implement event emitters

pull/356/head
Vladimir Mandic 2021-09-11 16:00:16 -04:00
parent cd77ccdef6
commit 34a3a42fba
6 changed files with 222 additions and 50 deletions

View File

@ -195,11 +195,11 @@ draw output on screen using internal draw helper functions
// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config);
// select input HTMLVideoElement and output HTMLCanvasElement from page
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
function detectVideo() {
// select input HTMLVideoElement and output HTMLCanvasElement from page
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
// perform processing using default configuration
human.detect(inputVideo).then((result) => {
// result object will contain detected details
@ -225,10 +225,10 @@ or using `async/await`:
// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config); // create instance of Human
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
async function detectVideo() {
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
const result = await human.detect(inputVideo); // run detection
human.draw.all(outputCanvas, result); // draw all results
requestAnimationFrame(detectVideo); // run loop
@ -237,6 +237,27 @@ async function detectVideo() {
detectVideo(); // start loop
```
or using `Events`:
```js
// create instance of human with simple configuration using default values
const config = { backend: 'webgl' };
const human = new Human(config); // create instance of Human
const inputVideo = document.getElementById('video-id');
const outputCanvas = document.getElementById('canvas-id');
human.events.addEventListener('detect', () => { // event gets triggered when detect is complete
human.draw.all(outputCanvas, human.result); // draw all results
});
function detectVideo() {
human.detect(inputVideo) // run detection
.then(() => requestAnimationFrame(detectVideo)); // upon detect complete start processing of the next frame
}
detectVideo(); // start loop
```
or using interpolated results for smooth video processing by separating detection and drawing loops:
```js

View File

@ -7,8 +7,6 @@ const fs = require('fs');
const process = require('process');
const canvas = require('canvas');
let fetch; // fetch is dynamically imported later
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
@ -51,25 +49,26 @@ async function init() {
}
async function detect(input, output) {
// read input image file and create tensor to be used for processing
// read input image from file or url into buffer
let buffer;
log.info('Loading image:', input);
if (input.startsWith('http:') || input.startsWith('https:')) {
const fetch = (await import('node-fetch')).default;
const res = await fetch(input);
if (res && res.ok) buffer = await res.buffer();
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
} else {
buffer = fs.readFileSync(input);
}
if (!buffer) return {};
// decode image using tfjs-node so we don't need external depenencies
// can also be done using canvas.js or some other 3rd party image library
if (!buffer) return {};
/*
const tensor = human.tf.tidy(() => {
const decode = human.tf.node.decodeImage(buffer, 3);
let expand;
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
const channels = human.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels
const channels = human.tf.split(decode, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
} else {
@ -78,6 +77,22 @@ async function detect(input, output) {
const cast = human.tf.cast(expand, 'float32');
return cast;
});
*/
// decode image using canvas library
const inputImage = await canvas.loadImage(input);
const inputCanvas = new canvas.Canvas(inputImage.width, inputImage.height, 'image');
const inputCtx = inputCanvas.getContext('2d');
inputCtx.drawImage(inputImage, 0, 0);
const inputData = inputCtx.getImageData(0, 0, inputImage.width, inputImage.height);
const tensor = human.tf.tidy(() => {
const data = tf.tensor(Array.from(inputData.data), [inputImage.width, inputImage.height, 4]);
const channels = human.tf.split(data, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
const expand = human.tf.reshape(rgb, [1, data.shape[0], data.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
const cast = human.tf.cast(expand, 'float32');
return cast;
});
// image shape contains image dimensions and depth
log.state('Processing:', tensor['shape']);
@ -130,7 +145,6 @@ async function detect(input, output) {
async function main() {
log.header();
log.info('Current folder:', process.env.PWD);
fetch = (await import('node-fetch')).default;
await init();
const input = process.argv[2];
const output = process.argv[3];

110
demo/nodejs/node-event.js Normal file
View File

@ -0,0 +1,110 @@
/**
* Human demo for NodeJS
*/
const log = require('@vladmandic/pilogger');
const fs = require('fs');
const process = require('process');
let fetch; // fetch is dynamically imported later
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
// load specific version of Human library that matches TensorFlow mode
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
let human = null;
const myConfig = {
backend: 'tensorflow',
modelBasePath: 'file://models/',
debug: false,
async: true,
filter: { enabled: false },
face: {
enabled: true,
detector: { enabled: true },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
},
hand: { enabled: true },
body: { enabled: true },
object: { enabled: true },
};
async function detect(input) {
// read input image from file or url into buffer
let buffer;
log.info('Loading image:', input);
if (input.startsWith('http:') || input.startsWith('https:')) {
fetch = (await import('node-fetch')).default;
const res = await fetch(input);
if (res && res.ok) buffer = await res.buffer();
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
} else {
buffer = fs.readFileSync(input);
}
// decode image using tfjs-node so we don't need external depenencies
if (!buffer) return;
const tensor = human.tf.tidy(() => {
const decode = human.tf.node.decodeImage(buffer, 3);
let expand;
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
const channels = human.tf.split(decode, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
} else {
expand = human.tf.expandDims(decode, 0);
}
const cast = human.tf.cast(expand, 'float32');
return cast;
});
// run detection
await human.detect(tensor, myConfig);
human.tf.dispose(tensor); // dispose image tensor as we no longer need it
}
async function main() {
log.header();
human = new Human(myConfig);
human.events.addEventListener('warmup', () => {
log.info('Event Warmup');
});
human.events.addEventListener('load', () => {
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Event Loaded:', loaded, human.tf.engine().memory());
});
human.events.addEventListener('image', () => {
log.info('Event Image:', human.process.tensor.shape);
});
human.events.addEventListener('detect', () => {
log.data('Event Detected:');
const persons = human.result.persons;
for (let i = 0; i < persons.length; i++) {
const face = persons[i].face;
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
const body = persons[i].body;
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);
}
});
await human.tf.ready(); // wait until tf is ready
const input = process.argv[2]; // process input
if (input) await detect(input);
else log.error('Missing <input>');
}
main();

View File

@ -76,8 +76,10 @@ export class Human {
* - Progresses through: 'config', 'check', 'backend', 'load', 'run:<model>', 'idle'
*/
state: string;
/** @internal: Instance of current image being processed */
image: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };
/** process input and return tensor and canvas */
image: typeof image.process;
/** currenty processed image tensor and canvas */
process: { tensor: Tensor | null, canvas: OffscreenCanvas | HTMLCanvasElement | null };
/** @internal: Instance of TensorFlow/JS used by Human
* - Can be embedded or externally provided
*/
@ -87,7 +89,7 @@ export class Human {
* - face: draw detected faces
* - body: draw detected people and body parts
* - hand: draw detected hands and hand parts
* - canvas: draw processed canvas which is a processed copy of the input
* - canvas: draw this.processed canvas which is a this.processed copy of the input
* - all: meta-function that performs: canvas, face, body, hand
*/
draw: {
@ -126,6 +128,17 @@ export class Human {
faceres: GraphModel | null,
segmentation: GraphModel | null,
};
/** Container for events dispatched by Human
*
* Possible events:
* - `create`: triggered when Human object is instantiated
* - `load`: triggered when models are loaded (explicitly or on-demand)
* - `image`: triggered when input image is this.processed
* - `result`: triggered when detection is complete
* - `warmup`: triggered when warmup is complete
*/
events: EventTarget;
/** Reference face triangualtion array of 468 points, used for triangle references between points */
faceTriangulation: typeof facemesh.triangulation;
/** Refernce UV map of 468 values, used for 3D mapping of the face mesh */
@ -161,6 +174,7 @@ export class Human {
this.#firstRun = true;
this.#lastCacheDiff = 0;
this.performance = { backend: 0, load: 0, image: 0, frames: 0, cached: 0, changed: 0, total: 0, draw: 0 };
this.events = new EventTarget();
// object that contains all initialized models
this.models = {
face: null,
@ -179,15 +193,17 @@ export class Human {
segmentation: null,
};
this.result = { face: [], body: [], hand: [], gesture: [], object: [], performance: {}, timestamp: 0, persons: [] };
// export access to image processing
// export access to image this.processing
// @ts-ignore eslint-typescript cannot correctly infer type in anonymous function
this.image = (input: Input) => image.process(input, this.config);
this.process = { tensor: null, canvas: null };
// export raw access to underlying models
this.faceTriangulation = facemesh.triangulation;
this.faceUVMap = facemesh.uvmap;
// include platform info
this.sysinfo = sysinfo.info();
this.#lastInputSum = 1;
this.#emit('create');
}
// helper function: measure tensor leak
@ -228,9 +244,9 @@ export class Human {
}
/**
* Segmentation method takes any input and returns processed canvas with body segmentation
* Segmentation method takes any input and returns this.processed canvas with body segmentation
* Optional parameter background is used to fill the background with specific input
* Segmentation is not triggered as part of detect process
* Segmentation is not triggered as part of detect this.process
*
* @param input: {@link Input}
* @param background?: {@link Input}
@ -240,7 +256,7 @@ export class Human {
return segmentation.process(input, background, this.config);
}
/** Enhance method performs additional enhacements to face image previously detected for futher processing
/** Enhance method performs additional enhacements to face image previously detected for futher this.processing
* @param input: Tensor as provided in human.result.face[n].tensor
* @returns Tensor
*/
@ -267,6 +283,7 @@ export class Human {
async load(userConfig?: Config | Record<string, unknown>) {
this.state = 'load';
const timeStamp = now();
const count = Object.values(this.models).filter((model) => model).length;
if (userConfig) this.config = mergeDeep(this.config, userConfig) as Config;
if (this.#firstRun) { // print version info on first run and check for correct backend setup
@ -289,10 +306,16 @@ export class Human {
this.#firstRun = false;
}
const loaded = Object.values(this.models).filter((model) => model).length;
if (loaded !== count) this.#emit('load');
const current = Math.trunc(now() - timeStamp);
if (current > (this.performance.load as number || 0)) this.performance.load = current;
}
// emit event
/** @hidden */
#emit = (event: string) => this.events?.dispatchEvent(new Event(event));
// check if backend needs initialization if it changed
/** @hidden */
#checkBackend = async (force = false) => {
@ -433,9 +456,9 @@ export class Human {
/** Main detection method
* - Analyze configuration: {@link Config}
* - Pre-process input: {@link Input}
* - Pre-this.process input: {@link Input}
* - Run inference for all configured models
* - Process and return result: {@link Result}
* - this.process and return result: {@link Result}
*
* @param input: Input
* @param userConfig?: {@link Config}
@ -468,34 +491,35 @@ export class Human {
await this.load();
timeStamp = now();
let process = image.process(input, this.config);
this.process = image.process(input, this.config);
this.performance.image = Math.trunc(now() - timeStamp);
this.analyze('Get Image:');
// run segmentation preprocessing
if (this.config.segmentation.enabled && process && process.tensor) {
// run segmentation prethis.processing
if (this.config.segmentation.enabled && this.process && this.process.tensor) {
this.analyze('Start Segmentation:');
this.state = 'run:segmentation';
timeStamp = now();
await segmentation.predict(process);
await segmentation.predict(this.process);
elapsedTime = Math.trunc(now() - timeStamp);
if (elapsedTime > 0) this.performance.segmentation = elapsedTime;
if (process.canvas) {
if (this.process.canvas) {
// replace input
tf.dispose(process.tensor);
process = image.process(process.canvas, this.config);
tf.dispose(this.process.tensor);
this.process = image.process(this.process.canvas, this.config);
}
this.analyze('End Segmentation:');
}
if (!process || !process.tensor) {
if (!this.process || !this.process.tensor) {
log('could not convert input to tensor');
resolve({ error: 'could not convert input to tensor' });
return;
}
this.#emit('image');
timeStamp = now();
this.config.skipFrame = await this.#skipFrame(process.tensor);
this.config.skipFrame = await this.#skipFrame(this.process.tensor);
if (!this.performance.frames) this.performance.frames = 0;
if (!this.performance.cached) this.performance.cached = 0;
(this.performance.frames as number)++;
@ -512,12 +536,12 @@ export class Human {
// run face detection followed by all models that rely on face bounding box: face mesh, age, gender, emotion
if (this.config.async) {
faceRes = this.config.face.enabled ? face.detectFace(this, process.tensor) : [];
faceRes = this.config.face.enabled ? face.detectFace(this, this.process.tensor) : [];
if (this.performance.face) delete this.performance.face;
} else {
this.state = 'run:face';
timeStamp = now();
faceRes = this.config.face.enabled ? await face.detectFace(this, process.tensor) : [];
faceRes = this.config.face.enabled ? await face.detectFace(this, this.process.tensor) : [];
elapsedTime = Math.trunc(now() - timeStamp);
if (elapsedTime > 0) this.performance.face = elapsedTime;
}
@ -525,18 +549,18 @@ export class Human {
// run body: can be posenet, blazepose, efficientpose, movenet
this.analyze('Start Body:');
if (this.config.async) {
if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(process.tensor, this.config) : [];
if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? posenet.predict(this.process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? blazepose.predict(this.process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? efficientpose.predict(this.process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? movenet.predict(this.process.tensor, this.config) : [];
if (this.performance.body) delete this.performance.body;
} else {
this.state = 'run:body';
timeStamp = now();
if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(process.tensor, this.config) : [];
if (this.config.body.modelPath.includes('posenet')) bodyRes = this.config.body.enabled ? await posenet.predict(this.process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('blazepose')) bodyRes = this.config.body.enabled ? await blazepose.predict(this.process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('efficientpose')) bodyRes = this.config.body.enabled ? await efficientpose.predict(this.process.tensor, this.config) : [];
else if (this.config.body.modelPath.includes('movenet')) bodyRes = this.config.body.enabled ? await movenet.predict(this.process.tensor, this.config) : [];
elapsedTime = Math.trunc(now() - timeStamp);
if (elapsedTime > 0) this.performance.body = elapsedTime;
}
@ -545,12 +569,12 @@ export class Human {
// run handpose
this.analyze('Start Hand:');
if (this.config.async) {
handRes = this.config.hand.enabled ? handpose.predict(process.tensor, this.config) : [];
handRes = this.config.hand.enabled ? handpose.predict(this.process.tensor, this.config) : [];
if (this.performance.hand) delete this.performance.hand;
} else {
this.state = 'run:hand';
timeStamp = now();
handRes = this.config.hand.enabled ? await handpose.predict(process.tensor, this.config) : [];
handRes = this.config.hand.enabled ? await handpose.predict(this.process.tensor, this.config) : [];
elapsedTime = Math.trunc(now() - timeStamp);
if (elapsedTime > 0) this.performance.hand = elapsedTime;
}
@ -559,14 +583,14 @@ export class Human {
// run nanodet
this.analyze('Start Object:');
if (this.config.async) {
if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(process.tensor, this.config) : [];
else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(process.tensor, this.config) : [];
if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? nanodet.predict(this.process.tensor, this.config) : [];
else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? centernet.predict(this.process.tensor, this.config) : [];
if (this.performance.object) delete this.performance.object;
} else {
this.state = 'run:object';
timeStamp = now();
if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(process.tensor, this.config) : [];
else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(process.tensor, this.config) : [];
if (this.config.object.modelPath.includes('nanodet')) objectRes = this.config.object.enabled ? await nanodet.predict(this.process.tensor, this.config) : [];
else if (this.config.object.modelPath.includes('centernet')) objectRes = this.config.object.enabled ? await centernet.predict(this.process.tensor, this.config) : [];
elapsedTime = Math.trunc(now() - timeStamp);
if (elapsedTime > 0) this.performance.object = elapsedTime;
}
@ -586,6 +610,7 @@ export class Human {
this.performance.total = Math.trunc(now() - timeStart);
this.state = 'idle';
const shape = this.process?.tensor?.shape || [];
this.result = {
face: faceRes as Face[],
body: bodyRes as Body[],
@ -593,15 +618,16 @@ export class Human {
gesture: gestureRes,
object: objectRes as Item[],
performance: this.performance,
canvas: process.canvas,
canvas: this.process.canvas,
timestamp: Date.now(),
get persons() { return persons.join(faceRes as Face[], bodyRes as Body[], handRes as Hand[], gestureRes, process?.tensor?.shape); },
get persons() { return persons.join(faceRes as Face[], bodyRes as Body[], handRes as Hand[], gestureRes, shape); },
};
// finally dispose input tensor
tf.dispose(process.tensor);
tf.dispose(this.process.tensor);
// log('Result:', result);
this.#emit('detect');
resolve(this.result);
});
}
@ -700,6 +726,7 @@ export class Human {
else res = await this.#warmupNode();
const t1 = now();
if (this.config.debug) log('Warmup', this.config.warmup, Math.round(t1 - t0), 'ms', res);
this.#emit('warmup');
return res;
}
}

View File

@ -186,7 +186,7 @@ export interface Result {
/** global performance object with timing values for each operation */
performance: Record<string, unknown>,
/** optional processed canvas that can be used to draw input on screen */
canvas?: OffscreenCanvas | HTMLCanvasElement,
canvas?: OffscreenCanvas | HTMLCanvasElement | null,
/** timestamp of detection representing the milliseconds elapsed since the UNIX epoch */
readonly timestamp: number,
/** getter property that returns unified persons object */

View File