const weightsURL = window.URL.createObjectURL(new Blob(\n [modelArtifacts.weightData], {type: 'application/octet-stream'}));\n\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserDownloads.save() does not support saving model topology ' +\n 'in binary formats yet.');\n } else {\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./' + this.weightDataFileName],\n weights: modelArtifacts.weightSpecs\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n const modelTopologyAndWeightManifestURL =\n window.URL.createObjectURL(new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: 'application/json'}));\n\n // If anchor elements are not provided, create them without attaching them\n // to parents, so that the downloaded file names can be controlled.\n const jsonAnchor = this.jsonAnchor == null ? document.createElement('a') :\n this.jsonAnchor;\n jsonAnchor.download = this.modelTopologyFileName;\n jsonAnchor.href = modelTopologyAndWeightManifestURL;\n // Trigger downloads by evoking a click event on the download anchors.\n // When multiple downloads are started synchronously, Firefox will only\n // save the last one.\n await defer(() => jsonAnchor.dispatchEvent(new MouseEvent('click')));\n\n if (modelArtifacts.weightData != null) {\n const weightDataAnchor = this.weightDataAnchor == null ?\n document.createElement('a') :\n this.weightDataAnchor;\n weightDataAnchor.download = this.weightDataFileName;\n weightDataAnchor.href = weightsURL;\n await defer(\n () => weightDataAnchor.dispatchEvent(new MouseEvent('click')));\n }\n\n return {modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts)};\n }\n }\n}\n\nclass BrowserFiles implements IOHandler {\n private readonly files: File[];\n\n constructor(files: File[]) {\n if (files == null || files.length < 1) {\n throw new Error(\n `When calling browserFiles, at least 1 file is required, ` +\n `but received ${files}`);\n }\n this.files = files;\n }\n\n async load(): Promise {\n const jsonFile = this.files[0];\n const weightFiles = this.files.slice(1);\n\n return new Promise((resolve, reject) => {\n const jsonReader = new FileReader();\n jsonReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const modelJSON = JSON.parse((event.target as any).result) as ModelJSON;\n const modelTopology = modelJSON.modelTopology;\n if (modelTopology == null) {\n reject(new Error(\n `modelTopology field is missing from file ${jsonFile.name}`));\n return;\n }\n\n if (weightFiles.length === 0) {\n resolve({modelTopology});\n }\n\n const weightsManifest = modelJSON.weightsManifest;\n if (weightsManifest == null) {\n reject(new Error(\n `weightManifest field is missing from file ${jsonFile.name}`));\n return;\n }\n\n let pathToFile: {[path: string]: File};\n try {\n pathToFile =\n this.checkManifestAndWeightFiles(weightsManifest, weightFiles);\n } catch (err) {\n reject(err);\n return;\n }\n\n const weightSpecs: WeightsManifestEntry[] = [];\n const paths: string[] = [];\n const perFileBuffers: ArrayBuffer[] = [];\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n paths.push(path);\n perFileBuffers.push(null);\n });\n weightSpecs.push(...weightsGroup.weights);\n });\n\n weightsManifest.forEach(weightsGroup => {\n weightsGroup.paths.forEach(path => {\n const weightFileReader = new FileReader();\n weightFileReader.onload = (event: Event) => {\n // tslint:disable-next-line:no-any\n const weightData = (event.target as any).result as ArrayBuffer;\n const index = paths.indexOf(path);\n perFileBuffers[index] = weightData;\n if (perFileBuffers.indexOf(null) === -1) {\n const result: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData: concatenateArrayBuffers(perFileBuffers),\n format: modelJSON.format,\n generatedBy: modelJSON.generatedBy,\n convertedBy: modelJSON.convertedBy\n };\n if (modelJSON.signature != null) {\n result.signature = modelJSON.signature;\n }\n if (modelJSON.userDefinedMetadata != null) {\n result.userDefinedMetadata = modelJSON.userDefinedMetadata;\n }\n if (modelJSON.modelInitializer != null) {\n result.modelInitializer = modelJSON.modelInitializer;\n }\n resolve(result);\n }\n };\n weightFileReader.onerror = error =>\n reject(`Failed to weights data from file of path '${path}'.`);\n weightFileReader.readAsArrayBuffer(pathToFile[path]);\n });\n });\n };\n jsonReader.onerror = error => reject(\n `Failed to read model topology and weights manifest JSON ` +\n `from file '${jsonFile.name}'. BrowserFiles supports loading ` +\n `Keras-style tf.Model artifacts only.`);\n jsonReader.readAsText(jsonFile);\n });\n }\n\n /**\n * Check the compatibility between weights manifest and weight files.\n */\n private checkManifestAndWeightFiles(\n manifest: WeightsManifestConfig, files: File[]): {[path: string]: File} {\n const basenames: string[] = [];\n const fileNames = files.map(file => basename(file.name));\n const pathToFile: {[path: string]: File} = {};\n for (const group of manifest) {\n group.paths.forEach(path => {\n const pathBasename = basename(path);\n if (basenames.indexOf(pathBasename) !== -1) {\n throw new Error(\n `Duplicate file basename found in weights manifest: ` +\n `'${pathBasename}'`);\n }\n basenames.push(pathBasename);\n if (fileNames.indexOf(pathBasename) === -1) {\n throw new Error(\n `Weight file with basename '${pathBasename}' is not provided.`);\n } else {\n pathToFile[path] = files[fileNames.indexOf(pathBasename)];\n }\n });\n }\n\n if (basenames.length !== files.length) {\n throw new Error(\n `Mismatch in the number of files in weights manifest ` +\n `(${basenames.length}) and the number of weight files provided ` +\n `(${files.length}).`);\n }\n return pathToFile;\n }\n}\n\nexport const browserDownloadsRouter: IORouter = (url: string|string[]) => {\n if (!env().getBool('IS_BROWSER')) {\n return null;\n } else {\n if (!Array.isArray(url) && url.startsWith(BrowserDownloads.URL_SCHEME)) {\n return browserDownloads(url.slice(BrowserDownloads.URL_SCHEME.length));\n } else {\n return null;\n }\n }\n};\nIORouterRegistry.registerSaveRouter(browserDownloadsRouter);\n\n/**\n * Creates an IOHandler that triggers file downloads from the browser.\n *\n * The returned `IOHandler` instance can be used as model exporting methods such\n * as `tf.Model.save` and supports only saving.\n *\n * ```js\n * const model = tf.sequential();\n * model.add(tf.layers.dense(\n * {units: 1, inputShape: [10], activation: 'sigmoid'}));\n * const saveResult = await model.save('downloads://mymodel');\n * // This will trigger downloading of two files:\n * // 'mymodel.json' and 'mymodel.weights.bin'.\n * console.log(saveResult);\n * ```\n *\n * @param fileNamePrefix Prefix name of the files to be downloaded. For use with\n * `tf.Model`, `fileNamePrefix` should follow either of the following two\n * formats:\n * 1. `null` or `undefined`, in which case the default file\n * names will be used:\n * - 'model.json' for the JSON file containing the model topology and\n * weights manifest.\n * - 'model.weights.bin' for the binary file containing the binary weight\n * values.\n * 2. A single string or an Array of a single string, as the file name prefix.\n * For example, if `'foo'` is provided, the downloaded JSON\n * file and binary weights file will be named 'foo.json' and\n * 'foo.weights.bin', respectively.\n * @param config Additional configuration for triggering downloads.\n * @returns An instance of `BrowserDownloads` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserDownloads(fileNamePrefix = 'model'): IOHandler {\n return new BrowserDownloads(fileNamePrefix);\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from user-selected files.\n *\n * This method can be used for loading from files such as user-selected files\n * in the browser.\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * // Note: This code snippet won't run properly without the actual file input\n * // elements in the HTML DOM.\n *\n * // Suppose there are two HTML file input (``)\n * // elements.\n * const uploadJSONInput = document.getElementById('upload-json');\n * const uploadWeightsInput = document.getElementById('upload-weights');\n * const model = await tf.loadLayersModel(tf.io.browserFiles(\n * [uploadJSONInput.files[0], uploadWeightsInput.files[0]]));\n * ```\n *\n * @param files `File`s to load from. Currently, this function supports only\n * loading from files that contain Keras-style models (i.e., `tf.Model`s), for\n * which an `Array` of `File`s is expected (in that order):\n * - A JSON file containing the model topology and weight manifest.\n * - Optionally, One or more binary files containing the binary weights.\n * These files must have names that match the paths in the `weightsManifest`\n * contained by the aforementioned JSON file, or errors will be thrown\n * during loading. These weights files have the same format as the ones\n * generated by `tensorflowjs_converter` that comes with the `tensorflowjs`\n * Python PIP package. If no weights files are provided, only the model\n * topology will be loaded from the JSON file above.\n * @returns An instance of `Files` `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function browserFiles(files: File[]): IOHandler {\n return new BrowserFiles(files);\n}\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {assert} from '../util';\n\nimport {OnProgressCallback} from './types';\n\n/**\n * Monitor Promise.all progress, fire onProgress callback function.\n *\n * @param promises Promise list going to be monitored\n * @param onProgress Callback function. Fired when a promise resolved.\n * @param startFraction Optional fraction start. Default to 0.\n * @param endFraction Optional fraction end. Default to 1.\n */\nexport function monitorPromisesProgress(\n promises: Array>, onProgress: OnProgressCallback,\n startFraction?: number, endFraction?: number) {\n checkPromises(promises);\n startFraction = startFraction == null ? 0 : startFraction;\n endFraction = endFraction == null ? 1 : endFraction;\n checkFraction(startFraction, endFraction);\n let resolvedPromise = 0;\n\n const registerMonitor = (promise: Promise<{}>) => {\n promise.then(value => {\n const fraction = startFraction +\n ++resolvedPromise / promises.length * (endFraction - startFraction);\n // pass fraction as parameter to callback function.\n onProgress(fraction);\n return value;\n });\n return promise;\n };\n\n function checkPromises(promises: Array>): void {\n assert(\n promises != null && Array.isArray(promises) && promises.length > 0,\n () => 'promises must be a none empty array');\n }\n\n function checkFraction(startFraction: number, endFraction: number): void {\n assert(\n startFraction >= 0 && startFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got startFraction ${startFraction}`);\n assert(\n endFraction >= 0 && endFraction <= 1,\n () => `Progress fraction must be in range [0, 1], but ` +\n `got endFraction ${endFraction}`);\n assert(\n endFraction >= startFraction,\n () => `startFraction must be no more than endFraction, but ` +\n `got startFraction ${startFraction} and endFraction ` +\n `${endFraction}`);\n }\n\n return Promise.all(promises.map(registerMonitor));\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {env} from '../environment';\n\nimport {NamedTensorMap} from '../tensor_types';\nimport * as util from '../util';\nimport {decodeWeights} from './io_utils';\nimport {monitorPromisesProgress} from './progress';\nimport {DTYPE_VALUE_SIZE_MAP, LoadOptions, WeightsManifestConfig, WeightsManifestEntry} from './types';\n\n/**\n * Reads binary weights data from a number of URLs.\n *\n * @param fetchURLs URLs to send the HTTP requests at, using `fetch` calls.\n * @param requestOptions RequestInit (options) for the HTTP requests.\n * @param fetchFunc Optional overriding value for the `window.fetch` function.\n * @param onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns A `Promise` of an Array of `ArrayBuffer`. The Array has the same\n * length as `fetchURLs`.\n */\nexport async function loadWeightsAsArrayBuffer(\n fetchURLs: string[], loadOptions?: LoadOptions): Promise {\n if (loadOptions == null) {\n loadOptions = {};\n }\n\n const fetchFunc = loadOptions.fetchFunc == null ? env().platform.fetch :\n loadOptions.fetchFunc;\n\n // Create the requests for all of the weights in parallel.\n const requests = fetchURLs.map(\n fetchURL =>\n fetchFunc(fetchURL, loadOptions.requestInit, {isBinary: true}));\n\n const fetchStartFraction = 0;\n const fetchEndFraction = 0.5;\n\n const responses = loadOptions.onProgress == null ?\n await Promise.all(requests) :\n await monitorPromisesProgress(\n requests, loadOptions.onProgress, fetchStartFraction,\n fetchEndFraction);\n\n const bufferPromises = responses.map(response => response.arrayBuffer());\n\n const bufferStartFraction = 0.5;\n const bufferEndFraction = 1;\n\n const buffers = loadOptions.onProgress == null ?\n await Promise.all(bufferPromises) :\n await monitorPromisesProgress(\n bufferPromises, loadOptions.onProgress, bufferStartFraction,\n bufferEndFraction);\n return buffers;\n}\n\n/**\n * Reads a weights manifest JSON configuration, fetches the weights and\n * returns them as `Tensor`s.\n *\n * @param manifest The weights manifest JSON.\n * @param filePathPrefix The path prefix for filenames given in the manifest.\n * Defaults to the empty string.\n * @param weightNames The names of the weights to be fetched.\n */\nexport async function loadWeights(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[],\n requestInit?: RequestInit): Promise {\n // TODO(nsthorat): Groups are currently fetched atomically. If you need a\n // single weight from a group, the whole group will be fetched. At a future\n // date, we should support fetching only the individual shards within a\n // group that are needed to reconstruct the requested weight.\n // TODO(cais): Use `decodeWeights` for implementation.\n\n const fetchWeights = (fetchUrls: string[]) =>\n loadWeightsAsArrayBuffer(fetchUrls, {requestInit});\n const loadWeights = weightsLoaderFactory(fetchWeights);\n\n return loadWeights(manifest, filePathPrefix, weightNames);\n}\n\n/**\n * Creates a function, which reads a weights manifest JSON configuration,\n * fetches the weight files using the specified function and returns them as\n * `Tensor`s.\n *\n * ```js\n * // example for creating a nodejs weight loader, which reads the weight files\n * // from disk using fs.readFileSync\n *\n * import * as fs from 'fs'\n *\n * const fetchWeightsFromDisk = (filePaths: string[]) =>\n * filePaths.map(filePath => fs.readFileSync(filePath).buffer)\n *\n * const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk)\n *\n * const manifest = JSON.parse(\n * fs.readFileSync('./my_model-weights_manifest').toString()\n * )\n * const weightMap = await loadWeights(manifest, './')\n * ```\n * @param fetchWeightsFunction The function used for fetching the weight files.\n * @returns Weight loading function.\n */\nexport function weightsLoaderFactory(\n fetchWeightsFunction: (fetchUrls: string[]) => Promise):\n (manifest: WeightsManifestConfig, filePathPrefix?: string,\n weightNames?: string[]) => Promise {\n return async(\n manifest: WeightsManifestConfig, filePathPrefix = '',\n weightNames?: string[]): Promise => {\n // Collect all the groups, weights, and their relative offsets to be\n // fetched.\n const groupIndicesToFetchMap = manifest.map(() => false);\n const groupWeightsToFetch: {\n [group: number]: Array<{\n manifestEntry: WeightsManifestEntry; groupOffset: number;\n sizeBytes: number;\n }>\n } = {};\n const weightsFound =\n weightNames != null ? weightNames.map(() => false) : [];\n const allManifestWeightNames: string[] = [];\n manifest.forEach((manifestGroupConfig, groupIndex) => {\n let groupOffset = 0;\n manifestGroupConfig.weights.forEach(weightsEntry => {\n const rawDtype = ('quantization' in weightsEntry) ?\n weightsEntry.quantization.dtype :\n weightsEntry.dtype;\n\n const weightsBytes = DTYPE_VALUE_SIZE_MAP[rawDtype] *\n util.sizeFromShape(weightsEntry.shape);\n\n const enqueueWeightsForFetchingFn = () => {\n groupIndicesToFetchMap[groupIndex] = true;\n if (groupWeightsToFetch[groupIndex] == null) {\n groupWeightsToFetch[groupIndex] = [];\n }\n\n groupWeightsToFetch[groupIndex].push({\n manifestEntry: weightsEntry,\n groupOffset,\n sizeBytes: weightsBytes\n });\n };\n\n if (weightNames != null) {\n weightNames.forEach((weightName, weightIndex) => {\n if (weightName === weightsEntry.name) {\n enqueueWeightsForFetchingFn();\n weightsFound[weightIndex] = true;\n }\n });\n } else {\n enqueueWeightsForFetchingFn();\n }\n\n allManifestWeightNames.push(weightsEntry.name);\n groupOffset += weightsBytes;\n });\n });\n\n if (!weightsFound.every(found => found)) {\n const weightsNotFound = weightNames.filter((_, i) => !weightsFound[i]);\n throw new Error(\n `Could not find weights in manifest with names: ` +\n `${weightsNotFound.join(', ')}. \\n` +\n `Manifest JSON has weights with names: ` +\n `${allManifestWeightNames.join(', ')}.`);\n }\n\n // Convert the one-hot boolean groupId => shouldFetch map to a list of group\n // IDs.\n const groupIndicesToFetch =\n groupIndicesToFetchMap.reduce((accumulator, shouldFetch, i) => {\n if (shouldFetch) {\n accumulator.push(i);\n }\n return accumulator;\n }, []);\n\n const fetchUrls: string[] = [];\n groupIndicesToFetch.forEach(i => {\n manifest[i].paths.forEach(filepath => {\n const fetchUrl = filePathPrefix +\n (!filePathPrefix.endsWith('/') ? '/' : '') + filepath;\n fetchUrls.push(fetchUrl);\n });\n });\n const buffers = await fetchWeightsFunction(fetchUrls);\n\n const weightsTensorMap: NamedTensorMap = {};\n let bufferIndexOffset = 0;\n groupIndicesToFetch.forEach(i => {\n const numBuffers = manifest[i].paths.length;\n\n let groupBytes = 0;\n for (let i = 0; i < numBuffers; i++) {\n groupBytes += buffers[bufferIndexOffset + i].byteLength;\n }\n\n // Create a buffer for the whole group.\n const groupBuffer = new ArrayBuffer(groupBytes);\n const groupByteBuffer = new Uint8Array(groupBuffer);\n let groupBufferOffset = 0;\n for (let i = 0; i < numBuffers; i++) {\n const buffer = new Uint8Array(buffers[bufferIndexOffset + i]);\n groupByteBuffer.set(buffer, groupBufferOffset);\n groupBufferOffset += buffer.byteLength;\n }\n\n const weightsEntries = groupWeightsToFetch[i];\n weightsEntries.forEach(weightsEntry => {\n const byteBuffer = groupBuffer.slice(\n weightsEntry.groupOffset,\n weightsEntry.groupOffset + weightsEntry.sizeBytes);\n const nameToTensorMap =\n decodeWeights(byteBuffer, [weightsEntry.manifestEntry]);\n for (const name in nameToTensorMap) {\n weightsTensorMap[name] = nameToTensorMap[name];\n }\n });\n\n bufferIndexOffset += numBuffers;\n });\n\n return weightsTensorMap;\n };\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandler implementations based on HTTP requests in the web browser.\n *\n * Uses [`fetch`](https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API).\n */\n\nimport {env} from '../environment';\n\nimport {assert} from '../util';\nimport {concatenateArrayBuffers, getModelArtifactsInfoForJSON} from './io_utils';\nimport {IORouter, IORouterRegistry} from './router_registry';\nimport {IOHandler, LoadOptions, ModelArtifacts, ModelJSON, OnProgressCallback, SaveResult, WeightsManifestConfig, WeightsManifestEntry} from './types';\nimport {loadWeightsAsArrayBuffer} from './weights_loader';\n\nconst OCTET_STREAM_MIME_TYPE = 'application/octet-stream';\nconst JSON_TYPE = 'application/json';\nexport class HTTPRequest implements IOHandler {\n protected readonly path: string;\n protected readonly requestInit: RequestInit;\n\n private readonly fetch: Function;\n private readonly weightUrlConverter: (weightName: string) => Promise;\n\n readonly DEFAULT_METHOD = 'POST';\n\n static readonly URL_SCHEME_REGEX = /^https?:\\/\\//;\n\n private readonly weightPathPrefix: string;\n private readonly onProgress: OnProgressCallback;\n\n constructor(path: string, loadOptions?: LoadOptions) {\n if (loadOptions == null) {\n loadOptions = {};\n }\n this.weightPathPrefix = loadOptions.weightPathPrefix;\n this.onProgress = loadOptions.onProgress;\n this.weightUrlConverter = loadOptions.weightUrlConverter;\n\n if (loadOptions.fetchFunc != null) {\n assert(\n typeof loadOptions.fetchFunc === 'function',\n () => 'Must pass a function that matches the signature of ' +\n '`fetch` (see ' +\n 'https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)');\n this.fetch = loadOptions.fetchFunc;\n } else {\n this.fetch = env().platform.fetch;\n }\n\n assert(\n path != null && path.length > 0,\n () => 'URL path for http must not be null, undefined or ' +\n 'empty.');\n\n if (Array.isArray(path)) {\n assert(\n path.length === 2,\n () => 'URL paths for http must have a length of 2, ' +\n `(actual length is ${path.length}).`);\n }\n this.path = path;\n\n if (loadOptions.requestInit != null &&\n loadOptions.requestInit.body != null) {\n throw new Error(\n 'requestInit is expected to have no pre-existing body, but has one.');\n }\n this.requestInit = loadOptions.requestInit || {};\n }\n\n async save(modelArtifacts: ModelArtifacts): Promise {\n if (modelArtifacts.modelTopology instanceof ArrayBuffer) {\n throw new Error(\n 'BrowserHTTPRequest.save() does not support saving model topology ' +\n 'in binary formats yet.');\n }\n\n const init = Object.assign({method: this.DEFAULT_METHOD}, this.requestInit);\n init.body = new FormData();\n\n const weightsManifest: WeightsManifestConfig = [{\n paths: ['./model.weights.bin'],\n weights: modelArtifacts.weightSpecs,\n }];\n const modelTopologyAndWeightManifest: ModelJSON = {\n modelTopology: modelArtifacts.modelTopology,\n format: modelArtifacts.format,\n generatedBy: modelArtifacts.generatedBy,\n convertedBy: modelArtifacts.convertedBy,\n weightsManifest\n };\n if (modelArtifacts.signature != null) {\n modelTopologyAndWeightManifest.signature = modelArtifacts.signature;\n }\n if (modelArtifacts.userDefinedMetadata != null) {\n modelTopologyAndWeightManifest.userDefinedMetadata =\n modelArtifacts.userDefinedMetadata;\n }\n if (modelArtifacts.modelInitializer != null) {\n modelTopologyAndWeightManifest.modelInitializer =\n modelArtifacts.modelInitializer;\n }\n\n init.body.append(\n 'model.json',\n new Blob(\n [JSON.stringify(modelTopologyAndWeightManifest)],\n {type: JSON_TYPE}),\n 'model.json');\n\n if (modelArtifacts.weightData != null) {\n init.body.append(\n 'model.weights.bin',\n new Blob([modelArtifacts.weightData], {type: OCTET_STREAM_MIME_TYPE}),\n 'model.weights.bin');\n }\n\n const response = await this.fetch(this.path, init);\n\n if (response.ok) {\n return {\n modelArtifactsInfo: getModelArtifactsInfoForJSON(modelArtifacts),\n responses: [response],\n };\n } else {\n throw new Error(\n `BrowserHTTPRequest.save() failed due to HTTP response status ` +\n `${response.status}.`);\n }\n }\n\n /**\n * Load model artifacts via HTTP request(s).\n *\n * See the documentation to `tf.io.http` for details on the saved\n * artifacts.\n *\n * @returns The loaded model artifacts (if loading succeeds).\n */\n async load(): Promise {\n const modelConfigRequest = await this.fetch(this.path, this.requestInit);\n\n if (!modelConfigRequest.ok) {\n throw new Error(\n `Request to ${this.path} failed with status code ` +\n `${modelConfigRequest.status}. Please verify this URL points to ` +\n `the model JSON of the model to load.`);\n }\n let modelConfig: ModelJSON;\n try {\n modelConfig = await modelConfigRequest.json();\n } catch (e) {\n let message = `Failed to parse model JSON of response from ${this.path}.`;\n // TODO(nsthorat): Remove this after some time when we're comfortable that\n // .pb files are mostly gone.\n if (this.path.endsWith('.pb')) {\n message += ' Your path contains a .pb file extension. ' +\n 'Support for .pb models have been removed in TensorFlow.js 1.0 ' +\n 'in favor of .json models. You can re-convert your Python ' +\n 'TensorFlow model using the TensorFlow.js 1.0 conversion scripts ' +\n 'or you can convert your.pb models with the \\'pb2json\\'' +\n 'NPM script in the tensorflow/tfjs-converter repository.';\n } else {\n message += ' Please make sure the server is serving valid ' +\n 'JSON for this request.';\n }\n throw new Error(message);\n }\n const modelTopology = modelConfig.modelTopology;\n const weightsManifest = modelConfig.weightsManifest;\n const generatedBy = modelConfig.generatedBy;\n const convertedBy = modelConfig.convertedBy;\n const format = modelConfig.format;\n const signature = modelConfig.signature;\n const userDefinedMetadata = modelConfig.userDefinedMetadata;\n\n // We do not allow both modelTopology and weightsManifest to be missing.\n if (modelTopology == null && weightsManifest == null) {\n throw new Error(\n `The JSON from HTTP path ${this.path} contains neither model ` +\n `topology or manifest for weights.`);\n }\n\n let weightSpecs: WeightsManifestEntry[];\n let weightData: ArrayBuffer;\n if (weightsManifest != null) {\n const results = await this.loadWeights(weightsManifest);\n [weightSpecs, weightData] = results;\n }\n\n const artifacts: ModelArtifacts = {\n modelTopology,\n weightSpecs,\n weightData,\n generatedBy,\n convertedBy,\n format\n };\n\n if (signature != null) {\n artifacts.signature = signature;\n }\n if (userDefinedMetadata != null) {\n artifacts.userDefinedMetadata = userDefinedMetadata;\n }\n\n const initializer = modelConfig.modelInitializer;\n if (initializer) {\n artifacts.modelInitializer = initializer;\n }\n\n return artifacts;\n }\n\n private async loadWeights(weightsManifest: WeightsManifestConfig):\n Promise<[WeightsManifestEntry[], ArrayBuffer]> {\n const weightPath = Array.isArray(this.path) ? this.path[1] : this.path;\n const [prefix, suffix] = parseUrl(weightPath);\n const pathPrefix = this.weightPathPrefix || prefix;\n\n const weightSpecs = [];\n for (const entry of weightsManifest) {\n weightSpecs.push(...entry.weights);\n }\n\n const fetchURLs: string[] = [];\n const urlPromises: Array> = [];\n for (const weightsGroup of weightsManifest) {\n for (const path of weightsGroup.paths) {\n if (this.weightUrlConverter != null) {\n urlPromises.push(this.weightUrlConverter(path));\n } else {\n fetchURLs.push(pathPrefix + path + suffix);\n }\n }\n }\n\n if (this.weightUrlConverter) {\n fetchURLs.push(...await Promise.all(urlPromises));\n }\n\n const buffers = await loadWeightsAsArrayBuffer(fetchURLs, {\n requestInit: this.requestInit,\n fetchFunc: this.fetch,\n onProgress: this.onProgress\n });\n return [weightSpecs, concatenateArrayBuffers(buffers)];\n }\n}\n\n/**\n * Extract the prefix and suffix of the url, where the prefix is the path before\n * the last file, and suffix is the search params after the last file.\n * ```\n * const url = 'http://tfhub.dev/model/1/tensorflowjs_model.pb?tfjs-format=file'\n * [prefix, suffix] = parseUrl(url)\n * // prefix = 'http://tfhub.dev/model/1/'\n * // suffix = '?tfjs-format=file'\n * ```\n * @param url the model url to be parsed.\n */\nexport function parseUrl(url: string): [string, string] {\n const lastSlash = url.lastIndexOf('/');\n const lastSearchParam = url.lastIndexOf('?');\n const prefix = url.substring(0, lastSlash);\n const suffix =\n lastSearchParam > lastSlash ? url.substring(lastSearchParam) : '';\n return [prefix + '/', suffix];\n}\n\nexport function isHTTPScheme(url: string): boolean {\n return url.match(HTTPRequest.URL_SCHEME_REGEX) != null;\n}\n\nexport const httpRouter: IORouter =\n (url: string, loadOptions?: LoadOptions) => {\n if (typeof fetch === 'undefined' &&\n (loadOptions == null || loadOptions.fetchFunc == null)) {\n // `http` uses `fetch` or `node-fetch`, if one wants to use it in\n // an environment that is not the browser or node they have to setup a\n // global fetch polyfill.\n return null;\n } else {\n let isHTTP = true;\n if (Array.isArray(url)) {\n isHTTP = url.every(urlItem => isHTTPScheme(urlItem));\n } else {\n isHTTP = isHTTPScheme(url);\n }\n if (isHTTP) {\n return http(url, loadOptions);\n }\n }\n return null;\n };\nIORouterRegistry.registerSaveRouter(httpRouter);\nIORouterRegistry.registerLoadRouter(httpRouter);\n\n/**\n * Creates an IOHandler subtype that sends model artifacts to HTTP server.\n *\n * An HTTP request of the `multipart/form-data` mime type will be sent to the\n * `path` URL. The form data includes artifacts that represent the topology\n * and/or weights of the model. In the case of Keras-style `tf.Model`, two\n * blobs (files) exist in form-data:\n * - A JSON file consisting of `modelTopology` and `weightsManifest`.\n * - A binary weights file consisting of the concatenated weight values.\n * These files are in the same format as the one generated by\n * [tfjs_converter](https://js.tensorflow.org/tutorials/import-keras.html).\n *\n * The following code snippet exemplifies the client-side code that uses this\n * function:\n *\n * ```js\n * const model = tf.sequential();\n * model.add(\n * tf.layers.dense({units: 1, inputShape: [100], activation: 'sigmoid'}));\n *\n * const saveResult = await model.save(tf.io.http(\n * 'http://model-server:5000/upload', {requestInit: {method: 'PUT'}}));\n * console.log(saveResult);\n * ```\n *\n * If the default `POST` method is to be used, without any custom parameters\n * such as headers, you can simply pass an HTTP or HTTPS URL to `model.save`:\n *\n * ```js\n * const saveResult = await model.save('http://model-server:5000/upload');\n * ```\n *\n * The following GitHub Gist\n * https://gist.github.com/dsmilkov/1b6046fd6132d7408d5257b0976f7864\n * implements a server based on [flask](https://github.com/pallets/flask) that\n * can receive the request. Upon receiving the model artifacts via the requst,\n * this particular server reconsistutes instances of [Keras\n * Models](https://keras.io/models/model/) in memory.\n *\n *\n * @param path A URL path to the model.\n * Can be an absolute HTTP path (e.g.,\n * 'http://localhost:8000/model-upload)') or a relative path (e.g.,\n * './model-upload').\n * @param requestInit Request configurations to be used when sending\n * HTTP request to server using `fetch`. It can contain fields such as\n * `method`, `credentials`, `headers`, `mode`, etc. See\n * https://developer.mozilla.org/en-US/docs/Web/API/Request/Request\n * for more information. `requestInit` must not have a body, because the\n * body will be set by TensorFlow.js. File blobs representing the model\n * topology (filename: 'model.json') and the weights of the model (filename:\n * 'model.weights.bin') will be appended to the body. If `requestInit` has a\n * `body`, an Error will be thrown.\n * @param loadOptions Optional configuration for the loading. It includes the\n * following fields:\n * - weightPathPrefix Optional, this specifies the path prefix for weight\n * files, by default this is calculated from the path param.\n * - fetchFunc Optional, custom `fetch` function. E.g., in Node.js,\n * the `fetch` from node-fetch can be used here.\n * - onProgress Optional, progress callback function, fired periodically\n * before the load is completed.\n * @returns An instance of `IOHandler`.\n *\n * @doc {\n * heading: 'Models',\n * subheading: 'Loading',\n * namespace: 'io',\n * ignoreCI: true\n * }\n */\nexport function http(path: string, loadOptions?: LoadOptions): IOHandler {\n return new HTTPRequest(path, loadOptions);\n}\n\n/**\n * Deprecated. Use `tf.io.http`.\n * @param path\n * @param loadOptions\n */\nexport function browserHTTPRequest(\n path: string, loadOptions?: LoadOptions): IOHandler {\n return http(path, loadOptions);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * IOHandlers that pass through the in-memory ModelArtifacts format.\n */\n\nimport {IOHandler, ModelArtifacts, SaveResult, TrainingConfig, WeightsManifestEntry} from './types';\n\nclass PassthroughLoader implements IOHandler {\n constructor(private readonly modelArtifacts?: ModelArtifacts) {}\n\n async load(): Promise {\n return this.modelArtifacts;\n }\n}\n\nclass PassthroughSaver implements IOHandler {\n constructor(\n private readonly saveHandler:\n (artifacts: ModelArtifacts) => Promise) {}\n\n async save(modelArtifacts: ModelArtifacts) {\n return this.saveHandler(modelArtifacts);\n }\n}\n\n/**\n * Creates an IOHandler that loads model artifacts from memory.\n *\n * When used in conjunction with `tf.loadLayersModel`, an instance of\n * `tf.LayersModel` (Keras-style) can be constructed from the loaded artifacts.\n *\n * ```js\n * const model = await tf.loadLayersModel(tf.io.fromMemory(\n * modelTopology, weightSpecs, weightData));\n * ```\n *\n * @param modelArtifacts a object containing model topology (i.e., parsed from\n * the JSON format).\n * @param weightSpecs An array of `WeightsManifestEntry` objects describing the\n * names, shapes, types, and quantization of the weight data.\n * @param weightData A single `ArrayBuffer` containing the weight data,\n * concatenated in the order described by the weightSpecs.\n * @param trainingConfig Model training configuration. Optional.\n *\n * @returns A passthrough `IOHandler` that simply loads the provided data.\n */\nexport function fromMemory(\n modelArtifacts: {}|ModelArtifacts, weightSpecs?: WeightsManifestEntry[],\n weightData?: ArrayBuffer, trainingConfig?: TrainingConfig): IOHandler {\n if (arguments.length === 1) {\n const isModelArtifacts =\n (modelArtifacts as ModelArtifacts).modelTopology != null ||\n (modelArtifacts as ModelArtifacts).weightSpecs != null;\n if (isModelArtifacts) {\n return new PassthroughLoader(modelArtifacts as ModelArtifacts);\n } else {\n // Legacy support: with only modelTopology.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({modelTopology: modelArtifacts as {}});\n }\n } else {\n // Legacy support.\n // TODO(cais): Remove this deprecated API.\n console.warn(\n 'Please call tf.io.fromMemory() with only one argument. ' +\n 'The argument should be of type ModelArtifacts. ' +\n 'The multi-argument signature of tf.io.fromMemory() has been ' +\n 'deprecated and will be removed in a future release.');\n return new PassthroughLoader({\n modelTopology: modelArtifacts as {},\n weightSpecs,\n weightData,\n trainingConfig\n });\n }\n}\n\n/**\n * Creates an IOHandler that passes saved model artifacts to a callback.\n *\n * ```js\n * function handleSave(artifacts) {\n * // ... do something with the artifacts ...\n * return {modelArtifactsInfo: {...}, ...};\n * }\n *\n * const saveResult = model.save(tf.io.withSaveHandler(handleSave));\n * ```\n *\n * @param saveHandler A function that accepts a `ModelArtifacts` and returns a\n * `SaveResult`.\n */\nexport function withSaveHandler(\n saveHandler: (artifacts: ModelArtifacts) =>\n Promise): IOHandler {\n return new PassthroughSaver(saveHandler);\n}\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\n/**\n * Exports under the tf.math.* namespace.\n */\n\nimport {confusionMatrix} from './ops/confusion_matrix';\n\nexport {confusionMatrix};\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\nimport {ENGINE} from '../engine';\nimport {BatchMatMul, BatchMatMulAttrs, BatchMatMulInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {makeTypesMatch} from '../tensor_util';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Computes the dot product of two matrices, A * B. These must be matrices.\n *\n * ```js\n * const a = tf.tensor2d([1, 2], [1, 2]);\n * const b = tf.tensor2d([1, 2, 3, 4], [2, 2]);\n *\n * a.matMul(b).print(); // or tf.matMul(a, b)\n * ```\n * @param a First matrix in dot product operation.\n * @param b Second matrix in dot product operation.\n * @param transposeA If true, `a` is transposed before multiplication.\n * @param transposeB If true, `b` is transposed before multiplication.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction matMul_(\n a: Tensor|TensorLike, b: Tensor|TensorLike, transposeA = false,\n transposeB = false): T {\n let $a = convertToTensor(a, 'a', 'matMul');\n let $b = convertToTensor(b, 'b', 'matMul');\n [$a, $b] = makeTypesMatch($a, $b);\n\n const inputs: BatchMatMulInputs = {a: $a, b: $b};\n const attrs: BatchMatMulAttrs = {transposeA, transposeB};\n\n return ENGINE.runKernel(\n BatchMatMul, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const matMul = op({matMul_});\n", "/**\n * @license\n * Copyright 2020 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {OneHot, OneHotAttrs, OneHotInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\n\nimport {op} from './operation';\n\n/**\n * Creates a one-hot `tf.Tensor`. The locations represented by `indices` take\n * value `onValue` (defaults to 1), while all other locations take value\n * `offValue` (defaults to 0). If `indices` is rank `R`, the output has rank\n * `R+1` with the last axis of size `depth`.\n *\n * ```js\n * tf.oneHot(tf.tensor1d([0, 1], 'int32'), 3).print();\n * ```\n *\n * @param indices `tf.Tensor` of indices with dtype `int32`.\n * @param depth The depth of the one hot dimension.\n * @param onValue A number used to fill in the output when the index matches\n * the location.\n * @param offValue A number used to fill in the output when the index does\n * not match the location.\n *\n * @doc {heading: 'Tensors', subheading: 'Creation'}\n */\nfunction oneHot_(\n indices: Tensor|TensorLike, depth: number, onValue = 1,\n offValue = 0): Tensor {\n if (depth < 2) {\n throw new Error(`Error in oneHot: depth must be >=2, but it is ${depth}`);\n }\n const $indices = convertToTensor(indices, 'indices', 'oneHot', 'int32');\n\n const inputs: OneHotInputs = {indices: $indices};\n const attrs: OneHotAttrs = {depth, onValue, offValue};\n\n return ENGINE.runKernel(\n OneHot, inputs as unknown as NamedTensorMap,\n attrs as unknown as NamedAttrMap);\n}\n\nexport const oneHot = op({oneHot_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {Transpose, TransposeAttrs, TransposeInputs} from '../kernel_names';\nimport {NamedAttrMap} from '../kernel_registry';\nimport {Tensor} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {op} from './operation';\n\n/**\n * Transposes the `tf.Tensor`. Permutes the dimensions according to `perm`.\n *\n * The returned `tf.Tensor`'s dimension `i` will correspond to the input\n * dimension `perm[i]`. If `perm` is not given, it is set to `[n-1...0]`,\n * where `n` is the rank of the input `tf.Tensor`. Hence by default, this\n * operation performs a regular matrix transpose on 2-D input `tf.Tensor`s.\n *\n * ```js\n * const a = tf.tensor2d([1, 2, 3, 4, 5, 6], [2, 3]);\n *\n * a.transpose().print(); // or tf.transpose(a)\n * ```\n *\n * @param x The tensor to transpose.\n * @param perm The permutation of the dimensions of a.\n *\n * @doc {heading: 'Operations', subheading: 'Matrices'}\n */\nfunction transpose_(x: T|TensorLike, perm?: number[]): T {\n const $x = convertToTensor(x, 'x', 'transpose');\n\n if (perm == null) {\n perm = $x.shape.map((s, i) => i).reverse();\n }\n util.assert(\n $x.rank === perm.length,\n () => `Error in transpose: rank of input ${$x.rank} ` +\n `must match length of perm ${perm}.`);\n perm.forEach(axis => {\n util.assert(\n axis >= 0 && axis < $x.rank,\n () => `All entries in 'perm' must be between 0 and ${$x.rank - 1}` +\n ` but got ${perm}`);\n });\n\n if ($x.rank <= 1) {\n return $x.clone();\n }\n\n const inputs: TransposeInputs = {x: $x};\n const attrs: TransposeAttrs = {perm};\n\n return ENGINE.runKernel(\n Transpose, inputs as {} as NamedTensorMap, attrs as {} as NamedAttrMap);\n}\n\nexport const transpose = op({transpose_});\n", "/**\n * @license\n * Copyright 2018 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {Tensor1D, Tensor2D} from '../tensor';\nimport {convertToTensor} from '../tensor_util_env';\nimport {TensorLike} from '../types';\nimport * as util from '../util';\n\nimport {cast} from './cast';\nimport {matMul} from './mat_mul';\nimport {oneHot} from './one_hot';\nimport {op} from './operation';\nimport {transpose} from './transpose';\n\n/**\n * Computes the confusion matrix from true labels and predicted labels.\n *\n * ```js\n * const labels = tf.tensor1d([0, 1, 2, 1, 0], 'int32');\n * const predictions = tf.tensor1d([0, 2, 2, 1, 0], 'int32');\n * const numClasses = 3;\n * const out = tf.math.confusionMatrix(labels, predictions, numClasses);\n * out.print();\n * // Expected output matrix:\n * // [[2, 0, 0],\n * // [0, 1, 1],\n * // [0, 0, 1]]\n * ```\n *\n * @param labels The target labels, assumed to be 0-based integers\n * for the classes. The shape is `[numExamples]`, where\n * `numExamples` is the number of examples included.\n * @param predictions The predicted classes, assumed to be\n * 0-based integers for the classes. Must have the same shape as `labels`.\n * @param numClasses Number of all classes, as an integer.\n * Its value must be larger than the largest element in `labels` and\n * `predictions`.\n * @returns The confusion matrix as a int32-type 2D tensor. The value at\n * row `r` and column `c` is the number of times examples of actual class\n * `r` were predicted as class `c`.\n *\n * @doc {heading: 'Operations', subheading: 'Evaluation'}\n */\nexport function confusionMatrix_(\n labels: Tensor1D|TensorLike, predictions: Tensor1D|TensorLike,\n numClasses: number): Tensor2D {\n const $labels = convertToTensor(labels, 'labels', 'confusionMatrix');\n const $predictions =\n convertToTensor(predictions, 'predictions', 'confusionMatrix');\n\n util.assert(\n numClasses == null || numClasses > 0 && Number.isInteger(numClasses),\n () => `If provided, numClasses must be a positive integer, ` +\n `but got ${numClasses}`);\n util.assert(\n $labels.rank === 1,\n () => `Expected the rank of labels to be 1, but got ${$labels.rank}`);\n util.assert(\n $predictions.rank === 1,\n () => `Expected the rank of predictions to be 1, ` +\n `but got ${$predictions.rank}`);\n util.assert(\n $labels.shape[0] === $predictions.shape[0],\n () => `Mismatch in the number of examples: ` +\n `${$labels.shape[0]} vs. ${$predictions.shape[0]}. ` +\n `Labels and predictions should have the same number of elements.`);\n util.assert(\n numClasses > 0 && Number.isInteger(numClasses),\n () => `numClasses is required to be a positive integer, but got ` +\n `${numClasses}`);\n // TODO(cais): In the future, if oneHot supports tensors inputs for\n // `numClasses`, `confusionMatrix` can make `numClasses` optional.\n\n const oneHotLabels = oneHot(cast($labels, 'int32'), numClasses) as Tensor2D;\n const oneHotPredictions =\n oneHot(cast($predictions, 'int32'), numClasses) as Tensor2D;\n const oneHotLabelsT: Tensor2D = transpose(oneHotLabels);\n const product: Tensor2D = matMul(oneHotLabelsT, oneHotPredictions);\n return cast(product, 'int32');\n}\n\nexport const confusionMatrix = op({confusionMatrix_});\n", "/**\n * @license\n * Copyright 2019 Google LLC. All Rights Reserved.\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n * =============================================================================\n */\n\nimport {ENGINE} from '../engine';\nimport {env} from '../environment';\nimport {FromPixels, FromPixelsAttrs, FromPixelsInputs} from '../kernel_names';\nimport {getKernel, NamedAttrMap} from '../kernel_registry';\nimport {Tensor, Tensor2D, Tensor3D} from '../tensor';\nimport {NamedTensorMap} from '../tensor_types';\nimport {convertToTensor} from '../tensor_util_env';\nimport {PixelData, TensorLike} from '../types';\n\nimport {cast} from './cast';\nimport {op} from './operation';\nimport {tensor3d} from './tensor3d';\n\nlet fromPixels2DContext: CanvasRenderingContext2D;\n\n/**\n * Creates a `tf.Tensor` from an image.\n *\n * ```js\n * const image = new ImageData(1, 1);\n * image.data[0] = 100;\n * image.data[1] = 150;\n * image.data[2] = 200;\n * image.data[3] = 255;\n *\n * tf.browser.fromPixels(image).print();\n * ```\n *\n * @param pixels The input image to construct the tensor from. The\n * supported image types are all 4-channel. You can also pass in an image\n * object with following attributes:\n * `{data: Uint8Array; width: number; height: number}`\n * @param numChannels The number of channels of the output tensor. A\n * numChannels value less than 4 allows you to ignore channels. Defaults to\n * 3 (ignores alpha channel of input image).\n *\n * @returns A Tensor3D with the shape `[height, width, numChannels]`.\n *\n * @doc {heading: 'Browser', namespace: 'browser', ignoreCI: true}\n */\nfunction fromPixels_(\n pixels: PixelData|ImageData|HTMLImageElement|HTMLCanvasElement|\n HTMLVideoElement|ImageBitmap,\n numChannels = 3): Tensor3D {\n // Sanity checks.\n if (numChannels > 4) {\n throw new Error(\n 'Cannot construct Tensor with more than 4 channels from pixels.');\n }\n if (pixels == null) {\n throw new Error('pixels passed to tf.browser.fromPixels() can not be null');\n }\n let isPixelData = false;\n let isImageData = false;\n let isVideo = false;\n let isImage = false;\n let isCanvasLike = false;\n let isImageBitmap = false;\n if ((pixels as PixelData).data instanceof Uint8Array) {\n isPixelData = true;\n } else if (\n typeof (ImageData) !== 'undefined' && pixels instanceof ImageData) {\n isImageData = true;\n } else if (\n typeof (HTMLVideoElement) !== 'undefined' &&\n pixels instanceof HTMLVideoElement) {\n isVideo = true;\n } else if (\n typeof (HTMLImageElement) !== 'undefined' &&\n pixels instanceof HTMLImageElement) {\n isImage = true;\n // tslint:disable-next-line: no-any\n } else if ((pixels as any).getContext != null) {\n isCanvasLike = true;\n } else if (\n typeof (ImageBitmap) !== 'undefined' && pixels instanceof ImageBitmap) {\n isImageBitmap = true;\n } else {\n throw new Error(\n 'pixels passed to tf.browser.fromPixels() must be either an ' +\n `HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData ` +\n `in browser, or OffscreenCanvas, ImageData in webworker` +\n ` or {data: Uint32Array, width: number, height: number}, ` +\n `but was ${(pixels as {}).constructor.name}`);\n }\n if (isVideo) {\n const HAVE_CURRENT_DATA_READY_STATE = 2;\n if (isVideo &&\n (pixels as HTMLVideoElement).readyState <\n HAVE_CURRENT_DATA_READY_STATE) {\n throw new Error(\n 'The video element has not loaded data yet. Please wait for ' +\n '`loadeddata` event on the