added demo node-canvas

pull/356/head
Vladimir Mandic 2021-08-31 14:48:55 -04:00
parent 0759c125ce
commit 2e36f43efb
6 changed files with 60 additions and 123 deletions

View File

@ -9,7 +9,10 @@ Repository: **<git+https://github.com/vladmandic/human.git>**
## Changelog
### **HEAD -> main** 2021/08/23 mandic00@live.com
### **HEAD -> main** 2021/08/31 mandic00@live.com
### **origin/main** 2021/08/31 mandic00@live.com
- implement finger poses in hand detection and gestures
- implemented movenet-multipose model

12
TODO.md
View File

@ -25,12 +25,8 @@ WebGL shader optimizations for faster load and initial detection
Enhanced rotation correction for face detection is not working in NodeJS due to missing kernel op in TFJS
Feature is automatically disabled in NodeJS without user impact
- Backend NodeJS missing kernel op `FlipLeftRight`
<https://github.com/tensorflow/tfjs/issues/4066>
*Target: `Human` v2.2 with `TFJS` v3.9*
- Backend NodeJS missing kernel op `RotateWithOffset`
<https://github.com/tensorflow/tfjs/issues/5473>
*Target: N/A*
<br>
@ -39,15 +35,10 @@ Feature is automatically disabled in NodeJS without user impact
Enhanced rotation correction for hand detection is not working in NodeJS due to missing kernel op in TFJS
Feature is automatically disabled in NodeJS without user impact
- Backend NodeJS missing kernel op `FlipLeftRight`
<https://github.com/tensorflow/tfjs/issues/4066>
*Target: `Human` v2.2 with `TFJS` v3.9*
- Backend NodeJS missing kernel op `RotateWithOffset`
<https://github.com/tensorflow/tfjs/issues/5473>
*Target: N/A*
Hand detection using WASM backend has reduced precision due to math rounding errors in backend
*Target: N/A*
<br>
@ -57,7 +48,6 @@ MoveNet MultiPose model does not work with WASM backend due to missing F32 imple
- Backend WASM missing F32 implementation
<https://github.com/tensorflow/tfjs/issues/5516>
*Target: N/A*
### Object Detection
@ -65,10 +55,8 @@ Object detection using CenterNet or NanoDet models is not working when using WAS
- Backend WASM missing kernel op `Mod`
<https://github.com/tensorflow/tfjs/issues/5110>
*Target: `Human` v2.2 with `TFJS` v3.9*
- Backend WASM missing kernel op `SparseToDense`
<https://github.com/tensorflow/tfjs/issues/4824>
*Target: `Human` v2.2 with `TFJS` v3.9*
### WebGPU Backend

View File

@ -4,13 +4,11 @@
const log = require('@vladmandic/pilogger');
const fs = require('fs');
const path = require('path');
const process = require('process');
const canvas = require('canvas');
let fetch; // fetch is dynamically imported later
// const canvas = require('canvas');
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
@ -23,24 +21,18 @@ let human = null;
const myConfig = {
backend: 'tensorflow',
modelBasePath: 'file://models/',
debug: true,
async: false,
filter: {
enabled: true,
flip: true,
},
debug: false,
async: true,
filter: { enabled: false },
face: {
enabled: true,
detector: { enabled: true, rotation: false },
detector: { enabled: true },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
},
hand: {
enabled: true,
},
// body: { modelPath: 'blazepose.json', enabled: true },
hand: { enabled: true },
body: { enabled: true },
object: { enabled: true },
};
@ -52,14 +44,13 @@ async function init() {
await human.tf.ready();
// pre-load models
log.info('Human:', human.version);
log.info('Active Configuration', human.config);
await human.load();
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Loaded:', loaded);
log.info('Memory state:', human.tf.engine().memory());
}
async function detect(input) {
async function detect(input, output) {
// read input image file and create tensor to be used for processing
let buffer;
log.info('Loading image:', input);
@ -102,59 +93,11 @@ async function detect(input) {
// dispose image tensor as we no longer need it
human.tf.dispose(tensor);
// print data to console
log.data('Results:');
if (result && result.face && result.face.length > 0) {
for (let i = 0; i < result.face.length; i++) {
const face = result.face[i];
const emotion = face.emotion.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
log.data(` Face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} iris:${face.iris}`);
}
} else {
log.data(' Face: N/A');
}
if (result && result.body && result.body.length > 0) {
for (let i = 0; i < result.body.length; i++) {
const body = result.body[i];
log.data(` Body: #${i} score:${body.score} keypoints:${body.keypoints?.length}`);
}
} else {
log.data(' Body: N/A');
}
if (result && result.hand && result.hand.length > 0) {
for (let i = 0; i < result.hand.length; i++) {
const hand = result.hand[i];
log.data(` Hand: #${i} score:${hand.score} keypoints:${hand.keypoints?.length}`);
}
} else {
log.data(' Hand: N/A');
}
if (result && result.gesture && result.gesture.length > 0) {
for (let i = 0; i < result.gesture.length; i++) {
const [key, val] = Object.entries(result.gesture[i]);
log.data(` Gesture: ${key[0]}#${key[1]} gesture:${val[1]}`);
}
} else {
log.data(' Gesture: N/A');
}
if (result && result.object && result.object.length > 0) {
for (let i = 0; i < result.object.length; i++) {
const object = result.object[i];
log.data(` Object: #${i} score:${object.score} label:${object.label}`);
}
} else {
log.data(' Object: N/A');
}
// print data to console
if (result) {
// invoke persons getter
const persons = result.persons;
// write result objects to file
// fs.writeFileSync('result.json', JSON.stringify(result, null, 2));
log.data('Persons:');
log.data('Detected:');
for (let i = 0; i < persons.length; i++) {
const face = persons[i].face;
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
@ -164,26 +107,23 @@ async function detect(input) {
}
}
return result;
}
// load and draw original image
const outputCanvas = new canvas.Canvas(tensor.shape[2], tensor.shape[1], 'image'); // decoded tensor shape tells us width and height
const ctx = outputCanvas.getContext('2d');
const original = await canvas.loadImage(buffer); // we already have input as buffer, so lets reuse it
ctx.drawImage(original, 0, 0, outputCanvas.width, outputCanvas.height); // draw original to new canvas
async function test() {
process.on('unhandledRejection', (err) => {
// @ts-ignore // no idea if exception message is compelte
log.error(err?.message || err || 'no error message');
});
// draw human results on canvas
human.setCanvas(outputCanvas); // tell human to use this canvas
human.draw.all(outputCanvas, result); // human will draw results as overlays on canvas
// test with embedded full body image
let result;
// write canvas to new image file
const out = fs.createWriteStream(output);
out.on('finish', () => log.state('Created output image:', output));
out.on('error', (err) => log.error('Error creating image:', output, err));
const stream = outputCanvas.createJPEGStream({ quality: 0.5, progressive: true, chromaSubsampling: true });
stream.pipe(out);
log.state('Processing embedded warmup image: face');
myConfig.warmup = 'face';
result = await human.warmup(myConfig);
log.state('Processing embedded warmup image: full');
myConfig.warmup = 'full';
result = await human.warmup(myConfig);
// no need to print results as they are printed to console during detection from within the library due to human.config.debug set
return result;
}
@ -192,26 +132,14 @@ async function main() {
log.info('Current folder:', process.env.PWD);
fetch = (await import('node-fetch')).default;
await init();
const f = process.argv[2];
if (process.argv.length !== 3) {
log.warn('Parameters: <input image | folder> missing');
await test();
} else if (!fs.existsSync(f) && !f.startsWith('http')) {
const input = process.argv[2];
const output = process.argv[3];
if (process.argv.length !== 4) {
log.error('Parameters: <input-image> <output-image> missing');
} else if (!fs.existsSync(input) && !input.startsWith('http')) {
log.error(`File not found: ${process.argv[2]}`);
} else {
if (fs.existsSync(f)) {
const stat = fs.statSync(f);
if (stat.isDirectory()) {
const dir = fs.readdirSync(f);
for (const file of dir) {
await detect(path.join(f, file));
}
} else {
await detect(f);
}
} else {
await detect(f);
}
await detect(input, output);
}
}

View File

@ -66,6 +66,19 @@ export const options: DrawOptions = {
bufferedOutput: <boolean>true,
};
let Canvas;
export function setCanvas(obj) {
if (obj.getContext) Canvas = obj;
else throw new Error('Human: Canvas is not functional');
}
const checkCanvas = (input) => {
if ((typeof HTMLCanvasElement !== 'undefined') && (input instanceof HTMLCanvasElement)) return true;
if (typeof Canvas !== 'undefined') return true;
return false;
};
const rad2deg = (theta) => Math.round((theta * 180) / Math.PI);
function point(ctx, x, y, z = 0, localOptions) {
@ -137,7 +150,7 @@ function curves(ctx, points: [number, number, number?][] = [], localOptions) {
export async function gesture(inCanvas: HTMLCanvasElement, result: Array<Gesture>, drawOptions?: DrawOptions) {
const localOptions = mergeDeep(options, drawOptions);
if (!result || !inCanvas) return;
if (!(inCanvas instanceof HTMLCanvasElement)) return;
if (!checkCanvas(inCanvas)) return;
const ctx = inCanvas.getContext('2d');
if (!ctx) return;
ctx.font = localOptions.font;
@ -164,7 +177,7 @@ export async function gesture(inCanvas: HTMLCanvasElement, result: Array<Gesture
export async function face(inCanvas: HTMLCanvasElement, result: Array<Face>, drawOptions?: DrawOptions) {
const localOptions = mergeDeep(options, drawOptions);
if (!result || !inCanvas) return;
if (!(inCanvas instanceof HTMLCanvasElement)) return;
if (!checkCanvas(inCanvas)) return;
const ctx = inCanvas.getContext('2d');
if (!ctx) return;
for (const f of result) {
@ -268,7 +281,7 @@ export async function face(inCanvas: HTMLCanvasElement, result: Array<Face>, dra
export async function body(inCanvas: HTMLCanvasElement, result: Array<Body>, drawOptions?: DrawOptions) {
const localOptions = mergeDeep(options, drawOptions);
if (!result || !inCanvas) return;
if (!(inCanvas instanceof HTMLCanvasElement)) return;
if (!checkCanvas(inCanvas)) return;
const ctx = inCanvas.getContext('2d');
if (!ctx) return;
ctx.lineJoin = 'round';
@ -380,7 +393,7 @@ export async function body(inCanvas: HTMLCanvasElement, result: Array<Body>, dra
export async function hand(inCanvas: HTMLCanvasElement, result: Array<Hand>, drawOptions?: DrawOptions) {
const localOptions = mergeDeep(options, drawOptions);
if (!result || !inCanvas) return;
if (!(inCanvas instanceof HTMLCanvasElement)) return;
if (!checkCanvas(inCanvas)) return;
const ctx = inCanvas.getContext('2d');
if (!ctx) return;
ctx.lineJoin = 'round';
@ -446,7 +459,7 @@ export async function hand(inCanvas: HTMLCanvasElement, result: Array<Hand>, dra
export async function object(inCanvas: HTMLCanvasElement, result: Array<Item>, drawOptions?: DrawOptions) {
const localOptions = mergeDeep(options, drawOptions);
if (!result || !inCanvas) return;
if (!(inCanvas instanceof HTMLCanvasElement)) return;
if (!checkCanvas(inCanvas)) return;
const ctx = inCanvas.getContext('2d');
if (!ctx) return;
ctx.lineJoin = 'round';
@ -473,7 +486,7 @@ export async function object(inCanvas: HTMLCanvasElement, result: Array<Item>, d
export async function person(inCanvas: HTMLCanvasElement, result: Array<Person>, drawOptions?: DrawOptions) {
const localOptions = mergeDeep(options, drawOptions);
if (!result || !inCanvas) return;
if (!(inCanvas instanceof HTMLCanvasElement)) return;
if (!checkCanvas(inCanvas)) return;
const ctx = inCanvas.getContext('2d');
if (!ctx) return;
ctx.lineJoin = 'round';
@ -500,7 +513,7 @@ export async function person(inCanvas: HTMLCanvasElement, result: Array<Person>,
export async function canvas(inCanvas: HTMLCanvasElement, outCanvas: HTMLCanvasElement) {
if (!inCanvas || !outCanvas) return;
if (!(inCanvas instanceof HTMLCanvasElement) || !(outCanvas instanceof HTMLCanvasElement)) return;
if (!checkCanvas(inCanvas) || !checkCanvas(outCanvas)) return;
const outCtx = inCanvas.getContext('2d');
outCtx?.drawImage(inCanvas, 0, 0);
}
@ -509,7 +522,7 @@ export async function all(inCanvas: HTMLCanvasElement, result: Result, drawOptio
const timestamp = now();
const localOptions = mergeDeep(options, drawOptions);
if (!result || !inCanvas) return null;
if (!(inCanvas instanceof HTMLCanvasElement)) return null;
if (!checkCanvas(inCanvas)) return null;
const promise = Promise.all([
face(inCanvas, result.face, localOptions),

View File

@ -190,7 +190,12 @@ export class Human {
this.#lastInputSum = 1;
}
// version = () => Human.version;
/**
* Sets internal canvas methods
*
* @param canvas
*/
setCanvas = (canvas) => draw.setCanvas(canvas);
// helper function: measure tensor leak
/** @hidden */

2
wiki

@ -1 +1 @@
Subproject commit fcc3945dedd5682f06c45c32504a86a1a7e2a20b
Subproject commit 7f55fd1c8aea22f33a767da840147b15aeeed034