optimized demos and added scoped runs

pull/293/head
Vladimir Mandic 2020-10-15 09:43:16 -04:00
parent 51d3b429e6
commit 28688025b3
7 changed files with 115 additions and 66 deletions

View File

@ -50,6 +50,7 @@
"promise/no-nesting": "off",
"import/no-absolute-path": "off",
"import/no-extraneous-dependencies": "off",
"node/no-unpublished-import": "off",
"node/no-unpublished-require": "off",
"no-regex-spaces": "off",
"radix": "off"

View File

@ -160,10 +160,8 @@ If your application resides in a different folder, modify `modelPath` property i
Demos are included in `/demo`:
Browser:
- `demo-esm`: Demo using Browser with ESM module
- `demo-iife`: Demo using Browser with IIFE module
- `demo-webworker`: Demo using Browser with ESM module and Web Workers
*All three following demos are identical, they just illustrate different ways to load and work with `Human` library:*
- `demo-esm`: Full demo using Browser with ESM module, includes selectable backends and webworkers
- `demo-iife`: Older demo using Browser with IIFE module
NodeJS:
- `demo-node`: Demo using NodeJS with CJS module

View File

@ -3,7 +3,7 @@
import human from '../dist/human.esm.js';
const ui = {
backend: 'wasm',
backend: 'webgl',
baseColor: 'rgba(255, 200, 255, 0.3)',
baseLabel: 'rgba(255, 200, 255, 0.8)',
baseFont: 'small-caps 1.2rem "Segoe UI"',
@ -24,6 +24,8 @@ const config = {
hand: { enabled: true, skipFrames: 10, minConfidence: 0.5, iouThreshold: 0.3, scoreThreshold: 0.7 },
};
let settings;
let worker;
let timeStamp;
function str(...msg) {
if (!Array.isArray(msg)) return msg;
@ -35,13 +37,30 @@ function str(...msg) {
return line;
}
async function setupTF() {
async function setupTF(input) {
// pause video if running before changing backend
const live = input.srcObject ? ((input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState > 2) && (!input.paused)) : false;
if (live) await input.pause();
// if user explicitly loaded tfjs, override one used in human library
if (window.tf) human.tf = window.tf;
// cheks for wasm backend
if (ui.backend === 'wasm') {
if (!window.tf) {
document.getElementById('log').innerText = 'Error: WASM Backend is not loaded, enable it in HTML file';
ui.backend = 'webgl';
} else {
human.tf = window.tf;
tf.env().set('WASM_HAS_SIMD_SUPPORT', false);
tf.env().set('WASM_HAS_MULTITHREAD_SUPPORT', true);
}
}
await human.tf.setBackend(ui.backend);
await human.tf.ready();
// continue video if it was previously running
if (live) await input.play();
}
async function drawFace(result, canvas) {
@ -201,23 +220,9 @@ async function drawHand(result, canvas) {
}
}
async function runHumanDetect(input, canvas) {
const log = document.getElementById('log');
const live = input.srcObject ? ((input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState > 2) && (!input.paused)) : false;
// perform detect if live video or not video at all
if (live || !(input instanceof HTMLVideoElement)) {
// perform detection
const t0 = performance.now();
let result;
try {
result = await human.detect(input, config);
} catch (err) {
log.innerText = err.message;
}
if (!result) return;
const t1 = performance.now();
async function drawResults(input, result, canvas) {
// update fps
settings.setValue('FPS', Math.round(1000 / (t1 - t0)));
settings.setValue('FPS', Math.round(1000 / (performance.now() - timeStamp)));
// draw image from video
const ctx = canvas.getContext('2d');
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
@ -229,17 +234,50 @@ async function runHumanDetect(input, canvas) {
const engine = await human.tf.engine();
const memory = `${engine.state.numBytes.toLocaleString()} bytes ${engine.state.numDataBuffers.toLocaleString()} buffers ${engine.state.numTensors.toLocaleString()} tensors`;
const gpu = engine.backendInstance.numBytesInGPU ? `GPU: ${engine.backendInstance.numBytesInGPU.toLocaleString()} bytes` : '';
const log = document.getElementById('log');
log.innerText = `
TFJS Version: ${human.tf.version_core} | Backend: ${human.tf.getBackend()} | Memory: ${memory} ${gpu}
TFJS Version: ${human.tf.version_core} | Backend: {human.tf.getBackend()} | Memory: ${memory} ${gpu}
Performance: ${str(result.performance)} | Object size: ${(str(result)).length.toLocaleString()} bytes
`;
// rinse & repeate
// if (input.readyState) setTimeout(() => runHumanDetect(), 1000); // slow loop for debugging purposes
}
async function webWorker(input, image, canvas) {
if (!worker) {
// create new webworker
worker = new Worker('demo-esm-webworker.js', { type: 'module' });
// after receiving message from webworker, parse&draw results and send new frame for processing
worker.addEventListener('message', async (msg) => {
await drawResults(input, msg.data, canvas);
// eslint-disable-next-line no-use-before-define
requestAnimationFrame(() => runHumanDetect(input, canvas)); // immediate loop
});
}
// const offscreen = image.transferControlToOffscreen();
worker.postMessage({ image, config });
}
async function runHumanDetect(input, canvas) {
const live = input.srcObject ? ((input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState > 2) && (!input.paused)) : false;
timeStamp = performance.now();
// perform detect if live video or not video at all
if (live || !(input instanceof HTMLVideoElement)) {
if (settings.getValue('Use Web Worker')) {
// get image data from video as we cannot send html objects to webworker
const offscreen = new OffscreenCanvas(canvas.width, canvas.height);
const ctx = offscreen.getContext('2d');
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
const data = ctx.getImageData(0, 0, canvas.width, canvas.height);
// perform detection
await webWorker(input, data, canvas);
} else {
const result = await human.detect(input, config);
await drawResults(input, result, canvas);
if (input.readyState) requestAnimationFrame(() => runHumanDetect(input, canvas)); // immediate loop
}
}
}
function setupGUI() {
function setupUI(input) {
// add all variables to ui control panel
settings = QuickSettings.create(10, 10, 'Settings', document.getElementById('main'));
const style = document.createElement('style');
@ -266,9 +304,9 @@ function setupGUI() {
}
runHumanDetect(video, canvas);
});
settings.addDropDown('Backend', ['webgl', 'wasm', 'cpu'], (val) => {
settings.addDropDown('Backend', ['webgl', 'wasm', 'cpu'], async (val) => {
ui.backend = val.value;
setupTF();
await setupTF(input);
});
settings.addHTML('title', 'Enabled Models'); settings.hideTitle('title');
settings.addBoolean('Face Detect', config.face.enabled, (val) => config.face.enabled = val);
@ -305,6 +343,7 @@ function setupGUI() {
config.hand.iouThreshold = parseFloat(val);
});
settings.addHTML('title', 'UI Options'); settings.hideTitle('title');
settings.addBoolean('Use Web Worker', false);
settings.addBoolean('Draw Boxes', true);
settings.addBoolean('Draw Points', true);
settings.addBoolean('Draw Polygons', true);
@ -357,17 +396,17 @@ async function setupImage() {
}
async function main() {
// initialize tensorflow
await setupTF();
// setup ui control panel
await setupGUI();
// setup webcam
const video = await setupCamera();
const input = await setupCamera();
// or setup image
// const image = await setupImage();
// setup output canvas from input object, select video or image
await setupCanvas(video);
// const input = await setupImage();
// setup output canvas from input object
await setupCanvas(input);
// run actual detection. if input is video, it will run in a loop else it will run only once
// setup ui control panel
await setupUI(input);
// initialize tensorflow
await setupTF(input);
// runHumanDetect(video, canvas);
}

View File

@ -37,7 +37,7 @@
"start": "node --trace-warnings --trace-uncaught --no-deprecation demo/demo-node.js",
"lint": "eslint src/*.js demo/*.js",
"build-iife": "esbuild --bundle --platform=browser --sourcemap --target=esnext --format=iife --minify --external:fs --global-name=human --outfile=dist/human.js src/index.js",
"build-esm-bundle": "esbuild --bundle --platform=browser --sourcemap --target=esnext --format=esm --external:fs --outfile=dist/human.esm.js src/index.js",
"build-esm-bundle": "esbuild --bundle --platform=browser --sourcemap --target=esnext --format=esm --minify --external:fs --outfile=dist/human.esm.js src/index.js",
"build-esm-nobundle": "esbuild --bundle --platform=browser --sourcemap --target=esnext --format=esm --minify --external:@tensorflow --external:fs --outfile=dist/human.esm-nobundle.js src/index.js",
"build-node-bundle": "esbuild --bundle --platform=node --sourcemap --target=esnext --format=cjs --minify --outfile=dist/human.cjs src/index.js",
"build-node-nobundle": "esbuild --bundle --platform=node --sourcemap --target=esnext --format=cjs --external:@tensorflow --outfile=dist/human-nobundle.cjs src/index.js",

View File

@ -18,6 +18,7 @@ function getImage(image, size) {
async function load(config) {
if (!models.emotion) models.emotion = await tf.loadGraphModel(config.face.emotion.modelPath);
return models.emotion;
}
async function predict(image, config) {
@ -31,7 +32,7 @@ async function predict(image, config) {
const resize = tf.image.resizeBilinear(image, [config.face.emotion.inputSize, config.face.emotion.inputSize], false);
const [r, g, b] = tf.split(resize, 3, 3);
if (config.face.emotion.useGrayscale) {
// 0.2989 * R + 0.5870 * G + 0.1140 * B // https://www.mathworks.com/help/matlab/ref/rgb2gray.html
// weighted rgb to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
const r1 = tf.mul(r, [0.2989]);
const g1 = tf.mul(g, [0.5870]);
const b1 = tf.mul(b, [0.1140]);

View File

@ -6,13 +6,18 @@ const posenet = require('./posenet/posenet.js');
const handpose = require('./handpose/handpose.js');
const defaults = require('./config.js').default;
// object that contains all initialized models
const models = {
facemesh: null,
blazeface: null,
ssrnet: null,
posenet: null,
handpose: null,
iris: null,
age: null,
gender: null,
emotion: null,
};
// helper function that performs deep merge of multiple objects so it allows full inheriance with overrides
function mergeDeep(...objects) {
const isObject = (obj) => obj && typeof obj === 'object';
return objects.reduce((prev, obj) => {
@ -37,15 +42,14 @@ async function detect(input, userConfig) {
const config = mergeDeep(defaults, userConfig);
// load models if enabled
if (config.face.age.enabled) await ssrnet.loadAge(config);
if (config.face.gender.enabled) await ssrnet.loadGender(config);
if (config.face.emotion.enabled) await emotion.load(config);
if (config.face.enabled && !models.facemesh) models.facemesh = await facemesh.load(config.face);
if (config.body.enabled && !models.posenet) models.posenet = await posenet.load(config.body);
if (config.hand.enabled && !models.handpose) models.handpose = await handpose.load(config.hand);
if (config.face.enabled && !models.facemesh) models.facemesh = await facemesh.load(config.face);
tf.engine().startScope();
if (config.face.enabled && config.face.age.enabled && !models.age) models.age = await ssrnet.loadAge(config);
if (config.face.enabled && config.face.gender.enabled && !models.gender) models.gender = await ssrnet.loadGender(config);
if (config.face.enabled && config.face.emotion.enabled && !models.emotion) models.emotion = await emotion.load(config);
// explictly enable depthwiseconv since it's diasabled by default due to issues with large shaders
let savedWebglPackDepthwiseConvFlag;
if (tf.getBackend() === 'webgl') {
savedWebglPackDepthwiseConvFlag = tf.env().get('WEBGL_PACK_DEPTHWISECONV');
@ -58,29 +62,34 @@ async function detect(input, userConfig) {
// run posenet
timeStamp = performance.now();
let poseRes = [];
tf.engine().startScope();
if (config.body.enabled) poseRes = await models.posenet.estimatePoses(input, config.body);
tf.engine().endScope();
perf.body = Math.trunc(performance.now() - timeStamp);
// run handpose
timeStamp = performance.now();
let handRes = [];
tf.engine().startScope();
if (config.hand.enabled) handRes = await models.handpose.estimateHands(input, config.hand);
tf.engine().endScope();
perf.hand = Math.trunc(performance.now() - timeStamp);
// run facemesh, includes blazeface and iris
const faceRes = [];
if (config.face.enabled) {
timeStamp = performance.now();
tf.engine().startScope();
const faces = await models.facemesh.estimateFaces(input, config.face);
perf.face = Math.trunc(performance.now() - timeStamp);
for (const face of faces) {
// run ssr-net age & gender, inherits face from blazeface
timeStamp = performance.now();
const ssrdata = (config.face.age.enabled || config.face.gender.enabled) ? await ssrnet.predict(face.image, config) : {};
const ssrData = (config.face.age.enabled || config.face.gender.enabled) ? await ssrnet.predict(face.image, config) : {};
perf.agegender = Math.trunc(performance.now() - timeStamp);
// run emotion, inherits face from blazeface
timeStamp = performance.now();
const emotiondata = config.face.emotion.enabled ? await emotion.predict(face.image, config) : {};
const emotionData = config.face.emotion.enabled ? await emotion.predict(face.image, config) : {};
perf.emotion = Math.trunc(performance.now() - timeStamp);
face.image.dispose();
// calculate iris distance
@ -93,18 +102,19 @@ async function detect(input, userConfig) {
box: face.box,
mesh: face.mesh,
annotations: face.annotations,
age: ssrdata.age,
gender: ssrdata.gender,
emotion: emotiondata,
age: ssrData.age,
gender: ssrData.gender,
emotion: emotionData,
iris: (iris !== 0) ? Math.trunc(100 * 11.7 /* human iris size in mm */ / iris) / 100 : 0,
});
}
tf.engine().endScope();
}
// set depthwiseconv to original value
tf.env().set('WEBGL_PACK_DEPTHWISECONV', savedWebglPackDepthwiseConvFlag);
tf.engine().endScope();
// combine results
// combine and return results
perf.total = Object.values(perf).reduce((a, b) => a + b);
resolve({ face: faceRes, body: poseRes, hand: handRes, performance: perf });
});