mirror of https://github.com/vladmandic/human
cleanup blazepose code
parent
02439d2c53
commit
32247c1b06
|
@ -8,6 +8,7 @@ let model;
|
|||
export async function load(config) {
|
||||
if (!model) {
|
||||
model = await tf.loadGraphModel(config.body.modelPath);
|
||||
// blazepose inputSize is 256x256px, but we can find that out dynamically
|
||||
model.width = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[2].size);
|
||||
model.height = parseInt(model.signature.inputs['input_1:0'].tensorShape.dim[1].size);
|
||||
if (config.debug) log(`load model: ${config.body.modelPath.match(/\/(.*)\./)[1]}`);
|
||||
|
@ -25,31 +26,29 @@ export async function predict(image, config) {
|
|||
// let segmentation; // not used right now since we have keypoints and don't need to go through matrix using strides
|
||||
// let poseflag; // irrelevant
|
||||
let points;
|
||||
if (!config.profile) {
|
||||
if (!config.profile) { // run through profiler or just execute
|
||||
const resT = await model.predict(normalize);
|
||||
// segmentation = resT[0].dataSync();
|
||||
// poseflag = resT[1].dataSync();
|
||||
points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync();
|
||||
points = resT.find((t) => (t.size === 195 || t.size === 155)).dataSync(); // order of output tensors may change between models, full has 195 and upper has 155 items
|
||||
resT.forEach((t) => t.dispose());
|
||||
} else {
|
||||
const profileData = await tf.profile(() => model.predict(normalize));
|
||||
// segmentation = profileData.result[0].dataSync();
|
||||
// poseflag = profileData.result[1].dataSync();
|
||||
points = profileData.result.find((t) => t.size === 195).dataSync(); // find a tensor with 195 items which is 39 points with 5 properties
|
||||
points = profileData.result.find((t) => (t.size === 195 || t.size === 155)).dataSync();
|
||||
profileData.result.forEach((t) => t.dispose());
|
||||
profile.run('blazepose', profileData);
|
||||
}
|
||||
normalize.dispose();
|
||||
const keypoints: Array<{ id, part, position: { x, y, z }, score, presence }> = [];
|
||||
const labels = points.length === 195 ? annotations.full : annotations.upper;
|
||||
const depth = 5;
|
||||
const labels = points.length === 195 ? annotations.full : annotations.upper; // full model has 39 keypoints, upper has 31 keypoints
|
||||
const depth = 5; // each points has x,y,z,visibility,presence
|
||||
for (let i = 0; i < points.length / depth; i++) {
|
||||
keypoints.push({
|
||||
id: i,
|
||||
part: labels[i],
|
||||
position: {
|
||||
x: Math.trunc(imgSize.width * points[depth * i + 0] / 255),
|
||||
y: Math.trunc(imgSize.height * points[depth * i + 1] / 255),
|
||||
x: Math.trunc(imgSize.width * points[depth * i + 0] / 255), // return normalized x value istead of 0..255
|
||||
y: Math.trunc(imgSize.height * points[depth * i + 1] / 255), // return normalized y value istead of 0..255
|
||||
z: Math.trunc(points[depth * i + 2]) + 0, // fix negative zero
|
||||
},
|
||||
score: (100 - Math.trunc(100 / (1 + Math.exp(points[depth * i + 3])))) / 100, // reverse sigmoid value
|
||||
|
@ -61,6 +60,9 @@ export async function predict(image, config) {
|
|||
}
|
||||
|
||||
/*
|
||||
Model card: https://drive.google.com/file/d/10IU-DRP2ioSNjKFdiGbmmQX81xAYj88s/view
|
||||
Download: https://github.com/PINTO0309/PINTO_model_zoo/tree/main/058_BlazePose_Full_Keypoints
|
||||
Model card:
|
||||
- https://drive.google.com/file/d/10IU-DRP2ioSNjKFdiGbmmQX81xAYj88s/view
|
||||
Download:
|
||||
- https://github.com/PINTO0309/PINTO_model_zoo/tree/main/058_BlazePose_Full_Keypoints/10_new_256x256/saved_model/tfjs_model_float16
|
||||
- https://github.com/PINTO0309/PINTO_model_zoo/tree/main/053_BlazePose/20_new_256x256/saved_model/tfjs_model_float16
|
||||
*/
|
||||
|
|
Loading…
Reference in New Issue